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Mixing properties of the generalized

T� T���process

Frank den Hollander� University of Nijmegen �

Je�rey E� Steif� Chalmers University of Technology y

Abstract

Consider a general random walk on ZZd together with an i�i�d� ran�
dom coloring of ZZd� The T� T���process is the one where time is
indexed by ZZ� and at each unit of time we see the step taken by the
walk together with the color of the newly arrived at location� S� Ka�
likow proved that if d � � and the random walk is simple� then this
process is not Bernoulli� We generalize his result by proving that it
is not Bernoulli in d � �� Bernoulli but not Weak Bernoulli in d � 	
and 
� and Weak Bernoulli in d � �� These properties are related to
the intersection behavior of the past and the future of simple random
walk� We obtain similar results for general random walks on ZZd� lead�
ing to an almost complete classi�cation� For example� in d � �� if a
step of size x has probability proportional to ��jxj� x �� ��� then the
T� T���process is not Bernoulli when � � �� Bernoulli but not Weak
Bernoulli when 	�� � � � � and Weak Bernoulli when � � � � 	���
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� Introduction and main de�nitions

�� De�nition of the T� T���process� We begin by describing the process
that will be the object of our study�

For a �xed integer d � �� let fXigi�ZZ be i�i�d� random variables taking
values in ZZd and having marginal law m� Let fSngn�ZZ be the corresponding
random walk on ZZd de�ned by

S� � �� Sn �
nX
i��

Xi �n � ��� Sn � �
�X

i�n��

Xi �n � ����

i�e�� Xi is the step at time i� Sn is the position at time n� Next� let fCzgz�ZZd
be i�i�d� random variables taking values 	� and �� with probability ��
 each�
We think of this as a random coloring of ZZd� i�e�� Cz is the color of location
z� The walk and the coloring are assumed to be independent� Throughout
the sequel� the symbols P�E will denote probability and expectation w�r�t�
walk and�or coloring�

Now consider the process

fZigi�ZZ with Zi � �Xi� CSi��

We shall call this the T� T���process associated with m� �The name is
explained in Section ����� The goal of our paper will be to study the mixing
properties of this process�

Since both the step taken by the walk and the color of the newly arrived
at location are recorded� knowing the past fZigi�� of the T� T��process is
the same as knowing the past fSigi�� of the walk and the colors of all the
locations in fSigi��� Asking about the mixing properties of fZigi�ZZ therefore
means asking what e�ect this knowledge has on the future fZigi��� Since
the steps are i�i�d�� the latter boils down to the question of what can be said
about the colors encountered in the future given that the coloring is known
on a certain �random� subset of ZZd� If the random walk is recurrent and
irreducible� then this subset is all of ZZd�

We end this subsection with a result proved in �
���

Theorem ��� ������ For any m� the T� T���process associated with m has
a trivial right tail	






Trivial right tail means that �n����Zn� Zn��� � � � � only contains sets of prob�
ability � or �� where ��Zn� Zn��� � � � � is the �algebra generated by the
random variables fZn� Zn��� � � � g� So Theorem ��� already tells us that the
T� T��process has reasonably strong mixing properties�

In ergodic theory� within the class of stationary processes whose one
dimensional marginal has �nite entropy a process with a trivial right tail is
called a K�automorphism �K� �see ���� p�
��� the entropy of a random
variable X is de�ned to be �P

i pi log pi� when p�� p�� � � � are the atoms of the
distribution of X� and is taken to be � when the distribution is not purely
discrete�� We mention that Kautomorphisms can also be de�ned outside
the class of stationary processes whose onedimensional marginal has �nite
entropy� but doing this would take us to far a�eld�

�� De�nition of Very Weak Bernoulli and Weak Bernoulli� We iden�
tify a process fYngn�ZZ taking values in a complete metric space F with a
complete probability measure � on F ZZ in the obvious way� �The �algebra
is the completed Borel �algebra w�r�t� �� The Borel structure refers of
course to the product topology�� Stationarity of the process corresponds to
this measure being translation invariant�

To de�ne the concept of VeryWeak Bernoulli we need the following notion
of distance between probability measures� called the d�distance in ergodic
theory�

De�nition ��� If ��� �� � P�FN�� with F a countable set and N a positive
integer� then

d���� ��� � inf
��P�FN�FN �� �����������

�Z �
�

N

NX
i��

�f�i ���ig

�
��d�� d	�

�
�

where �� and �� are the 
�st resp	 ��nd marginal of �� a typical element of
FN � FN is denoted by ��� 	� � �f�igNi��� f	igNi���� and P�E� denotes the set
of probability measures on E	

The in�mum runs over all couplings �or joinings� � of �� and ��� The r�h�s�
without the in�mum measures the expected percentage of errors under the
coupling ��

If S � ZZ is �nite� then we let ��S� denote the sub ��eld of � � F ZZ

generated by the atoms f
 � � � 
 � � on Sg where � ranges over F S� and
we let Atom�S� denote the collection of these jF jjSj atoms�

�



De�nition ��� A translation invariant measure � � P�F ZZ� with F a count�
able set is called Very Weak Bernoulli �VWB� if for all � � � there exists
a positive integer N � N��� such that� If n � N and S � ���� �� � ZZ with
S nite� then

d��j���n	� �j���n	�A�  �

for all A � Atom�S� except for an ��portion as measured by �	

Here �j���n	 denotes the measure on F ���n	�ZZ obtained by projecting � onto
the coordinates ��� n� � ZZ� �j���n	�A means �j���n	 conditioned on A� and the
proviso in the last line means that the union of the atoms A where the above
inequality fails has �measure � �� In words� VWB means that for large n
and for any m � �� the future up to time n conditioned on the past down to
time m can �for most pasts� be coupled with the unconditioned future with
an arbitrarily small percentage of errors �which pasts may depend on n and
m��

The concept of Weak Bernoulli� to be de�ned next� arose in the ergodic
theory community when the Ornstein isomorphism theorem for i�i�d� pro�
cesses ��
�� p��� was extended to more general processes �see ����� However�
it was in fact formulated earlier by Kolmogorov under the name �absolute reg�
ularity� �see �
� Section ����� It is sometimes also referred to as ��mixing�
�see �����

De�nition ��� A translation invariant measure � � P�F ZZ� with F a com�
plete metric space is called Weak Bernoulli �WB� if

lim
n�	

k���	��	

n�	� � ���	��	 � �
n�	�k � ��

where k 	 k denotes the total variation norm of a nite signed measure	

In words� WB means that the past and the future beyond time n are asymp�
totically independent as n
��

It will be useful for us later to have a characterization of WB in terms of
couplings�

Proposition ��� ���� Theorem �	�	�� A stationary process fYngn�ZZ is WB

if and only if there is a process fY �
n� Y

��
n gn�ZZ such that�

�i� fYngn�ZZ� fY �
ngn�ZZ and fY ��

n gn�ZZ are equal in distribution�
�ii� fY �

ngn�ZZ and fY ��
n gn�� are independent�

�iii� a	s	 there exists a positive integer N such that Y �
n � Y ��

n for all n � N 	
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From Proposition ��� it is obvious that WB implies VWB� Even for �nite
state stationary processes the reverse is not true in general� The �rst coun�
terexample was given in ����� Another example comes from ��
�� An example
in the context of skew products �see Section ��� for the de�nition of a skew
product� was given in ����� We shall see still more examples in this paper�

�� Bernoulli vs� Very Weak Bernoulli� Two stationary processes �F ZZ� ��
and �GZZ� �� are isomorphic if there exists an invertible measure�preserving
map from one to the other that is de�ned a�e� and that commutes with shifts�

De�nition ��	 A stationary process is called Bernoulli �B� if it is isomor�
phic to an i	i	d	 process	

It is generally di�cult to see directly if a process is Bernoulli or not�
However� the following fact is important and helpful�

Theorem ��
 ����� p	��� ��
�� Let the state space F be nite	 Then B is
equivalent to VWB	

�An alternative and simpler proof of this fact is given in �
���� For in�nite
state processes the situation is slightly di�erent�

Theorem ��� Let the state space F be countable	 Then VWB implies B	
Conversely� if the one�dimensional marginal of the process has nite en�
tropy� then B implies VWB	 However� the latter may fail without the entropy
restriction	

Proof� Theorems � and � on p��� in �
�� state the following continuity
principle� If Y �m� � fY �m�

n gn�ZZ is a sequence of stationary processes that
are all functions of a stationary process X � fXngn�ZZ� such that each Y �m�

is B and such that the sigma�elds ��Y �m�� are increasing in m with X be�
ing measurable �up to sets of measure �� w�r�t� the sigma�eld generated by
�m��Y �m��� then X is also B� Next� we note that it is easily proved that if a
countably in�nite state process is VWB� then the process obtained by collaps�
ing any in�nite set of states into a single state is also VWB� Combining these
two facts with Theorem ��� above� the �rst implication immediately follows�
The second implication �under the entropy constraint� can be obtained by
a straightforward modi�cation of the proof in �
��� Similarly� it is trivial to
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�nd examples �necessarily failing the entropy condition� that are B but not
VWB� For instance� take any �block construction� of a �nite state Bernoulli
process and add at the �rst position in a block a number that describes the
block exactly� This is a countably in�nite state Bernoulli process for which
a�s� the past determines the future and so we lose the VWB property� �

Within the class of stationary processes whose onedimensional marginal
has �nite entropy� B implies K ���� p�
���� Therefore the import of Sections
��
���� can for this class be be summarized as follows�

WB �� VWB � B �� K�

For general countable state processes all of the above holds except the ��
�The fact that B implies K requires the de�nition of a Kautomorphism in
this more general context� which we have not given��

Despite the fact that B and VWB are not equivalent in general� it turns
out that they are equivalent for the T� T��process�

Theorem ��� The T� T���process is B if and only if it VWB	

We shall sketch the proof in Section ���� Most of this sketch is due to Jean�
Paul Thouvenot �personal communication�� The proof is a digression� since
the m�s for which we prove that the T� T��process associated with m is
not VWB all have �nite entropy �see Theorem 
�� below and the comments
afterwards� and hence the equivalence with not B follows from Theorem ���
anyway�

�� Brief overview of results� The following theorem due to S� Kalikow
was the main motivation for the present paper� As usual� simple random
walk refers to the case where at each step the walk chooses uniformly from
its 
d nearest neighbors�

Theorem ��� ��
��� The T� T���process associated with simple random
walk in d � � is not B	

Remark�
Theorem ���� above solved a problem that had been open for over �� years�
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It showed that even for a �natural� process like the T� T��process it is possi�
ble to be K �recall Theorem ���� and yet fail to be B� Examples of processes
that are K but not B were known earlier �see �
�� and ������ but they were
clearly constructed for the purpose� The result proved in ���� is actually a
little stronger in that it is shown that the process does not even satisfy a
weaker property called loosely Bernoulli� but we shall not deal with the
latter concept here�

The main results of our paper are formulated in Section 
� Here we give
a brief outline�

�� We show that a necessary and su�cient condition for the T� T��
process to be WB can be given in terms of the intersection properties of
the underlying random walk� More speci�cally� let I be the intersection
set of the forward part �future� and the backward part �past� of the
walk� Then the process is WB if and only if jIj � a�s� The expected
value EjIj can be computed as a simple sum involving the Green�s
function of the random walk� While EjIj  � of course implies that
jIj � a�s�� the converse is not true in general and a counterexample
will be presented� However� we show that the converse is true for a
large class of random walks� including all the symmetric ones as well
as the ones with �nite variance� In Section � we characterize to some
extent the random walks for which the Green�s function sum is �nite
resp� in�nite�


� We show that transience of the random walk is a su�cient condition for
the T� T��process to be VWB� We also show that recurrence together
with some �mild assumptions�� namely� the existence of a positive mo�
ment of m and a certain property involving the intersections of the
random walk� implies that the T� T��process is not VWB� In Section
� we show that this latter assumption holds when at least one com�
ponent of the random walk is in the domain of attraction of a stable
law� This will extend the result in ����� Transience is equivalent to the
Green�s function being �nite�

The problems that we study are intimately connected with questions con�
cerning intersection properties of random walks� Such questions can be quite
di�cult� as evidenced by the existence of the book �
���
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�� The T� T���transformation �for ergodic theorists only�� This sub�
section is a brief digression into ergodic theory� It is not needed in order to
read any other part of the paper and so the reader may want to skip it and
move on to Section 
�

An ergodic theorist will be more interested in the T� T��transformation
�from which the T� T��process arises�� We brie y explain what this is and
what our results tell us about it�

De�nition ���� A dynamical system is a quadruple ���B� �� T �� where
� is a set� B is a ��eld of subsets of �� � is a probability measure on B�
and T is a bijective bimeasurable measure�preserving transformation on �	

An important example of a dynamical system that often arises in ergodic
theory is a skew product�

De�nition ���� Let ���B� �� T � be a dynamical system	 Let fT	g	�� be
a family of bijective bimeasurable measure�preserving transformations on the
measure space ����B�� ���� with �
� 
��
 T	�
�� jointly measurable	 Then the
resulting skew product is the dynamical system ��� ���B � B�� �� ��� !T �
where

!T �
� 
�� � �T �
�� T	�

����

�One easily checks that !T is measurepreserving��
The T� T��transformation is a particular family of skew products� Let

" � ��ZZd�ZZ�B� ��� where

� � mZZ for some probability measure m on ZZd

and B is the completed Borel �algebra w�r�t� �� Let "�� �f	����gZZd �B�� ���
where

� � ����
���� 	 ���
�����
ZZd

and B� is the completed Borel �algebra w�r�t� �� Abbreviate � � �ZZd�ZZ and

�� � f	����gZZd� Let T be the bijective bimeasurable measure�preserving
transformation on " given by the left shift

�T
��n� � 
�n	 �� for all 
 � � and n � ZZ�

�



For 
 � �� let T	 be the bijective bimeasurable measure�preserving transfor�
mation on "� given by�

T	�

��
�
�z� � 
��z 	 
���� for all 
� � �� and z � ZZd�

Here a typical element 
 � � is written

f� � � � 
����� 
���� 
���� � � �g
and similarly for 
� � ��� The resulting skew product is called the T� T���
transformation with measure ��

Note that the only freedom we have with the above system is the marginal
m of �� This marginal represents the step distribution of the random walk�
while � represents the law of the i�i�d� random coloring� The term T� T��

now comes from the original case studied by Kalikow� which was d � �
and m � ���
���� 	 ���
����� Then we are essentially shifting the second
coordinate in the skew product either to the left or to the right� i�e�� we apply
T or T�� with T denoting the shift on the color sequence�

Given a dynamical system ���B� �� T � and a countable partition Q of
�� we obtain in a natural way a stationary process fYngn�ZZ� de�ned on the
probability space ���B� �� and taking values in Q� by letting Yn�
� be the
partition element of Q containing T n�
�� We say that Q generates if B is
contained �up to sets of measure �� in the �algebra generated by fYngn�ZZ�
When Q and Q� are two �nite partitions that generate� then Theorem ���
implies that the stationary process associated with Q is VWB if and only
if the one associated with Q� is� This says that the property of VWB is
an isomorphism invariant for �nite state stationary processes and hence is
an intrinsic property of the dynamical system� However� the existence of
VWB processes that are not WB implies �using Theorem ���� that a similar
equivalence for WB fails to be true� Because of this fact� an ergodic theorist
might not consider the concept of WB natural� since it is not an intrinsic
property of the dynamical system� However� from a probabilist point of view
it is obviously important�

The next observation we ask the reader to make is that the T� T���process
associated with m can be obtained by taking the T� T���transformation with
� � mZZ and letting Q be the countable partition of ���� generated by the
pair �
���� 
������ �Note that Q is a �nite partition if m has �nite support�
which means that the corresponding random walk has bounded step size��

�



The advantage of having a partition Q generate is that the dynamical
system is then isomorphic to the stationary process associated with Q� How�
ever� in our T� T��transformation the partition based on �
���� 
����� does
not necessarily generate� In fact� it generates if and only if fSngn�ZZ � ZZd

a�s�� a condition that is slightly weaker than recurrence and irreducibility to�
gether� Therefore� if we prove that the T� T���process is B� then this does not
necessarily imply that the T� T��transformation is B� �If the T� T���process
is not B� then it follows from �
�� p���� that the T� T��transformation is
not B�� However� to prove that the T� T��transformation is B� we can pro�
ceed as follows� Fix k and de�ne a process fZk

ngn�ZZ containing somewhat
more information than the T� T��process� namely� at time n we record the
step of the walk together with the color of the location the walker newly
arrives at and the colors of all the locations within k units� In other words�
Zk
n � �Xn� fCzgz�Bk�Sn�� where Bk � ��k� k�d � ZZd�
The proof that for transient random walk fZngn�ZZ is VWB �see Theo�

rem 
�� below� carries over immediately to show that fZk
ngn�ZZ is VWB for

each k� It is also clear that B � B� is the �algebra generated by �kFk�
where Fk is the �algebra generated by fZk

ngn�ZZ� It therefore follows from
Theorem ��� above and from Theorems � and � on p��� in �
�� that the
T� T��transformation is B� �For the content of the latter two theorems� see
the proof of Theorem ��� above��

Also the proof that fZngn�ZZ is WB under the appropriate assumptions
on the random walk �see Theorem 
�
 below� carries over immediately to
show that fZk

ngn�ZZ is WB for each k�

	� Sketch of the proof of Theorem ��� �for ergodic theorists only��
Finite codings of i�i�d� processes are trivially VWB� Moreover� it is easy to
show that any coding can be approximated in the dmetric by �nite cod�
ings for which the state space of the image process is �nite� �The dmetric
was only de�ned for a �nite number of variables but can easily be extended
to stationary processes by requiring the couplings to be jointly stationary��
Therefore we need only show that the set of VWB processes is closed in the
dmetric� This is proved in �
�� for �nite state processes and extends imme�
diately to processes whose onedimensional marginal has �nite entropy� The
argument can� however� also be carried out for general countable state pro�
cesses� provided we can extend an entropy theorem due to Rohklin stating

��



the following� if fAn� Bng is a jointly stationary �nite state process� then

lim
n�	

H�A�jfAmgm��� fBmgm��n� � H�A�jfAmgm����

where H�	j	� denotes conditional entropy� In particular� the argument in �
��
could be carried over if we could verify the above when fAng is any �nite
state process and fBng is the T� T��process fZng�

In fact� Rohklin�s proof could be carried over after we prove the following�
if fCn�Dng is a jointly stationary ergodic process with fCng a �nite state
process and fDng an i�i�d� process� then

lim
n�	

H�C�jfCmgm��� fDmgm��n� � H�C�jfCmgm���� ���

To prove ���� we �rst use the relativized Sinai theorem to �nd a process
fEng that is a stationary coding of fCn�Dng� such that fEng is i�i�d� and
independent of fDng and such that its entropy is

H�C�jfCmgm��� fDmgm�ZZ��

It su�ces to prove that the two quantities in ��� are within a �xed � � ��
Fix such an � and use the fact that

H�C�jfCmgm��� fDm� Emgm�ZZ� � �

to construct a process fFng �de�ned on the same probability space� such
that fCn�Dn� En� Fng is jointly stationary� the entropy of F� is less than
�� and fCng is measurable w�r�t� fDn� En� Fng� It is easy to show that if
fDn� En� Fn� Gng is jointly stationary� where the partition corresponding to
G� can be expressed as the partition corresponding to fD�

n� En� Fngjnj�N for
some N with fD�

ng a process simply obtained by collapsing the state space
of fDng down to a �nite number of states� then

j lim
n�	

H�G�jfGmgm��� fDmgm��n��H�G�jfGmgm���j � �� �
�

Next� a simple computation shows that if �
� holds� then it also holds
when fGng is replaced by any process that is a �nite state factor �coding�
of fGng� It is also easy to show that the above property is preserved under
taking dlimits in the fGngvariable� Finally� since fCng is measurable w�r�t�

��



to fDn� En� Fng� it is a dlimit of the above type processes and hence ���
follows� �


� A comment about more general groups� We �nally mention that
given an arbitrary random walk on an arbitrary discrete group G� one can
de�ne an associated T� T��process completely analogously to the case G �
ZZd� All of the results that we obtain for G � ZZd also hold for general groups
�provided they make sense in this more general context�� The proofs are in
fact identical� However� we decided for concreteness to restrict our discussion
to ZZd� See ��� for a classi�cation of recurrence vs� transience of random walks
on countable Abelian groups�

� Main results

In this section we state our main results� Proofs are deferred to Sections ��
and ���

The random walk is recurrent if P �Sn � � for some n � �� � � and
transient otherwise� We write S�k� �� to denote the set fSk� Sk��� � � � � S
g�
i�e�� the collection of all the locations that are hit during the time interval
�k� ��� The random walk starting from x is denoted by fSx

ngn�ZZ and de�ned
by Sx

n � x	 Sn� Throughout this paper we assume that the random walk is
irreducible� which means that given any x� y � ZZd there is an n � � such
that P �Sx

n � y� � ��

�� Weak Bernoulli� Theorem 
�
 below gives a necessary and su�cient
condition for the T� T��process fZng to be WB in terms of the intersection
properties of the underlying random walk fSng�

De�nition ��� We say that the random walk fSng has property � if

jS����� � S���� ��j � a	s	

Remarks�
�a� The two sets in the above intersection are independent�
�b� It follows from the HewittSavage zero�one law �see ��� p����� that the
event in the above de�nition has probability � or ��

�




�c� A d � � nearest neighbor random walk with nonzero drift satis�es prop�
erty ��
�d� A recurrent random walk cannot satisfy property ��
�e� Simple random walk satis�es property � if and only if d � � �see �
��
Section ���

Theorem ��� The T� T���process fZng associated with the random walk
fSng is WB if and only if fSng has property �	

�� Relationship between property � and the Green�s function� We
begin with some notation� Let

pn�x� y� � P �Sx
n � y�

fn�x� y� � P �Sx
n � y� Sx

m �� y for � � m  n��

Let pn�x� � pn��� x� and fn�x� � fn��� x�� and

G�x� �
P

n�� pn�x�
F �x� �

P
n�� fn�x��

G is theGreen�s function of the random walk� G�x� is equal to the expected
number of visits to x starting from �� F �x� is the probability of ever reaching
x starting from � �note that F ��� � � because f���� � � and fn��� � � for
n � ��� The step distribution is m�x� � p��x��

Remarks�
�f� By irreducibility� G�x� �� for all x if the random walk is recurrent and
G�x� � for all x if the random walk is transient�
�g� The renewal relation pn�x� �

Pn
m�� fm�x�pn�m��� implies that for tran�

sient random walk F �x� � G�x��G����
�h� For transient random walk G determines m �see ���� Section 
� and so
distinct transient random walks have distinct Green�s functions�

We are now ready to relate property � with properties of the Green�s
function� The �rst observation is that �see Remark �g��

E
�
jS������ S���� ��j

�
�

X
x�ZZd

F �x�F ��x� � �

G����

X
x�ZZd

G�x�G��x�� ���

We therefore obtain the following corollary�

��



Corollary ��� If
P

x�ZZd G�x�G��x�  �� then the random walk fSng has
property �	

The interesting question is whether the converse is true� It turns out that
the answer is no�

Proposition ��� There exists a random walk fSng in d � � with

E
�
jS����� � S���� ��j

�
� �

jS����� � S���� ��j  � a	s	

On the other hand� the converse is true for a large class of random walks�

Theorem ��� Assume that
P

x�ZZd G�x�G��x� ��	 Assume that the ran�
dom walk fSng satises at least one of the following two properties�
�i� symmetric �i	e	� m�x� � m��x� for all x��
�ii� nite variance �i	e	�

P
x�ZZd jxj�m�x� ��	

Then fSng does not satisfy property �	
Remarks�
�i� It turns out that the only reason why property � need not correspond toP

x�ZZd G�x�G��x� � is that the random walk run backwards need not be
the same as the random walk run forwards �see Corollary ��� below��
�j� It is possible to improve on conditions �i�ii� in Theorem 
��� For instance�
it can be shown that property � also fails when

P
x�ZZd G�x�jG�x��G��x�j 

� and supn�� n
���pn��� � for some � � �� We shall� however� not pursue

this line�

In Section � we shall characterize to some extent which random walks
satisfy the Green�s function criterion

P
x�ZZd G�x�G��x� ��

�� Very Weak Bernoulli� Our next result gives a su�cient condition for
fZng to be VWB �which we also believe to be necessary��

Theorem ��	 If the random walk fSng is transient� then the T� T���process
fZng is VWB	

��



Our �nal result� an almost converse to Theorem 
��� tells us that if fSng is
recurrent and satis�es some mild assumptions� then the T� T��process fZng
is not VWB� To describe this� we introduce a property that concerns the self
intersection behavior of the random walk and that plays a role analogous to
property ��
De�nition ��
 A random walk fSng has property � if there exist con�
stants C� � � � such that for all integers M�N � � and all r � ��� ��

P �EM
N�r� � C

�

N�r�
�

where EM
N�r is the event

n
�I � f�� � � � � Ng� jIj � rN �

S��i� ��M� iM � � S��j � ��M� jM � �� � �i� j � I
o
�

Remarks�
�k� The upper bound in the de�nition of � is uniform in M �
�l� In ���� it is shown that simple random walk in d � � satis�es property �
with C � 
� and � � ����
�m� If some coordinate of the random walk satis�es property �� then the
random walk itself also does�

The main result of this section is the following�

Theorem ��� Let fSng be a recurrent random walk satisfying property �
and

P
x�ZZd jxj�m�x� � for some � � �	 Then the T� T���process fZng is

not VWB	

We already know from Theorem 
�� that recurrence is a necessary condi�
tion for fZng not to be VWB� Despite the fact that recurrent random walks
can have arbitrarily fat tails �see ���� or ������ the assumption of a �nite
�moment is rather weak �although it can be shown to imply that m has
�nite entropy�� As far as property � is concerned� we believe that this is no
restriction at all�

Conjecture ��� Every random walk fSng satises property �	

��



�� Su�cient condition for �� In this section we formulate a su�cient
condition for �� thereby giving content to Theorem 
���

De�nition ��� A one�dimensional random walk fSng is in the domain
of attraction of a random variable Y if there exist two sequences of
constants fbng � IR and fang � IR with an � � such that

Sn � bn
an

� Y �n
��

�� means convergence in distribution�	 The possible limiting random vari�
ables Y are called stable laws	

Remarks�
�n� Before we proceed� let us recall the following facts about stable laws
�see ��� Section 
���� The normal distribution as well as the constants are
stable laws� Modulo translations and scalings� all other stable laws can be
parametrized by two parameters� � � ��� 
�� called the index� and � � ��� ���
measuring the skewness� The density functions of these stable laws are known
only in very few cases� The stable law Y corresponding to � � ��� 
� and
� � ��� �� has the properties

limx�	 x�P �jY j � x� � �����

limx�	
P �Y �x�
P �jY j�x� � ��

�o� The case � � 
 corresponds to the normal distribution� If E�X�
� � ��

then it follows from the central limit theorem that fSng is in the domain of
attraction of a normal distribution where the sequences can be taken to be
an �

p
n� bn � nE�X���

�p� It can deduced from ��� pp������� that if fSng is in the domain of attrac�
tion of some stable law with index � � ��� 
�� then the sequence fang is of the
form an � n

�
�L�n� with L a slowly varying function� i�e�� limt�	

L�tx�
L�t� � �

for all x � ��

Theorem ���� Let fSng be a one�dimensional random walk that is in the
domain of attraction of a nondegenerate stable law where the centering se�
quence fbng can be taken to be � �	 If� in addition� � � � and�or � � ��� ���
then fSng satises property �	

��



Remarks�
�q� Random walks in the domain of attraction of a stable law with index
� � � must have a step distribution m with �nite mean ���� p������ In that
case the centering constants can be taken to be � � if and only if m has zero
mean ���� p���� and ��� p������ The centering constants can also be taken to
be � � if m is symmetric ���� p������
�r� We shall see in the proof of Theorem 
��� that � in property � can be
taken arbitrarily close to ���� 	 ���
�s� Random walks in the domain of attraction of a stable law with index
�  � are not recurrent and centering is unnecessary �see ��� p������

Theorems 
�� and 
��� together with Remarks �m� and �q� imply the
following corollary�

Corollary ���� Let fSng be a recurrent random walk with
P

x�ZZd jxj�m�x� 
� for some � � � and having some coordinate in the domain of attraction
of a nondegenerate stable law with index �	 If either of the following holds�
�i� � � � �in which case the coordinate must have zero mean�
�ii� � � � and the coordinate is symmetric�
then fZng is not VWB	 In particular� if fSng is any zero mean nite variance
random walk in d � � or 
� then fZng is not VWB	

Example ���� Let d � � and m�x� � C�x� for x �� �� The corresponding
randomwalk is recurrent ����� Example ��
� and is in the domain of attraction
of the Cauchy distribution ���� Theorem 
������ By the above corollary� this
gives us a random walk with in�nite mean for which the associated T� T��
process is not VWB�

� Proofs of Theorems ��� and ���

�� Large blocks in random walk intersections� To prove Theorem 
�
�
we need the following lemma� This says that if the intersection set of the
past and the future of a random walk is in�nite� then it contains in�nitely
many blocks of arbitrary size�

De�nition ��� Given a set A � ZZd� the k�interior of A is dened as

intk�A� � fx � A � Bk 	 x � Ag�

��



where Bk � ��k� k�d � ZZd	

Lemma ��� Assume that fSng does not satisfy property �	 Then for all
k � � ���intk�S����� � S���� ��

���� �� a	s	

Proof� As the claim is trivial in the recurrent case� we may assume that
the random walk is transient� Fix k � �� By irreducibility� there exists a
positive integer N and a � � � such that P �Bk � S��� N �� � �� Moreover�
since Bk is symmetric around the origin� it follows that P �Bk � S��N� ����
P �Bk � S��� N ���

We �rst show that���intk�S�����
�
� S���� ��

��� �� a�s� ���

Let T� � � and E� � fBk � S��� N �g� Inductively� for r � � let

Tr�� � inffm � Tr 	N � Sm � S���� ��g
Er�� � fBk 	 STr�� � S�Tr��� Tr�� 	N �g�

Since the random walk does not satisfy property �� all the Tr�s are �nite a�s�
Clearly� the events Er are independent and each has probability at least ��
Hence� by Borel�Cantelli� a�s� in�nitely many of them occur� So� the future
of the random walk in�nitely often �lls a box of size k around some site in
the past of the random walk� By transience this happens around in�nitely
many distinct sites� Hence we have proved ����

We next repeat the above argument� but backwards in time� In fact� let
U�� supfm � � �Sm � intk�S������g and F� � fBk	SU� � S�U��N�U��g�
Inductively� for r � � let

Ur�� � supfm � Ur �N � Sm � intk�S������g
Fr�� � fBk 	 SUr�� � S�Ur�� �N�Ur���g�

By ���� all the Ur�s are �nite a�s� Clearly� the events Fr are independent and
each has probability at least �� Hence� by Borel�Cantelli� a�s� in�nitely many
of them occur� This� together with transience and the fact that intk�A�B� �
intk�A� � intk�B� for all k � � and all sets A�B� completes the proof� �

��



�� Proof of Theorem ���� The proof comes in two steps�
�� We �rst assume that property � holds and verify the conditions in Propo�
sition ��� to prove that fZng is WB�

Let
fX �

igi�ZZ� fC �
zgz�ZZd� fX ��

i gi�ZZ� fC ��
z gz�ZZd

be independent copies of the steps of our random walk and of the colors of
our random coloring� The process fZ �

n� Z
��
ngn�ZZ that we construct below will

be a function of the above four families of random variables� Let fS�ngn�ZZ
and fS ��ngn�ZZ be the random walks associated with the above increments �see
Section ����� De�ne

Z �
n � �X �

n� C
�
S�n
� �n � ZZ�

Z ��
n � �X ��

n� C
��
S��n
� �n � ���

For n � �� let the �rst component of Z ��
n be X �

n� Then� clearly� condition �ii�
and most of condition �i� in Proposition ��� are satis�ed� We now need to
de�ne the second component of Z ��

n for n � � in such a way that fZ ��
ngn�ZZ

is equal in distribution to fZngn�ZZ and Z �
n � Z ��

n for large n a�s� It is easily
checked �using property �� that this can be accomplished by letting the
second component of Z ��

n be

C ��
S�n

if S�n � S��k for some k � �
C �
S�n

otherwise�

The idea here is that if at time n we are back at a location at which we
have been before then we must use the C ���coloring� while if we are at a new
location then we are free to use the C ��coloring �which of course we want to
do��

� We next assume that fZng is WB and that property � fails� We show that
this leads to a contradiction�

If fZng is WB� then by Proposition ��� there is a process fZ �
n� Z

��
ngn�ZZ

such that�
�i� fZngn�ZZ� fZ �

ngn�ZZ and fZ ��
ngn�ZZ are equal in distribution�

�ii� fZ �
ngn�ZZ and fZ ��

ngn�� are independent�
�iii� a�s� there exists a positive integer N such that Z �

n � Z ��
n for all n � N �

Write
Z �
n � �X �

n� Y
�
n�

Z ��
n � �X ��

n � Y
��
n ��

��



Let fS�ngn�ZZ and fS��ngn�ZZ be the random walks associated with the two �rst
components� Let �� be the event that for all k � � and all n � ZZ�

S�n�k � S�n �� Y �
n�k � Y �

n and S��n�k � S��n �� Y ��
n�k � Y ��

n � ���

Trivially� P ���� � � by �i� �which says nothing other than that if the random
walk visits the same site twice then it must see the same color�� We may now
assume that �� is our entire probability space� Next� for z � ZZd� let

R��z� �

�
Y �
n if S�n � z for some n � �
� if S�n �� z for all n � �

and

R���z� �

�
Y ��
n if S��n � z for some n � �
� if S��n �� z for all n � ��

Note that R��z� and R���z� are well de�ned because of ���� In words� the func�
tion R� tells us the colors of the �rst process but only for those locations the
forward random walk of the �rst process reaches� Similarly for the function
R�� and the second process� Now� for k � �� let �k be the event that���fz � intk

�
S ������ � S������ ��

�
�

R��w� � 	� and R���w� � �� for all w � Bk 	 zg
��� ���

�Note that �k is measurable with respect to fZ �
ngn�� and fZ ��

ngn���� In words�
�k is the event that there are in�nitely many translates of Bk with the
property that� �a� they are contained in the forward walk of the �rst process
and the backward walk of the second process� �b� they are colored 	� in the
�rst process and �� in the second process�

We claim that P ��k� � � for all k� Indeed� since property � fails� Lemma
��
 together with �i� and �ii� implies that jintk�S������ � S������ ���j ���
Since the walk and the coloring are independent for fZng� it follows �again
via �i� and �ii�� that P ��k� � �� This in turn implies that P ��k���k� � �
and hence that

P �f�k���kg � fZ �
n � Z ��

n for all large ng� � ��

The proof is now completed by observing that

f�k���kg � fZ �
n � Z ��

n for all large ng � ��


�



giving us the desired contradiction� �

�� Transient random walks have zero density intersections� To prove
Theorem 
��� we need the following lemma�

Lemma ��� If fSng is transient� then

lim
N�	

E
� �
N

N��X
n��

�fSn � S���� ��g
�
� ��

Proof� Recalling the notation introduced in Section 
�
� we have

E
� �
N

N��X
n��

�fSn � S���� ��g
�

�
�

N

X
x�ZZd

N��X
n��

P
�
x � Sn� x � S���� ��

�

�
�

N

X
x�ZZd

F ��x�
N��X
n��

pn�x�

� �

N

X
x�ZZd

G��x�
N��X
n��

pn�x�

�
�

N

	X
m��

N��X
n��

X
x�ZZd

pm��x�pn�x�

�
�

N

	X
m��

N��X
n��

pm�n���

�
	X
j��

minfj 	 �� Ng
N

pj����

The r�h�s� tends to zero as N 
� by bounded convergence� becauseP	
j�� pj��� � G��� � by transience� �

�� Proof of Theorem ��	� We verify the VWB property� In fact� we prove
that there is a process fZ �

n� Z
��
ngn�ZZ such that�

�i� fZngn�ZZ� fZ �
ngn�ZZ and fZ ��

ngn�ZZ are equal in distribution�
�ii� fZ �

ngn�ZZ and fZ ��
ngn�� are independent�

�iii� limN�	E
�

�
N

PN
i�� �fZ�

i
��Z��

i
g

�
� ��

It is easily veri�ed that this condition is su�cient for fZng to be VWB �see
De�nitions ��
 and ��� in Section ��
��


�



The �rst half of the proof of Theorem 
�
 provides us with a process
fZ �

n� Z
��
ngn�ZZ satisfying �i� and �ii�� Next the explicit construction of this

process and Lemma ��� guarantee that �iii� holds as well� �

� Proofs of Proposition ��� and Theorem ���

Proof of Proposition ���� Consider the random walk whose step distribu�
tion is given by

m � b��� 	
	X
n��

an�n�

i�e�� a leftcontinuous random walk� We assume that�
�i� b	

P	
n�� an � ��

�ii� b �
P	

n�� nan �so that the mean is �nite and negative��
�iii�

P	
n�� n�n � �� an �� �so that the variance is in�nite��

Property �ii� implies that the random walk is transient with Sn 
�� a�s� as
n
� and Sn 
� a�s� as n
 ��� Therefore jS����� � S���� ��j �
a�s� Next� the leftcontinuity implies that

jS����� � S���� ��j � � 	 sup
n��

Sn � inf
n��

Sn � sup
n��

Sn

�the latter is a�s� �nite by �ii��� However� it is proved in ���� that under �i�
and �iii��

E
�
sup
n��

Sn
�
���

�

Proof of Theorem ����We distinguish the two cases stated in the theorem�

�i�� The symmetric case m�x� � m��x��
We shall use the second moment method� whereby one obtains a bound on
the second moment and then applies the Cauchy�Schwarz inequality�

Let VN � jS��� N � � S��N� ��j and V � jS����� � S���� ��j� Clearly�
limN�	 VN � V a�s� and limN�	 EVN � EV � The latter is in�nite by our
assumption that

P
x�ZZd G�x�G��x� � �� Now� Lemma ��� in �
�� tells us

that �because of the symmetry�

E�V �
N � � ��EVN �

� for all N� ���







We show that this implies V �� a�s�� as desired�
By CauchySchwarz� we have

EVN � E
�
VN�fVN � �



EVNg

�
	 E

�
VN�fVN 

�



EVNg

�

� �EV �
N �

�
�P

�
VN � �



EVN

��
� 	

�



EVN �

This together with ��� implies that

P
�
V � �



EVN

�
� P

�
VN � �



EVN

�
� �EVN ��

�E�V �
N �

� �

��
�

Letting N 
 � and using the fact that limN�	EVN � EV � �� we
conclude that

P �V ��� � �

��
�

Finally� noting that the event fV ��g is an exchangeable event w�r�t� the
steps of the backward resp� the forward walk� the HewittSavage zero�one
law tells us that P �V ��� is � or �� and hence we conclude it is ��

Remark� Lemma ��� in �
�� and the above argument in fact give us the
following corollary�

Corollary ��� If S���
n � S���

n � � � � � S�k�
n are k independent copies of the same

arbitrary random walk� then

j �ki�� S
�i������j � a	s	 if and only if E

�
j �ki�� S

�i������j
�
��

The latter is in turn equivalent to
P

x�ZZd�G�x��
k ��

�ii�� The �nite variance case
P

x jxj�m�x� ��
Under the �nite variance assumption� it follows from Theorems ��
��� below
that

P
x�ZZd G�x�G��x� �� if and only if d � � and m has zero mean� Let

us therefore look closer at this class�
For d � � or 
� the random walk is recurrent and hence does not sat�

isfy property �� For d � �� equation ��� follows from �
�� pp�������� �see
also �
�� p����� and hence the exact same argument as above shows that
� fails� For d � �� we can extend the random walk �by adding some steps
in the fourth direction� and thereby obtain an irreducible zero mean �nite


�



variance random walk in d � �� By the above� this extended random walk
will have

P
x�ZZd G�x�G��x� � � and so from what we just saw will not

satisfy property �� Therefore the original walk clearly does not either� �This
conclusion can also be seen directly from �
�� pp��������� where the limits
of the moments of VN�E�VN � as N 
 � are given in terms of Brownian
intersections�� �

� Characterization of the Green	s function

criterion

In this section we list some cases for whichX
x�ZZd

G�x�G��x� �� ���

by appealing to various results scattered over the literature� We shall no
longer be concerned with when� and � are equivalent� This was already done
in Section �� We recall that all random walks are assumed to be irreducible�

Lemma ��� If the random walk fSng satises

pn�x� � A�n	 ���� for all x � ZZd� n � �

for some constant A and with � � 
� then � holds	

Proof� Write P
xG�x�G��x� �

P
m�n��

P
x pm�x�pn��x�

�
P

m�n�� pm�n���
� P

m�n��A�m	 n	 ����

� A
P

j�� j
�����

�

Theorem ��� � holds for an arbitrary random walk fSng in d � �	

Proof� Recall that m is the step distribution of fSng� Let f !Sng be the
modi�ed random walk whose step distribution is

���
�m	 ���
����


�



Proposition ��� in ���� tells us that the assumption of Lemma ��� holds for
f !Sng with � � d�
 �and some constant A�� Since d � �� Lemma ��� implies
that � holds for f !Sng� Next� it is easy to check that the Green�s function for
f !Sng is twice the Green�s function for fSng and hence � also holds for fSng�
�

Theorem ��� Let fSng be an arbitrary random walk in d � � whose step
distribution m has zero mean and nite variance	 Then � fails	

Proof� For d � � or 
 such a random walk is recurrent by ���� Theorem ����
For d � �� ���� Proposition 
��� states that

G�x� � �� 	 jxj���

�the � means that the ratio of the two sides is bounded between two positive
constants independent of x�� easily implying that � fails� For d � �� it was
pointed out in �

� that zero mean and �nite variance is not quite enough to
conclude that

G�x� � �� 	 jxj���

�although this is true if one assumes a little more�� However� it is shown in
�

� that zero mean and �nite variance does imply that

G�x� � C�� 	 jxj��� for some C � ��

again easily implying that � fails� �

Remarks�
�a� Combining Theorems 
�
� 
��� ��
 and ��� �or Theorem 
�
 and Remark
�e� in Section 
���� we obtain one of the claims made in the abstract of our
paper� namely that the T� T��process associated with simple random walk
is WB if and only if d � ��
�b� Similarly� combining Theorems 
�
� 
�� and ���� we obtain the fact that
the T� T��process associated with any zero mean �nite variance random
walk in d � � is not WB�
�c� It is obvious that any random walk having at least one coordinate whose
step distribution has a �nite nonzero mean satis�es property � �even though
� may fail��


�



Theorem ��� Let fSng be an arbitrary random walk having at least one
coordinate whose step distribution has a negative mean and nite variance	
Then � holds	

Proof� Let fS�ng be the random walk obtained by projecting fSng onto any
coordinate and let G� be the respective Green�s function� It is easy to see
that X

x�ZZd

G�x�G��x� � X
x�ZZ

G��x�G���x�

and hence it su�ces to prove the theorem when the random walk is one
dimensional� In that case clearly�

jS����� � S���� ��j � � 	 sup
n��

Sn � inf
n��

Sn

and so� in order to prove �� it su�ces to show that E�supn�� Sn� � �note
that E�supn�� Sn� � �E�infn�� Sn� and recall ����� However� this follows
from ���� by the negative mean �nite variance assumption� �

Note that the example in the proof of Proposition 
�� shows that the
conditions in Theorem ��� are sharp�

One cannot really hope to characterize in much fuller detail than in The�
orems ��
���� which random walks satisfy property �� We conclude our de�
scription by looking at a certain �parameter class of random walks of a
special form� namely

m�x� � �� 	 jxj���d���
where d � � is the dimension and � � � is arbitrary� For this class the steps
have a �nite mean ��nite variance� if and only if � � � �� � 
��

Theorem ��� ������ If � � ���minfd� 
g�� then

G�x� � �� 	 jxj��d�

Easy algebra and Theorem ��� give us the following corollary�

Corollary ��	 Let d � �	 Then � holds when � � ��� d�
� and fails when
� � �d�
�minfd� 
g�	


�



For our special family� the theorems in this section now cover all the
cases except for d � � with � � ��� 
� and d � 
� �� � with � � 
� For d � �
and � � ��� 
�� the random walk has a �nite mean� zero or nonzero �this
obviously cannot be ascertained from the assumed form of m and either is
possible�� If the mean is zero� then it is recurrent by ���� Theorem ���� and
so property � of course fails� If the mean is nonzero� then we cannot say
anything� For the case d � � and � � �� we cannot say anything except when
m�x� � C�� 	 jxj����� In this case ���� Example ��
 shows that the random
walk is recurrent and so property � again fails� Lastly� we are not sure about
the cases d � 
� �� � with � � 
� although it seems that � should certainly
fail at least when d � 
 or �� since in these cases Corollary ��� indicates that
the respective �critical ��s� are � and ��
 �while in d � � it is 
��

Remark�
�d� Combining Theorems ���� 
�
 and 
�� and Corollaries 
��
 and ��� to�
gether with a standard theorem about domains of attraction ���� Theorem

������ we obtain the last claim made in the abstract of our paper�

� Proof of Theorem ��


In this section we extend Kalikow�s proof of Theorem ���� in ���� to much
more general random walks� The proof is somewhat involved and is there�
fore organized in six subsections� The basic idea is a renormalization type
argument leading up to a contradiction�

We give a slightly di�erent presentation than Kalikow does� In addition�
we need to take care of the fact that the steps of our random walk may
be unbounded� which introduces a new ingredient into the argument� Other
than that� the ideas all come from �����

�� Notation and main proposition� In order to carry out the proof� it
will be easiest to have our random walk de�ned on a canonical probability
space� We therefore let � � �ZZd�ZZ be given the product probability measure
all of whose marginals are m �the step distribution�� We further let Xi be the
random variable on � given by Xi�w� � wi and Sn�w� the random variable
on � given by Sn�w� �

Pn
i��wi� Of course� these have the distribution of

the steps resp� the positions of the random walk �see Section ����� We shall
abbreviate S�a� b��w� � fSn�w�ga�n�b and w�a� b� � fwiga�i�b�


�



In the proof several parameters will occur�

n�� L � IN� p� � ��� ���
��k�k�� � IN with limk�	 �k ���
��k�k�� � ��� ���� with limk�	 �k � ��
�mk�k�� � IN with limk�	mk ���

These will be chosen appropriately later �see Section ����� Given the above�
let �nk�k�� be the sequence of integers de�ned by

nk�� � �knk �k � �� ���

and ��k�k�� be the sequence of events de�ned by

�� � fw � � � jS��� n���w�j � Lg
and

�k�� � ��k�� � ���k�� � ����k�� �k � ��

with

��k�� �
n
w � � � �I � f�� 
� � � � � �kg� jIj � �k�k �

�i� j � I with S��i� ��nk� ink��w� � S��j � ��nk� jnk��w� � �
o

���k�� �
n
w � � �

���i � f�� 
� � � � � �kg � w��i� ��nk� ink� �� �k
��� � �k�k

o

����k�� �
n
w � � � S��� nk����w� � Bmk��

o
�

�Recall that B
 � ���� ��d � ZZd�� The event �k depends on the random walk
up until time nk �i�e�� on w��� nk�� and hence in the above we are identifying
�k with a subset of �ZZd�nk � The de�nition is recursive since ���k�� is de�ned in
terms of �k�

The symbol w suggests the word walk� We shall use the symbol c to
suggest the word color� For c � f	����gZZd� we let �w� c�w�� denote the
element of �ZZd � f	����g�nk whose components are

�w� c�w��m �
�
wm� cSm�w�

�
�� � m � nk��

where cz denotes the color of location z� Let c� be a random element from the
probability space �f	����gZZd� �� where � is product measure with marginal


�



���
���� 	 ���
����� For k � �� w� � �k� c� � f	����gZZd and p � ��� ���
de�ne the event

Ak�w��c� �p �
n
c� � f	����gZZd � �w� � �k such that

�
nk

Pnk
m�� �f�w�� c��w���m �� �w�� c��w���mg � p

o
�

In words� this is the event that there is some walk w� in �k such that the
nkfutures of �w�� c��w��� and �w�� c��w��� have ddistance at most p� Note
that Ak�w��c��p is measurable w�r�t� c� restricted to S��� nk��w�� �i�e� the sites
visited by the random walk associated with w� over the time interval ��� nk���

We next introduce the function

fk�p� � sup
n
P �Ak�w��c��p� � w� � �k� c� � f	����gZZd

o
�

The following proposition shows why this is a key object�

Proposition 	�� If the random walk is recurrent and

limk�	 fk�p	� � � for some p	 � �
limk�	 P ��ck� � ��

then the process fZng is not VWB	

Proof� To prove this result it will be expedient to use an equivalent de�ni�
tion of VWB given in ����� Namely� a stationary process �Yi�i�ZZ is VWB if for
all � � � there exists a positive integer N � N��� such that for all n � N �

d
�
fYigi����n	� fYigi����n	�fYigi���	��	

�
 �

except on a set of pasts of probability at most ��
In our case� conditioning on the past of the T� T��process is exactly

the same as conditioning on the entire coloring� since the random walk is
recurrent� Let fZc

ng denote the T� T��process conditioned on a given coloring
c� We shall show that for all c � f	����gZZd�

lim inf
k�	

d
�
fZngn����nk	� fZc

ngn����nk	
�
� p	 � ��

This certainly violates the above condition�


�



Let �k
� � �ZZd�nk � �k

� � f	����gnk and �k � �k
���k

�� Fix c and consider
any sequence of couplings of fZngn����nk	 and fZc

ngn����nk	� These are just
measures Pk on �k ��k with the appropriate marginals� If Ek � �k ��k is
the event that the two processes are within p	 in ddistance� then it su�ces
to show that

lim
k�	

Pk�Ek� � ��

To prove this� let

U� � ��ck � �k
��� �k and U� � �k � ��ck � �k

���

Trivially�
Pk�U�� � P ��ck� and Pk�U�� � P ��ck��

Next� it follows from the de�nitions of fk and Ek that

Pk�Ekn�U� � U��� � fk�p	��

This gives us
Pk�Ek� � fk�p	� 	 
P ��ck��

which approaches � as k 
� by assumption� �

Thus� we are left with checking the assumptions in Proposition ����

�� Estimate for P ��ck�� The following lemma provides us with an estimate
for each of the three events of which �k is the intersection�

Lemma 	�� Let fSng be a recurrent random walk satisfying property � with
constants C and �� and assume that C� � EjX�j� � for some � � �	 Then
for all k � ��

�i� P ���ck��� � C �
�
�

k
�
k

�ii� P ����ck��� �
�
�
�

��kk
provided P ��ck� � �

��k

�iii� P �����ck��� � C�nk���
mk��

nk��
����

��



Proof� �i� This is immediate from the de�nition of ��k�� and property ��
�ii� Abbreviate pk � P ��ck� and de�ne �recall ����

Yi � �fw��i� ��nk� ink� �� �kg

Clearly� the Yi�s are i�i�d� f���gvalued with P �Yi � �� � pk� A standard
large deviation argument now gives

P ����ck��� � P
� �kX
i��

Yi � �k�k
�

� inf
���

e���kk ���� pk� 	 pke
���k

� inf
���

exp����k�k 	 �e� � ���kpk�

� exp

	
��k�k

n
log

��k
pk

�
�
�
�� pk

�k

�o

�

Since pk � �
��k by assumption� the term between braces is � log ��� � log 
�

proving the claim�
�iii� Estimate

P �����ck��� � P
�
S��� nk��� �� Bmk��

�

� nk��P
�
jX�j � mk��

nk��

�

� nk��

�mk��

nk��

���
EjX�j��

�

�� Estimate for fk�p�� The next lemma is a key step in the proof� It provides
us with an important recursive inequality that we shall need in order to carry
through the argument�

Lemma 	�� Let k � � and suppose that pk��

pk
� �� ��k	 Then

fk���pk��� � ��
kjBmk�� j��fk�pk����

��



Proof� For w � �k��� let Dw and Ew be the index sets de�ned by

Dw �
n
i � f�� 
� � � � �kg � w��i� ��nk� ink� � �k

o
�

Ew �
n
�i� j� � Dw �Dw � S��i� ��nk� ink��w� � S��j � ��nk� jnk��w� � �

o
�

We shall show that if w� � �k�� and c� � f	����gZZd� then
Ak���w��c��pk�� � S

�i�j��Ew�

S
I�J�Bmk��

n �
��S�i���nk

�w��Ak���i���nk �w����
I�c���pk

�

�
�
��S�j���nk

�w��Ak���j���nk �w����
J�c���pk

� o
�

���

where � denotes the left�shift on �ZZd�ZZ and � denotes the natural action

of ZZd on f	����gZZd � For �i� j� � Ew� the two events in the last line are
independent� Since the coloring is stationary and since jEwj � jDwj� � ��

k� it
now is immediate that ��� implies the statement of the lemma�

To prove ���� we assume that c� � Ak���w��c��pk��� We can then choose a
w� � �k�� for which

�

nk��

nk��X
m��

�f�w�� c��w���m �� �w�� c��w���mg � pk���

This immediately implies that �recall ����
���ni � f�� 
� � � � �kg �

�
nk

Pink
m��i���nk�� �f�w�� c��w���m �� �w�� c��w���mg � pk

o���
� �k��� pk��

pk
��

Next� let F denote the latter subset of f�� 
� � � � �kg� Since w�� w� � �k�� �
���k��� we have that jDw� j � �k�� � �k� and jDw� j � �k�� � �k�� so

jF � Dw� � Dw� j � �k
�
�� pk��

pk
� 
�k

�
�

�




By assumption� this last expression is at least �k�k� Hence� since w� � �k�� �
��k��� it follows that there exist i� j � F � Dw� � Dw� with

S��i� ��nk� ink��w�� � S��j � ��nk� jnk��w�� � �� ���

Consequently� �i� j� � Ew� �
Next� let

I � S�i���nk�w�� and J � S�j���nk�w���

Since w� � �k�� � ����k��� we have that I� J � Bmk��� Finally� since i� j �
F � Dw� � Dw� � it follows that

c� �
�
��S�i���nk

�w��Ak���i���nk �w����
I�c���pk

�

c� �
�
��S�j���nk

�w��Ak���j���nk �w����J�c���pk
�
�

completing the proof of ���� �

�� Requirements for the parameters� We are now ready to collect our
various estimates and to formulate some requirements on our parameters so
that the two conditions in Proposition ��� are met�

Fix p� � � and let pk�� � �� � ��k�pk �recall that �k � ��� ���� for all
k � ��� Then the condition in Lemma ��� is satis�ed� Suppose that

�I�
X
k��

�k ��

Then pk � p	 � � as k 
�� If p� could be chosen such that

lim
k�	

fk�pk� � �� ����

then obviously the �rst condition in Proposition ��� would be met since
p
 fk�p� is clearly increasing�

Iterating the inequality in Lemma ���� we get

fk�pk� � �f��p���
�k

kY

��

��k�
jBmk����j��
�

� ����

Suppose now that

�II� There exists C� � such that �kjBmk��j � e
C��

k

�k���� �k � ���

��



Then

fk�pk� � �f��p���
�k exp

h kX

��

C�
k�


�k � �	 ���



i

� �f��p���
�k exp

h

kC�

kX

��

�

��

i
�

Hence ���� would follow as soon as f��p��  exp��C���
�� with ��
� �P	

��

�

�
�

Now� for any n� and p�  ��n� and for any w� � �� and c� � f	����gZZd�
if the event A��w��c��p� occurs then w� �whose existence is guaranteed in the
de�nition of A��w��c��p�� must be identical to w� over the interval ��� n���
Therefore the random coloring c� must agree with c� on the set S��� n���w���
an event which has probability ���
�jS
��n�	�w��j� Since jS��� n���w��j � L for
w� � ��� it follows from the de�nition of fk�p� that the conditions

�III� p�  ��n�
�IV � L � C���
�� log 


will guarantee that f��p��  exp��C���
��� implying ���� as desired�
Next we turn to the second condition in Proposition ���� If P ��ck� � �

�
�k

�k � ��� then by �I� this condition would be met� The case k � � gives us
one requirement involving n� and ��� namely

�V � P �jS��� n��j  L� � �

�
���

Using the fact that

P ��ck��� � P ���ck��� 	 P ����ck��� 	 P �����ck����

together with Lemma ��
� we obtain our last requirement

�V I� C
�

��k�
�
k

	
��



��kk
	 C�nk��

�mk��

nk��

��� � �

�
�k�� �k � ���

Note here that ����
�kk is only an upper bound for P ����ck��� if P ��

c
k� � �

��k
�see Lemma ��
 �ii��� However� if this inequality holds for k � k� then �VI�
guarantees that it also holds for k � k� 	 �� So we can apply induction�

�� Lemma about the range of the random walk� To verify �I�VI�� we
need the following property� The proof is due to Harry Kesten �personal
communication��

��



Lemma 	�� Abbreviate Rn � jS��� n�j	 Then
lim
N�	

inf
n��

P �RNn �
p
n� � ��

Proof� A straightforward calculation gives that E�R�
n� � 
�ERn�

� for all n
�see �
�� p������ Hence� as in the proof of Theorem 
�� in Section ��

P
�
Rn � �



ERn

�
� �ERn��

�E�R�
n�
� �

�
for all n�

Pick N � � integer and estimate

P
�
RNn 

�



ERn

�
�
h
P
�
Rn 

�



ERn

�iN �
��
�

�N
�

It follows that

lim
N�	

inf
n��

P
�
RNn � �



ERn

�
� ��

Next� by reversing the order of the steps in the random walk� we have �recall
the notation introduced in Section 
�
�

ERn �
Pn

k�� P �Sk �� fS�� S�� � � � � Sk��g�
�

Pn
k�� P �� �� fS�� S�� � � � � Skg�

�
Pn

k�����
Pk


�� f
�

����

where f �
��� is the probability that the �rst return to � occurs at time �� Using
the equation

pm��� � �m� 	
mX

��

f �
���pm�
����

we have for any z � ��� �� that

X
k��

zkERk �
�

��� z��

h
��X


��

z
f �
���
i
�
h
��� z��

X
m��

zmpm���
i��

�

Putting z � � � �
n
and using that there exists a C� � such that pm��� �

C��
p
m	 � for all m ����� Proposition ����� we �nd

X
k��

�
� � �

n

�k
ERk � C��n	 ��

�
�

��



for someC� � � and all n� Finally� because ERk is increasing in k and ERin �
iERn �i � ��� the l�h�s� is bounded from above by �n	 ��ERn

P
i�� ie

��i����
Hence we obtain ERn � C

p
n	 � for some C � � and all n� �

	� Choice of parameters� We now complete the proof of Theorem 
�� by
showing that our parameters can be chosen so that �I�VI� are satis�ed� We
may of course assume that C � � and � � � in the de�nition of property ��

Put

�k �
�

��k 	 ���
�

This guarantees �I�� Next put

�k � �����C�
�
� �k 	 ��

��
� �

where C and � come from the de�nition of property �� A trivial computation
�left to the reader� shows that each of the �rst two terms in the r�h�s� of �VI�
is at most �k���
��

Now let L be arbitrary� The rest of the parameters will be chosen in terms
of L� All the estimates below will hold uniformly in L�

Put n� � C�L
�� where C� is chosen so that

inf
L��

P �jS��� C�L
��j � L� � ��

�

�

which is possible by Lemma ���� Then �V� holds because �
�
�� � �

�
� Put

p� � ��
n�� Then �III� holds� Next� put C� � L�
� Then �IV� holds� Finally�
put �recall ����

mk�� � ����C��
�
� �k 	 
�

�
� �nk���

���
� �

Then another trivial computation �left to the reader� shows that the last
term in the r�h�s� of �VI� is at most �k���
�� Therefore �VI� holds�

Now� all our parameters except L have been de�ned �some in terms of L�
and the conditions �I� and �IIIVI� hold uniformly in L� The last step is to
choose L so large that �II� holds� This goes as follows�

It is immediate to check that for all k � ��

nk � �����C�
k
� k

��k
� C�L

��

This in turn gives us that

mk�� � ����C��
�
� �k 	 
�

�
�

�
�����C�

k��
� �k 	 ��

���k���
� C�L

�
� ���

�

�

��



Calling the r�h�s� of the last inequality a�k� L� �as ��C�C�� C� are �xed�� we
see that to prove �II� it is enough to show that for some L � ��

�����C�
�
� �k 	 ��

��
� �
a�k� L� 	 ��d � e

L
� �k

�k���� �k � ��

�d is the dimension�� To do this� it su�ces to show that for any positive
number A there exists an L � � such that

AkkAkLA � e

L
� �k

�k���� �k � ���

But the latter is trivial� �

� Proof of Theorem ����

In this section we prove the su�cient condition for property � stated in
Theorem 
���� As stated in Conjecture 
��� we believe � to hold in general�
but unfortunately we are unable to prove this�

Proof of Theorem ����� Fix M�N � �� Let

Y M
i�j � �

n
S��i� ��M� iM � � S��j � ��M� jM � �� �

o
and

Y M
N �

X
��i�j�N

Y M
i�j �

Then we can estimate the probability of the event in De�nition 
�� as follows�

P �EM
N�r� � P

�
Y M
N � �

�
rN�rN � ��

�

� �
�
� rN�rN���

P
��i�j�N P �Y M

i�j � ���
��
�

Next �x � � i  j� For arbitrary h � � we obviously have

P �S��i� ��M� iM � � S��j � ��M� jM � �� ��

� P �jS�i���M � S�j���M j � 
h�

	P �max��m�M jS�i���M�m � S�i���M j � h�

	P �max��m�M jS�j���M�m � S�j���M j � h�

��



and hence

P �Y M
i�j � �� � P �jS�j�i�M j � 
h� 	 
P

�
max

��m�M
jSmj � h

�
� ����

We shall estimate each of these terms separately� then choose h appropriately
and �nally sum over i� j� to get an estimate for the r�h�s� of ��
��

Theorem � in ��
� tells us that there is a C� � such that

P �Sn � x� � C�

an
�x � ZZ� n � ���

This immediately implies

P �jS�j�i�M j � 
h� � C��
h 	 ��

a�j�i�M
� ����

Next� it follows easily from the same Theorem � in ��
� that there are C� �
and �  � � � such that

P �jSM j � h� � C�

�aM
h

��
�

For arbitrary h � ��

P �SM � h� � PM
m�� P �Sm � h�Sk � h for � � k  m�SM � Sm�

� �P
�
max��m�M Sm � h

�
�

where � � infn�� P �Sn � ��� A similar estimate holds for P �SM  �h� with
� � �infn��P �Sn � ��� So

P
�

max
��m�M

jSmj � h
�
�
��
�
	

�

� �

�
P �jSM j � h��

Now� the support of a stable law Y with indices �� � is all of IR when � � �
and�or � � ��� �� �see ���� p��������� Consequently� we have �� � � � � in that
case� Hence we obtain that that there is a C � such that


P
�

max
��m�M

jSmj � h
�
� C�

aM
h
�� ����

with � as above�

��



Next� combine ������� and pick

h � a
�

���

�j�i�Ma
�

���

M �

Then a small calculation gives that

P �Y M
i�j � �� � C�


a�j�i�M
aM

�� �
���

for some C�  �� Now� as mentioned in Remark �p� in Section 
��� we

have aM � M
�
�L�M� with L a slowly varying function� The above inequality

therefore becomes

P �Y M
i�j � �� � C��j � i��

�
������

	
L��j � i�M�

L�M�


� �
���

�

Finally� Theorem ������ii� in ��� states that� given any slowly varying function
L� for every � � � there exists a D � D��� such that for all � � i  j and
all M � ��

�

D�j � i��
� L��j � i�M�

L�M�
� D�j � i���

Therefore� choosing any �  ���� we �nally get

P �Y M
i�j � �� � C��j � i���

for some C� �� with

� �

�
�

� 	 �

�
�

�
� �

�
�

Now recall ��
� to �nd that property � holds for some constant C and with
� as above� �

Remarks�
�a� From ���� p�� and ��
� one can see that the � arising in the above proof
can be taken to be arbitrarily close to �� thereby verifying Remark �r� in
Section 
��� With the help of the methods in ��
� it might be possible to prove
property � for a class of random walks outside the domain of attraction of
a stable law� However� we shall not pursue this line�
�b� Combining Theorems ��� and 
�� and Corollary 
��
� we obtain one of
the claims made in the abstract of our paper� namely that the T� T��process
associated with simple random walk is B if and only if d � ��

��




 Related Problems

One of the main open questions that remain for the T� T��process is the
following�

I� For simple random walk in d � � or 
� is the second coordinate of fZigi�ZZ�
which is fCSigi�ZZ� a Bernoulli process�

One would suspect that� like fZigi�ZZ� it is not� However� this does not follow
from the proof in Section �� Part of this question is very much related to
some interesting recent work in ���� ����� ����� ���� and ����� In these papers�
the following question is studied�

II� For simple random walk in d � � or 
� can one determine the values
fCzgz�ZZd if one is given the values fCSigi�ZZ�

If the answer is yes� then we say that C is retrievable�
Note that both questions concern the recurrent case� so that from the val�

ues fZigi�ZZ it would be trivial to �nd the values fCzgz�ZZd� However� without
the �rst coordinate of fZigi�ZZ we only see the colors that are encountered
but we do not see where the walk is�

One way to formalize question II is as follows�

III� Fix d � � or 
� Let C�C � � ZZd 
 f	����g with C �� C � be two given
colorings� and let fSngn�ZZ be simple random walk� For � � ZZ� let �
C ��
C�� be
the probability measure on f	����gZZ given by the distribution of fCSigi�

�fC �

Si
gi�
�� Are �
C and �
C� mutually singular measures for all �#

If the answer is yes� then we say that C and C � are distinguishable�
It is easy to see that there are C �� C � for which �C and �C� are identical�

For example� if C�z� � C ���z� for all z � ZZd� then obviously �C and �C�

are equal� Or� in d � �� if C � is an even shift of C� then �
C and �
C� are not
mutually singular for all �� In d � 
 there are more interesting examples� if
the coloring is obtained by either alternately coloring vertical lines 	� and
�� or by tiling with 
� 
 squares and alternately coloring these squares 	�
and ��� then in both cases the process fCSigi�� is just a sequence of i�i�d�
	��s and ���s�

��



The following conjecture was raised by den Hollander and Keane and
independently by Benjamini and Kesten �see �����

Conjecture ��� Let d � �	 If C and C � are two colorings and if there is no
even integer k such that C�k 	 n� � C ��n� for all n or C�k 	 n� � C ���n�
for all n� then C and C � are distinguishable	

The following theorem is a result is this direction� Let � be product mea�
sure on f	����gZZd with each marginal being ���
���� 	 ���
�����

Theorem ��� ��
�� In d � � and 
� every coloring C is distinguishable from
��a	e	 coloring C �	

�Related results are contained in ����� ����� ���� and ������
Theorem ���� and Theorem ��
 have in fact more in common than might

�rst be apparent� The methods of ��� should be able to show that�

��� In d � � and 
� ��a�e� coloring C has the property that �
C and
R
C� �
C�d��C ��

are mutually singular for all ��

�The same statement with ���a�e� coloring C� replaced by �every coloring C�
clearly implies Theorem ��
��

The proof of Theorem ���� in Section � essentially shows that for every
coloring c of ZZ or ZZ�� the processes fZngn�� and fZc

ngn�� �which is fZngn��
conditioned on c� cannot be coupled well in the dmetric� Property ���� on the
other hand� says that for ��a�e� coloring c of ZZ or ZZ�� the second coordinate of
fZngn�� and the second coordinate of fZc

ngn�� cannot be coupled so that they
eventually agree with positive probability� The di�erence between Theorem
���� and ��� is therefore that�
 the former deals with the �larger� process fZng and shows that it does not
satisfy a weaker type of coupling property�
 the latter deals with the �smaller� process fCSig and shows that it does not
satisfy a stronger type of coupling property�
Therefore the two results� though related� are not directly comparable�

We conclude our paper by re ecting on some possible extensions of the
results formulated in Section 
� Throughout our paper we have assumed
that the random coloring is i�i�d� This was essential for our methods� It is
an interesting problem to �nd out how much of the i�i�d��property can be
relaxed� For instance� the T� T��process associated with a random walk

��



that is transient �resp� satis�es property �� and with a random coloring that
has strong mixing properties other than i�i�d� is it VWB �resp� WB�# If we
only want the T� T��process to be K� then we can refer to �
��� There it is
shown that K holds for arbitrary �irreducible� random walk when the random
coloring is totally ergodic�

Another interesting direction is related to �induced systems�� For exam�
ple� in ���� the following problem is studied� We again have a random walk
and a random coloring� where the latter is assumed to be stationary but not
necessarily i�i�d� However� we only observe the system at the times when the
random walk hits a location colored 	�� and at those times we report the
local coloring� Such a process is stationary and is what is called an induced
system in ergodic theory� It is shown in ����� among other things� that un�
der weak conditions the induced system is mixing� This result was recently
strengthened in ���� to show that under the same conditions the induced sys�
tem is even K �and was also extended to general groups�� An obvious problem
that one could study is whether the induced process is VWB resp� WB� This
has so far not been done� not even when the random coloring is i�i�d�
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