
 

Polytopic Linear Modeling of nonlinear mechanical systems

Citation for published version (APA):
Tebbens, H. G. L. (1999). Polytopic Linear Modeling of nonlinear mechanical systems: a data based P.L.M.
generating method. (DCT rapporten; Vol. 1999.030). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1999

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/76c556a6-6a44-4712-b27d-6a8f14b7643b


PoPytopic Linear Modeling of 
nonlinear mechanical systems: 

A data based P.E.M. generating method 

Rick Tebbens 

Report No. 99.030 

Eindhoven, 15 Novenber 1999 

Coaches: Ir. G.Z. Angelis 
Dr. ir. M.J.G. van de Molengraft 



Summary 

Consider the nonlinear model: 

The idea is to approximate 
knowledge of the PLM it is possible to design a controller in a structural manner. 
The local linear models are derived with two different methods: 

A method that evaluates the equation error: the Least Squares Method. 
- A method that evaluates the output error: the Kalman Filter Method. 
Ar each method use3 its own criterion regarding the accuracy E of the approximation, different results are 
expected: the Kalman filter method will produce a PLM that is capable of predicting trajectories on the long term 
whereas the least squares method will produce a PLM that is able to predict fast dynamics. 

c :  x = f ( x , u )  
from data, by a Polytopic Linear Model (PLM) with a required accuracy &. With the 

- 

In order to get operating regimes that satisfy the prescribed accuracy E ,  a procedure 'segregate' has been 
formulated. This procedure approximates at first with only one linear model. If this approximation does not 
satisfy the required accuracy the operating space Z will be divided in into smaller operating regimes Zi until the 
required accuracy is reached. 

Both procedures are tested on data generated by a robot arm. The Kalman filter method proved to be superior to 
the least squares method, especially when the generated data contains noise. 
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1. Introduction 
Consider the nonlinear model: 

withinformationvector y ~ Y = x x U ,  state x ~ ~ c % " , i n p u t  u ~ U c % ' "  andoutput y ~ Y c % ~ .  
The idea is to approximate C by a Polytopic Linear Model (PLM) with a required accuracy E. With the 
knowledge of the PLM it is possible to design a controller in a structural manner. The PLM is described by 

c :i = f(y) 

A PLM is also a nonlinear model; build from a number (?-JE] of local non-homogeneom linear nodels which are 
characterized by the triples (Ai, Bi, bi), i E { 1. .N,). Each linear model characterizes the quantitative behaviour of 
C in an operating regime Zi. Each operating regime is described by a membership function wi(z); typically 
wi(z)-i if (Ai, Bi, ai) characterizes C and wi(z)=O elsewhere. The union of all operating regimes Zi describes a 
compact operating space, Z=u>Zi.  The accuracy E of the approximation is initially defmed as 

llc(y)-M(y]12 I E, VI,U E Y with 1 1 . . . 1 1 2  the Euclidean vector norm. Z(y) and M(y) mean the right hand-side of 
the ordinary differential equations by which Z respectively M are discribed Later on a different criterion will be 
evaluated. 

In order to get operating regimes that satisfy the precribed accuracy E, a procedure 'segregate' has been 
formulated. This procedure approximates C at first with only one linear model. If this approximation does not 
satisfy the required accuracy the operating space Z will be divided into smaller operating regimes Zi until the 
required accuracy is reached (see figure 1). 

Z 

Figure I :  The segregation procedure 

The fundamentals of this procedure can be found in the thesis of Joris Verstraete (Polytopic Linear Modeling of 
Nonlinear Mechanical Systems [i]). 
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2. The model 

Throughout this report the two methods will be evaluated in the light of the model of the rotating arm. This will 
be useful for later measurements on the real rotating arm in the laboratory. 
At first a simple non-linear model of a rotating arm has been made (the pendulum itself will not be considered): 

Figure 2: The rotating arm. 

p* = L(w> = x, 

L J  

This model has already proven its validity in former simulations. 

In the rest of this report it will be assumed that f2(y) is always linear in u therefore, the information space Y can 
be projected onto a lower dimensional operating space Z: 

Further reduction of the operating space is impossible because the intention of this report is to approximate an 
unknown system with a desired accuracy. So, there is no information on the non-linearity of the system. 
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Exciiation: u Trajecioty 

Figure 3a: The excitation u and corresponding 
trajectory (= information space v. 

Figure 3b: The trajectopy (=operating space z). 

Subsequently the model has been used for several simulations. The excitation u has to be chosen very carefully, 
as it will determine the trajectory and therefore the boundaries of the information space (Y). Further, u should be 
persistently exciting i.e. a broad spectrum of frequencies and amplitudes should be represented in the signal u in 
order to 'kick' the sytem everywhere in the information space. The simulation provides a column containing the 
measurements ml and m2 of a and respectively over a certain time-span at fixed time intervals in response of 
the presented excitation. Figure 3a and 3b present an example of a three dimensional information space Y 
projected onto a two-dimensional operating space Z. 
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3. The segregation procedure 

The segregation procedure can easily be explained by considering a two-dimensional operating space (position 
and velocity on the rotating arm). At first, the total operating space is evaluated. After establishing a linear 
model, the maximum error over this area is determined. The error should always be indicative of the difference 
between the linear model and the real non-linear model. If the error exceeds the prescribed accuracy then the 
operating space should be divided into two equal parts; the first division will take place upon the first state (xi) 
the second division will take place upon the second state (~2). The dimension of the operating space determines 
the number of divisions: a n-dimensional operating space Z will have n-possible deconpositions. Depending 
upon which division gives the best accuracy, one of the two decompositions will be chosen. The criterion used 
here: 
min(e(zJ+e(zd, e(Zd+e(zd>. 
The created sub-spaces Zi will contain that part of the trajectory that lies in the chosen division. This sub-space 
can now be expanded with the corresponding u to determine a new set of local linear models and can, if 
necessary, again be divided into two equal parts and so on. This procedure is repeated until the desired accuracy 
is reached. 

There are some limitations: 
- If the divisions give no further improvement regarding the error, in comparison to the former error of the 

undivided space, the division for that region is stopped. 
When there aren't enough measurements left to divide, the procedure is stopped (this means that either the 
chosen accuracy is too high or the number of measurements is too small). 

- 

nn 

Figure 4: The segregation procedure 
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Figure 5 gives a graphic representation of the segregation procedure. 

In the segregation procedure it is assumed that the total state is available but on the real rotating arm only x1 (the 
position of the arm) is observed which means that x2 has to be reconstructed. Because there is little or no 
information about the system available, x2 is reconstructed by taking the time derivative of x1 instead of using a 
Kalman filter. The state is reconstructed as follows: 

dt dt 
2 

xi (k) - xi (k - 1) + x, (k + 1) - xi (k) 

x2 (k) = 

The segregation procedure was implemented in MATLAB 5.2. Below, a description of the relevant script-files 
and their variabies wiii be given. 
- A file named 'metingen.in' contains all the measurements naïïely: 

- 

- 

- The excitation (u). 
- 

The (reconstructed) state (x ). 
The time derivative of the state (2). This is only used by The Least Squares Method (chapter 4). 

The discrete time instants of measurement (t). 
These four variables have to be combined in a single matrix 'metingen': 

r .  . . . . . .  .7 , . . . . . . .  . . . . . . .  
metingen = u x, ... X" i, . * -  i, '1 k b e r  of measurements, n states 

. . . . . . . .  . . . . . . . .  . . . . . . . .  i 
- The accuracy (E). The accuracy of The Least Squares Method can be found in the file 'segregate.m'. The 

accuracy of The Kalman Filter Method can be found in the file 'get-va1ues.m'. This file also contains other 
specific parameters. 

The procedure produces the following variables: 
- A matrix 'S' which contains all the identified linear models of the various areas. The matrix 'S' is also stored 

in a file named 'file-s.mat'. 

S =  

Area i 

Area k 

, (n states) 

- A matrix 'final-state' which contains the boundary conditions for x of the various areas. The matrix 
'final-state' is also stored in a file named 'file-st.mat'. 

f inal-  state = 

xll (min) x'1 (max)' 

xin (min) xln (max) 

xkl(min) xll(max) 

x k n  (min) xk. (rnax), 

1 Area i 

J 

, (n states) 

IAreak 

- A column 'fmal-e' which contains the accuracy of the various areas. The matrix 'final-e' is also stored in a 
file named 'file-e.mat'. 
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Determine error in 
whole state-space 

Column 'info' gives 
which part of 

'te-delen-x' should 
he divided 

< Function: 'kl-kwm' * or 'Kalman-2.m' 

Divide selected part 
from 'te-delen-x' in 
two optimal equal 

column: 'final-state' 

o 
Put local linear 

model in column: 'S' 

column: 'te-delen-x' column: 'final-state' 

v o 
Update matrix Put local linear 

'infol' with new 
indices sub-space 

model in column: 'S' 

have heen 
evaluated? 

Reset and update 
'info' with index of 

'indexl' 

Reset 'infol' L A  

End u Figure 5: A graphic representation of the 
procedure 'segregate ! 7 



4. Least squares method 

After having discussed the segregation procedure, the next question is how to determine the local linear models. 
The frst method is analogous to the method presented in the thesis of Joris Verstraete (Polytopic Linear 
Modeling of Nonlinear Mechanical Systems [I]) i.e. the same criterium E will be evaluated. 

The number of the evaluated area is given by the index i. 

n, is determined by establishing a minimal equation error by means of the least square estimator below: 

min c (i3 - n, (e4, .)f ; 6 = [A, (41) 4 (1,2) A, (2,U 4 (232) 4 (1) 4 (2) 6, (1) 6, (2)r 
e 

The non-linearity is approximated by evaluating the error: e = max x, - rI! 8, g, u 

It is emphasized that the measurements in the evaluated area will, in general, not be a continuous time series, but 
a collection of fiagments fiom the data. 

. (I ( )]Iz 

4.1. Validation 

2). 
Thereupon, three simulations have been executed to validate the above procedure (the desired accuracy E is set to 

In the first simulation the model is reduced to a linear model (Coulomb-fiiction is neglected): 

The operating space that follows fiom the simulation with this model can be approximated with sufficient 
accuracy with only one linear model. Figure 6 shows that the error does not exceed 2.5.10-*. 

Error (e); linear model  
/ :  ........ .... ~. ~ ;. .... .... ...... . : ..... . . . . . .  . j .... ! ............ x 1 o-8 .......... . .  : .... 

5 

Figure 6: The error at the differentpoints of the trajectory. 
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The least square estimator gives the following results: 

0.0000 1 .O000 1, [ 0.0000 ] , . [ - 0.00741 
BI = b, = 1. 

=[O.OOOO -3.7142 594.2797 - 0.8373 

Next, the model is expanded with one local non-linearity in the x2 direction namely a "steep" arctangent 
function. The arctangent function is supposed to account for Coulomb-friction. 

Segregation of the operation space, which follows from simulations with this model, leads to the results that are 
presented in figure 7. 

Error (e) 

1 

O8 

0 6  

0 4  

o 2  

O 

0 4  

0.4 
x2 X I  

Figure 7: The segregation of the operating space and corresponding error. 

It can be seen that around x2 = O, this is where the non-linearity is located, the operating space is divided in 
smaller sub-spaces. In figure 8 the results of a simulation with the reconstructed model are presented. There is 
only little difference between the reconstructed model and the original model so these results are very 
satisfactory. 

1.5, , I 

-1.51 ' I 
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Figure 9a: difference between the reconstructed and the 
original model. 

__ trajectory 
trajectoiyzzstr 

1 -  

x" 0 - 

1 -  

I I Regime boundaries - I 

'i I 
-31 ' 1 
-0.5 -0.4 -0.3 -0.2 -0.1 O 0.1 0.2 0.3 0.4 

x. 

Figure 9b: difference between the reconstructed and the 
original model (state space representation). 
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Finally the model is changed into the equation below, that has only one global non-linearity in the x2 direction 
(this non-linearity is apart from x2=0, constant): 

xi = f i ( w > = x ,  
i, =f,(w>= ~-*.(k.u-~,-x, -B2x,2sign(x,)) 

x:{ 
The results of segregation of the latter are presented in figure 8. Since the non-linearity can be associated with 
the second order Taylor remander, which in this case is constant, the operating space will be divided in equally 
sized sub-spaces. 

Error ( e )  

Figure 9: The segregation of the operating space and corresponding error. 
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5. Kalman filter method 

- - -  
O . X ,  + l . X ,  + o . u + o  

x, . x, + x, . x2 + x, .u + x, 
O 

O 
O 

O 

- - x = g(x ,u )  = - 

- - -  

The Kalman filter implementation of the segregation method shows several differences with the previous least 
squares approach: 

Instead of the least squares estimator, now a Kalman filter has been used to estimate the extended state. It is 
assumed that the linear approximation of the system is of the following form: 

- 

x2 

x, 'X, + x, . x, + x, .u + x, 
O 

O 

O 
O 

r is the innovation: Y = K .(m - H .2). 
s is the difference between the measurement and the reconstructed state: s = m - H 
Apart from the fact that noise will be amplified in the least squares method, the second method will estimate 
polytopic models that are more capable of reproducing the estimated state in the long term. 

The error is determined by a second state reconstruction (i.e. only the position and the velocity are estimated 
and all other parameters are fixed) with the model that was estimated with the first Extended Kalman filter. 
In this w2y the totzl region Zi will be evaluated with the best possible estim-ation of the parameters A(2,1), 
A(2,2), B(2) and b(2) in order to establish the corresponding error. 

. 
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The implementation of this method produced a considerable difficulty: the path of the chosen trajectory is in this 
case of great significance. When the state-space is divided in two sub-spaces, the trajectory will also be divided 
into two parts. These leads to discontinuities in the state-space, see figure 10. Because the Kalman filter intends 
to minimize the difference between the estimated and the real state, the number of discontinuities will determine 
the degree in which the filter is able to reconstruct the divided trajectory. This means that a division, which leads 
to a lot of disconnected data fragments, produces a large error. Therefore the Kalman filter frrst estimates the 
extended state from the first data fragment. Next, the Kahnan filter estimates the extended state from the second 
data kagment but this time the filter is initialized with the estimated parameters of the former augmented state. 
The initial value of the corresponding state variance will also be taken from the former estimation. This process 
is repeated fûr û!! the other dat2 6-2grnmt:ts. 

Figure 1 O: Discontinuities in the oueratina suace. 

Figure 11 shows the implementation of this re-initialize procedure. In this case the operating space is divided in 
two regions: x2 > O and x2 < O. The second region is used to estimate the various parameters. It can be seen that 
in spite of the discontinuities in the trajectory, the Kalman filter is still able to realize convergence of the 
parameters. 

O 100 200 300 

" 
O 100 200 300 

O 100 200 300 

I 
I 

I I  I 
-20 

100 200 300 O 

I I I  I 
I 1  I I  I 

I I I  I 
I I I  I 

-50 
O 100 200 300 

1 

Figure 11: Estimation of the parameters fvom a discontinuous data set. 
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5.1. Validation 

In the first experiment the model is again reduced to a linear model (the chosen excitation is a chirp signal): 
1 O 

= i =  A - x + B . u  = [o - 3.71431 + [ 594.2797]. u 
X I  = f , ( w > = x ,  
x, =f , ( ly )=J-’ . (k .u-B,  .xz) 

.:{ 
The Kalman Filter method only needed one model to reach an accuracy of E = 0.0042. The following model is 
estimated: 

r o  1 1 - 1 -  O i .  r O i 
= 1- 0.0699 - 3.65961 ’ ’’ = 1587.63791 ’ ’I = 1- 0.02891 

Next, the non-linear arctangent function is added to the previous linear model: 
.I = L(w> = x, 

i, = ~ ( w > =  J-’. 
?r 

Segregation of the operation space, which follows from simulations with this model, provides the results that are 
presented in figure 12. 

1 5  

1 

05 

O 

x2 X I  

Figure 12: The segregation of the operating space and the corresponding error 

The estimated linear models of the areas 1,2, 3 and 4 (figure 10) are: 

O 1 O O 
= [ - 2.9674 - 3.9745 ] ’ = [ 589.85001 ’ b’ = [ - 8.54981 

1 O 
= [ 1.5:78 - 6.5386 ] ’ Bz = [ 588.38951 ’ bz = [,.&I 

1 
4=[  -8.1343 O -5.1281 1’ B’ =[574.:535]’ b3 =[,.i621 

1 O 
A 4 = [  -5.7703 o -5.2816 1’ B 4 = [  566.1097 1’ b4=[4. i64]  
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These results are not in accordance with what we expected on the basis of the original model. Figure 13 shows us 
the results of a simulation with the reconstructed model. In spite of the fact that the Kalman filter was unable to 
reconstruct the original parameters, the difference between the reconstructed model and the original model in the 
simulation is moderate. 

0.5 1 1.5 2 2.5 -01 O O 1  O2 O 3  O 4  O 5  O6 O 7  O 8  
x, 

~~~ ~ 

Figure 13a: difference between the reconstructed and the 
original model. 

Figure 13b: dflerence between the reconstructed and the 
original model (state space representation). 

Simulations with different excitations gave no significant improvement in the accuracy of the Polytopic model. 
A noteworthy fact is that an excitation of the following form enables the Kalman filter to give a better 
reconstruction of the parameters: choose a sine curve with a low fkequency and a relative large amplitude then 
superimpose various sine curves with high fkequencies and relative low amplitudes on the large sine curve. 
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6. Implementation on the robot arm 

Finally, the two methods are implemented on the real robot arm and subsequently validated. Both methods use 
the same input signal (see figure 14) and therefore the boundaries of the operation space will be the same for the 
two methods. The input is the sum of a sine curve with a low frequency and relative large amplitude and four 
sine curves with high frequencies and relative low amplitudes. Next, this signal is multiplied with a part of a sine 
curve in order to decrease the total amplitude of the input signal. Figure 15 presents the operation space and the 
trajectoiy. 

0.15 - 

0.1 - 

0.05 - 
iut [-] 

O -  

-0.05 - 

-0.1 - 

-0.15 - 

o 1 2  3 4 5 6 7 a s IO 
time [Sec] 

-03 -02 -0.1 O 0.1 0.2 0.3 0.4 0.5 0.6 O7 
& 

Figure 14: The input signal. Figure 15: The boundaries of the operation space 
and the trajectory. 

6.1. The least squares method 

6.1.2. Determination of the Polytopic model 

The trajectory from the robot arm and the time derivative is offered to the segregation procedure (the accuracy is 
set to 30). Figure 16 gives the various regions (Zi) and the corresponding error. Appendix A gives the estimated 
parameters for the various regions. 

I Error (e) 

25 

20 

15 

10 

5 

O 

0 6  

X I  

Figure 16: The segregation of the operating space and the corresponding error 
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6.1.2 Validation 

The established Polytopic model is now used for a validation. Figure 17a and b show the difference between a 
simulation with the Polytopic model and the data from the robot arm (figure 17a also show the regions Zi). The 
excitation again was a combination of five sine curves with decreasing amplitude. 

- 4 t  I I l i  
I I 

-5 
-0.3 -0.2 -0.1 O 0.1 0.2 0.3 0.4 0.5 0.6 0.7 

x, 

4 

O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Figure 17a: difference between the reconstructed model 
and the real data (state space representation). 

Figure 1 7b: difference between the reconstructed model 
and the real data. 

6.2. The Kalmanjfilter method 

6.2.2. Determination of the Polytopic model 

The same trajectory as used in 6.1,l. is offered to the segregation procedure (the accuracy is set to 0.0 1). Figure 
18 gives the various regions (Zi) and the corresponding error. It can be seen that the procedure wasn't able to 
reduce the error in region around zero. Appendix B gives the estimated parameters for the various regions. 

o o1 

O 005 

O 

0 6  

Figure 18: The segregation of the operating space and the corresponding error 
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6.2.2 Validation 

- 5 1 '  

Again, the established Polytopic model is now used for a validation. Figure 19a and b show the difference 
between a simulation with the Polytopic model and the data from the robot arm (figure 19a also show the regions 
Zi). The excitation was the same as used in 6.1.2. 

" ' " "  -I 

#"*b I I 
I1 

Figure 19a: difference between the reconstructed model 
and the real data (state space representation). 

4 ,  I 

I 
O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 

Fipre 19b: difference between the reconstructed model 
and the real data. 

7. Conclusions and recommendations 

Both the Kalman filter method and the least squares method are able to locate the non-linear Coulomb friction 
around xz = O. The physical interpretation of the estimated parameters is not always possible. Especially in the 
regions where Iarge non-linearities are expected, physical interpretation of the estimated parameters is 
impossible. In the regions where little non-linear behaviour is expected, the parameters give a insight in the value 
of fì-iction for instance. Comparisons with former estimations of these parameters gave a fair resemblance (for 
instance area 1 of both methods, see appendix A-Ei). 
From chapter 6 can be concluded that the Kalman filter method gives a better estimation of the Polytopic model 
when real data is used. This was in accordance with was predicted in chapter 5: the least squares method uses 
disturbed data by using the first and the second time derivative of the position. Furthermore, the Kalman filter 
takes noise on the data into account and instead of minimizing the equation error, it minimizes the output error. 
The results of the Kalman filter method may even be improved by tuning the various Kalman filter parameters. 
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Appendix A: parameters least squares method 

Boundaries 
Area no. State Min. Max. Ai Bi bi 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

i8 

-0.2648 
-4.7517 

0.1683 
-4.7517 

-0.2648 
0.7093 

-0.2648 
2.8937 

0.1683 
0.7093 

0.1683 
1.8015 

0.3848 
1.8015 

-0.2648 
0.1632 

-0.2648 
2.3476 

0.1683 
0.1632 

-0.2648 
-0.3829 

-0.2648 
2.0746 

0.1683 
-0.3829 

0.1683 
-0.1098 

-0.2648 
-0.1098 

-0.0483 
-0.1098 

-0.2648 
1.8015 

-0.2648 
1.9381 

O. 1683 
-0.3829 

0.6013 
-0.3829 

0.1683 
1.8015 

0.1683 
3.9859 

0.6013 
1.8015 

0.3848 
3.9859 

0.6013 
3.9859 

0.1683 
0.7093 

0.1683 
2.8937 

0.6013 
0.7093 

0.1683 
-0.1098 

0.1683 
2.3476 

0.6013 
-0.1098 

0.6013 
0.1632 

-0.0483 
0.1632 

0.1683 
O. 1632 

0.1683 
1.9381 

0.1683 
2.0746 

O 1.0000 
-18.2856 -1.2218 

O 1 .o000 
14.4199 -4.1127 

O 1 .o000 
11.6562 -0.8026 

O 1 .o000 
-19.3921 0.8431 

O 1 .o000 
21.6698 -3.7276 

O 1 .o000 
22.1751 -3.0580 

O 1.0000 
18.4341 -2.5407 

O 1 .o000 
18.0573 3.4350 

O 1 .o000 
-2.6536 -2.1289 

O 1 .o000 
40.8529 -5.2896 

O 1 .o000 
4.3884 13.3992 

O 1 .o000 
11.3317 5.9547 

O 1 .o000 
31.8072 -2.3522 

O 1 .o000 
-16.2024 -121.5153 

O 1 .o000 
75.6074 -180.7296 

O 1 .o000 
- 102.6026 - 135.9894 

O 1 .o000 
7.5859 26.3657 

O 1 .o000 
14.0793 12.8697 

O O 
481.5190 23.9648 

O O 
602.1557 14.2361 

O O 
590.8541 -25.4660 

O O 
573.9609 -32.9563 

O O 
627.6812 -25.8576 

O O 
609.7539 -25.1 308 

O O 
649.2071 -28.4490 

O O 
597.5703 -26.8834 

O O 
580.4878 -23.5286 

O O 
666.3968 -33.4959 

O O 
369.0199 30.9914 

O O 
595.9408 -42.3285 

O O 
576.2903 6.0740 

O C 
267.1661 7.0177 

O O 
687.2695 4.4644 

O O 
256.9425 16.0896 

O O 
637.9353 -82.0566 

O O 
606.9565 -54.8950 
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Appendix B: parameters Kalman filter method 

Boundaries 
Areano. State Min. Max. Ai Bi bi 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

!O 

21 

-0.2648 0.6013 
-4.7517 -0.3829 

-0.2648 0.1683 
1.8015 3.9859 

-0.2648 0.1683 
0.7093 1.8015 

0.3848 0.6013 
1.8015 3.9859 

-0.2648 0.6013 
0.1632 0.4363 

0.1683 0.2765 
1.8015 3.9859 

0.2765 0.3848 
1.8015 3.9859 

-0.2648 0.1683 
-0.3829 -0.1098 

-0.2648 0.6013 
-0.1098 0.1632 

-0.2648 0.6013 
0.4363 0.5728 

0.2765 0.3848 
0.7093 1.8015 

0.3848 0.6013 
1.2554 1.8015 

0.1683 0.3848 
-0.3829 -0.1098 

-0.2648 0.6013 
0.5728 0.641 1 

-0.2648 0.6013 
0.641 1 0.7093 

0.1683 0.2765 
0.7093 1.2554 

0.1683 0.2765 
1.2554 1.8015 

0.3848 0.6013 
0.7093 0.9824 

0.3848 0.6013 
0.9824 1.2554 

0.3848 0.6013 
-0.3829 -0.2464 

0.3848 0.6013 
-0.2464 -0.1098 

O 
-19.6306 

O 
-24.3034 

O 
-15.0759 

O 
-24.53 07 

O 
-14.6128 

O 
-20.1223 

O 
-25.8769 

O 
-21.7033 

O 
-12.3130 

O 
-22.4484 

O 
-24.7331 

O 
-23.51 15 

O 
-20.1245 

O 
-16.7735 

O 
-20.3161 

O 
-21.7525 

O 
-22.8421 

O 
-25.8317 

O 
-23.5545 

O 
-17.1133 

O 
- 15.7904 

1 .o000 
-1.3388 

1.0000 
-3.3836 

1.0000 
-2.9403 

1 .o000 
-6.5 162 

1.0000 
-10.8237 

1 .o000 
-4.6237 

1 .o000 
-3.6231 

1.0000 
-9.8994 

1 .o000 
-41.1949 

I .o000 
-10.9273 

1 .o000 
-6.5735 

1 .o000 
-9.2669 

1.0000 
-8.6843 

1 .o000 
-1 1.4670 

1 .o000 
-10.9481 

1 .o000 
-8.0048 

1.0000 
-9.6383 

1 .o000 
-1 1.3728 

1 .o000 
-10.6700 

1 .o000 
-9.0823 

1 .o000 
-8.42 12 

O 
474.5737 

O 
406.8478 

O 
369.6105 

O 
374.8093 

O 
354.7136 

O 
373.2493 

O 
366. I476 

O 
337.5465 

O 
230.6125 

O 
344.9230 

O 
351.7486 

O 
359.3913 

O 
338.2395 

O 
332.0291 

O 
335.3594 

O 
337.8189 

O 
337.5241 

O 
345.0546 

O 
343.2975 

O 
337.7909 

O 
339.0424 

O 
23.2652 

O 
-7.0187 

O 
-5.9302 

O 
1.5409 

O 
-7.4879 

O 
0.2875 

O 
-2.5554 

O 
19.8181 

O 
5.4659 

O 
-2.8270 

O 
1.6675 

O 
3.1342 

O 
14.3558 

O 
-2.41 34 

O 
-1.2280 

O 
5.0920 

O 
4.3743 

O 
-1.3407 

O 
1.1010 

O 
13.8845 

O 
16.1129 
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