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summary 

This literature study has been done in the context of the study of the rheology of viscoelastic 
dispersions. From the interest of the research in the inter-university project "Atherosclerosis", a 
cooperation of the Eindhoven University of Technology and the University of Limburg (the 
Netherlands), !iteratttre dealiiìg wiîh the most Importat aspects of the rheoiûgy o f  human biood 
has been revie.ved. 
Blood is found to be a non-Newtonian shear thinning, thixotropic and viscoelastic fluid; no 
measurable normal stress differences have been found. The rheology of blood is mainly 
determined by the red blood cells, that can form structures called rouleaux by aggregation at low 
deformation rates, These rouleaux can form a three dimensional network at very low shear rates. 
With increasing deformation rates disaggregation takes place, and the non-Newtonian behaviour 
of blood is primary determined by the deformation and orientation of the dispersed red blood 
cells. 
The constitutive models used in literature to describe the rheological behaviour of blood are 
mainly generalized non-Newtonian models, that only model the shear thinning behaviour of 
blood; only a few viscoelastic models have been found. In two dimensional numerical flow 
studies in artery models only non-viscoelastic models have been used (generalized Newtonian 
models, micropolar model). In flows with accelerating and decelerating material elements, which 
can also be the case in a steady two-dimensional flow, these models may not be appropriate. The 
viscoelastic models found are used at the most to describe the shear rate dependent viscosity, 
complex viscosity, and transient response in shear flows. All these models are based on the 
assumption that there is a structure buildup - breakdown process taking place. A modified 
Bird-Carreau model as reported by Bernadin e.a. [1986] was found to be a serious candidate to be 
used in future calculations. However, because the numerical calculations will be done usirig the 
finite element software package SEPRAN in which this Bird-Carreau model has not been 
implemented yet, its use at a short term is precluded. The other visco-elastic models (named 
Charara model, Rosenblatt model and Reher-Vogel model) all consist of a Maxwell type equation 
together with a separate kinetic structure equation. There is too little data available yet to judge 
their adequacy. Of the models already available in SEPRAN a KBKZ-type model and a 
Phan-Thien-Tanner model may be good candidates too. 
Non-Newtonian flow studies with real human blood are for several reasons not appealing and 
very difficult: it is unstable, can carry diseases, is opaque to light, and difficult to obtain in large 
volumes. Therefore a number of non-Newtonian rheological analog fluids for blood have been 
proposed in literature. However, none is completely satisfactory. In general with both fluids and 
constitutive models comparisons with blood are made using steady, oscillatory, and transient 
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shearing measurements. One should be careful making conclusions based on these experiments 
alone. Some additional testproblems should be used, especially a test with an elongating flow. 
This flow situation is however very difficult to realize experimentally, for a low viscosity fluid 
such as blood even impossible. As an alternative, mixed sheadelongating flows can be used. For 
example, Armstrong e.a. [1985] use the flow between two excentric cilinders to evaluate different 
coristitUiive equations. P~csibiy, this fl=.;;. sitiiatioii can ire used for biooci too. 
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Introduction 

This report is the result of a literature research into the rheology of whole human blood The 
expression "whole human blood" is used instead of simply "blood" to make clear what kind of 
blood is studied. This biofluid is being studied from several research areas, and consequently with 

Pe~sijfi e.a. jl99ûj, Lkrnlei e.a. ii99U]), the study of biocompatible blood substitutes, biology, 
blood flow in small arteries, and blood flow in the microcirculation. Our reason for studying the 
rheology of blood is the question into the importance of the non-Newtonian character of whole 
human blood when it flows in the human carotid artery bifurcation. This flow situation is the 
subject of study in the research project "Atherosclerosis". In  most previous flow studies, blood has 
been assumed to behave as a Newtonian fluid (for example Rindt e.a. [1988], Rindt [1989], 

v.d.Vosse e.a. [1990]), which is a valid assumption in large straight tubes where only very high 
shear rates occur. From oscillatory shearing experiments, it has been found that blood can behave 
viscoelastic (for example, it has a non-zero elastic component of the complex viscosity for a wide 
range of frequencies (10-1 Hz e f < 101 Hz) at low shear rates ( j l  e 1 s-1) (Thurston [1979])). 
When bends and bifurcations are present, with low shear rate areas and relatively sharp corners, 
the non-Newtonian viscoelastic character of blood may influence the flow patterns significantly. 
Although many authors (for example Perktold [1989], Liepsch [1990]) acknowledge that the study 
of the flow of blood in such cases should incorporate the shear thinning and viscoelastic character 
of blood, no such numerical study has been found in literature yet. Shear thinning models do have 
been used (e.g. Rodkiewicz [1990], Perktold 119901, Baaijens [1991]); the results showed on the 
one hand that the general flow structure is not altered, but on the other hand that significant 
differences in stress or pressure were found too. No viscoelastic (or thixotropic) flow calculations 
were found; although it is unsure what the effect of this behaviour in physiological l3û-s~ r;i:uati~ri~ 
is. The lack of these calculations has probably partly been caused by the numerical problems 
associated with the use of viscoelastic constitutive models in complex flows that have existed. 
Recently important progress has been made in this research subject (Hulsen [1988], [1990], 
Hoitinga [1990], Baaijens [1991a]). Some experimental studies on the viscoelastic flow of blood 
exist (Liepsch [1987], Liepsch e.a. 119911, Mann and Tarbell [1990]), but because of the short- 

1 .  - P 
cln.-.  v...^ uilLercllL d'cc ----A interests ' ana aims. uxamples äie the cliiiical &eiIiôriteoiogy (see for example 

This science studies blood rheology and its clinical and pathophysiological implications. On the one hand 

by  measuring the rheological properties of blood certain diseases can be diagnosed. On the other hand, by  

altering these properties certain diseases can be treated. 
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comings of the used blood rheological analog fluids, no definite conclusions can be made yet. 
This makes clear the need of this study. 
The literature search was focused on papers discussing constitutive models and rheological analog 
fluids used for blood; for sake of completeness, only a short description of the composition of 
blood and its rheological characteristics are given in the first sections of chapter 1. The 
chaïxteïkîics of phyiolr?gicul blood Bûw are biscisseû ai the end of tnis chapter. 
Both ex~eririientai and numerical research on the problem of the non-Newtonian behaviour of 
blood have only been very basically until today. This is discussed in chapter 2 and 3. In chapter 2 
the emphasis is on the constitutive models for blood as used in literature; some papers of major 
interest are reviewed. The numerical calculations will be performed using the finite element 
software package SEPRAN. For that reason, constitutive models that are implemented in 
SEPRAN are discussed. Finally the choice of a constitutive model for blood is discussed. 
In chapter 3, the non-Newtonian rheological analog fluids for human blood, as described in 
literature, are described. These fluids are purposed to be used in experimental flow situations and 
have to simulate the rheological behaviour of blood. Such a fluid enables experimental validation 
of numerical calculations. 
This report ends with a summary of the major conclusions and recommendations in chapter 4. 

I .  



7 

1 Rheology of blood' 

1.1 Introduction 
According to Carrig and Schneck [1986] it was Hess 119801 who discovered in 1915 that blood 
exhibited non Newtonian behaviour. He found that its viscosity is shear rate dependent. Numerous 
ïzseaïches (e,g, Thxrst~r- [WE], Charam [?%Y], Kiang e.a jiY72j) have shown that biood also 
c~hi'Uits viscoeiasistic and thixotropic behaviour. This complicated material behaviour is caused by 
the microstructure of blood, that is determined by the chemical and physical properties of its 
constituents. In the following, first the composition of blood is elucidated in section 1.2, and then 
the characteristics of the red blood cells are discussed in section 1.3. (These two sections are 
based on Car0 e.a. [1978] who provide a more detailed discussion of the subject). Section 1.4 
deals with the non-Newtonian shear thinning, viscoelastic and thixotropic behaviour of blood. 
When characterizing the physiological flow situation, as it is the subject of this study, several 
dimensionless parameters are important. These are discussed in section 1.5. Finally, in section 1.6 

the relation between the non-Newtonian behaviour of blood and its microstructure, depending on 
the flow situation, is discussed tentatively. 

1.2 Composition of blood 
Blood is a suspension of blood cells and liquid particles (the chyomicrons) in the plasma. It has a 
specific mass of 1.050 103 kg/m3. If all the particles are removed from the blood and it is 
anticoagulated, then the plasma rests. This an aqueous solution, with several low-molecular 
weight particles of anorganic and organic material in low concentrations. It consists for about 7% 

of proteins (Caro e.a [1978]). It appears from experiments (Caro e.a [1978]) that plasma is a 
Newtonian fluid; at 37°C it has a viscosity qplasma = 1.2 
The chyomicrons, which play a role in the fat transport ?T?P,c~~~I~sII,  cf S!ood, are C.2 - û.5 pm 
long and have such a small concentration that they do not influence the macroscopic rheological 
properties of blood. The blood cells can be divided in red and white blood cells and blood 
platelets. The white blood cells (leukocytes) and platelets have such a low concentration relative 
to the red blood cells (erythrocytes), see table 1.1, that they are not important when considering 
the rheological behaviour of blood. The composition of blood is depicted in table 1.1. 

Ns/m2. 

t This chapter is partly based on the work of Van Steenhoven [1984]. 
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Roughly 
spherical 
7-22 

Table 1.1 Cells in blood (From Car0 e.a. [1978]). 

Cells in blood 

> 

Unstressed Volume 

Cell nun3 dimensions (pm) in blood 
Number per shape and concentration (Oh) 

Erythrocyte 4-6x lo6 Biconcsve disc 45 
gx1-3 

Leumcytes 
Total 
Granulocytes 

Neutrophils 
Eosinophil 
Basophil 

Lymphocytes 
Monocytes 

Platelets 250-500 X lo3 Rounded or 
oval 2-4 

1.3 Characteristics of red blood cells 
Thus the red blood cells (RBC) determine the rheology of blood. They have a concen 

4-11 x lo3 

1.5-7.5 X lo3 I 0-4 x lo2 
0-2 x 102 

1-44 x io3 
0-8 X lo2 

1 

ration, als 
called the hematocrit (HTC), of 45 %. The red blood cells contain hemoglobine, which gives 
blood a red color and it carries the oxygen. When the cell is not deformed, it has a concave shape 
(see figure 1.1), and a specific mass of 1.08 103 kg/m3 (slightly larger then the whole blood). The 
cell consists of a thin membrane containing a fluid. The cell has no nucleus. The viscosity of the 
interior fluid is about 6 10-3 Ns/m2, about 5 times the plasma viscosity. 

Composition of the red cell 

Percentage of mass 

Water 65 
Membrane components 3 

2-3 I'm (protein, phospholipid, cholecteroi) 
Haemoglobin 32 
inorganic. 

Potassium 
Sodium 
Magnesium 
Calcium small amount 

0.420 p per 100 ml 
0-025 g per 100 ml 
0.006 g per 100 mi 

8 /rm 

Figure 1.1 I;he red blood cell. (From Car0 e.a. [1978]). 

The RBC has two important characteristics that influence the flow of blood. First, the cell is 
strongly deformable (it has a Young's modulus of order 105 Nm-2 (Bernadin [1986]), compare 
rubber: 1 0 6  Nm-2), with high shear stresses it is stretched. The deformation of the red cells 
becomes significant for shear rates greater then 1 s-l, it reaches a maximal value for 9 w 100 s-1 
(Bernadin [1986]). Secondly, at low shear rates (9 c 10 s-l, see for example figure 1.2) the red 
blood cells aggregate. This is called rouleaux formation. At very low shear rates (9 cc 1 s-1, 
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Bernadin [1986]) a three dimensional network can be formed. With increasing shear rate the 
network is broken down, and the rouleaux are dispersed into individual cells (see also section 
1.4). In this regime there exists a structural kinetic process of competing structure breakdown and 
build-up. For p > 10 s-l no rouleaux exist in steady shear. Figure 1.2 illustrates both effects. 
Depending on the shear stress, aggregates of undeformed cells are formed, or no aggregates are 
formed and the cells ere undefûrmzd, oï the c e h  are deformed. The formation of aggregates 
depends on severai factors: the surface charges on the cell surface, the concentrations of 
fibrinogen and globulines (both important for the stopping of a bleeding), and the shape of the 
cells (only undeformed cells can aggregate). 
Summarizing: blood can be considered as a suspension consisting of a Newtonian fluid (plasma) 
in which deformable non-symmetric particles (the red blood cells) are dissolved that aggregate at 
low shear rates can form rouleaux; at very low shear rates ( f = O s-l) a three dimensional 
network of rouleaux can be formed. 

Figure 1.2 Three states in which the RBC can exist with increasing shear rate: (a) 
undeformed, aggregated (t = O Nlm2), (b) undeformed, unaggregated (t = 
10 NIm2), (c) deformed, unaggregated (z = 300 N/m2), (From Caro e.a. 
[1978]). 
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1.4 The non-Newtonian behaviour of blood and its microstructural explanation 
Shear thinning 
In steady shear, blood shows shear thinning behaviour (see figure 1.3). This can be explained as 
follows. At very low shear rates ( y cc 1 s-l) aggregation of formed rouleaux to a three 
dimensional network causes relatively high shear stresses. With increasing shear rates, first the 

of the roU!eam TZSÜI~ in a Airther decrease of the viscosity. At higher shear rates (f > 1 s-l) the 
rouleaux are broken down, while for > 10 s-l no rouleaux exist and with increasing shear rate 

nati lLbLmïk is defûïmed arid br~ken down; at shea: rates 0.1 c' < i s-l the bending and orientation 

"I i RBC IN -- 
13 1 I 1 7 PCASM.4 

HTC=45% i 
! 

Figure 1.3 The shear viscosity as a finction of shear rate for whole human blood (HTC 
= 45 %, T = ? "C). (From Chien [1979]). 

the viscosity decreases as a result of the orientation and deformation of the individìial ïeci blood 

cells. For high shear rates (y  > 100 s'l) the viscosity gets a constant, Newtonian value. The 
separate influences of the deformation and aggregation on the shear viscosity of blood is 
illustrated in figure 1.4. The shear rate dependence of the viscosity of blood is often described by 
a power-law or Casson relation: 

power-law: 

Casson: (1.2) r = (ty + 2zyz(rlci.) l 3  + (rct)Yi. 

with 7 the viscosity, C the power-law constant, n the power-law index, f the shear rate, zy the 
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1 -  

yield stress, qc the Casson viscosity. The Casson model contains a yield stress, this is discussed in 
the next section. Typical parameter values for human blood are (Baaijens [1991]): C = 0.028, n = 
0.63, zy = 4.8 10-3N s mm2, qc = 2.8 2 -2 N s m . 

- 
- 

I I 1 1 1 1 1 1 1 1  I 1 1 1 1 1 1 1 1  I I Illiiil I I lllllil I I l l l i i i l  

Figure 1.4 

4 5 ~ ~ ~ ~ ~ ~  Mediüm 

N P :  Normol Plosmo 
N A :  Normol 1lXAlb. 

RBC ( ‘b=1.2Cp) 

ï ñ e  relative shear viscosity (qfqo; qo = viscosity of the plasma = 1.2 mPas) 
of whole human blood (HTC = 45 %, T = ? “C) as a function of shear rate; 
the contribution of deformability and aggregation is indicated. (NP = 
normal red cells in plasma, NA = normal red cells in isotonic saline 
containing 11 % albumin (to m a k  suspending medium viscosity the same as 
p l a ~ m ~  viscosity); *I-- = hardened d i ~ ~ ~ i d  red cells in the same sohe). 
(From Chien [1970]). 

I 

The influence of the HTC on the shear viscosity is illustrated in figure 1.5. 
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Figure 1.5 

I 
n 

58 9 

The influence of the HTC on the shear rate dependent viscosity at T = 25 
"C. (From Caro e.a. 619781). 

Yield stress 
The property that blood has a yield stress still is a point of discussion. According to Car0 e.a. 
[1978] the yield stress has a magnitude of 1.5 - 5 mN/m2. However, as discussed for example by 
Walburn and Schneck [1976], the yield stress was measured only under static loading conditions. 
They doubt if the yields stress is at all manifest in a dynamic situation (see section 1.3). 

Viscoelasticity 
The deformability and capacity of forming aggregates of red blood cells provide a means of 
storing energy during flow: by deformation of the ce!! zembrane, aíìC by aggregation of the 
individual blood cells. So blood, in principle, is viscoelastic. Standard measurements quantifying 
the viscoelastic behaviour are viscometric measurements of the dynamic complex viscosity or its 
elastic and viscous components (figure 1.6). From this last picture it is evident that blood shows 
viscoelastic behaviour. 
The relation between the complex viscosity of blood and its microstructure is elucidated by the 
study of Huang e.a. [1975]. They found that blood (40% HTC) for i)o < 1 s-1 at low oscillation 
frequency large rouleaux exist, that deform elastically. This leads to a substantial elastic 
component of the complex viscosity. They also found that with increasing frequency above 0.1 
Hz the rouleaux size decreases as well as the value of qe, probably because of the cyclic 
deformation. At frequencies of 1 Hz or larger hardly no rouleaux exist in the suspension. Only the 
deformation and orientation of the individual red blood cells contribute to the elastic component 
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Y''. This is confirmed by figure 1.7 in which the complex viscosity in a RBC suspension in 
plasma is compared with a RBC in Albumin-ringer. In this latter solution no aggregation can take 
place; it has a constant q" that is about 5 times smaller compared with the suspension in plasma. 
The difference becomes smaller when the frequency increases, as a result of the disaggregation 
process. 
in  the same way, the shear rate dependence ofthe complex viscosity at 2 Hz in figure f.6b can be 
explained: at low shear rate amplitudes the cyclic deformation of the rouleaux results in a 
contribution to the elastic component of the complex viscosity. With increasing amplitude of the 
shear rate the rouleaux will disaggregate and the deformability of the individual red blood cells 
results in a lower q". 

. 
\ 

I I 1 'o-"I \ 
.o1 

.o1 .1 1 10 100 lc$ io-l 1 Go 10' 10 * io3 
T ~ .  i (sec- ' )  

f,(Hr.) 

Figure 1.6 
a b 
a)The elastic and viscous components of the complex viscosity of whole 
human blood (HTC = 43 %, T = ? "C) as a function of frequency; b) the 
shear rate dependence of steady flow viscosity, qy and viscous and elastic 
components of the complex viscosity> measured at 2 Hz for the same blood 
as in a) (From Thurston [1976]). 



Figure 1.7 

I :  RBC in plasma 

14 

'lE 2 (mNs/m ) 
400 

40 

2: RBC in ringer 

I 
HTC=4Ç% 

- 

% - i --axe 

h 

I I J 
I oi I IO 

f (Ht)  - 
The components of the complex viscosity as a function of frequency in 
plasma and in a Ringer solution (in which the red cells cannot aggregate); 
a) q', b) q". (From Chien [1979]). 

Thixotropy 
A third aspect of non-Newtonian behaviour is thixotropy* Thixotropy is the time- dependent 
behaviour of blood caused by the kinetic structure processes of aggregation and disaggregation 
during which the blood is in a rheological non-equilibrium state. This phenomenon is studied 
using transient flow experiments. A sudden step in the steady shear rate is imposed and the shear 
stress, or the viscosity (time-dependent viscosity) is measured as a function of time. Typical 
results are presented in figure 1.8. At p = 0.1 s-1 a typical phenomenon is visible: a peak value in 
the shear stress ("overshoot") is measured. For shear steps y c 1 s -1 the shear stress decreases 
after a peak value is reached, with a relaxation time that varies with the shear rate; for p = 1 s-1 it 
is 30-60 s. At higher no stress relaxation is measured. Also measurements are presented of the 
complex viscosity after a sudden step in the amplitude of the oscillatory shear rate (figure 1.9). In 
Rcher and YDge! [I9883 thixotmpy is defined as the effect that, ìvheii the shearing stress increases 
with time, the aggregates are dispersed to increasingly smaller aggregates down to the individual 
cells, whereas with decreasing shearing stress the sizes of the aggregates increase up to the 
formation of networks. According to Bernadin [1986] the thixotropic behaviour of blood 
attenuates for > 10 s-1; for shear rates larger than 5 25 s-l blood shows no longer thixotropy. 
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Mensenbloed 

60 

I 

2o O L  t i 
i 

RBC in glasma 
HTCdSS 

u 
I I I I I -u u u 
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Figure 1.8 

Figure 1.9 

t (rn i n) - 
a) Time-dependent shear-stress after a sudden step @-om y = O s-1 to 9 = 
0.97 s -1 in the steady shear rate is imposed for whole human blood (HTC ? 
%, T = ? "C) &om Huang e.a. [1975]); b) time-dependent viscosity after 
three different step diems f i ~ m  8 to = 8.1 s-1 , 1 s-1 and 10 s-1 (HTC = 
45 %, T = ? "C) @om Chien [1975]). 

HTC=43% 
f=ZHz 

.. 

I 
I 
o 24 40 60 3c -,m 

I l l 1 1  

t i S ) L  

The components of the complex viscosity measured after a sudden step in the 
shear rate amplitude from y = 75 s-1 to 25 s-1 during an oscillatory flow 
with f = 2 Hz for whole human blood (HTC = 45 %, T = ? "C). (From 
Thurston [6979]). 

Normal stress differences 
To the best of the author's knowledge, no reliable measurements of first or second normal stress 
differences for blood exist in literature. Although there have been developed several measurement 
devices (Whorlow [1980]) , normal stress differences above the measurement accuracy limit of 
100 mN/m2 could not be measured (Copley and King [1975]). 
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1.5 Non-Newtonian flow and dimensionless numbers 
In traditional Newtonian fluid mechanics the definition of the Reynolds number is well known. 
Because in general a non-Newtonian fluid has no constant viscosity, an alternative definition must 
be used. Additional to the Reynolds number in non-Newtonian fluid mechanics a Weissenberg 
number and a Deborah number are defined to characterize the flow. In  this section the definitions 
bvr the Reynolds mmber and Eeboïah nümber as used in this study in case of the non-Newtonian 
flow are given. 
The Reynolds number definition as used by Hulsen [1990] and Hoitinga [1990] is based on the 
description of viscoelastic fluids using the Maxwell model (see chapter 2). This model contains a 
number of, in general, N modes, each having a viscosity qk. Then a zero-shear viscosity 170 is 
defined as: 

With this, the Reynolds number is then defined as: 

Re = p V D/qo 

In this definition the Reynolds number is the ratio of inertia stresses (pV2) and linear viscous 
stresses (qoV/D). 
Hulsen [1988, 19901 and Hoitinga [1990] define the Deborah number as: 

De = natural time of fluid/observation time of observer= 
= t*/to 

This definition uses the concept of "observation time of observer", which origins from the name 
"Deborah" that was derived from a bible citate: "The mountains melted from before the Lord", 
prophetess Deborah, Judges 5:5. The time t, is defined as: 

t, = 1 i m N1/2@ 
jf- O 

with f: shear rate, t: shear stress. Using the Maxwell model, this results in: 
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N N 

i=1 i-1 t, = averaged relaxation time = & =.z Gi Ai2/C Gi Ai 

with Gi, hi the elasticity modulus and relaxation time of mode i of the Maxwell model. The 
skser*ation time of ûbserueï tg is defined as: 

With this the Deborah number becomes: 

According to Schowalter [1978], the Deborah number is an inverse measure of time for which the 
liquid has been tending toward the "fluid like" behaviour of the viscometric flow. 

Schowalter [ 19781 defines the Weissenberg number as: 

We = first normal stress differencehhear stress 

and: 

We=OV/D 

with: 

(1.10) 

(1.11) 

(1.12) 

This definition is interpreted by Schowalter as: the Weissenberg number is a measure of the 
relative importance of elastic (represented by 0) and viscous forces (represented by VID). If one 
chooses O = A, then We = De. Thus, although the Deborah number number originally was meant 
to be a measure for the extent of which the viscous behaviour of the fluid is manifest, and the 
Weissenberg number a measure for the extent to which the elastic behaviour of the fluid was 
manifest relatively to the viscous behaviour, in many cases the working definitions are equivalent. 
In literature different authors do not make a distinction between those two numbers (see 
appendix), and usually the above interpretation of the Weissenberg number is meant. A low 
Weissenberg number means: the elastic behaviour of the fluid is not manifest, the viscous 
properties dominate; 
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a high Weissenberg number means that the elastic behaviour is dominating. 

1.6 Characteristics of the physiological flow situation 
In this study the physiological flow geometry is a two dimensional model of the carotid artery 
bifurcation, see figure 1.8. This geometry, as determined by Bharadvaj [1982] 

communis 

~ 

Figure 1.10 lñe two dimensional model of the carotid artery bifurcation as determined 
by Bharadvaj. (From Bharadvaj [1982]). 

~~ ~ ~~ ~~~ ~ 
~ - ~~ ~~~~ ~ 

~~ ~- ~ ~ 

from 100 angiograms, is a simplification of the real three dimensional geometry. However, 
because of the stage of the research on this subject and the available numerical algorithms, the 
two dimensional model will be used. The physiological flow is an unsteady pulse cycle. As 
presented by Rindt [1989] during this cycle the Reynolds number varies between 200 and 800 as 
is shown in figure 1.11. The time averaged mean value of this Reynolds number is 300. Rindt 

high shear rate constant viscosity, equation (4). From (1.4) with q/p = 3.4 10-6 m2/s and D = 
0.008 m (the communis carotid diameter) it follows that the average fluid velocity in the 
communis is 0.13 ms-1. Using the data of Bernadin e.a. [1987] who fitted a modified 
Bird-Carreau model to blood data (see chapter 2) a characteristic relaxation time of blood is h = 5 
s. With this the Deborah number, that is associated with the viscoelastic character of blood, has a 
value of about 68 in this situation. This is a high Deborah number: in viscoelastic flow literature 
values up to 10 are usual, and until developments made recently (values up to 300 are found by 
Hoitinga [1990] for example) this flow situation would have been impossible to calculate 
numerically. This will be discussed later in chapter 2. 
Anticipating the constitutive models for blood as will be discussed in section 2.4, an important 
question is: what kind of structure has blood in the physiological flow situation of interest? 

ô9s~mvd b!ccd tc beha;.- ~ 3s a hlevJto+n- 1 iali a..: LIULC, this the Reynolds number was defined using the 
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Figure 1.11 The Reynolds number during one physiological pulse cycle according to 
Rindt. (From Rindt 1.79891). 

Does the aggregation - disaggregation process take place in the human carotid artery bifurcation, 
or do only dispersed blood cells exist? According to Bernadin [198?] deformation of the 3D 
network influences the rheological behaviour of blood in particular at low shear rates. Rosenblatt 
e.a. E19861 state that the rouleaux can be considered as cilindrical, without branches; branches get 
loose at very low shear rates, as they state. From the considerations in section 1.2 the rouleaux do 
not exist when 9 > 10 s-1, and in oscillatory shear flow with a shear rate i /  c 1 s-1 they are 
increasingly broken down for frequencies above 0.1 Hz, and are completely dispersed at 1 Hz. 
In the following, to get an idea of the actual shear rates in a large artery, some results of 
Newtonian flow studies in models of the carotid artery bifurcation as found in literature will be 
discussed with the attention focused on the appearing shear stresses. First the results of K u  and 
Giddem [I9873 2re cf hterest. They presented mezìsfiïemerirs of Laser Doppler Anemometer 
measurements of steady and pulsatile flow in a three dimensional model carotid bifurcation. The 
Reynolds number definition used was Re = 2Q/Rv, where Q is the volume rate, R is the tube 
radius, and Y is the blood kinematic viscosity, giving values 300 for the mean and 800 for the 
peak Reynolds number. The unsteadiness Womersley parameter ct (= R ( ~ / Y ) ~  was 4.0 (o = 5.84 
rad s-1). It appeared that the mean wall shear rates during a cycle are mostly of order 102 s-1, the 
peak values even of of order 103 s-1. One should realize that the presented mean values are time 
averaged mean values of 9, while in case of the rouleaux formation mean values of are of 
interest in which case much larger values would have been found. These results are confirmed by 
the results of v.d Vosse e.a. [1990]; they found in a two dimensional numerical analyses of 
unsteady flow in the carotid artery bifurcation wall shear stresses with a magnitude of order 102 
s-1 - 103 s-1. There is no data of the variation of the shear rate in a two or three dimensional 

1 
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model of the carotid bifurcation along a particle trajectory in steady or unsteady flow. The wall 
shear stresses are in general much larger then those in the internal of the geometry. However no 
such data is available. Rodkiewicz e.a. [1990], who considered the pulsatile flow of blood in a 
conduit, showed that the actual shear rates in a femoral artery are predominantly low (y  e 100 
s-1). High shear rates occur only during a relatively short part of the cycle period, and mainly 
cicose to the wzii @his is iIlUsttrâteb in tatilz 1.2). Tñey conclude that biood behaves predominantly 
as a non-Newtonian rluiá. 
On the ground of the above it is very reasonable to assume that in the physiological flow case no 
rouleaux exist; only individual blood cells will be present. Although low shear rates (Y e 10 s-1) 
may exist during a certain period of the physiological pulse cycle, for example in the recirculation 
area, there is probably not enough time for the aggregation proces to take place (in steady flow 
the characteristic process time for rouleaux formation at y = 1 s-1 is about 30 - 60 s-1, see figure 
1.8b). 
In the steady flow case at Re = 300 there may rouleaux be present locally. The absence of high 
pulse shear rates with Y >> 100 s-1 and the steady character of the f l ~ w  may provide the 
opportunity of rouleaux to survive. 

Table 1.2 The shear rates measured in the femoral artery during the cycle of a physiological 
pulsatile pressure gradient (HTC = 45 %, T = ? "C). (From Rodkiewicz [1990]). 

Shear rates for Newtonian fluid 

Thus: non-Newtonian aspects of the flow of blood in large arteries are expected to be primary 
determined by the deformation and orientation of the individual red blood cells. Under unsteady 
physiological conditions no rouleaux will exist, while in the steady case they may exist in local 
areas. 
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asymptotic 

o 1  1 10 100 1000 

Figure 1.10 Spread in steady shear viscosity in blood fiom different human beings. 
(From Car0 e.a. [1978]). 

Another factor in studying the flow of blood is the spread in the value of the viscometric 
functions among blood from different human beings. This spread determines the degree of 
accuracy of the modelparameters and thus the meaningful accuracy of the models and 
experiments that will be done. However, at this point no good information is yet found, except for 
the steady shear viscosity data presented in figure 1.10 (the viscosity values differ from 20% at p 
e 1 s-1 to 70% at > 100 s-1, and the data of Rosenblatt e.a. [1986], fig. 2.11 - 2.14). Here, the 
error bars for the peak values of the stresses are about 20 % - 40 % large. 

1.7 Summary 
Blood can be considered as a suspension consisting of a Newtonian fluid (plasma) in which 
deformable non-symmetric particles (the red blood cells) are solved that aggregate in the 
unloaded situation, From experiments it was found that blood exhibits non-Newtonian behaviour: 
shear-thinning, usually described by a power-law or Casson model; yield stress, although this is 
very small or not existing, especially in a dynamic situation; viscoelasticity, as it appears from the 
existence of an elastic component of the complex viscosity; thixotropy, the time dependent 
behaviour of blood caused by the kinetic structure processes of aggregation and disaggregation 
which is manifest at low shear rates (i, e 10 s-1); normal stress differences are to small to be 
measured. Non-Newtonian flow can be characterized by a Reynolds number, a Deborah 
(Weissenberg) number, and a Womersley parameter. In case of a physiological flow situation, i.e. 
the carotid artery bifurcation, during one physiological pulse cycle the Reynolds number varies 
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between 200 and 800, with an time averaged mean value of 300. From this averaged Reynolds 
number and additional parameters, the Deborah number was found to be about 68, which is very 
high and thus the problem is rather complicated. In this study a two dimensional model of the 
bifurcation will be used. Non-Newtonian aspects of blood flow in large arteries are probably 
primary determined by the deformation, orientation and collision of individual red blood cells. 
Under physioiogical conditions no rouleaux exist, In the steady case they do may exist. There is a 
spread in the values of the viscosity among different blood donors of 20% at low shear rates to 
70% at high shear rates, which limits the meaningful accuracy of calculations or experiments. 
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2 Constitutive models for blood 

2.1 Introduction 
In this chapter a survey is given of the constitutive models that have been presented in literature 
being used or proposed to describe the flow behaviour of blood. Many constitutive models are 
proposed io describe blood rheoiogical behaviour, varying from very simple to very complex 
models. This will be outlined in section 3.2. Our main interest is to apply such a model in order 
to describe the flow of blood in large arteries, especially those with bends and bifurcations. One 
of the reasons that merely simple models have been used with the description of non-Newtonian 
blood flow in more complex situations, i.e. complex geometry and/or time-dependent flow, is the 
fact that numerical problems are associated with complex rheological models. However, recent 
developments in the viscoelastic flow theory have lead to new algorithms that in testproblems 
have given very promising results (see section 2.4). An other reason for using simple constitutive 
models is the argument that in case of blood flow in large arteries (diameter > 500 pm) high 
shear rates (y > 1000 s-1) occur, and therefore the Newtonian assumption is valid. However, in 
case of bends and bifurcations flow recirculation and separation occurs with low shear stress areas 
which may give rise to significant differences with the Newtonian case. Basic numerical 
non-Newtonian results of Hogan and Henriksen [1990], Rodkiewicz e.a. [1990] and Baaijens 
[1991] show significant differences with the Newtonian case. In section 2.3 some results of 
calculations with time-independent models are discussed; in section 2.4 the major interesting 
papers dealing with viscoelastic constitutive models proposed for blood are reviewed more 
detailed. In rheology, especially in case of the polymer rheology, many models exist that may 
provide a good description of the flow of blood. Because of the intention to use the finite element 
software package SEPRAN E19841 for numerical calculations, all available models in this package 
wil! be discussed i= section 2.5. Fortunately these models include almost aii models that are of 
importance in viscoelastic flow theory, or the implementation can be extended in a rather simple 
way to include missing ones. Finally, a discussion in section 2.6 will point out which constitutive 
models are most suitable for our purpose. 

2.2 Survey of constitutive models for blood 
The models are divided into two groups: 
a) time-independent models, 
b) time-dependent models. 
The first group of models are models that model only the shear-thinning behaviour, but no 
memory effects (i.e. the history of deformation does not influence the present stresses). These 
models are only accurate in situations that are dominated by a shear rate dependent viscosity. In 
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flows with accelerating and slowing down of material elements, as can also be the case in a 
time-independent two dimensional flow with sharp corners in the geometry or with flow reversal 
areas, these models may not be adequate to describe non-Newtonian flow behaviour. The shear 
stress-shear strain relations can be extended to three dimensional tensor relations between the 
Cauchy stress tensor and the rate of deformation tensor (an exception in table 2.1 is the 
micropoiar continuum modei, that is not a simpie shear stress - shear strain relation, see next 
section 2.3 for a review of this model). Especially the Casson model has been used very 
frequently for describing blood flow. In section 2.3 some results of calculations of flows with 
shear thinning models will be discussed. 
The second group of models include memory effects, and have more or less a microstructural 
basis (not all theories are as solid on this point; for example the parameters of the Maxwell model 
have no clear physical interpretation). 
In table 2.2 a list of all the mathematical expressions of the time-independent models listed above 
are presented. Easthope [ 19801 has compared eleven different time-independent constitutive 
equations, with all a hematocrit dependence (the models originally without a WTC dependence, 
were extended with that), some of them are present in the list above. The Walburn and Schneck 
model was found by Easthope [1980] to fit the experimental data best. The Quemada equation 
was also satisfactory, it has the advantage that its parameters have some physical meaning. 
In table 2.2, a list with time-dependent constitutive models is given, but no mathematical 
expressions. These will be presented in section 2.2 for the major interesting cases. In table 2.3 all 
the models from table 2.1 and 2.2 are listed and some additional information (references, flow 
studied) to clarify the way and extent the models have been used for describing blood. As is clear 
from table 2.3, the number of flow studies is limited, and only non-viscoelastic models have been 
used, mostly a generalized Newtonian model (Casson, Bingham, power-law, Walburn and 
Schneck). 

t With "flow study" is meant here: a study of a complex two-dimensional time-independent 
flow field, for example the flow in a two-dimensional artery; thus not a viscometric flow nor 
transient response such as stress growth or stress relaxation. 
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Table 2.1 Time-independent constitutive models for blood 

MODEL EQUATION 

1 
Herschel-Bulkley t=(-K?)n+~,zrth;~=th,t~th 
Huang-Fabisiak = qpiasm ? - cAYexp(-c)"to) 
micropolar continuum theory 

Table 2.2 Time-dependent constitutive models for blood 

MODEL PAGE 
~~ 

Charara 
Rosenblatt 
Maxwell 
Four constant Oldroyd 

Re he r-Vogel 
modified Bird-Carreau 

not discussed, see Phillips and Deutsch 
ji977j 
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Table 2.3 Survey of constitutive models used for blood and their applications 

MODEL m w  STUDY OTHER REFERENCES 

Non-viscoelastic 
modeis: 

Power-law 

Casson 

Bingham 
Walbiaan- 

Schneck 

Quemada 
biviscosit y 
Phillips- 

Herschd- 
Deutsch 

Bulkley 

Fabisiak 
Huang- 

micropolar 

couple stress 

Chaturani and Palanisamy [ 19901 
Baaijens [1991], 

Perktold e.a. [1989] 

Baaijens e.a. [1991], 
Perktold e.a. [1989], 

Oka and Nakai [1989], 

Wang e.a. [1989], 
Chaturani and Palanisamy [1990] 

Rodkiewicz e.a. [I9901 

Rodkiewicz e.a. [1990] Easthope and 
Brooks 
Walburn and 
Schneck [ 19761 

Wang e.a. [1989] 

Cokelet [1981] 

Chaturani and Sami [1985] 

Hogan and Henriksen E19901 

Sinha and Singh [1984] 

Srivastava [1985] 

Easthope and 
Brooks [1980] 

Skalak and Tözeren 
[1981] 
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Table 2.3 continued: 

Viscoelastic models: 
Charara 
Rosenblatt 
LVldAWGIl  11IWUCl 

Oldroyd model 

X K  ̂ ____^ 1 --1..1 

Re her-Vogel 

modified 
Bird-Carreau -- 

Charara e.a. [1985] 
Rosenblatt [i9861 

Phillips-Deutsch 
[1977] 
Reher 
[1988] 

Thurston p m j  

and 

Bernadin e.a. [1987] 

Vogel 

2.3 Some results of calculations with time-independent shear thinning constitutive models 
In this section attention is paid to the results of numerical calculations with constitutive models 
that only model the shear-thinning behaviour of blood. But first, the the background of the 
Walburn and Schneck model is discussed. 

Walburn and Schneck [1976] 

The aim of this study was to develop a constitutive equation that includes parameters that 
represent significant blood properties. As a starting point a power-law z = k was chosen. 
Discussing the validity of this equation, Walburn and Schneck argue that although a yield stress 
has been observed for blood, this was only under static loading conditions. They doubted that the 
yield stress is at all mônifest in a dynômic sitiiztion, became, as they state feirther, though fluid 
velocities and velocity gradients pas routinely through zero in an oscillatory flow situation, there 
is probably not enough time for static phenomena to appear. These statements seem very 
reasonable, however no experimental data to support them is provided. The parameters k and n 
were assumed to be constant for a given hematocrit level and a given chemical composition. The 
parameters investigated in this study were hematocrit, the total lipids, albumin, and total protein 
minus albumin (TPMA). TPMA is composed of fibrinogen and the globulines. These chemical 
variables were chosen because they are composed of long chain asymmetric molecules which 
exist in blood in large numbers and interact more than symmetric particles do. Therefore, 
according to Walburn and Schneck, it was expected that they contribute most to the rheological 
properties of the fluid. Analyzing the viscometric data of shear stress - shear rate measurements 
they considered the four parameters mentioned above together with the shear rate to be the 
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independent variable and the apparent viscosity was considered to be the dependent variable. In 
reality this assumption may not be true, because "in the cardiovascular system of man blood is 
constantly changing in chemical composition and shear rate and the interrelations are many and 
complex" as Walburn and Schneck state. However, to them the assumption seemed to be 
reasonable as a first approximation. Using a multiple regression computer procedure, the variables 
of geatest significance were determined. Tine eventuaiiy resuiting constitutive equation, that fitted 
the experimental data the best, is called the Walburn and Schneck model, and is given by: 

z = Clexp(C2H)exp[C4(TPMA/H2)](;J)1-C3H dyne/cm2 

with: C1 = 0.00797 , C2 = 0.0608, C, = 0.00499, C4 = 145.85 dl/g, H = hematocrit, TPMA = total 
protein minus albumin. 

Hogan and Henriksen [1990] 

Hogan and Henriksen i19901 have used a micropolar constitutive model to describe the 

rheological behaviour of blood. The micropolar theory is essentially a modification of the 
classical continuum mechanics: each particle in the suspension can have a rotation independent of 
the classical rotation of the surrounding fluid. The theory is applied to the flow through a blood 
vessel with a stenosis, not only because of its clinical relevance, but also because of the relatively 
large velocity gradients existing near the stenoses that in principle amplify the micropolar 
effectS.In the calculations (using the Finite Element Method (EM)), blood has been treated as a 
Newtonian fluid and a micropolar fluid. It seems that this model is only appropriate in case of 
arteries with a diameter from about 0.3 mm to 0.5 mm; in arteries with larger diameters it seems 
to be equivalent with the Newtonian model. From the results of the numerical calculations it is 
concluded that E ~ O ~ Q I Z K  Li-iiids exhibit grezter resistance to  flou^ than do chsical  fluids of 
equivalent shear velocity. This increased flow resistance is a consequence of the relative rotation 
between microspin and vorticity. The calculations further showed that there is no essential 
difference between the Newtonian model and the micropolar model in case of the streamline 
picture. However, the question of whether a micropolar fluid is a more accurate model for whole 
blood (in case of the mentioned artery size) is not yet answered for several reasons. First, because 
there are no experimental data of measurements of the wall shear stresses in a vessel with a 
stenosis with blood as the working fluid. Second, in this article no calculations were presented of 
standard tests of constitutive theories: the dynamic loss and rigidity moduli, and the steady shear 
viscosity. Finally, this study was restricted to the steady flow situation. 
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Rodkiewicz, Sinha, Kennedy [I9901 

In this recent article four constitutive models for blood are used: the Newtonian model, Casson, 
Bingham, and Walburn and Schneck model. These models are applicated to the pulsatile laminar 
flow of a fluid through a very long tube of radius R. The flow was assumed to be axial symmetric 
and fully developed, the fluid was incompressible, gravitational forces were negligible, and the 
temperature was uniform. Using in the puisatiie flow situation the models mentioned above being 
valid only for the steady state case in principle means that the assumption is made that blood 
belongs to the category of suspensions in which the particle rearrangement is achieved very 
rapidly. In case of the steady state flow situation, analytical solutions for all models were 
obtained. Significant, but small (e 5 %) differences between the different models were found. 
Solutions for the pulsatile flow situation in all cases were calculated by the finite difference 
method. Now very remarkable differences were found as is evident from the figures 2.1 and 2.2. 
In these plots several dimensionless parameters are used: dimensionless time t+ = 2ntD = cot (T: 
time period, o = frequency), dimensionless velocity w+ = w/(va/R) (va: apparent kinematic 
velocity) with maximal value w,,, dimensionless radial coordinate r+ = r/R (R: tube radius). AI1 
the results are obtained for a pressure gradient pulse which is representative of the actual pulse 
that exists in an artery. They are a function of the flow rate Q, the frequency parameter a 

(=R(~/V~)~ )  and the pressure gradient. The results for the Casson and Bingham model depend on 
an additional parameter, the yield stress, whereas the results for the Walburn and Schneck model 
are functions of the hematocrit concentration and TPMA. The following data were used: radius of 
the femoral artery = 0.003 m, blood viscosity = 7.97 Pa s, blood density = 1133 kg/m3, pulse 
frequency = 1.2 Hz, flow rate = 1140 ml/min, average hematocrit = 40 - 45 percent, average 
TPMA = 30-40 g/ i .  Figure 2.1 describes the manner in which the velocity pulse would travel 
during part of a cycle, it shows the velocity as it alters from a diastole to systole. Note the large 
differences between the Nevdonizn, Birigham, and Casson mode: on the one hand and the 
Walburn and Schneck model on the other. Negative velocity ratios indicate a flow reversal at the 
start or end of each pressure gradient pulse. Large differences between the two groups of models 
also exist at t+ = O, 33t/8, 3~/4 (not shown here). 
The shear stress at the wall also shows remarkable differences, the Walburn and Schneck model 
gives much lower shear stresses then the other models, see figure 2.2. 
Rodkiewicz e.a. mention some experimental results which confirm their calculations. However 
one must be careful interpreting the results, because the Walburn and Schneck model is developed 
using experimental data acquired at low shear rates. Thus at locations where high shear rates 
appear, the present solutions might not be valid. Also, the assumption the Walburn and Schneck 
model being valid in case of the time dependent flow situation may cause differences with the 
actual situation. No explanation for the remarkable difference between the Walburn and Schneck 

1 
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model on the one hand and the Newtonian model, Bingham and Casson model on the other hand 
is given.The authors conclude that experiments are needed to validate their results. 

r++ 

Velocity Ratio - w+ / wmaX 

Figure 2.1 lñe velocity ratio's as a function of the radius at t' = (a) 5x14, (b) 3 n 2  
@-om Rodkiewicz e.a. [1990]). 

Figure 2.2 The shear stress at the wall for the four models as a finction of time during 
one cycle of the pulsatile pressure gradient. (From Rodkiewicz e.a. [1990]). 
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Perktold e.a. [1990] 

Perktold e.a. calculated using a finite element method the pulsatile flow of blood through a two 
dimensional bifurcation with an aneurysm, see figure 2.3. 

Figure 2.3 

NON-NEWTONIAN NEhTONIAN 

T I T P  - 0.220 0.5 - 0 . 5  - I a-z2o 

Comparison of calculated pulsatile velocities in the two dimensional 
bifirccktbn with an aneurysm, in the aneurism, using the non-Newtonian 
Casson model and the Newtonian model at Re = 150 at maximurn flow rate. 
(From Perktold e.a. [1990]). 

They used a Casson equation to describe the shear thinning behaviour of blood. Typical results 
are displayed in figure 2.3 for Re = 150.It is clear from the above figure that the differences 
between the two used models are minimal. 

Baaijens e.a. [1991] 

Baaijens e.a. studied numerically (FEM) the steady flow of blood in a two dimensional model of 
the caiotid arteïy Gifürcatisn with Xe = 300, using a Newtonian model, a power-Iaw model and a 
Casson model. Typical results are displayed in figure 2.4. It is clear that only minor differences (e 

5 - 10 %) in the axial velocities are found using a generalized Newtonian (shear thinning) model 
and a Newtonian model. Wall shear stresses and pressure values can locally differ up to 40 % and 
25 % respectively. But in general the flow structure is not altered by using a generalized 
Newtonian model. 
Summarizing: In general the generalized Newtonian models (Casson, Bingham, power-law), give 
no essential differences in the flow structures in bifurcations and large arteries compared with the 
Newtonian model, in both steady and unsteady flow. Local, significant differences in velocity, 
pressure and wall shear stresses can exist. The micropolar model has only been used in a steady 
flow, but it gives the same kind of results; it seems to appropriate only in case of arteries with a 
diameter of 0.3 to 0.5 mm. The most remarkable result is that the Walburn and Schneck model 
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does give essential differences in pulsatile flow through a straight tube compared with the 
Newtonian model; no explanation is given for this. 

Figure 2.4 Some results of the numerical calculations of Baaijens e.a. in case of the 
steady flow at Re = 300 in a two dimensional model of the carotid artery 
bifurcation, with two generalized Newtonian models (power-law, Casson) 
and the Newtonian model. (From Baaijens e.a. [1991]). 

2.4 Review of major interesting papers dealing with viscoelastic constitutive models for blood. 
Thurston [i9791 
Thurston used a six mode Maxwell model to describe the viscoelastic viscosity of human blood. 
In the one dimensional case of the simple shear flow, in differential form the multimode model is 
for each mode p described by : 

and the total extra stress is the summation of all partial stresses of the modes, given by: 

N 
z= 1 zp (2.3) p = l  
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This model is illustrated in figure 2.5. 

TI+ If+, IN+ +?co 

Figure 2.5 The generalized Maxwell model. (From Thurston [1979]). 

In order to distinguish between the viscoelastic and thixotropic behaviour of blood, he uses the 
concept of "state of rheological equilibrium" ; only in this state the above model, that is intended 
to describe the viscoelastic (not the thixotropic behaviour of blood) is valid. He defines the 
rheological equilibrium as "the condition under which the aspects ~f the blood which control the 
rheological properties are not changing with time". The non-equilibrium condition is defined as 
"that existing while the internal structure and consequential rheological properties are in the 
process of change"; this concept is used describing thixotropic behaviour. The ground state is that 
equilibrium state that exists at very low shear rates. 
The complex viscosity in a small strain sinusoïdal shear flow is described by the equations: 

* c a 6 *  
rl = r l  + z : r l p  

P'l 

The steady flow viscosity is given by: 

c o 6  
q s = r l  + E  rlp 

P-1 

In the ground state of equilibrium (thus o +- O, p - O) the model gives: 

with ~ 0 , ~  being the ground state value o f  qp; i$,, qp :spring constant, viscosity of mode p; Tp 
relaxation time (= qpl I$) of mode p. For this ground state the modelparameters were fitted, they 
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are listed in table 2.4. 
The frequency dependence of the viscous and elastic components of the complex viscosity as 
calculated by this model are presented in figure 2.6 together with the data for human blood. A 
good agreement between numerical and experimental values is found. Thurston has also adapted 
this model in order to describe the thixotropic behaviour of blood. 

Table 2.4 Parameters of the Maxwell model fitted for human blood as used by Thurston 
[1979]. 

TABLE I 

:-:ode1 p a r a a e t e r s  f o r  t h e  qïound s t a t e  of equil ibrium 
f o r  . 4 3  H hurian blood. 

N = 6 ,  co = 1.1 0, nm = . O 4  P 

1 . 9 3  25.  . o37 
2 . o33 1. . o33 
3 . O50 - 3  . O17 
4 . O32 .1 . 3 2  
5 . O 1 6  . o1 1 . 6  
6 . O07 . o 0 1  7 .  

Figure 2.7 

: i  \ \ 
o I , , , , , , , ,  , , , , , , , ,  , , , , , , , ,  , , , , , , , ,  , , , , , , , .  , . , , ,  ~ 

- I  

13-3 10-2 10-1 100 101 I02 103 
FREQUENC'I i HERTZ I 

Frequency dependence of the elastic and viscous components of the complex 
viscosity of the six mode Maxwell model together with human blood data. 
(From Thurston [1979]). 
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Charara, Aurengo, Lelievre, Lacombe [1985] 
In this article, first a review is given considering the constitutive models that have been used in 
literature to describe blood. The authors state that none of those models was satisfactory, and 
therefore they present there new model, being derived from a previous model proposed by them. 
The results of their study are outlined briefly in the following. 
Referring t , ~  u study sf A.ur;tiìgû Z.Z. E29833 J 5  it - is assumd that the shear thinning, viscoelasticity 
and thixotropy ~f hlmd ca!: be modeled by a bíaxvveii like system. In this system, three functions 
of the shear rate are used: the viscosity q, elasticity modulus G, and kinetic parameter K (this 
parameter will be explained below). In stationary flow, qs (y), G&), &(y) are the steady state 
functions. In transient flow, q(t), G(t) and K(t) are defined as the instantaneous viscosity, 
elasticity modulus and kinetic parameter. The structure of blood is represented by a single 
parameter having the dimension of shear rate. This parameter is called the structure shear rate 
u(t), and it is a major parameter in this theory. It is assumed that q(t), G(t), and K(t) are functions 
of the structure shear rate o, which is time dependent: o = co@), with the relations: q(t) = 
q,(w(t)), G(t) = G,(u(t)), K(t) = I&(u(t)). The kinetic structure varying parameter K accounts f ~ r  
the fact that the structure shear rate is determined by disaggregation processes (which increase o) 
and aggregation processes (which decrease o), both processes being determined by K. 
With these definitions, using the results of Aurengo e.a. [1983] and some additional derivations, 
the following is proposed as the rheological model for blood: 

with P(o) the order of kinetic aggregation - disaggregation. In these two equôtions several 
functions are unknown: qs(t) (has to be measured), qs(o) (has the same form as qs(j )  with w 

instead of y), P(o), G,(o) and &(o). The last three parameters are described by the same 
empirical relation, in general form: 

F(o) = F(m) + (F(0) - F(m))exp(-F,o) (2.10) 

t 

with F(a) and F(0) experimental determined limit values, and F, an empirical fit constant. 
The two differential equations (2.8) - (2.9) comprise five unknowns: z = z(m(t),t), o = o(t), 
P,G,&. The parameter identification is performed using an iterative hybrid 
numerical-experimental method, as shown in figure 2.8. The rheological model is simulated by a 
Kutta-Merson method, and parameter identification is obtained using a Gauss-Marquardt 
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Figure 2.8 Hybrid experimental-numerical set-up to determine the modelparameters in 
case of the "Charara" model. (From Charara e.a. [1985]). 

algorithm, that minimizes the quadratic distance between the measured shear stress and computer 
simulation. The viscometric measurements were done with a Couette viscometer; both motor and 
servo control characteristics were taken into account in the simulation. In this way the model was 
fitted to the transient response when a sudden increase in shear rate was applied in steady flow. 
The results were very satisfactory. Some of them are presented in figure 2.9 and 2.10. Figure 2.9 
shows the measured shear stress as a function of time with the fitted model curves, for different 
shear steps. Figure 2.10 shows the normalized structure shear rate w versus normalized apparent 
shear rate f, also for different steps in shear rate. 
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Figure 2.9 

Figure 2.10 

t IS1 __ I I 

6 8 

Data fitting of the experimental shear stress z versus time t. Initial shear 
rate 91 = 0.05 s-l, final shear rate 92 = 0.2 s-l (a), j 2  = 1 s-l(b), 92=10 s-l. 
(From Charara e.a. [1985]). 

Normalized structure shear rate w as a function of the normalized apparent 
shear rate 9. The dotted line represents the Newtonian case with w = at 
each time. Initial shear rate fl = 0.05 s-l, final shear rate j9 = 0.2 s-l (a), 
92 = 1 s-l (b), = 10 s-l. (From Charara e.a. [1985]). 
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Rosenblatt, Soong, Williams [1986] 

Rosenblatt, Soong and Williams present a constitutive model that describes the non-Newtonian 
transient behaviour of human blood, being derived from the view of blood as a structured fluid. 
This very readable paper contains a comprehensive derivation; here it will be outlined only 
briefly. Rosenblatt e.a. [1986] consider blood as a solution of elastic dumbbell molecules (the 
r d e m x )  znd haye derived the fd lowi~g  expressis~s fûr this BriiS: 

dP/dt = k(1-P) - a ID1 P (2.11) 

(2.12) 

with a/&: a contravariant Oldroyd or upper-convected time derivative, a: a dimensionless 
empirical constant, k: an inverse time-constant; P: a structure factor, defined as the fraction of cell 
sides in the system which are aggregated; Ts(: the structure dependent (indicated by ' I S t l f ) ,  

extra-stress tensor (indicated by " ' "), D : rate of deformation tensor, 101 = ( 1 1 ~ ) ~  = in a simple 
shear flow. This is a differential constitutive model, (2.12) being a structuredependent Maxwell 
model, with the structure-dependent viscosity and relaxation time given by: 

1 

&t = P/k 

with C = w No S2/2<qe> 

(2.13) 

(2.14) 

(2.15) 

with w: the thickness of a red blood cell, No: total number of cel! sides per vslume, SZ: spïhg 
constant in an elastic dumbbell (Hooke's law), cqe>: average rouleaux length at equilibrium (zero 
shear). NO, w and cqe> are measured by observations under a microscope. S2 is computed from 
equation (2.16), that is found after rearranging equation (2.13) and (2.15): 

(2.16) 

Here k = l/@ is used, which is the limit value at low shear rate when P = 1. From low-p stress 
growth experiments found in literature they obtained a value for @ of 4 s, thus k = 0.25 s-1. 
Further, qtt = qQ - qm . From limiting 1ow-t data found in literature a value of 0.12 Ns/m2 was 
found; from high-shear data a value of 0.004 Ns/m2 for qm was found. Other values are: w = 2.0 
pm, No = 0.012 (sides/pm3) when HTC = 45 %, <qe> = 172 pm (= 50 * w). These values lead to 

i 
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52 = 7.2 . 10-5 dynes/cm. The value of a is found from fitting the model's non-Newtonian 
steady-state viscosity given by: 

---l-:-l- ~ * wnim yieided a vaiue of 0.71 for a. 
As usually, the deviatoric stress tensor is given by: 

Tsi = Tst - PI (2.18) 

For computing the total measurable stress, equation (2.11) and (2.12) must be solved 
simultaneously using equations (2.13) - (2.15). The model contains four independent parameters 
k, qo, q , and a. In general, model predictions fitted data better at low shear rates then at high 
shear rates. Some results are shown in figures 2.11 - 2.12. 

00 

7 '  

model, 
7 ( Y ) + ? m  

S f  

tog Y 

Figure 2.11 Steady shear viscosity, a) numerical fit, b) analytical curve. (From 
Rosenblatt e.a. [1986]). 
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Figure 2.12 

Figure 2.13 

Stress relaxation after a steady-state shear rate of yo = 0.05 s-1 suddenly 
was stopped. (From Rosenblatt e.a. [1986]). 

Stress growth after the blood was suddenly sheared from rest to yo = 1 s-4 

(From Rosenblatt e.a. [1986]). 

Finally, it is noted that fluid stresses arising from structure are dependent on cell shape and 
rigidity. Rosenblatt e.a. [1986], from there view of interest, therefore suggest that with more 
sophisticated models of cell adhesion, more clinical useful information about blood chemistry can 
be obtained. 
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Figure 2.14 Stress growth after the blood was suddenly sheared from rest to yo = 0.05 
s-1. (From Rosenblatt e.a. [1986]). 

Bernadin, Sero-Guillaume, Lucius [I9871 
Bernadin, Sero-Guillaume and Lucius [I9871 propose a modified Bird-Carreau model as a 

constitutive model for whole human blood. From a previous study they had found that the 
Bird-Carreau was not satisfying because it did not account for the fact that blood consists of two 
media: the blood cells and the plasma. The first are viscoelastic, the second Newtonian. In the 
modified model both the characteristics of the plasma, and the interaction between both 
components of the mixture are taken into account. Deriving this new model, they used the theory 
of mixtures as described by Bowen, Green and Naghdi, Muller and Truesdell. Neglecting the 
infhence of diffusion of blood cells (thus assuming that no density gradients exist), the eventually 
obtained stress tensor of the mixture is the sum of partial stress tensors of the components. This 
theory is the moleci?!ai- approzch cf 2 setwork theory (compare the Rouse theory, the Carreau-B 
model, the Lodge network theory, the Yamamoto network theory). It considers blood analogous to 
a concentrated polymer solution formed by dissolved polymer molecules that have a strong 
interaction and in which intermolecular junctions are constantly being formed and broken. 
A comprehensive derivation is presented in Bernadin [1986] and Bernadin e.a. [1987]. Here only 
the results will be given and discussed. The final obtained constitutive equation is described by: 

(2.19) 

with h: the hematocrit (HTC), U 2(x,t-s): the right Cauchy-Green strain tensor , D(x,t): rate of 
deformation tensor, and the functional F given by: 
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(2.20) 

with C-l the Finger strain tensor, and M a memory functional depending on II(u), the second 
invariant of the rate of deformation tensor D. 

(2.21) 

and E an empirical constant: 

S E  = Nfl1  (2.22) 

with N1,N2 the first and second normal stress differences. The functions fp and g, depend on the 
second invariant II(t), a, A,s,r,and on p: 

with: 

fp(II(t)) gp(II(t)) = (1 + A2II(t) 2)-C 

31p = 2aA/(p+l)a 

(2.23) 

(2.24) 

(2.25) 

, 

(2.26) 

It is worth noting that the extra term 2qm(h)D(x,t) in (2.19) is a consequence of the assumption 

that blood is a mixture of a purely viscous and a visco-elastic fluid. 
The model has been tested in case of a simple shear flow. The stress tensor as described by (2.19) 
then has one component of interest, 2'12, given by: 
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(2.28) 

With 

t 

a(t,t) = ) j(u)du (2.29) 

and is the shear rate.The parameters & is given by (2.27), and Z(a) by: 

(2.30) 

The model contains 6 parameters: the viscosity at very low shear rates qo, the longest relaxation 
time A, a dimensionless parameter a characterizing the rouleaux structure, and three 
complementary parameters r, s, A'. The choice of qca is not free, but it is determined 
experimentally. The parameter yQ) (f = dy/dt) is the maximal shear; the instantaneous viscosity is 
then defined by: 

and the apparent viscosity by: 

(2.31) 

(2.32) 

The parameters were fitted using the results of stress growth experiments, i.e. measuring the stress 
after a stepwise increase in the steady shear rate, see figure 2.16. Their values for whole human 
blood (HTC = 45%) at 25" C are: qo = 89 cp, A = 5s, a = 3, r = 0.42, s= 1.1, A' = 6s, r,~ = 6 cp. 
In figure 2.15 the apparent viscosity as a function of shear rate is shown. 
As a test, two kinds of additional experiments were performed: stress relaxation (figure 2.17 and 
forced oscillations (figure 2.18, 2.19). In general there is a good agreement between the 
experimental values and the numerical values calculated with the modified model for these flows. 
The differences with the (normal) Bird-Carreau model are clear. 
Only in case of q" there is no good agreement between theory and experiment, although here also 

co 

, 

! 
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the modified model yields better results than the Bird-Carreau model. Bernadin e.a. suggest that 
the non-diffusion hypothesis is not valid for very low shear rates in particular. In that case there 
exist deforming rouleaux, with the fluid. flowing in between, and possibly the diffusion velocity is 

Figure 2.15 Appa- 
rent viscosity as a 
function of shear 
rate @om Bernadin 
e.a. [1987]). 

I 
I 

1 2 3 5 IO 1 
s 

Figure 2.16 Stress 
growth as a function 
of time after a step 
shear j?om O s-1 to 
0.05 s-1 and to 1 s-1 

('om Bernadin e.a. 
[1957]). 
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Figure 2.17 

. 
T 

111 

Stress relaxation after a shear step fiom 0.05 s-1 and 1 s-1 to 0.0 s-1 as a 
function of time (Bernadin e.a. [1987]) 

2 .o2 .os ,dl ..t lob 2 5 :o1 20 50 lb2 
* 

Figure 2.18 Viscous component of the complex viscosity as a function of frequency ('om 
Bernadin e.a. [1987]). 
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Figure 2.19 Elastic component of the complex viscosity as a function of pequency (@om 
Bernadin e.a. [1987]). 

Reher and Vogel [1988] 
Reher and Vogel present a rheological model that is intended to describe the coupled 
thixotropic-viscoelastic behaviour of a class of fluids consisting of a suspension of particles in a 

Newtonian suspending fluid, where the particles are able to form aggregates. They state that the 
structural kinetic behaviour is caused by the degradation or formation of the aggregates at varying 
shearing loads. The defGïiiiatPiion of the three dimensional network OP the aggregates causes the 
viscoelastic behaviour. In this model, the deformation of the dispersed particles, their rotation in 
the shearing flow and the geometry of the particles is not taken into account. Although the 
starting point of the derivation is more basic, here it is started by presenting the main equation of 
this model, a modified Maxwell model for the extra stress tensor T: 

T + h i= (q(I2(t),t)-q”> D 

with 

(2.33) 

(2.34) 
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00 
for qe > q (qe = dynamical equilibrium viscosity). 
It is assumed that the viscosity is a function of I2(t) and t. The parameter I2(t), the second 
invariant of the rate of deformation tensor, is a measure for the intensity of the shearing load. A 
second differential equation is presented to find q&(t),t), being the effective viscosity due to the 
aggregation of the colloïdal components of the suspension. Reher and Vogel state that "from a 
phenomenoiogicai point of view structure kinetic changes of viscosity in case of unsteady 
shearing loads exhibit a behaviour analogous to the change of shear stress in viscoelastic fluids. 
Differences exist only in the initial conditions". They however do not show any experimental 
evidence to validate this statement. Based on this, the differential equation for q(I2(t),t) has the 
same form as equation (2.33), and they propose: 

The parameter q(12(tt>,12(t)) is determined by the following assumed relationship: 

(2.36) 

with t' c t, and p the characteristic time for formation and 6 for degradation. A few parameters 
have still to be determined. If E = I12(t)lZ, so that 5 = in a simple shear flow, on 
experimental basis it was found that power-law relations were suitable: 

1 

-P -E2 -a 
A = a15 2 , 6  = 2, p = 

From these equations (2.3'7) and using equation (2.34), equation (2.38) was derived: 

Furthermore, as usually, D was computed using: 

D = -d/dtl(C-l) (2.39) 

with C-1 the Finger strain tensor. Reher and Vogel present analytical integrals of equations (2.33) 
and (2.36) - (2.39), and finally find one integral constitutive equation that relates T to D. From 
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rheometrical investigations, the following model parameter set, for whole human blood (HTC = 
45 %, ? O C ) was determined: qo = 136 mPa s, q = 2.97 mPa s, E (?) = 18.46 mPa s, a1 = 1.43, 
a2 = 0.506, Fl = 0.66, P2 = 0.95, = 0.076, s2 = 2.273; 9 parameters in total. Unfortunately, no 
application of this model to any flow situation is presented. 

co 

Ciscussion 
In table 2.4 a comprehensive overview of the mathematical expressions of the models discussed 
above is shown. Table 2.5 gives a survey of the results of those models in some shear flows 
compared with blood data. As is evident from these tables, the Maxwell type of equations have 
been used very frequently to describe the rheological behaviour of blood. Although this type of 
equation has been very popular in rheology, it is criticized to a large extent. The classical 
Maxwell model as used by Thurston [1979] is more an illustrating example then an useful model. 
The main criticism is that it is not objective, i.e. it is not invariant under transformation to another 
coordinate system (Larson [1988]). Further it has proven to be insufficient to describe the flow of 
real viscoelastic fluids. In case of blood, it is important to realize that shear thinning is not 
described by a (normal) Maxwell model, and that it predicts significant non-zero normal stress 
differences (Larson [1988]). The upper-convected Maxwell model (UCM) satisfies the objectivity 
principle, but also predicts significant non-zero normal stresses and no shear thinning (Larson 
[1988]). In this context the research of Hulsen [1988] is of interest. His research was on the 
numerical analyses of viscoelastic fluid flow and he divided the models he studied in quasi-linear 
models on the one hand and Leonov and Giesekus models on the other. The UCM model belongs 
to the class of quasi-linear models. Those models have only physical significance for small 
deformation rates. Hulsen concluded that the agreement of quasi-linear models with experiments 
in various viscometric flows of polymeric liquids is only moderately good (this is confirmed for 
the Mzm~el! epatiom by Tanner j1985j, p.222). Foï these models îke stress tensor can become 
singular in plane steady flow, which is expected to lead to numerical difficulties. The quasi-linear 
models show an unstable behaviour in elongation dominated flow; according to Tanner [1985] the 
Maxwell equations describe elongating flows poorly (p. 222). For these reasons Hulsen concludes 
that quasi-linear models should not be used in numerical simulations. 
In general, flows are mixtures of elongation and shear; this is also true in case of the flow in the 
carotid artery bifurcation. With the above considerations in mind, one should be careful applying 
the Rosenblatt model, although it has a sophisticated microstructural basis, to describe complex 
flow of blood because it is based on an UCM equation. Further, considering the relation of the 
Rosenblatt model with other models it is found that the Rosenblatt model shows a strong 
similarity with standard models in rheology. The balance equation is equivalent to the 
Yamamoto's network time-evolution equation (Larson [ 19881, p. 168). The structural kinetics 
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equation Rosenblatt e.a have derived is similar to the structural model of Liu, Soong and 
Williams (Larson [1988], p.177) with a structural viscosity y incorporated: 

(2.40) 

with I( = kl/'ii, a = kl, and m = i. Larson states that this equation together with the UCM equation 
is not adequate in extensional flows. There is, however, no experimental information about the 
behaviour of blood in elongating flow. Fortunately, it is expected that in the flow situation of 
interest in this study the flow is dominated by shear (see section 1.4). Thus the possibly poor 
behaviour of the Rosenblatt model in elongating flow is not a decisive factor. 
The Charara and Reher-Vogel models have such a level of empiricism that their molecular or 
structural foundations should not be taken too seriously. The Charara model was developed to 
describe the rheological behaviour of blood in transient flow after a step in the shear rate was 
imposed. In case of the Reher-Vogel model no comparison with experimental data is available. 
Both models are based on an ordinary (not convected) Maxwell model; fgr that reason, in this 
form the models are not useful in complex flow situations. 
The Charara, Reher-Vogel and Rosenblatt model are very similar models: they all consist mainly 
of a Maxwell type of differential equation together with a structural kinetics equation. This latter 
equation is based upon the consideration that in blood the structural kinetics proces of aggregation 
and disaggregation is taking place. As discussed in section 1.4 this proces is very probably not 
important or non-existing in the physiological flow of blood through a bifurcation. In case of the 
steady equivalent of this flow it might be of importance. 
The original Bird-Carreau equation is for polymers according to Larson [ 19881 and Schowalter 
[1978] only accurate in steady flow, not in transient flow. Further Larson [1988, p. 1801 describes 
that, hecmse in the Ri:d-Ca::ea~ mode! the modiilüs dependson the instantaneous strain rate, it 
shows departures from linear viscoelasticity at arbitrarily small strain amplitudes in oscillatory 
shear if the strain rate is high enough. This is in contradiction with the viscoelastic "simple fluid" 
theory and experimental evidence (of polymers), that shows such a departure only after a critical 
strain amplitude is exceeded, no matter what high the strain rate is. There is however no 
experimental information for blood available at this point. Further Larson states that this equation 
''may be useful in describing thixotropic (or structured) fluids for which the structure depends on 
the instantaneous strain rate" (Larson [1988], p. 179). From the table above it is evident that in a 
range of different test situations for blood very satisfactory results were obtained with the 
modified model as used by Bernadin e.a.. For that reason it is a serious candidate to describe the 
flow of blood in complex flows. However, this model considers blood as a structured fluid in 
which a network of rouleaux with junctions (or entanglements) is present. As discussed in section 
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Table 2.4 Basic mathematical expressions of some viscoelastic constitutive models proposed 
for blood 

Equation 
number: 

CHARARA [1985] 
"Maxwell" : 

dddt = (9  - z/~JG, + z/G, dGJdt 
"Structure kinetics": 

= &(a)u[rs(Cu) - %(t.>] p ( 4  

WOSENELAT'T [I9801 
"Maxwell I': 

Tst + It a / w G )  = r7st D 
"Structure kinetics": 

dP/dt = k(1-P) - a 191 P 

REHER-VOGEL [ 19881 
"Maxwell" : 

MODIFIED BIRD-CARREAU [1986]: 
O 

T = -PI + h F (@(X,t-s)) + 2rm(h)D(x7t) 
s=-CG 

O 
F (U2(x7t-s))= 

s=-CO 

t 

- 1 M(t,Z; I I (u))[(i+~~)C-~(x~t)-~EC(~,t)]dt 
-m r s u s  t 

(2.12) 

(2.11) 

(2.33) 

(2.35) 

(2.19) 

(2.20) 
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Table 2.4 continued: 

(2.21) 

(2.223 

important or non-existing in the physiological flow of blood through a bifurcation. In case of the 
steady equivalent of this flow it might be of importance. 
The original Bird-Carreau equation is for polymers according to Larson [1988] and Schowalter 
[1978] only accurate in steady flow, not in transient flow. Further Larson [19SS, p. 1801 describes 
that, because in the Bird-Carreau model the modulus dependson the instantaneous strain rate, it 
shows departures from linear viscoelasticity at arbitrarily small strain amplitudes in oscillatory 
shear if the strain rate is high enough. This is in contradiction with the viscoelastic "simple fluid" 
theory and experimental evidence (of polymers), that shows such a departure only after a critical 
strain amplitude is exceeded, no matter what high the strain rate is. There is however no 
experimental information for blood available at this point. Further Larson states that this equation 
"may be useful in describing thixotropic (or structured) fluids for which the structure depends on 
the instantaneous strain rate" (Larson [1988], p. 179). From the table above it is evident that in a 
range of different test situations for blood very satisfactory results were obtained with the 
modified model as used by Bernadin e.a.. For that reason it is a serious candidate to describe the 
flow of blood in complex flows. However, this model considers blood as a structured fluid in 
which a network of rouleaux with junctions (or entanglements) is present. As discussed in section 
1.4, this network only exists at very low shear rates (i, c 0.1 s-1). Another problem is that the 
Bird-Carreau model, an integral type of model without a differential equivalent, is not yet 
implemented in SEPRAN, thus applications will be limited in the first instance. Comparison with 
more experimental data of blood is needed to make a good judgment of this model. 
From the above, it is evident that the (micro-)structural ideas on which the models are based loose 
their meaning in the physiological flow situation. In that case there is no reasons to prefer them 
compared with other models that will be discussed in the next section. 
1.4, this network only exists at very low shear rates (i, c 0.1 s-1). Another problem is that the 
the Bird-Carreau model. an integral type of model without a differential equivalent (Larson 
[1988]) is not yet implemented in SEPRAN, thus applications will be limited in the first instance. 
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Comparison with more experimental data of blood is needed to make a good judgment of this 
model. 
From the above, it is evident that the (micro-)structural ideas on which the models are based have 
possibly little meaning in the unsteady physiological flow situation. In that case there is no 
reasons to prefer them compared with other models that will be discussed in the next section. 

Table 2.5 Survey of viscoelastic constitutive moueis used for blood. 

Author Type 
name of model 

qs q’ q” stress stress 
growth relax. 

Thurston 6-mode Maxwell U E  M -  - 

Roosen- UCM eq. 
blatt e.a. with a 

M -  - M M 

structure 
kinetics 

eq. 

Reher and Maxwell eq. 
Vogel with a structure 

dependent viscosity 

eq. 

Bird- Carreau 
model 

Bernadin e.a modified 

Charara e.a. Maxwell type 
eq. with a 
structure 
kinetics 

eq. 

E G M E  E 

E = excellent (within a few percent), G = good (within 10 - 20 %), M = moderate (within 20 - 50 
%), P = poor (error > 50 %), U = unsuitable or useless result. 
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2.5 Constitutive models in SEPRAN 
In rheology numerous constitutive models exist; especially polymer rheology provides many 
models. The similarity between the flow of polymers and of blood is already perceived by 
Bernadin e.a. [1987], as discussed in the previous section. The rouleaux can be considered as long 
chain molecules, that at low shear rates are able to form networks that with increasing rates of 

in chapter 1. 
A large group of constitutive models for describing viscoelastic flow are implemented recently in 
the finite element software package SEPRAN (Segal [1984]). These models have their origin in 
polymer rheology (compare Larson [ 19881, Tanner [1985]). In  future, numerical calculations of 
the viscoelastic flow of blood will be carried out using this package SEPRAN. For that reason it 
is useful to investigate the implemented models. A survey of them is presented in table 2.6; all 
implementations are for the steady two 
dimensional or axisymmetric case. Hulsen [1988, 19901 has implemented differential models, 
Hoitinga [1990] an integral type of model. The main difference between the two publications of 
Hulsen is the numerical algorithm used (the streamlines are integrated quadratic in an element in 
Hulsen [1990] instead of linearly in Hulsen [1988]). The implementations are made in a very 
general way and can easily been extended to certain other models not mentioned in table 2.6. For 
more detailed information about numerical algorithms used and other mathematical or numerical 
aspects it is referred to the literature. 

&f&:mati&c are &-&e= de.$,Tv7n ug&n. The yiscoeiastic c;h,uruct,erist,ics cf bloed :h,uxv7e bven prp_Eefifp_S 

Table 2.6 Survey of viscoelastic constitutive models available in SEPRAN 

Hulsen [ 19881 

Differential models 
Quasi-linear models 

UCM 
Oldro yd-B 
LCM 
Johnson-Segalman (JS) 

Leonov and Giesekus models 
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Table 2.6 Continued 

Hulsen [ 19901 
Differential models 

JS 

Laïsûn 
Giesekus 
Phan-Thien Tanner 
Leonov 

Hoitinga [1990] 

Integral models 
Papanastasiou (KBKZ type) 

Baaijens [1991a] 
Differential models 

Phan-Thien Tanner 
Leonov 

2.6 Concluding discussion: which model to use for blood? 
In this section the chapter is ended with (a preliminary) search for an answer on the crucial 
question: which constitutive model should be used to describe the viscoelastic behaviour of blood 
in steady complex flows? 
Following Larson [1988, p.189-190], several factors influence the choice of a constitutive 
equation: the type of flow (sheadelongating, steadyhransient), the type of material ((polymer) 
melt et cencentr&cd so!u?io~/di!nte so!iition, molecules wi th/withoiab long side branches), the 
numerical scheme employed, and the kind of phenomena that should be predicted. 
In a complex flow with complex phenomena, such as the steady flow in the carotid artery 
bifurcation, where a recirculation area exists and that is characterized by a relatively high 
Reynolds and Deborah number (see section 1.6), it is impossible to decide a priori which 
constitutive equation should be used. However, some remarks can be made. Larson uses two 
concepts to divide general flows into different categories. The first concept is "flow strength": a 
flow can be a strong flow or a weak flow. A flow is weak when some material lines grow at most 
linearly in time, e.g. a shear flow. A flow is strong when some material lines grow exponentially 
in time, e.g. an elongating flow. The second concept is "alignment strength"; a flow can be 
strongly aligning (e.g. an uniaxial elongating flow, it strongly aligns molecules along a single axis 
because stretching occurs in one direction), neutrally aligning (e.g. a shear flow) and weakly 
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because stretching occurs in one direction), neutrally aligning (e.g. a shear flow) and weakly 
aligning (e.g. a biaxial extensional flow, stretching takes place equally in two directions). Larson 
shows that this second concept can be quantified by the difference of the first (11) and second (12) 

invariants of the Finger strain tensor. This is shown in figure 26. The use of these concepts 
becomes practical, when it is realized that both different constitutive models as materials show 

materials with long side branches need to be descrïbed witn a model that is sensitive to alignment 
strength. 
With these general considerations in mind the candidate models will be discussed. From the 
discussion in section 2.3, the modified Bird-Carreau model proved to be tested the most seriously 
in a range of flow situations. The results were very satisfactory, it indicates that it is an adequate 
model to describe the flow of blood. However, with this model, no complex flow situations have 
been presented in literature yet. For that reason the model should be tested first in more severe 
test problems and compared with experimental blood data. Of all the implemented models in 
SEPRAN the quasi-linear models are of secondary interest for reasons discussed in section 2.4. 
This is probably also true for all models in table 2.4, except the modified Bird-Carreau model, 
because those models are based on a Maxwell model. There is only one aspect that possibly 
makes a difference: all these models include a separate structural kinetics equation. It is unsure 
whether this alleviates the problems that exist with the ordinary Maxwell or with the UCM model. 
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Figure 2.13 
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Relation between the first and second invariant of the Finger strain tensor 
(I1 and 12 respectively) for particular types of strain histories. (From Larson 
[1988]). 

In the unsteady physiological flow situation the aggregation-disaggregation proces is not existing 
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In the unsteady physiological flow situation the aggregation-disaggregation proces is not existing 
(see discussion section 1.4 and 2.3). Therefore, in the unsteady physiological flow situation all 
models in table 2.4 probably loose their original physical interpretation. Further, realizing that in 
case of blood the rouleaux have no long side branches (see for example the discussion in 
Rosenblatt [1986], p. 5), it means that the constitutive model should not be sensitive to alignment 
strength Tius the siïesses it pïediets shcdd iìût be different becâüse ~f 3 difference i:: ulignment 
strength of the flow. Considering the models as known from polymer rheology, according to 

Larson [1988], the Phan-Thien Tanner (PTT) model and Larson model are not sensitive to 
alignment strength. These two model show different sensitivity to flow strength: the P'PT model 
produces in a strong flow higher stresses than in a weak flow; the Earson model is not as much 
flow strength dependent. No experimental data for blood is available at this point yet. 
The integral model of Papanastasiou as used by Hoitinga [1990] is strongly criticized by Larson 
[1988, p.213 - 2141. Contrary to Tanner [1985] he concludes that it does not belong to the class of 
KBKZ equations. 
Tanner Cl9854 showed in a comparative study of constitutive model predictions of various 
viscometric and test flows of polymer melts and experimental data that a KBKZ model showed 
very satisfactory results. This type of model can be a good candidate, but is not yet implemented 
in SEPRAN. From Hoitinga [1990] it appears that it can relatively easily be achieved. 
In order to make a good judgment of the accuracy (both qualitatively as quantitatively) of the 
discussed models above, more comparisons of model predictions with experimental data of blood 
is needed very much. This can possibly be achieved by using a few test problems, that are 
relatively easy to be performed in experiments. Larson [1988, p. 1991 uses, three different test 
flows: relaxation after step shear, stress growth in start up of steady elongation and relaxation 
after a step biaxial extension in order to have a broad range of deformation types. Unfortunately, 
the vlmgzthg fes? flows cin not experimentally be performed with such a low viscosity fluid as 
blood. As an alternative, another attempt to use a relatively simple test geometry to evaluate 
different constitutive models is proposed by Armstrong e.a. [1985]. They have used a geometry 
with two excentric cilinders, the outer one standing still, the inner one rotating. This geometry 
results in a flow that is a mixture of a shear flow and an extensional flow. Armstrong e.a. show 
that it can be useful to evaluate the validity of different constitutive models. The practical aspects 
of carrying out these experiments need to be investigated. 

2.7 Summary 
Of all the constitutive models applied to blood as found in literature, only the Bird-Carreau model 
seems to be a serious candidate for describing the flow situation of interest (i.e. the carotid artery 
bifurcation). This is concluded on the ground of the available comparative model data with blood 
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based on a Maxwell equation (mostly UCM) together with a structural kinetics equation. There is 
a lack of data to judge the adequacy of these models. In principle, the Maxwell type of models 
are not preferred to be used in modern rheology. Of all models only data is available for shear 
flows, no elongating flows, nor mixed ones. It is crucial to have data for flows that have 
elongating deformation in order to judge the different constitutive models. All models for blood 

is probably not appropriate in the physiological Bow case. Because of the simiiarity between the 
rheology of blood and of polymers, constitutive models used for polymers are of interest. Some of 
them are implemented in SEPRAN; of all implemented models, the Phan-Thien Tanner model 
and Larson model are expected to be the most useful. Additionally, a KBKZ model, not yet 
implemented completely, has proved to be a very good model for describing the viscoelastic flow 
of polymers. For that reason the use of this model should be investigated more detailed. There is 
a strong need to have more experimental data of blood in order to make a good judgment of the 
accuracy of the different models. 
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3 Non-Newtonian blood rheological analog fluids 

3.1 Introduction 
There are several reasons in case of a non-Newtonian flow study to use a blood rheological 
analog fluid instead of blood it self: 

- it is opaque to iight (probiematic in case of LDA measurements and flow visuaiizaiion study) 
- it may carry disease; 
- it is difficult to obtain in large volumes. 
In the next section different fluids which are used as non-Newtonian rheological analog fluids for 
blood will be discussed. 

L1nr.A ;n iInotnL-rln t n n A ; n m  t n  annapate ;n+n 9 ppii nhgop and ~ i ~ c ~ ~  nhacp- - UILJLJU 1D U I W b Q u l u 9  b u l l u l l l ~  L u  UU~ULLIIU IIICV u VVII ~IIUUV  UIIU u yn-sza- y-~-uw, 

3.2 
In table 7 the non-Newtonian blood rheological analog fluids as found in literature are listed with 
the references and their composition given. 

Non-Newtonian blood rheological analog fluids 

Table 3.1 Non-Newtonian blood rheological analog fluids 

NAME COMPOSITION REFERENCES 

Separan 0.05 % AP30:0.04% AP45 = 3 :1 Liepsch [1991] 

+ 4% isopropanol + 0.01 % MgCl2 

Milling a commercial dye 
Yellow ("alphanol echtgelb",Hoechst) 

Polystyrene 
microspheres particles in distilled water 

12 % by weight l p m  polystyrene 

+ 10 mMol CaCl2 + 5% Dextran. 

Schmitz 119831, 119841 
Liepsch [1987] 

Fukada e.a. [1989] 
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Table 3.1 Continued 

Xanthan gum 500 ppm in distilled water Thurston [1989] 

Ghost cells 

Biconcave 
disc shaped 
particle 
solution 

AP30 

AP45 

Vanadium- 
pentoxid sol 

50 % by volume in glycerol 

washed red blood cells prepared 
according to "Dodge" 
(see reference)" 

16 % BASF particles + 
2% Dextran (see reference) 

0.05 % AP30 + 4% isopropanol 
+ 0.01 % MgCl2 

0.04 % AP45 + 4% isopropanol 
+ 0.01 % MgCl2 

see reference 

Thurston ['1989j 

Liepsch e.a. [1991] 

Liepsch e.a. [1991] 

Liepsch e.a. [1991] 

Liepsch e.a. [I9911 

Liepsch 119871 

3.2 Experimental results 
Several papers contribute to the problem of finding a non-Newtonian blood rheological analog 
fluid. In the following the most recent and important papers are reviewed in chronological order. 

Fukada, Seaman, Liepsch, Lee, Friis-Baastad [1989] 
This study concerns a blood rheological analog fluid with non-Newtonian properties, that consists 
of an aqueous suspension of uniform polystyrene microspheres, a polystyrene latex. Even though 
the particles are solid and nondeformable, a model fluid is proposed. The latex consists of 



60 

polystyrene microspheres with a diameter of 1.07 pm zk 2 % suspended in distilled water. There is 
an electrostatic repulsive force between the particles, caused by the sulphate end groups on the 
surface of microspheres which have a negative charge. On the other hand, most of the surface 
area of the particles is hydrophobic, and they are attracted to one another by long range van der 
Waals forces., The short tem stability of such a colloïdal system is usually determined by a 
h n l o m r i a  ani-qt; ucuaiiuu uyuuuCE: 

vT = VR + V A  + vs (3.1) 

VT the total potential energy of interaction; with VR the repulsive potential energy; VA the 
attractive potential energy; Va the solvation or entropic energy. Aggregation between particles 
can only occur when VA > VR. 
Sodium chloride and calcium chloride were used to modify the surface charge and thus VR 
between the particles. VA was also modified by means of the ionic strength of the suspending 
medium, the distilled water. Dextran, an organic molecule, producing interparticle bridges, was 
used for increasing the attractive forces between particles. In the following the major interesting 
results are discussed. 
In figure 3.1 the steady flow viscosity 17 for a 32 % by weight 1 pm polystyrene suspension in 
H20 with different amounts of CaCl2 is presented. For the same suspension the dynamic viscosity 
(a), dynamic elastic (b), and loss moduli (c) are presented in figure 3.2. In all figures data for 
human blood are given for comparison. From these pictures it is concluded that blood is mimiced 
by this suspension fairly well in a qualitative sense, but not yet in a quantitative sense. The 20 
mM CaCl2 solution gives results most closely to blood, however values are about a factor 1.5 - 2 
too small. 
Fukada e.a. argue that the 32 % concentration of the microspheres is about equivalent in influence 
to blood with a hematocrit of 45 %. On the other hand, in figure 3.3 the effect of adding 10 mM 
Calcium chloride and 5 % dextran each separately causes no aggregation, while together a 
suspension with only 12 % polystyrene microspheres produces clearly a non-Newtonian steady 
flow viscosity that is very close to blood. No dynamic measurements are reported. 
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Figure 3.1 

Figure 3.2 

The steady BOW viscosity T/ for a 32 9% 1 pm polystyrene suspension in H20 
with different amounts of CaCl2 at T = B O C .  (From Fukada e.a. [1989]). 

(b) 

The dynamic viscosity (a), rigidity modulus (b), and dynamic loss moduli (c) 
for the same solution as in figure 27. (From Fukada e.a. [1989]). 
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Figure 3.3 

1 urn, 12% suspension 

10 mM CaCl, + 5% Dextran 

5% Dextran ,. .. A h  O " " " " " V  

10 mM CaCl, 
h n fi h O 
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" " " h h ... n r.- 
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CB 

SHEAR RATE D (S-1) 

The eflect on the non-Newtonian steady flow viscosity of adding 10 mM 
Calcium chloride and 5 % dextran each separately to a suspension of I2 % 

polystyrene microspheres (that causes no aggregation), or together (that 
causes a steady flow viscosity very close to blood (compare figure 3.1). 
(From Fukada e.a. [1989]). 

Thurston [I9891 
Thurston presents measurements of the steady shear viscosity and of the components of the 
complex viscosity for human blood and three non-Newtonian blood rheological analog fluids: a 
hydrolyzed polyacrylamide ("Hopaam 2000") of molecular weight = 12 million dispersed in 
distilled water at a concentration of 300 ppm, Xanthan gum (a high molecular weight 
polysaccharide, a rod-like macromolecule produced by a strain of Xanthomonas compestris 
organism), and Xantan gum gel fragments. In figure 3.4 the steady shear viscosity and the 
oscillatory shear rate amplitude (rms value) dependence of the viscoelasticity of normal blood 
measured at 2Hz and 22OC is shown. In figure 3.5 the same measurements are presented for the 
polyacrylamide solution at 23OC, in figure 3.6 for the Xanthan gum (macromolecular 
concentration 500 ppm) at 22OC and in figure 3.7 for the Xanthan gum gel solution in 50% (by 
volume) glycerol at 22OC. From these figures (3.4 - 3.7) it is evident that the three analog fluids 
all provide rheological properties that are to a certain extent similar to normal human blood. 
There are however important differences that will be discussed below. 
The steady flow viscosity in case of the polyacrylamide solution is for the shear rate values below 
unit strain to high compared with the blood data (50 - 300%), for higher values a good agreement 
is found. The viscous component of the complex viscosity as a function of shear rate at 2Hz is in 
good agreement with blood for 1 s-1 < < 50 s-1 (within 20 %); for larger values the 
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Figure 3.4 

Figure 3.5 
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The steady shear viscosity and the oscillatory shear rate amplitude ( m s  
value) dependence of the viscoelasticity of normal blood measured at 2Hz 
and 22OC. (From Thurston [1989]) 
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The steady shear viscosity and the oscillafory shear rate amplitude ( m s  
value) dependence of the viscoelasticity of the polyacrylamide solution 
measured at 2Hz and 23°C. (From Thurston [1989]). 
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Figure 3.6 

Figure 3.7 

loo 1 

' viswsm(sleady flow) 

SHEAR RATE (llsec) 

The steady shear viscosity and the oscillatory shear rate amplitude (rms 

value) dependence of the viscoelasticity of the Xanthan gum solution 
measured at 2Hz and 22°C. (From Thurston [1989]). 

VISCOUS COMPONE 

ELASTIC COMPONE 

ti 50% XANMAN GUM GEL FRAGMENTS in 50% glycerol 
I 

The steady shear viscosity and the oscillatory shear rate amplitude (rms 

value) dependence of the viscoelasticity of the Xanthan gum gel solution 
measured at 2Hz and 22°C. (From Thurston [ISSS]). 

polyacrylamide values are to low (20 - 50 %). For polyacrylamide the elastic component is too 
high compared with blood (200%). The constant value of the viscous and elastic components of 
the complex viscosity as a function of the shear rate at 2Hz below unit strain (q' = 0.09 Poise, and 
q" = 0.07 Poise) and the increase of the steady flow viscosity toward a constant value at low 
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shear rates (q, = 0.6 Poise) suggest that this solution has a stable, time-independent internal 
structure at low rates of deformation (y< 4n s-1; 1 unit of strain 'f). This is in contradiction with 
the time-dependent formation of red cell aggregates in human blood, that are broken up at low 
shear rate amplitudes (y> 2 s-1) in oscillatory flow. 
For the Xanthan gum solution the steady flow viscosity is about 200% too high at very low shear 
T8ti.S 

(y = 20 s-1) the differences are within io%. As with the polyacrylamide solution the constant 
value of the viscosity at low shear rates (7 < 1 s-1) is a remarkable difference compared with 
blood, where no such constant level is measured. The viscous component of the complex viscosity 
agrees within 10% with the values of human blood for shear rates up to 200 s-1. With increasing 
y the Xanthan gum values decrease too fast, the difference increasing up to 50% with normal 
blood at y = 400 s-1. The elastic component at low shear rates (y < 5 s-1) is about 50% too high, 
the difference increasing up to 400% at higher shear rates (y = 200 51).  Remarkable is the 
relatively constant level of the elastic component at low shear rates (y< 10 s-i), that does not 
exist for human blood. This suggests that no large groups of macromolecules, which would be 
analogous to large red cell aggregates, are formed. 
The third fluid, the Xanthan gum gel solution is expected to simulate the rheological behaviour of 
blood more closely then the two previous discussed fluids. This is because the microstructure of 
this gel is more similar to blood: elastic particles (- erythrocytes) suspended in a viscous fluid (- 
plasma), which interact (- aggregation). The results in figure 3.7 show that below y = 4 s-1 the 
steady flow viscosity of the gel increases too fast with decreasing 3: the difference being 200% at 
y = 1 s-1. For y > 4 s-1, the values of the gel solution are in a fairly well agreement with blood; 
they are no more than 10% too high compared with blood. The viscous component of the 
complex viscosity is in a very good agreement with the value of blood (within a few percent). 
The elastic component however is much too high compared with blood; at y =  10 s-1 the values 
of the gel are about 300% too high, for smaller values of 3: the difference increases to 800% too 
high values at y =  200 s-1. Further , the elastic component is nearly constant below unit strain. 
This indicates together with the too high value of the steady flow viscosity at low shear rates, that 
in the gel a stronger interparticle binding exists compared with blood. 
Concluding: the three analog fluids all simulate the rheological behaviour of blood,as described 
by the steady shear viscosity and the complex viscosity (as a function of shear rate at 2 H z  or 
frequency m) only in a qualitative way; the Xanthzn gel exhibits the most similar behaviour. 
However, even this fluid is not satisfactory, as it seems to have too strong interparticle binding 
compared with blood. 

e.1 +>. The &fferegce &CTp,USp,S ti!! 2; ifiterri,p&;-uo 2nd higher v&es Qf sheal. 
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Mann, Tarbell [I9901 
Mann and Tarbell report viscometric and flow studies of three non-Newtonian blood analog fluids 
in rigid curved and straight artery models. The three fluids are polyacrylamide (Separan), Xhantan 
gum gel and glycerin. They were compared with bovine blood. 
The steady flow viscosities q for all four fluids were all well correlated by a power-law model (q 
= n y-i> @"'er L%e er,t&e &!u rute r,ge of &p mezcizemefit, rep cable 2.2. 

Table 3.2 Power-law constants for the steady shear viscosity for blood rheological analog 
fluids (T = 23 - 28 "C) as used by Mann and Tarbell [1990]. 

Viscosity Power Law Constants for Blood Analog 
Fluids at Room Temperature (23'C - 28°C). 

Fluid m n r 1-1 - 
0.0375% Xanthan gum 0.118 

0.020% Separan AP30 0.123 

t 0.02% NaCl 

t 0.02% NaCl 

0.732 o. 990 

0.753 0.999 

Bovine Blood 0.04 - 0.07 0.86 - 0.92 o. 999 
(H = 30%) 

Human Blood' 0.135 
(H=43.2%, T-37'C) 

- - -  O. 784 

(m,n) are the constants in the correlation p = mS*'; 
r i s  the correlation coefficient. t from (23). 

Normal stress zN data for the Xanthan gum and Separan solutions were well correlated by a 

power-law model (z = a S ), see table 3.2. For Separan normal stresses were measured that are 
a"vüt thcee tiims higher thaiï fûï the X ~ t h m  gum sdUticn. The only rrieaslsemeilts of fnr 

human blood known to the authors are those of Copley and King, who were unable to detect 
appreciable zN in the shear rate range of 5 - 1000 s-l. 
Measurements of complex viscosity in oscillatory shear experiments are reported for human blood 
as well as for the analog fluids (figure 35). The viscous (figure 35 a) and elastic (figure 35b) 
components of the complex viscosity were measured as a function of the shear rate. For human 
blood Mann and Tarbell present the data of Thurston [1979]. 
From these figures, it appears that the viscous components for the three fluids are quite close to 
each other in the shear rate range 20 s-l < I < 100 s-l, but the elastic components are 
significantly different in the same shear rate range. Although elasticity measurements are not 
available for bovine blood, we expect bovine blood to be less elastic than human blood because it 

b 

wN 
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Table 3.3 Power-law constants for the normal stress for blood rheological analog fluids (T = 

23-28 "C) as used by Mann and Tarbell [1990]. 

Normal Stress Power Law Constants for Blood 
Analog Fluids at Room Temperature. 

Figure 3.8 

F1 uid 

0.0375% Xanthan gum 
t 0.02% NaCl 

0.020% Separan AP30 
4.02% NaC1 

a b 
Ldvnes secb/crn21 - 

o. 0002 

0.00041 

2.050 

2.135 

r 

û.99i 

0.943 

(a,b) are the constants in the correlation T, ,  = asD; 
r i s  the correlation coefficient. 
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The shear rate dependence of the a)  viscous and b) elastic components of 
ihe complex viscosis, at 2 Hz for 0.015 % Polyacrylamide 

(Moravec and Liepsch 1983); 0.0375 % Xanthan gum - - - 
(Thurston and Pope (1981)); human blood (HTC = 43 %) 

(Thurston 1979). (From Mann and Tarbell [1990]). 

-- 



68 

nearly does not aggregate. The viscous properties (both steady and oscillatory), as the authors 
conclude, of the polymer solutions simulate human blood fairly well. They fail however to 
simulate the elastic properties accurately. 
From both normal stress measurements and oscillatory viscometry, it is concluded that Separan 
solutions are significantly more elastic than Xhanthan gum solutions, which in turn are more 
&&ic thaa $UFAU:: bleed, The effect, ef differences e,", f lOW 'nphzvi^sr ̂ f flEj& 

under physiologicai conditions is the question to be addressed io next. For that reason, 
measurements of wall shear rates have been done in a curved tube, in both stationary and 
oscillatory flow, using a flush-mounted hot film anemometer probe. Figure 3.9 illustrates the 
experimental set-up used. The aspect ratio (= internal radius/ curvature radius) of the curved tube 
was 11.9, the internal diameter was 2.54 cm. All shear rate data have been normalized by a 
factor: 

Spl = ((3n+1)/4n) (4Q/zR3) 

with Q the flow rate in case of steady flow, or the time averaged flow rate in case of sinusoïdal 
flow, n the powerlaw index of the fluid, R the tube radius, Spl the theoretical 
value of the wall shear rate for a power-law fluid in fully developed steady flow through a 
straight tube. Also, a modified Dean number D, (= Rep,/#.), based on a generalized Reynolds 
number for a power-law fluid: 

Repl = 1/((3n+1/4n), Sn-l) [(2R)"Y2-" p m-l] (3.3) 

with m power-law coefficient, Y sectional mean velocity. Some results are shown in figures 3.10 
to 3.12. For each fluid, four steady flows and three sinusoïdal flows were investigated (with 
different flow rates between 2 and 9 l/min) with a Dean number up to 650. For comparison, a 
typical Dean number for mean flow in the aortic arch has a value of 300 - 500, and in a coronary 
artery this value would be 50 - 100. The fundamental frequency of the oscillatory flow was 0,7 
Hz, thus the Womersley parameter a = vp/w = 14 in the Newtonian case. The data points 
represent the mean values obtained in replicated experiments. The standard deviation divided by 
the mean averaged 10.6 % for all experiments reported. The wall shear rate was measured at three 
locations: 8 = 0' (outer wall), 8 = 180' (inner wall), 0 = 180' (outer wall). In figure 3.10 the 
normalized wall shear rate as a function of Dean number in steady flow at the entrance of the 
curved tube, 8 = OD, is shown. The data for non-Newtonian fluids are not significantly different 
from one another and are parallel to the data for the Newtonian fluid. Between those two groups, 
a difference of 35 % exists. 
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In figure 3.11 the normalized wall shear rate data along the outer curvature at 8 = 180 o are 
displayed. Polyacrylamide and Xanthan gum give data that are very close, differences being 
maximal 12%. The deviation between those two fluids and the Newtonian fluid are smaller than 
35%. The bovine blood, and the Newtonian fluid give very similar results for D, c 300; above 
this value the differences are significant, up to 20 %. For higher values (D, > 300) all analog 
fi,Ui& high &Ita c cqur ed  y77ith bieed. 
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Figure 3.9 Experimental set-up as used by Mann and Tarbell. (From Mann and Tarbell 
[1990]). 

The normalized wall shear rate data along the inner curvature at 6 = 180 o is given in figure 3.12. 
Again polyacrylamide and Xanthan gum display almost identical values over the entire Dean 
number range which are not significantly different from the Newtonian fluid values. The values of 
bovine blood are significantly different from the values for the analog fluids, that are about 50 % 
lower over the entire Dean number range. Since both fluids have negligible normal stress 
differences, the viscous properties of bovine blood as measured in a capillary viscometer with 
parallel flow streamlines seem to be altered by the strong secondary flows in the curved tube 
sections (8 = 180"). As a possible explanation it is suggested by Mann and Tarbell that a 
disruption or reorganization of the cell layers takes place, as recently described by Thurston 
[ 19901. 
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Figure 3.10 

Figure 3.11 
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Normalized wall shear rate a function of Dean number in steady flow at the 
entrance to the curved tube (8 = O O) along the outer curvature. o = 
Glycerin; A = Xanthan gum; o = Polyacrylamide; 0 = bovine blood. (From 
Mann and Tarbell [1990]). 
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Normalized wall shear rate as a function of Dean number in steady flow at 
the exit of the curved tube (8  = 180O) along the outer curvature. o = 
Glycerin; A = Xanthan gum; o = Polyacrylamide; 0 = bovine blood. (From 
Mann and Tarbell 1990). 
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Figure 3.12 
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Normalized wall shear rate as a function of Dean number in steady flow at 
the exit of the curved tube (9 = 180O) along the inner curvature. o = 
Glycerin; A = Xanthan gum; = Polyacrylamide; 0 = bovine blood. (From 
Mann and Tarbell 1990). 

In all experiments described above, almost no difference in shear rates for polyacrylamide and 
Xanthan gum can be distinguished. There is little difference between those two fluids and the 
Newtonian fluid, at any of the locations investigated. The differences in elastic properties (i.e. 
normal stresses) of these fluids are not manifest in this flow situation, despite the existence of 
secondary flow. On the other hand, the bovine blood resulted in somewhat larger deviations from 
the data for the Newtonian fluid. 
In oscillatory flow (a sinusoïdal waveform with the flow rate varying between O and 6.5 l/min) 
significant differences in flow behaviour are found between the different fluids. On the one hand 

at 9 = 0' a good agreement exists between the wall shear rates of the Xantan gum solution and 
the bovine blood: the peak values differ 16% (figure 3.13). On the other hand, the glycerin and 
polyacrylamide produce very similar wall shear rates, the peak values differ about 10 %. Those 
two groups are however very different. The bovine blood and Xanthan gum have a factor two 
larger values compared with the glycerin and polyacrylamide during the entire cycle. The 
secondary peak in the wave form is associated with wall shear reversal, as is confirmed by 
numerical results of Chang and Tarbell [1985]. 
At 8 = 180' along the outer curvature, a completely different picture of the different fluid 
behaviors exists, see figure 3.14. Now, the Newtonian glycerin fluid provides the best simulation 
of bovine blood, the peak values agree within 7%. The Xanthan gum solution has a rather 
different waveform, the maximum difference is a factor two too high. The polyacrylamide and the 
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Xanthan gum give fairly similar results, the polyacrylamide gives the most different wave form 
compared with the bovine blood. No secondary peak exists at the wave form, meaning that no 
wall shear reversal occurs at this location. This is confirmed by numerical simulations reported in 
literature. 
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Figure 3.13 Wall shear rate (WSS) and flow (Q) waveforms at the entrance to the curved 
tube (û = O O) along the outer curvature (a) glycerin, (b) Xanthan gum, (c) 
Polyacrylamide (d) bovine blood. (From Mann and Tarbell [1990]). 

The wall shear rates at the third location, 8 = 180' along the inner curvature are presented in 
figure 3.15. The Newtonian, Xanthan gum and bovine blood waveforms do have a strong 
secondary wall shear peak, associated with the existence of wall shear rate reversal. In case of the 
Newtonian fluid, this is confirmed by previous numerical work (Chang and Tarbell [1985]). These 
three fluids qualitatively exhibit at this location very similar flow behaviour. Compared with the 
blood, the Xanthan gum has about 35% higher values and a phase shift that results in a delay of 
300 ms. 
Conclusions: in oscillatory flow the fluids exhibit more different behaviour then in steady flow; it 
is believed that in part this is caused by the higher shear rates (and thus higher normal stresses, 
that increase with the square of the shear rate). This means that oscillatory flow is a good test to 
discriminate between different fluids. In general none of the blood analog fluids tested provides a 
completely satisfactory model of bovine blood in a curved tube, not in steady flow nor in 



73 

Figure 3.14 

Figure 3.15 

Wall shear rate (WSS) and flow (Q) waveforms at the entrance to the curved 
tube (û = 180 O )  along the outer curvature (a) glycerin, (b) Xanthan gum, 
(c) Polyacrylamide (d) bovine blood (jì-om Mann and Tarbell [1990]). 
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Wall shear rate (WSS) and flow (Q) waveforms at the entrance to the curved 
tube (û = 180 O) along the inner curvature (a) glycerin, (b) Xanthan gum, 
(c) Polyacrylamide (d) bovine blood (jì-om Mann and Tarbell [1990]). 
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oscillatory flow. 
From their results, Mann and Tarbell conclude that polyacrylamide is completely inadequate. 
Xanthan gum and the Newtonian fluid give qualitatively better results, the Newtonian fluid 
especially in the steady case. However, significant quantitative differences exist (a factor two). 
The cellular nature of blood is probably an important missing factor in the fluid models used. 

Liepsch, ïñurston, Lee i19911 
In this study six nowNewtonian blood rheological analog fluids were investigated. First the 
viscous and viscoelastic properties of these fluids were compared with human blood samples in 
steady flow, transient flow and in oscillatory flow. The fluids were Separan polyacrylamide 
suspensions, with 4% isopropanol and 0.01 % MgCl added, of 1) aqueous 0.05 % Separan AP30 , 
2) 0.04 % aqueous AP 45, 3) a mixture of fluids 1) and 2) in a proportion 3:l; 4) a 2 % aqueous 
Dextran suspension with a 16 % weight fraction biconcave disc-shaped particles; 5) 40 % ghost 
cells prepared according to Dodge in tri(hydroxymethy1)aminomethane; 6) a suspension of 5% 

Dextran (70000) with 12 % polystyrene particles (lpm) and 10 mM CaClz. 
For several different concentrations for Separan AF' 30 (figure 3.16) and AP 45 (figure 3.17) 
solutions separately the steady state shear viscosity was determined and compared with the blood 
data. The 0.05 % AP 30 solution gave a good agreement with the blood data for shear rates of 4 
s-1 and higher. In this range the maximum difference is about 14 %, but in the interval 10 s-1c 
c 100 s-1, a very good agreement is found (within 6%). For shear rates below 4 s-1 significant 
lower values for AP 30 were found. From figure 3.17, the 0.04 % AP 45 solution yielded the best 
results. In the range 4 s-1 c c 400 s-1 a good agreement was found (within 8 %). Just as with 
the AP 30 solution lower values were found for the AP 45 solution at shear rates below 4 s-1. For 
the 0.05 % AP 30 and 0.04% AP 45 solutions, the viscous and elastic components versus shear at 
a frequency of 2 Hz were measured (figure 3.18 and 3.19 respectively); these can be compared 
with blood data (for example figure 3.4). The viscous components agree the best with the blood 
data; for Separan AP 30 the differences are maximal 2 %, thus a very good agreement. For 
Separan AP 45 larger differences are found of about 4 % but still a good agreement compared 
with the blood data. The elastic components of the Separan solutions are qualitatively similar to 
the blood data but differ dramatically quantitatively. The AP 30 solution data values are a factor 
1.6 too high compared with the blood data; for the AP 45 solution values that are a factor 1.2 - 
1.5 higher were found. This is rather good compared with the other analog fluids. 
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Viscosity versus shear rate for an 0.07 % (- - -) and 0.05 % (- - -) aqueous 
polyacrylamide solution (Separan AP 30) with 4% isopropanol and 0.01 % 
MgC12 compared to human blood, HCT = 46 % at 37 "C. (From Liepsch 
e.a. [1991]). 
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Viscosity versus shear rate for an 0.06 % (- - -), 0.04 % (- - -), and 0.02 % (. 
- .) aqueous polyacrylamide solution (Separan AP 45) with 4% isopropanol 
and 0.01% MgCl2 compared to human blood, HCT = 46 % at 37 "C.(From 
Liepsch e.a. [1991]). 
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Figure 3.18 

0.34% aqaeous separan solution X?30 
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Viscous and elastic component versus shear rate for a 0.05% aqueous 
Separan ('30) solution with 4% isopropanol and 0.01% MgCl2 at 23°C. 
(From Liepsch e.a. [1991]). 

The steady flow viscosity for the aqueous Separan mixture (fluid 3)) at 37 "C is compared to 
blood (HTC 46 %) at 37 "C (figure 3.20); this was also done at 23 "C. At 23 "C the Separan and 
blood data agree within 8 - 14 % over the entire shear range 0.4 s-1 - 400 s-1. At 37 "C for shear 
rates larger than 10 s-1 the Separan values are about 12 - 17 % lower then the measured blood 
data. No complex viscosity is presented. 
The Dextran solution with BASF bi-concave disc-shaped particles is discussed next. The steady 
shear viscosity is presented in figure 3.21a). For shear rates higher than 10 s-1 the Dextran/BASF 
particle solution gave values that were maximal 25 % too high; below y = 10 s-1 the Dextran 
solution gave too low values compared with blood. The differences increase with decreasing shear 
rates to a maximum of about 30 % at = 10 s-1. The rigidity modulus G' and elasticity modulus 
GI' are presented in figure 3.21b) and compared with blood. 
The DextranBASF particles values GI differ significantly from the blood data , the maximum 
difference is about 30 %, the blood data having higher values. The DextranBASF particles 
solution values for GI' are about a factor 3 lower compared with blood. No viscometric 
measurements at all have been reported in this paper for the ghost cell solution. 
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Viscous and elastic component versus shear rate for a 0.04 % aqueous 
Separan (AP 45) solution with 4% isopropanol and 0.01 % MgCl;! at 23°C. 
(From Liepsch e.a. [1991]). 

Steady shear viscosity of a Separan mixture fluid 3), see text) (---) 
compared with blood (HTC = 46%) (-) measured in a Couette 
viscorneter at 37°C; the same Separan solution (....) compared with human 
blood (HTC = 44%) (---) at 23°C measured in an oscillatory capillary 
viscometer. 
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Figure 3.21 a)The steady shear viscosity of a suspension of 2% Dextran (Dx) with 90 

mMol Ca and 16% BASF particles and b) the rigidity modulus G' and 
elasticity modulus G" for the same solution, compared with blood data. 
(From Liepsch e.a. [1991]). 
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Figure 3.22 Measured velocity profiles using 30 LDA measurements with the Separan 
mixture and the aqueous glycerin solution in a branched tube in case of the 
steady flow situation.(From Liepsch e.a. [1991]). 

To end, some flow studies using 3D LDA measurements were done with the Separan mixture and 
the aqueous glycerin solution in a branched tube in case of the steady flow situation with Re = 
265 (defined in the entrance branch) at T = 20°C. The measured velocity profiles showed 
remarkable differences, as is clear from figure 3.23. This is, according to Liepsch e.a., in 
agreement with data presented by Liepsch [1986] and K u  and Liepsch [1983]; these data however 
is not presented here. A Tri-suspension with 40% ghost cells was also used in a LDA flow study 
with Re = 165 . The velocity profiles gave also similar results as presented by Liepsch [1986]; 
these data is however not given for comparison. 
Concluding: the steady shear viscosity data in case of the Separan fluids 1) - 3) are in good 
agreement with the blood data (maximum difference 1 4  %); the viscous components of the 
complex viscosities of these fluids are in good agreement with the blood data (maximum 
difference 4%); the elastic components for these fluids are qualitatively but not quantitatively in 
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good agreement (differences about 20 - 60 %). For fluid 4 (BASF particles) the steady shear 
viscosity is not in good agreement with the blood data (differences about 25 %). In this case the 
GI and G" differ significantly from the blood data, the maximum difference being 30% and 300 % 
respectively. No viscometric data for fluid 5) (ghost cell solution) is presented, nor for fluid 6) 
(microspheres) (in Fukada e.a. [1990] some measurements of the steady shear viscosity of this 
latter fluid are pïeseiiied). I; is impossibk io dïaw ïighi milclüsiûns aboüi i k  impfiance ofthe 
aon-Newtonian behaviour of blood oii the steady flow phenomeïìa iïì a bifiiïcaiion based on the 
experiments as described in this paper. Differences between the Newtonian model fluid and the 
non-Newtonian model fluids used (fluids 3) and 5)) do not have to be representative for the 
non-Newtonian behaviour of blood. 

Schmitz [1984], Liepsch [1987] 
Schmitz and Liepsch discuss "Milling Yellow", an aqueous colloidal suspension containing 1 or 2 
% by weight of the Milling Yellow, a dye, and has been used in flow birefringent studies, not 
only to mimic blood but mainly because it has very satisfactory characteristics for the birefringent 
technique (see for example Schmitz [1983]). The shear rate dependent viscosity function is shown 
in figure 3.23; only a qualitative agreement exists here. By adjusting the temperature and 
concentration a broad range of viscosity functions can be established. No other viscometric 
measurements nor any dynamic or flow studies have yet been found. 

Figure 3.23 
V i  skosl tätsverlauf von Alphanol -Echtgel b *lphanol -Echtge'b 

The shear rate dependent viscosity for Milling Yellow. (From Liepsch 
[1987]). 

Liepsch [ i9871 

Another birefringent solution is a Vanadiumpentoxid sol, as used by Liepsch. Its shear rate 
dependent viscosity is given in figure 3.24. Only a qualitative agreement is found. 
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The major disadvantage of this fluid is its unstableness. 

;Sol 

1.3 % 

Figure 3.24 

Viskositätsverlauf eines wässrigen 3-%-igen und 2-X-igen 
Vanadiumpentoxid-Sols 

ïñe shear rate dependence of the Vanadium pentoxid sol. (From Liepsch 

í19871) 

3.4 Summary 
None of the non-Newtonian blood rheological analog fluids undoubtedly mimics blood in all 
aspects and all situations. There is contradiction between the opinion of Liepsch e.a. [1990] and 
Mann and Tarbell [1990] about the adequacy of the frequently used Separan fluid to simulate the 
rheological behaviour of blood. From experiments of mann and Tarbell [1990] it follows that it is 
considerably too elastic compared with blood data. There is also a lack of experimental data of 
basic viscometric functions in case of the ghost cell solution and the polystyrene microsphere 
solution as used by Liepsch e.a. [1990]. The BASF particles solution as mentioned by Liepsch 
e.a. [1990] does not match the oscillatory blood data well. Xanthan gum and Xanthum gel mimic 
blood better then the already mentioned fluids, but are not completely satisfactory. Of the 
birefringent fluids, Milling Yellow dye and a Vanadiumpentoxid-sol, only the shear rate 
dependent viscosity has been found; in both cases only a qualitative agreement exists. As with the 
constitutive models, to test a model fluid there is, besides the standard viscometric functions and 
complex viscosity, a need for more additional experimental data in other flow types compared 
with human blood data. From the results of Mann and Tarbell [1990], it is found that sinusoïdal 
flow in a curved tube is a good discriminating flow situation. Because of their results in the 
oscillatory flow case in a curved tube, it seems to be important to incorporate in the analog fluid 
the cellular nature of blood. 
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Conclusions and recommendations 

From viscometric and oscillatory experiments it is found that blood behaves as a non-Newtonian 
shear thinning, viscoelastic and thixotropic fluid; no measurable normal stress differences have 
been found. The red blood cells (RBC) determine the rheological behaviour of blood. In steady 
shear, at relatively ;new shear rates (p e In s-’> the RBC can aggregate to form Gilindrical 

ïouleaux; at IOW skeaï ïates defsïmation of these sirïetuïes ïesülis in the viscoelastie behaviour sf 
blood. At very low shear rates (y cc 1 s-l), the rouleaux can form a three dimensional network. 
With increasing shear rates, first these three dimensional structures are deformed and broken 
down again; then the rouleaux are deformed, oriented in the flow direction and broken up into the 
individual cells. With increasing shear rates, the viscosity is only determined by the deformation 
and orientation of the individual red blood cells. This all together results in the shear thinning, 
viscoelastic and thixotropic behaviour of blood. In oscillatory flow with c 1 s-l and f = 1 Hz, 
no rouleaux exist. The rouleaux formation has a characteristic proces time of 30 - 60 s. This also 
a function of the shear rate amplitude. At high shear rates blood behaves as a Newtonian fluid. 
Based on these results, in the unsteady physiological flow situation no rouleaux are expected to 
exist; non-Newtonian effects if present will be primary determined by the deformation and 
orientation of the dispersed red blood cells. In case of the steady variant (Re = 300) of this flow, a 
contribition of the rouleaux to the rheological behaviour of blood may exist because areas are 
present that have continuously low shear rates. The physiological flow is characterized by a mean 
Reynolds number of 300, and an estimate Deborah number of about 70. 

The non-Newtonian models used in literature to calculate the flow of blood in large arteries 
model only the shear thinning behaviour of blood, and no viscoelastic effects. These models result 
in a flow field that in general is not altered compared with the Newtonian case. Significant local 
differences in stress or pressure can exist, however. Several viscoelastic models have been 
proposed for blood; some have been tested too, but only in simple shear flows. Of all constitutive 
models used to describe the rheological behaviour of blood as found in literature, the modified 
Bird-Carreau model, originating from polymer rheology, as described by Bernadin e.a. [1986] is a 
serious candidate to be used in a complex flow, especially in steady flow. This conclusion is 
based on the fact that it has shown to give good results in comparison with blood for different 
types of shear flows (steady shear viscosity, complex viscosity, low shear stress growth and stress 
relaxation). However, the model is not yet implemented in the software package S E P W  that is 
to be used; this should be investigated in more detail. All viscoelastic models for blood found are 
based on considerations of the microstructure: the existence of the structural kinetic process of 
aggregation and disaggregation. As conclude above, in the unsteady physiological situation these 
ideas may not be appropriate. However, there is too little data available to judge the adequacy of 
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the Reher-Vogel, Charara and Rosenblatt models. Blood shows similar rheological behaviour as 
many polymers. Possible useful models from polymer rheology that have been implemented in 
SEPRAN are the differential Phan-Thien Tanner and Larson models. The KBKZ class of integral 
models, because of its success in describing the viscoelastic flow of polymers, can provide a good 
model too; it can possibly be implemented rather easily. 

&find in liferafflre mimics 
undoubtedly the rheoiogicai behaviour of blood adequately In a complex flow situation. Tine very 
frequently used Separan solution does simulate the shear thinning behaviour of blood, but is far 
too elastic as is evident from the measurements of Mann and Tarbell [1990] in a curved tube, 
especially in the oscillatory flow case. There is a great lack of experimental information on all 
other fluids described. On the ground of the results of Mann and Tarbell [1990]. it seems to be 
important that the fluid incorporates the cellular nature of blood. 
With both constitutive models and analog fluids, in order to judge their adequacy, it is essentially 
to have more experimental data of blood. Viscometric functions or the complex viscosity are 
indicating, but not sufficient parameters. It is of major importance to have more information of 
the rheological behaviour predicted by constitutive models, analog fluids and blood, especially in 
flows with elongating deformation. For that the test problem as described by Armstrong e.a. 
[1985] may be useful: the flow between two excentric cilinders, or the oscillating flow in a 
curved tube as described by Mann and Tarbell [1990]. As long as there is no reliable analog fluid 
for blood the experimental validation of the numerical calculations will be of doubtful value. 

f̂ n^fi-&!wt^niun ‘nl^^d rhe^l^gical anal^g fJgi& fis& 



84 

References 

Armstrong R.C., Brown R.A., Berk A.N, Lawler J.V, Muller S.J., Evaluation of constitutive 
equations: material functions and complex flows of viscoelastic fluids, in: Rheology and 
Viscoelasticity, e&. Lodge A.S., Renardy H., Nobel J.A., Academic Press, 1985 

Ea2ijeas F.P.T.; peïsûna: cûmmunicaiicin, 1991a. 
Baaijens J.P.W., v. Steeïìhûveïì, Jansseii J.E., Nilmcïieal analysis of sîeady generaiized Newtonian 

blood flow in a 2D model of the carotid artery bifurcation, submitted for publication in 
Biorheology, 1991. 

Bharadvaj B.K., Mabon R.F. and Giddens D.P., Steady flow in a model of the human carotid 
bifurcation, Part l-Flow visualization, Part 2-Laser-Doppler anemometer measurements, J. 
Biomechanics 15, 349-378, 1982. 

Bernadin D., Sero Guillaume, Lucius M., Fluides viscoélastique. Intégration du modèle de 
Carreau. Application à la rhéologie du sang, (Utilization of the Carreau model-B to 
describe periodic shear flow. Application to blood rheology), Journal de Mécanique 
théorique et appliquée, vol. 4, No. 4; 505-536, 1985. 

Bernadin D., PhD thesis, Institut National Polytechnique de Lorraine, Nancy, 1986. 
Bernadin D., Sero Guillaume, Lucius M., Un modèle rhéologique pour le sang comme mélange 

d'un fluide viscoélastique et d'un fluide visqueux (A rheological model for blood as a 
mixture of a viscoelastic fluid and a viscous fluid), Journal de Mécanique théorique et 
appliquée, vol. 6, No. 5; 647-662, 1987. 

Car0 C.G., Pedley T.J., Schroter R.C., Seed W.A., The mechanics of the circulation, Oxford, 
Oxford University Press, New York, Toronto, 1978. 

Carrig P.E., Schneck D.J., The effect of blood chemistry on the rheological properties of the fluid, 
Virginia Polytechnic Institute and State University, Department of Engineering Science & 

Mechanics, Blacksburg Va. 24061, report number VPI-E-86-11, 1986. 
Chang L.J., Tarbell J.M., Numerical simulation of fully developed sinusoïdal and pulsatile 

(physiological) flow in curved tubes, J. Fluid Mech., 161, 175-198, 1985. 

Charara J., Aurengo A., Lelievre J.C., Lacombe C., Quantitative characterization of blood 
rheological behavior in transient flow with a model including a structure parameter, 
Biorheology, 22, 6; 509-519, 1985. 

Chaiuïani P., Palanisamy V.,Casson fluid model for pulsatile flow of blood under periodic body 
acceleration, Biorheology, 27; 619-630, 1990. 

Chaturani P., Palanisamy V.,Pulsatile flow of Power-law fluid model for blood flow under 
periodic body acceleration, Biorheology, 27; 747-758, 1990. 



85 

Chaturani P., Samy R.P., A study of non-Newtonian aspects of blood flow through stenosed 

Chien S., Blood rheology, in: "Quantitative cardiovascular studies, eds. N.H.C. Hwang, D.R. 

Chmiel H., Anadere I., Walitza E., The determination of blood viscoelasticity in clinical 

Cokeleî G.R., The rkeoiogy and tube flow of biood, in: "Eand'oooic of bioengineering", ed. Skaiak 
R., Chien S., London, Mc.Graw Hill, 1987. 

Copley A.L., King R.G., On the viscoelasticity of anticoagulated whole human blood in steady 
shear as tested by rheogoniometric measurements of normal forces, Biorheology 15, 5-10, 
1975. 

Deutsch S., Phillips W.M., The use of the Taylor-Couette stability problem to validate a 
constitutive equation for blood, Biorheology, 14; 253-266, 1977. 

Easthope P.L., Brooks D.E., A comparison of rheological constitutive functions for whole human 
blood, Biorheology, 17; 235-247, 1980. 

Easthope P., A three dimensional dyadic Walburn-Schneck constitutive equation for blood. 
Biorheology, 26; 37-44, 1989. 

Fukada E., Seaman G.V.F., Liepsch D., Lee M., Friis-Baastad L., Blood modeling using 
polystyrene microspheres, Biorheology, 26; 401-413, 1989. 

Hogan A. H., Henriksen M., An evaluation of a micropolar model for blood flow through an 
idealized stenosis, Journal of Biomechanics, 22(3), 211-218, 1989. 

Hoitinga O., De numerieke simulatie van de stroming van visco-elastische materialen waarbij het 
materiaal beschreven wordt door een integraalmodel (in Dutch), master thesis, report 
number MEAH-88, Delft University of Technology, The Netherlands, 1990. 

Huang C.R., Siskovic M., Robertson R.W., Fabisiak W., Smitherberg E.H., Copley A.L., 
Quantitative characterization of thixotropy of whole human blood, Biorheology 12, 

Hulsen M.A.,Analysis and numerical simulation of the flow of viscoelastic fluids, PhD thesis, 
Delft University of Technology, Delft University Press, The Netherlands, 1988. 

Hulsen M.A., A numerical method for solving steady 2D and axisymmetrical viscoelastic flow 
problems with an application to inertia effects in contraction flows, report MEMT 11 of 
Delft University of Technology, The Netherlands, 1990. 

Ku D.N., Giddens D.P., Laser Doppler Anemometer measurements of pulsatile flow in a model 
carotid bifurcation, J. Biomechanics, vol. 20, 407-421, 1987. 

Ku D.N., Liepsch D., The effects of non-Newtonian viscoelasticity and wall elasticity on flow at a 
90" bifurcation, Biorheology, 23; 359-370, 1986. 

Earson R.G., Constitutive equations for polymer melts and solutions, Buttenvorths, Boston 1988. 

arteries and its applications in arterial diseases, Biorheology 22; 521-531, 1985. 

Gross and D,J. Patel, 241-287, Baltimore, University Park Press, 1979. 

hemorheolngy, _ _  - ___ - - _ _  - - - - Bicorioecoiogy, 27; 883-894, 1990. 

279-282,1975. 



86 

Liepsch, D., Fortschritt-berichte VDI, Strömungsuntersuchungen an modellen menschlicher 
blutgefäss-systeme; Reihe 7: strömungstechnik nr. 113, 1987. 

Liepsch D., Flow studies in a rigid T-junction model with a non-Newtonian fluid using a 3-D 
Laser-Doppler Anemometer, Proceedings 2nd International Conference on Biofluids and 
Biomechanics, Munich, june 1989. 

and appiicaiions in models of arterial branches, Biorheology, 2û; 39-52, 1991. 
Mann D.E., Tarbell J.M., Flow of non-Newtonian blood analog fluids in rigid curved and straight 

artery models, Biorheology, 27; 711-733, 1990. 
Nakamura M., Sawada T., Numerical study on the flow of a non-Newtonian fluid though an 

axisymmetric stenosis, Journal of Biomechanical Engineering, Transactions of the ASME, 

Oka S., Nakai M., Effects of non-Newtonian blood and metabolic states of the blood and vessel 
wall on the optimum design of single vessels and the vascular bifurcation, Biorheology, 

Perktold IC, Peter R., Resch M., Pulsatile non-Newtonian blood flow simulation through a 
bifurcation with an aneurysm, Biorheology, 26; 1011-1030, 1989. 

Persijn J.P. (ed.), Proceedings of the Symposium on Blood Rheology, May 17, 1990, Enschede, 
The Netherlands, Tijdschrift Nederlandse Vereniging voor Klinische Chemie (in English), 
vol. 15, no. 3, 1990. 

Rindt C.C.M., Analysis of the three dimensional flow field in the carotid artery bifurcation, PhD 
thesis Eindhoven University of Technology, The Netherlands, 1989. 

Rindt C.C.M., van Steenhoven A.A., Reneman S., An experimental analysis of the flow field in a 
three-dimensional model of the carotid artery bifurcation, J. Biomechanics, 21:985-991, 
1988. 

Rodkiewicz C.M., Sinha P., Kennedy J.S., On the application of a constitutive equation for whole 
human blood, Journal of Biomechanical Engineering, Transactions of the ASME, vol. 112, 
1990. 

Rosenblatt J.S., Soong D.,Williams M.C., A statistical mechanics theory for blood rheology: the 
rouleaux contribution, American Institute of Chemical Engineers, National Meeting 1986, 

Publ. by AIChE, New York, NY, USA Pap 90a, 29p, 1986. 

1 .  I i e p &  D., T ~ Q E ~ Q ~  Ge, Lep s j ~ d i e ~  ~f 3 ~ i &  simcizjigg hieed-likp r:",eclcuirai nrnnertiec ra ' r " L  .I"" 6'""' - 

vol. 110; 137-143, 1988. 

26; 921-934, 1989. 

Schowalter W.R., Mechanics of non-Newtonian fluids, Pergamon Press, 1978. 

Schmitz E., Theorie und Anwendung der Stromiingsdoppelbrechung bei direkter 
interferometrischer Messung in nicht-Newtonschen Strömungen, Ruhr -Universität 
Bochum, Germany, 1983. 



87 

Schmitz E., Merzkirch W., A test fluid for simulating blood flows, Experiments in fluids 2; 

Segal G., Sepran User Manual, ingenieursburo SEPRA, Leidschendam, The Netherlands, 1984. 
Sinha P, Singh C., Effects of couple stresses on the blood flow through an artery with mild 

103-104,1984. 

stenosis, Biorheology, 21; 303-315, 1984. 

Sysieas 4", ed. Bmlin O., Norî"rh-Holland Pubiishing Company, íY8i. 

Steenhoven, van A.A., Reologie en microcirculatie (in Dutch), college dictaat Eindhoven 
University of Technology, The Netherlands, 1984. 

Srivastava L.M., Flow of couple stress fluid through stenotic blood vessels, J. Biomechanics, vol 
18, no, 7; 479-485, 1985. 

Tansley G.F., Computational investigation of turbulent non-Newtonian flow in heart valve 
conduits, Phd. Thesis, British Library, Document Supply Center, Boston Spa, Wetherbey 
West Yorkshire, United Kingdom LS23 7BQ, 1988. 

Tanner R.I., Engineering rheology, Clarendon Press, Oxford, 1985. 
Theodorou G. and Bellet D., Laminar flows of a non-Newtonian fluid in mild stenosis, Computer 

methods in applied mechanics and engineering 54; 111-123, 1986. 
Thurston G.B., Frequency and shear rate dependence of viscoelasticity of human blood, 

Biorheology, 10; 375-381, 1973. 
Thurston G.B., Rheological parameters for the viscosity viscoelasticity and thixotropy of blood, 

Biorheology, 16; 149-162, 1979. 
Thurston G.B., Rheological analogs for human blood in large vessels, 2nd International 

Symposium on Biofluid Mechanics and Biorheology in Large Blood Vessels, Munich, june 

Vosse, v.d. F.N., Steenhoven, v. A.A., Janssen J.D., Reneman R.S., A two dimensional numerical 
analysis of unsteady flow in the carotid artery bifurcation (A comparison with three 
dimensional in-vitro measurements and the influence of minor stenoses), Biorheology, 27, 

Walburn F.J., Schneck D.J., A constitutive equation for whole human blood, Biorheology, 13; 

Wang X., Maurice G., Lucius M., Stoltz J.F., Etude comparative de modeles rheologiques 
applicables au sang: influence des parametres et approximation du taux de cissaillement 
dans un viscosimetre (a comparative study of rheological models which can be applied to 
blood: influence of parameters and approximation of the shear rate in a viscometer), Innov. 
tech. Biol. Med.; vol.10, no. 4, 1989. 

rn e l l  Skalak R.? Lozeren A.? continuum ohe~ries D l  D!̂ Qd finw, in: !!Z^ntinllilm rn^n,P,IS Gf Discrete 

25-28, 1989. 

163-189, 1990. 

201-210, 1976. 

Whorlow R.W., Rheological techniques, New York, Ellis Honvood Limited, 1980. 


