

Design framework

Citation for published version (APA):
Neupane, N., Shafiei, A., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software
Technology (ST) (2015). Design framework: redesign and new multi-user and testing support. [EngD Thesis].
Technische Universiteit Eindhoven.

Document status and date:
Published: 25/09/2015

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/f1d5bccd-523c-4cb8-ab07-a413223d1429

Design framework : redesign and

new multi-user and testing
support

Navaraj Neupane

2015

i

Design Framework

Redesign and new multi-user and

testing support

Navaraj Neupane

Arash Shafiei

September 2015

Design Framework

Redesign and new multi-user and testing support

Navaraj Neupane

Arash Shafiei

Eindhoven University of Technology

Stan Ackermans Institute / Software Technology

Partners

Embedded Systems Innovation by TNO Eindhoven University of Technology

Steering Group Hristina Moneva

Rudolf Mak

Date

Document status

September 2015

Public

The design described in this report has been carried out in accordance with the TU/e Code of Scientific Conduct

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN ISBN

Abstract The use of models to conceptualize systems is an important part of the process of building

Cyber Physical Systems. While designing such systems, which are in general a multi-

disciplinary activity, multiple designers are involved in the design decisions. Those deci-

sions most likely are not captured and eventually forgotten after a period. The Design

Framework is a visual modeling tool that aims to help architects and designers to docu-

ments the design rationales besides the design artifacts. It also helps them to collaborate to

design a system together in a multidisciplinary environment. The Design Framework is at

the level of a good prototype, but it is not ready for operational application by end-users in

industry. One of the main issues with the Design Framework system is a sub-optimal code

structure due to the lack of proper design and development approach. The assignment there-

fore is to reverse engineer the current design of the Design Framework and to come up with

a new design. In order to maintain a system in use, presence of a test framework is neces-

sary. Since the Design Framework is used in a multi-disciplinary environment, an im-

provement in the multi-user support of the system is also needed. In the first part of this

report, the redesign of the Design Framework is discussed. To redesign the Design Frame-

work, a number of refactoring techniques are applied. As a result, the code complexity is

reduced, therefore the maintenance is increased. The second part of the assignment includes

multi-user support and testability. The Design Framework manages the changes to design

descriptions and maintains the history of the design artifacts. In this respect, it operates

similar to version control systems. In the multi-user part of this report, the version control-

ling aspect of the Design Framework is described and synchronization of data for multi-user

is elaborated. Finally some multi-user features are improved and developed. In the testabil-

ity part of this report, the test support is described. A set of unit tests and end-to-end tests

including the test for multi-user support is implemented. Provided test sets and the ap-

proaches used to setup test environment makes the Design Framework more stable and

maintainable.

Keywords systems engineering, visual modeling tool, design process, multidisciplinary design, ra-

tionale tracking, refactoring, version controlling, multi-user environment, testing

Preferred

reference

Navaraj Neupane, Arash Shafiei, Design Framework: Redesign and new multi-user and

testing support. , SAI Technical Report, September 2015. (ISBN)

Partnership This project was supported by Eindhoven University of Technology and TNO-ESI.

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its

Disclaimer

Liability

While every effort will be made to ensure that the information contained within this report

is accurate and up to date, Eindhoven University of Technology makes no warranty, repre-

sentation or undertaking whether expressed or implied, nor does it assume any legal liabil-

ity, whether direct or indirect, or responsibility for the accuracy, completeness, or useful-

ness of any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with the

intent to infringe the copyright of the respective owners.

Copyright Copyright © 2015. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocopy-

ing, recording, or by any information storage or retrieval system, without the prior written

permission of the Eindhoven University of Technology and TNO-ESI.

v

Preface

This technical report presents the results of the project on redesigning and adding

new multi-user and test support for the Design Framework. This project was

carried out as a final assignment for the Professional Doctorate in engineering

degree in Software Technology program at Eindhoven University of Technology

as a part of the larger Octo+ project. Octo+ is a joint project between the Embed-

ded Systems Institute (ESI) and Océ-Technologies B.V (Océ) to streamline the

use of models in the design process.

In this report the redesign and development of new test and multi-user support for

the Design Framework presented. Chapters 2 and 3 give an insight about the

domain and problem analysis and introduce the Design Framework. For readers

interested in the redesign of the Design Framework Chapters 4, 5, and 6 are the

most relevant. Multi-user support is addressed in the chapter 7 and testing support

in chapter 8. For those only interested in the goals and results of the project Chap-

ters 1 and 9 provide a sufficient overview.

Navaraj Neupane

Arash Shafiei

September 2015

vi

Acknowledgements

A project is never done in isolation. This project is not an exception, without the

help and guidance of several people it could never have been done.

First, I would like to heartily thank my supervisors, Dr. Rudolf Mak and Ir. Hris-

tina Moneva PDEng for their guidance, feedback, and discussions during the

entire project. From their different perspectives they helped this project to be

successful, I got chance to improve each time after their feedback.

This project would not have been possible without TNO-ESI. I would like to

thank them for providing me this project to complete my final and most important

OOTI phase. I am thankful to all the people who I met in this company during the

nine month tenure. My special thanks to Peter Vink and Marc Willekens for their

help regarding technical details of the system.

I would like to express my special gratitude to Ad Aerts for his valuable input and

guidance during the two years of OOTI. I heartily thank Maggy de Wert and Lut

van Kollenburg for their support during my time in the Netherlands.

I would also like to express a very special gratitude to all my OOTI colleagues for

making the past two years an incredible experience. My special thanks to my

friend Arash Shafiei for a very fruitful collaboration during the final project.

Last but not least, I would like to thank my parents and siblings for their un-

conditional support and love. I want to dedicate this success to my entire family.

Thanks.

Navaraj Neupane

September, 2015

vii

I would like to thank my two advisors Dr. Rudolf Mak and Ir. Hristina Moneva

PDEng with whom I had the most contact during this project.

I had many meaningful conversations with Dr. Rudolf Mak. These conversations

not only clarified the subject and connected the dots together but also gave me

more insight on how to model a system using formal mathematical modeling so

that it can be usable in broader contexts. He was also always giving ideas on how

to see things in different perspectives.

Hristina Moneva was the person with whom I had many conversations to clarify

the subject and to understand the requirements in a deeper level so that it can be

of use. Having an eye on all aspects of the project, she was helping so that my

view does not narrow to only my part of the project.

I would like to thank two other advisors who left the project earlier. Roelof Ham-

berg supported many ideas and Bas Huijbrechts gave good advices at the begin-

ning of the project.

I would like to thank my friend Navaraj Neupane with whom we had a good

collaboration. He was very helpful and he was helping us to organize the process

of development.

I would like to thank Ad Aerts who was organizing the program and supporting

us so that we have a smooth project.

I would like to thank all friends, and colleagues, especially Pelagia and Favio

with whom I could talk without the fear of being judged and other colleagues for

their fruitful feedbacks and opinions.

Last but not least I would like to express my special gratitude my family without

whom nothing would be possible.

Arash Shafiei

September 2015

viii

Executive Summary

The Design Framework is a system modeling tool. This tool has a number of

functionality which helps the architects and designers to document architectural

knowledge.

The Design Framework is not only used for documenting design artifacts, but

also for capturing the design rational during the design process. It also allows the

designers in a multidisciplinary environment to deal with heterogeneous models.

The Design Framework is at the level of a good prototype. However due to the

lack of a proper design and development approach, the code structure is sub-

optimal and needs to be redesigned.

The goal of this project is to reverse engineer the code of the Design Framework

in order to document the current architecture. From the current architecture, a

new architecture is to be proposed and implemented.

In order to increase the maintainability of the system, a test framework is also

needed to be developed to validate the new architecture.

Since the Design Framework is used in a multi-disciplinary environment, design-

ers collaborate in order to achieve a proper design, therefore the functionality of

the Design Framework needs to be improved in order to better support the multi-

user functionality.

The assignment is split in two parts. The first part includes redesigning the De-

sign Framework which is done in a group of two persons. The second part of the

project includes supporting test and multi-user. This part is done as individual

assignment. Arash took the responsibility for multi-user support and Navaraj took

the responsibility for the testing support.

In the first part of the project, the current architecture of the Design Framework is

analyzed. A number of design redundancies and inconsistencies are found. A new

data model is proposed and a number of refactoring techniques are applied.

The refactoring techniques includes techniques that allow for more abstraction,

techniques that break the code apart into more logical pieces and techniques for

improving names and location of code.

As a result of the refactoring part the code complexity is reduced and therefore

the maintainability is increased. The measure for the reduction of the code com-

plexity is mainly the number of lines of code which is reduced by 25%.

In the multi-user support part of the project, the Design Framework is compared

to the current version control systems. Like all version control systems which are

meant to manage the changes of documents, the Design Framework documents

the architectural knowledge.

The requirements for the Design Framework are engineered and a number of

flaws in the current multi-user support are detected. The model for the version

control aspect of the Design Framework is proposed and improvements are made

on the legacy code. As a result of this section, the designers can synchronize their

works together and merge their changes.

In the testing support part of the project, the scenarios are analyzed and a number

of unit tests are developed.

ix

Table of Contents

Preface ... v

Acknowledgements .. vi

Executive Summary ... viii

Table of Contents ... ix

List of Figures ... 13

List of Tables ... 15

1 Introduction ... 16

1.1 Project Overview .. 16

1.2 Stakeholder Analysis .. 16

1.3 Project goals summary ... 18

2 Domain Analysis .. 19

2.1 Architectural knowledge .. 19

2.2 Design Framework ... 20

2.2.1 Design Framework Functionality.. 20

2.2.2 Design Framework Model .. 23

2.2.3 DF editors ... 25

2.2.4 DF keywords ... 26

2.3 Diagrams in SysML .. 27

3 Problem Analysis ... 29

3.1 Problem statement .. 29

3.2 Project goals .. 30

3.2.1 Requirement Gathering ... 30

4 Reverse engineering .. 33

4.1 Design Framework tool’s domain model 33

4.2 Current Architecture .. 34

4.3 Code Analysis ... 34

5 Refactoring ... 36

5.1 Introduction .. 36

5.2 Process break down ... 36

x

5.3 Refactoring risks and strategies ... 37

5.4 Generalize type technique .. 38

5.4.1 Table inheritance ... 38

5.5 Renaming technique ... 41

5.6 Extract method technique ... 41

5.6.1 Front-end and back-end communication 41

5.7 Refactoring results ... 42

6 Database migration.. 43

6.1 Introduction .. 43

6.2 Use case .. 43

6.3 Migration process... 43

6.4 Migration results .. 43

7 Multi-user support ... 45

7.1 Introduction .. 45

7.2 Version control system ... 45

7.2.1 Git object model .. 45

7.2.2 Git merge ... 47

7.3 Concepts of DF versioning ... 48

7.3.1 System description .. 49

7.3.2 Design question ... 50

7.3.3 Proposal ... 51

7.3.4 Submit proposal .. 53

7.3.5 Accept proposal ... 54

7.3.6 Multiple users .. 55

7.3.7 Data Synchronization .. 57

7.3.8 Representation Synchronization .. 63

7.3.9 Solutions .. 65

7.4 Results .. 70

8 Testability ... 71

8.1 Introduction .. 71

8.2 Web Application Testing .. 71

xi

8.3 Functionality Testing ... 72

8.3.1 Traditional Approach .. 72

8.3.2 Behavior Driven Development ... 74

8.3.3 Functional Testing Checklist .. 76

8.4 Validating HTML Forms .. 78

8.4.1 7.4.1 DF-form Validation Issues ... 78

8.4.2 7.4.2 HTML5 Form Validation Support 80

8.5 Test Strategy ... 81

8.5.1 Unit Test ... 81

8.5.2 End to End Test ... 82

8.6 Testing Challenge ... 83

8.6.1 Incompatible Technology ... 83

8.6.2 Solution for Incompatibility .. 84

8.7 Scope and Goal .. 85

8.7.1 Features to Test ... 85

8.8 Results .. 90

9 Conclusions .. 92

9.1 Results .. 92

9.2 Lessons Learned ... 92

10 Project Management .. 95

10.1 Introduction .. 95

10.2 Work-Breakdown Structure .. 95

10.3 Project Planning and Scheduling ... 95

10.4 Milestone Trend Analysis ... 97

10.5 Conclusions .. 98

11 Project Retrospective ... 99

12 Bibliography ... 101

Appendix .. 102

About the Authors .. 107

13

List of Figures

Figure 1 Stakeholder Analysis Overview ...17

Figure 2 Design rationales are usually lost ...21

Figure 3 Relate equations to their design problems..21

Figure 4 Using Matlab and Excel as modeling tools ..22

Figure 5 Dependency between the material of the tire and the weight of the engine .22

Figure 6 Multidisciplinary system overview of a car manufacturer23

Figure 7 Building blocks of a DF model ..23

Figure 8 DF model ...24

Figure 9 Compare DF with SysML ..28

Figure 10 High Level Process for further development of the DF29

Figure 11 DF domain model ..33

Figure 12 Design Framework’s current architecture ..34

Figure 13 vertical refactoring ...36

Figure 14 horizontal refactoring ...37

Figure 15 DF model using Concrete Table Inheritance ..39

Figure 16 DF model using Single Table Inheritance ..40

Figure 17 DF model using Joined Table Inheritance ..41

Figure 18 Blob structure in git ...46

Figure 19 Object structures in git ...47

Figure 20 Merge in git version control system ...47

Figure 21 Tree-like system descriptions’ store ...49

Figure 22 Design questions ..50

Figure 23 Example of design questions ..51

Figure 24 Proposals ..52

Figure 25 Example of proposals ...52

Figure 26 Class diagram of the revision control in DF ..53

14

Figure 27 Submit proposal ... 54

Figure 28 Request cannot get granted before the latest system description has been

updated .. 55

Figure 29 Accept proposal ... 55

Figure 30 Multiple users .. 56

Figure 31 Merge scenarios ... 57

Figure 32 Data synchronization ... 58

Figure 33 Scenario 1 - User modifying different objects ... 61

Figure 34 Scenario 2 - Users modifying the same object (before merge) 62

Figure 35 Scenario 2 - Users modifying the same object (after merge) 63

Figure 36 Proposal numbers related to the system descriptions 68

Figure 37 End-to-end Testing Approach .. 72

Figure 38 Unit Testing Approach .. 73

Figure 39 BDD Workflow ... 74

Figure 40 Create Block Scenario ... 81

Figure 41 HTTP Request & JSON Response ... 82

Figure 42 Create Block Feature ... 83

Figure 43 Data Object Model overview ... 84

Figure 44 Use of JavaScript Wrapper .. 84

Figure 45 Multi User Scenario 1 .. 87

Figure 46 Feature file of Scenario 1 ... 87

Figure 47 Multi User Scenario 2 .. 88

Figure 48 Multi User Scenario 3 .. 88

Figure 49 Multi User Scenario4 ... 89

Figure 50 Feature file of Scenario 4 ... 90

Figure 51 Gantt chart of the first phase of the project .. 96

Figure 52 Gantt chart of the multi-user phase .. 97

Figure 53 Gantt chart of Testability phase ... 97

Figure 54 Project Success Criteria ... 99

15

List of Tables

Table 1 Stakeholder roles and responsibilities ...17

Table 2 FMEA Result - Developers Perspective ..31

Table 3 FMEA Result - End User Perspective ...31

Table 4 Number of line detailed analysis ..35

Table 5 Frontend-Backend communication after refactoring backend42

Table 6 an example of the System description revision list67

Table 7 an example of the Node revision list ...68

Table 8 Available BDD frameworks ..75

Table 9 Features and Tool Support ..76

Table 10 BDD tool support for the Design Framework ...76

Table 11 Features to Test ...85

Table 12 FMEA Analysis - Developers ...102

Table 13 FMEA Analysis - End User ...103

16

1 Introduction

1.1 Project Overview

The Design Framework (DF) is an approach and a visual modeling tool that helps to

link all design activities to concrete design artifacts and to track consistency of these

artifacts in a multi-disciplinary environment. It is designed to help architects and

designers to develop complex systems. In the current practice of designing complex

systems, like embedded or Cyber-Physical Systems (CPS), designers face the chal-

lenge of balancing the abilities to create a variety of models for analyzing system

options and to track their role in the decision process. The DF accomplishes this

mission by capturing the design rationales in the design process and by providing a

mechanism for using heterogeneous models.

The DF project is carried out as a part of the Octo+ project. It is a joint project be-

tween the Embedded Systems Innovation by TNO (TNO-ESI) and Océ-Technologies

B.V (Océ) that is carried out as a final assignment of the Software Technology de-

signer program at the Eindhoven University of Technology (TU/e). This project is

based on the existing prototype built using state-of-the-art web technologies such as

HTML5 and PHP5.

TNO-ESI collaborates in an open innovation structure with a wide range of industrial

and academic partners, helping its partners to stay ahead of the innovation curve and

lead innovations in embedded systems technology. TNO-ESI strives to improve the

current state of the design and development of industrial practices by advocating the

use of models in every aspect and variety – from analysis to synthesis, from commu-

nication and exploration to specification, from informal to formal, from mono- to

multi-disciplinary.

There are two types of projects defined at TNO-ESI – fundamental research projects

as well as applied research projects. The DF project started in the context of funda-

mental research projects in 2009. The basic model underlying the DF tool was de-

fined in [1] and few prototypes based on that model were made. The initial prototype

was developed using Eclipse modeling tools. Later on, usability research was done

about the functionality as well as the graphical user interfaces and a web-based proto-

type was proposed. The initial prototype was developed by a group of students who

applied the new user interaction ideas. Later on, the tool continued to be used by a

few customers in the industry, mainly Océ.

1.2 Stakeholder Analysis

In this section we identify the stakeholders for the DF project. According to ISO

42010 standard, stakeholder is an individual, team, organization, or classes thereof,

having an interest in a system. In this section, we analyze the roles of stakeholders of

DF project.

Stakeholders were identified in three organizations: TNO-ESI, Océ, and Technical

University of Eindhoven.

Figure 1 illustrates an overview of all stakeholders of the DF project grouped based

on the organization to which they belong.

17

Figure 1 Stakeholder Analysis Overview

Table 1 lists the responsibilities of these stakeholders as well as their relationship

with the DF.

Table 1 Stakeholder roles and responsibilities

Stakeholder Responsibility Relation to the DF

Me Redesign, improve, and

extend the functionality of

the DF

Develop (Analyze, de-

sign, and implement) the

system

TU/e Supervisor Supervise the DF project

from TU/e perspective

Provide suggestions for a

consistent design and

quality report

Project Mentor Supervise the DF project

from TNO-ESI perspective,

provide requirements and

validate results

Provide suggestions for a

consistent design, imple-

mentation and complete

documentation

Project Manager Keep track of the progress

of the DF project in order

to use it in a broader con-

text.

Update other stakeholders

at Océ about the state of

DF

End user (Soft-

ware architect,

designer, engi-

neer)

Design a system at Océ

using DF

Define system design,

document design deci-

sions, capture design

rationales

18

1.3 Project goals summary

The current development level of the DF tool is that of a good prototype, but it is not

mature enough for operational application by end-users in industry. In the meantime

extra functionality has been added along the lines of quite global and implicit archi-

tectural patterns. For that reason an architectural evaluation is required including both

the software design and the technology choices done. Based on the outcome of that

evaluation, a decision is to be made on how to proceed with the tool development.

To accommodate future use of the DF methodology, a tool design and implementa-

tion is needed that is both acceptable for end-users from industry to be applied as part

of their daily work and conduct further research in this direction. This means it must

be easily testable and maintainable as well as easily extendible with new concepts

and features.

To address this, we start with refactoring phase and later worked in additional fea-

tures such as multi-user support and testability.

19

2 Domain Analysis
This chapter provides a detailed analysis of the domain.

2.1 Architectural knowledge

In the context of designing a Cyber-Physical System (CPS) such as MRI scanners

and printers, designers and architects face the challenge of documenting their archi-

tectural knowledge [2]. Architectural knowledge consists of design description and

design decisions.

Design descriptions contain information about design artifacts, their relations and

their properties. Design decisions give the rationales about how the system is de-

signed. The design descriptions are usually found in the specifications and design

documents (if any). The architectural decisions however, usually remain hidden in

the head of the architect.

According to Kruchten et al. [2], there are four types of architectural knowledge:

 Implicit and undocumented: The architect is unaware of the decision. It is

probably a decision which is taken unconsciously without the architect real-

izing it. It includes the architect’s previous experiences.

 Explicit and undocumented: The architect does not document because of

some policies and time constraints.

 Explicit and explicitly undocumented: The architect might not document

because of some tactical reasons, such as protecting his/her position in the

company.

 Explicit and documented: The architect knows the reason and documents

it. This is the preferred, but quite likely exceptional, situation.

The forth case is very rare. Knowing or storing a rationale behind the design decision

makes it easier for future understanding, is the main motivation behind the DF pro-

ject.

Now the question is why documentation is so hard and what we can do to facilitate

the architect to document more. For capturing an architectural design, there are plen-

ty of tools available, such as AADL, UML, and SysML [3]. However these tools do

not provide a way to capture design decisions as well. Although they have tried to do

so, the tools have become so complicated to use for the designers and architects that

they have been hardly used.

Therefore, a simple tool was necessary for some companies, to not only document

their designs but also their design rationales. Some of these companies which are

targeted by TNO-ESI are Océ-Technologies, Philips Healthcare, and Vanderlande

Industries. The DF is an approach and a tool that helps to link all design activities to

concrete design artifacts and to track consistency of these artefacts in a multi-

disciplinary environment.

After studying the concepts behind the requirements, a few prototypes of the DF

were implemented. The latest prototype, which uses web technologies, is currently

being used at Océ. However each time the customer requests or proposes a new func-

tionality, the code is being extended without thorough consideration of the non-

functional requirements such as maintainability, extendibility and readability of the

code. As a consequence, the code-base has grown fast without a well-defined archi-

tecture.

20

2.2 Design Framework

The DF is an approach and a tool that helps to link all design activities to concrete

design artifacts and to track consistency of these artefacts in a multi-disciplinary

environment [4].

Design activities include design decisions, asking questions about and providing

answers related to a design, and experiments on the models of design. In general a

design activity is the process that the designer carries out. A design artifact is any

object created by the designer, such as a system blocks, a parameter, a models, and

even the system itself.

A multidisciplinary environment contains a group of people composed of members

with varied but complimentary experience, qualifications, and skills who contribute

to the achievement of the organization’s specific objectives.

The DF aims to help system architects, designers, and engineers to describe a system

design and the rationales which lead to its design.

2.2.1 Design Framework Functionality

The functionality of the DF includes:

- Capture the design rationale throughout the product lifecycle phases

- Relate mathematical equations (constraints) and their analyses to con-

crete design problems

- Deal with partial modeling

- Deal with heterogeneous modeling tools

- Validate design parameters and their dependencies

- Provide a multi-disciplinary system overview through multiple views

Each of these functionalities is explained in detail below.

Capturing the design rationale throughout product life-cycle phases

Quite often the reason for which a system is built in a certain way is not documented.

Sometimes the original assumptions, which were valid at the moment when the sys-

tem was built, are not valid anymore. Therefore, this architectural knowledge remains

implicit most of the time. It becomes especially troublesome when people leave a

project and they cannot make all design rationales explicit. The main reason behind

storing design rationales is for the traceability.

Architecture rationale according to ISO 42010 [5] records the explanation, justifica-

tion or reasoning about architecture decisions that have been made. The rationale for

a decision can include the basis for a decision, alternatives and trade-offs considered,

potential consequences of the decision, and citation to sources of additional infor-

mation.

For example, in a car company a new GPS system is required. Each software archi-

tects proposes several solutions and explains the rationale behind his/her design. One

of the proposals is accepted and the reason behind this decision is captured. Later on,

if the same or another architect wants to change the GPS system, he/she can use this

knowledge. Storing a rationale behind each alternative decision provides future archi-

tects or related stakeholders to make rational decision by not repeating the same

mistakes.

21

Figure 2 Design rationales are usually lost

Relate mathematical equations (constraints) and their analysis to

concrete design problems

The design activities and design artifacts are related, and the DF model takes this into

account. Designers use a number of equations to solve their design problems.

For example, in order to design a better engine in a car, a set of equations between

the parameters of different components must be analyzed. Engineers want to know

the force applied by a car when it crashes with another car in traffic. In this case, they

can get the mass and the acceleration of the car and calculate the force and analyze

the impact through their design.

Figure 3 Relate equations to their design problems

Deal with partial modelling

A system is never modeled completely. In fact, quite often only a small part of the

functionality is covered (for example the critical part, or the new part). Any infor-

mation available is useful in DF once it is related to other information and/or a ra-

tionale; it does not have to be complete.

For example when designing a car engine, sometimes it is impossible to design the

whole system, but only modeling parts of the system (for example the critical parts)

suffices.

http://df.esi.nl/concepts/model

22

Deal with heterogeneous modeling tools to deal with constraints

Many modeling languages and tools exist and users use the tool that fits the needs of

the problem domain best. For example, some designers use Microsoft Excel for mod-

eling, while others use Matlab. By keeping restriction on the format of models to a

minimum, DF makes it possible to use heterogeneous models.

For example, an engine designer might use Matlab because of the complexity of the

equations he is dealing with, while a tire designer only uses Microsoft Excel.

Figure 4 Using Matlab and Excel as modeling tools

Validate design parameters and their dependencies

One of the benefits of dependencies between design information is that they can be

used to check or maintain consistency of the system. For example, parameters of a

system in a design can be dependent and this dependency can be cascaded.

For example, while designing a car; the designer of the tire should be aware of the

changes that the designer of the engine is making. If the weight of the engine increas-

es significantly, then the weight of the car increases. The increase in weight of car

gives more pressure to the axels and eventually the pressure should be supported by

tires.

Figure 5 Dependency between the material of the tire and the weight of the en-

gine

Provide multi-disciplinary system overview through multiple views

The views in the DF allow each architect to create an overview of the system that

addresses some system aspects (for example performance or safety) while still mak-

ing explicit to other disciplines.

In the example of car design, mechanical engineers, software engineers, chemical

engineers, and so on are working on the same system (car). They not only should be

able to see each other’s changes but also they have to be able to customize their view

to see the system from their own perspective. In the Figure 6, an electrical engineer is

interested in engine, and a software engineer is interested in GPS system of the car

23

which should be deployed in engine. Similarly, mechanical engineer is interested in

tire, whose manufacturing depends upon the weight of the engine and the weight of

the car. All of these engineers are dependent on each other and it is very important to

have proper communication between them. Providing them with a multidisciplinary

view of the same system will help them to collaborate effectively.

Figure 6 Multidisciplinary system overview of a car manufacturer

2.2.2 Design Framework Model

Figure 7 represents the main concepts and building blocks of DF model. In the DF,

three levels are identified for both the design activities and the design artefacts. Each

level incorporates the process and status aspects.

Figure 7 Building blocks of a DF model

24

In order to support all design activities in a design process, a generic Design Frame-

work model was proposed [4], as shown in Figure 8.

The Design Framework consists of three abstract levels or layers: design flow, sys-

tem views, and models. Each level incorporates the process and status aspects. The

framework is designed to be generic and to be able to fit in any existent design pro-

cess or development life cycle, any discipline or specific view, and to enable the

usage of any formalism required in the working process.

Figure 8 DF model

The three layers are described in the next section.

25

2.2.2.1 Design Flow level

Designing as an activity can be described by two main ingredients – taking a design

decisions and, based on it, refining the designed system until the moment in time that

a set of options enforces the next design decision to be taken.

If we try to represent this process, it will be tree-like and composed of a number of

nodes (system designs) and edges (design decisions or options) at design flow level.

Often, some design activities do not lead to the desired system: either dead branch-

es/dead ends are reached or some possibilities are not explored further. In the cases

where the design activities lead to the desired system, the designers work on a few

options in parallel in order to gain better in-depth insight in particular aspects of each

option.

2.2.2.2 System View level

A view is a representation of a whole system from the perspective of a set of con-

cerns (IEEE 1471, 2000). Views are themselves modular (hierarchy of system com-

ponents) and might therefore contain one or more models (of some components).

A design view may be considered as a specific representation of the system. It might

represent a discipline, e.g., software, hardware, mechatronics, electronics, and mate-

rial flow, or a specific aspect, e.g., performance or safety. Every view bears a unique

decomposition of the system under design. Basic structural blocks are used for the

decomposition. They form the skeleton of the view. These blocks may contain or

may be contained in other blocks.

The basic blocks are used as a container of the detailed models. The blocks are for-

malism-independent and consider the model from a black box perspective. One block

may contain multiple models, each of which is developed in order to analyze a spe-

cific concern or quality of the system or parts of it.

Every block is characterized with a set of parameters. Each parameter might have a

(range of) value(s) and a unit, and may have dependencies to other parameters. The

parameters are used as a mechanism to couple blocks either within one or between

multiple views.

2.2.2.3 Model level

The need for modeling arises from the need of gaining in-depth knowledge of the

system under design or of its parts. Each model is expressed in its own formalism,

which is suitable for analysis of specific aspects/questions. The model, at model level

usually has a number of inputs: a set of facts, assumptions, measurements, or even

other models due to model transformations.

In general, multiple experiments can and will be performed on one model. The type

of experiment is limited by the set of tools and their abilities. The decision to store

the results of a particular experiment is under control of the designer. With any ex-

periment, data about the tool that is used should be stored, along with its parameters,

and the results. The results may be used for further decision taking, verification of

assumptions or system qualities, or specification of some system parts.

2.2.3 DF editors

The DF tool consists of two editors:

26

 Flow editor: This editor deals with architectural decisions. The Flow editor

represents the Design Flow layer and holds the elements defined in this lay-

er. The Flow editor is used to edit the following semantic elements: Ques-

tions, Proposals, System Design, and Design Decision.

 View editor: This editor deals with architectural design. It represents the

System View layer and holds the elements defined in the view and model

layers. The View editor is used to edit the following semantic elements:

Block, Parameter, Model, Relation, Transformation, Validation, Image,

Text, Unit, and Representation Type.

2.2.4 DF keywords

The DF provides the user (system architect) with a set of keywords to build a system

specification. These keywords are explained in this section.

View editor

The main difference between the DF and SysML is that it is much simpler to learn.

The DF also does not support behavioral modeling as opposed to SysML. The num-

bers of concepts are minimal and it satisfies the need of the industry in the Brainport

area.

 View: Views frame specific system concerns for multidisciplinary archi-

tects. They are the equivalent of viewpoint in ISO 42010.

 Block: It is a system entity. Block is also defined in SysML.

 Parameter: Parameters hold a value and they specify the properties of a

block. In SysML constraint parameters are defined for the same purpose.

 Model: The model is a constraint block that holds mathematical equations.

The equivalent in SysML is constraint block.

 Relation: It defines a simple relation between blocks. It does not have any

effect on the parameters and properties of the blocks but only indicates that

there is a relationship. The relation is between blocks. It is the equivalent of

binding connector in SysML.

 Dependency: It is a kind of relationship and the only difference is that it is

between parameters and not blocks. There is also always a model (constraint

block) attached to a dependency. It is the equivalent of dependency in

SysML.

 Transformation: It is a kind of dependency that has several inputs and sever-

al outputs.

 Validation: It is a kind of dependency which has only a Boolean output

which is true or false.

 Experiment: By assigning values to parameters in a model (constraint

block), several outputs are generated. A set of assignments is called an ex-

periment.

 Image: An image can be assigned to a block or experiment to illustrate a

fact.

 Text: A text also can be assigned to a block for a further explanation.

 Unit: A parameter can have a standard unit.

 Representation type: Blocks and relations can be represented in different

ways (colors and font). This is called a representation type.

Flow editor

The concepts in the flow editor do not exist in SysML. The DF differs with SysML in

that is it captures design decisions as well. Following set of concepts are used in flow

editor:

27

 Question: A question usually is imposed on a system asking to add a func-

tional or non-functional requirement.

 Proposal: To address a question, a set of proposals is proposed.

 Accept: A proposal can be accepted by a higher level manager or architects

or through a consensus.

 Decline: A proposal can be declined or rejected by a higher level manager or

architects or through a consensus. The reasoning behind this decision is cap-

tured and can be tracked in the flow editor.

2.3 Diagrams in SysML

There are many types of diagrams described in SysML. The four relevant to the DF

are:

 Structure diagrams

 Behavior diagrams

 Requirement diagrams

 Parametric diagrams.

The DF has very closely related concepts for modeling a system except that it does

not divide its diagrams into four types. In DF, there is only one type of diagram. This

diagram is able to represent all but behavioral diagrams of SysML.

The parametric diagram is intended to support system analysis (performance, reliabil-

ity, etc.) by defining constraint blocks. A constraint block expresses a mathematical

equation and its parameters, some of which may correspond to system block proper-

ties. Whereas the diagram in DF not only models system blocks but also binds the

values to the parameters of the blocks. All of these constraint blocks, parameters and

related dependencies can be viewed together in the DF, which makes it simpler and

understandable.

Requirements may be modeled in a separate dedicated or distributed view through

the design in the form of parameters and text to each block. The DF validation mech-

anism provides always up-to-date state of the requirements. As opposed to SysML, in

the DF the requirements can be quantified.

Figure 9 shows a comparison between SysML structure and parametric diagrams and

DF diagram. For simplicity we did not get into details of the diagram.

28

Figure 9 Compare DF with SysML

29

3 Problem Analysis
In this chapter, we first elaborate the problem statement and we elaborate the project

goals.

3.1 Problem statement

To accommodate future use of the DF methodology, a tool design and implementa-

tion is needed that is both acceptable for end-users from industry to be applied as part

of their daily work and used to conduct further research in this direction. This means

it must be easily testable and maintainable as well as easily extendible with new

concepts and features. In order to achieve this, the high-level process to further de-

velop the DF, shown in Figure 10, was proposed:

Figure 10 High Level Process for further development of the DF

The DF tool is at a good prototype level, but it is not ready for operational applica-

tion by end-users in industry. In the meantime, extra functionality has been added

along the lines of quite global and implicit architectural patterns. For that reason, an

architectural evaluation is required including both the software design and the tech-

nology choices made. Based on the outcome of that evaluation, a decision is to be

made on how to proceed with the tool development.

Two major prototypes have been made, each of which has added knowledge and

experience on how to proceed with the method and the tool. The first DF tool proto-

type was developed using Eclipse technology. The second prototype involves a re-

implementation using state-of-the-art web technology such as HTML5. The current

DF tool is based on the second prototype.

30

Currently in Océ there are a few lead users, who are expected in the near future to

grow in number. In addition, TNO-ESI expects to extend the user community by

applying the DF to other projects in cooperation with various industrial users.

3.2 Project goals

The main goals in this project include the following:

1. Study and document the current functionality of the DF to obtain the current

architecture from the current design. (Reverse engineering in Figure 10)

2. Document the current architecture and implementation of the system.

3. Redesign and propose a new architecture for parts of the DF tool.

4. Implement a new prototype from the new architecture.

5. Transform the old data model to the new data model. (Model transformation

in Figure 10)

6. Consider the scalability of the system to be used by multiple users. (Non-

functional requirement of the new architecture in Figure 10)

7. Implement a test framework for the system. (Validate new prototype in Fig-

ure 10)

The steps 1 to 5 are done in a group of two persons and the steps 6 and 7 are done as

individual assignments. In this report, refactoring phase and the implementation of a

multi-user support (step 6) and test support (step 7) is explained.

Since the concepts are already defined and the system is being used currently by

customers, the system should be usable at every step of redesign. Therefore the

graphical user interface remains the same while the core functionality and architec-

ture continuously change.

The refactoring assignment is defined mainly because the maintainers of the DF tool

have complained about the redundancies of code and data. Although not having a

proper test framework makes the refactoring risky but the test framework can be

developed later and deployed for future maintenance.

In the following section, requirement gathering activity of testability phase of the

project is discussed.

3.2.1 Requirement Gathering

Design Framework was developed without following a specific development ap-

proach. For this reason, one of the non-functional requirements “testability” was not

addressed in the current version. However, it was a task to determine how much

testability adds value to the tool and what exactly testability means to DF.

To determine the value and meaning of testability, two FMEA (Failure Mode and

Effect Analysis) sessions were conducted including two TNO supervisors and two

engineers. First session focused on FMEA analysis from the Developer’s perspective.

During this session, each member collected a set of scenarios which are important to

the developer. Second session focused on FMEA analysis from End User’s perspec-

tive. Similar to the previous session, a set of scenarios which are important to end

users were collected. Each scenario was then grouped to a concept and finally each

concept was ranked based on the score obtained through the product of probability

and impact factor.

31

3.2.1.1 FMEA Analysis - Developers Perspective

During the FMEA session, attendees were given time to gather a set of concerns

assuming themselves as a developer. A set of points collected from attendees were

grouped together into particular concepts, as shown in Table 2. Details of the result

and arguments related to each concept are provided in the appendix (Table 12).

Each of the concepts was ranked based on the probability of occurrence and impact

factor. Both probability and impact factor were weighted from 1 to 5. A lower proba-

bility value indicates lesser chances that a particular issue exists in the current project

and vice versa. Similarly a lower impact factor indicates the lower severity if particu-

lar concept is missing during the development process and vice versa. The final

scores were obtained multiplying probability and impact factor and were ranked

based on the score.

The set of concepts that were obtained during the first FMEA session are given in

Table 2.

Table 2 FMEA Result - Developers Perspective

Concept Probability(P) Impact factor(I) P * I Rank

Architecture

and Design

5 1 5 4

Testability 3 4 12 1

Requirement 5 2 10 2

Usage 2 2 4 5

Tool 3 2 6 3

Deployment 2 5 10 2

Based on the above analysis, “Testability” proved to be the most important require-

ment for Design Framework and hence the decision was made to provide test support

to DF.

3.2.1.2 FMEA Analysis– End User Perspective

A similar approach to the previous FMEA session was followed in this session.

However, the concepts were collected from the end user perspective. Details of the

result and arguments related to each concept are provided in appendix (Table 13).

Table 3 FMEA Result - End User Perspective

Concept Probability(P) Impact factor(I) P * I Rank

Documentation 4 2 8 6

Representation / Posi-

tion Inconsistencies

4 3 12 3

32

Data Inconsistencies 4 5 20 1

Browser Support 3 3 9 5

Message Handling /

Performance

5 3 15 2

UI 5 2 10 4

External Service/Server 2 4 8 6

Based on the end user perspective, “Data inconsistencies” is the most critical issue

followed by performance issue and proper handling of messages. Data inconsisten-

cies are mostly related to multi-user feature in Design Framework. Multi-user support

was a pre-defined requirement and is discussed in section 7.

33

4 Reverse engineering

Abstract – In this chapter, we start to analyze functionality of the system, domain

model, and the existing architecture and code-base. We end the chapter by addressing

refactoring risks and strategies.

4.1 Design Framework tool’s domain model

The result of the analysis of the DF functionalities and keywords is captured in the

domain model (Figure 11).

The DF at the highest level contains users, units, representation types, and projects. A

project has a root block which contains other blocks. A project also contains a set of

mathematical models (constraints). A dependency uses these mathematical models.

A block can have a set of parameters, images, and texts. A block can also be con-

nected to other blocks through a relation. Parameters on the other hand, are connect-

ed to each other through dependencies. As mentioned in Section 6.2, dependencies

can be either validations or transformations. A model also can have a set of experi-

ments.

The parameters can be measured by a value. This value has a unit of measurement.

Furthermore, parameters and blocks can also be represented in different manners

using representation types. The relations and dependencies (transformations and

validations) can be connected to parameters and blocks using links.

Figure 11 DF domain model

34

4.2 Current Architecture

The DF’s latest prototype is implemented using LAMP architectural model. LAMP is

an acronym for Linux, Apache Web Server, MySQL, and PHP, as this architectural

model is deployed by these four technologies. Although LAMP was initially used in

Linux, later it was adapted for Windows as well (XAMP) [6].

The GUI (Javascript and HTML) communicates through a set of commands to the

backend (Apache and PHP). These commands are transferred to the server on HTTP

requests. The responses are returned to the frontend on HTTP response encoded in

JSON format.

There are four external services used in the current architecture of DF (Figure 12).

 Excel web server: DF needs to send data to this server in order to receive the

diagrams and charts based on the data in the system.

 Frink Engine: DF uses the Frink engine in order to calculate the results of

expressions.

 Experiment server: DF uses a server to deal with calculations which take

long time.

 Matlab Engine: DF needs to send data to this server in order to receive

graphs based on the data in the system.

Figure 12 Design Framework’s current architecture

4.3 Code Analysis

One of the goals of refactoring is to reduce the code complexity. The less code com-

plexity the better maintenance. Some examples of a complex code are the presence of

codes with long methods or codes with repeated code snippets.

35

After a manual inspection in the code, it is observed that code snippets are repeated

all over the code base. This redundancy is especially due to the similarities between

the functionality of a numbers of concepts in the DF. The concepts such as block,

parameter, relation, transformation, validation, text, and image have a lot in common

and adding a proper layer of abstraction would reduce this code repetition.

Two quality metrics have been considered in this section. The first one is the number

of lines. In the next section we elaborate how the code complexity can be reduces.

The method length and class length can be reduced as the consequence of reducing

the number of lines.

Another metric is cyclomatic complexity. This metric also is used as an indication of

software complexity. It is a quantitative measure of the number of linearly independ-

ent paths.

DF, as mentioned before, uses LAMP architecture. In the front-end, HTML and Ja-

vaScript are used. The Table 4 shows the result of the preliminary analysis of the

number of lines of code. After refactoring we discuss the improvement in the code

complexity.

Table 4 Number of line detailed analysis

Language Number of files Number of lines

of code

Number of lines

of comment

JavaScript 30 21761 3237

PHP 29 12086 5189

HTML 48 681 0

The cyclomatic complexity of the code is also computed using PHP Depend. The tool

gave the number 709 as a measure for cyclomatic complexity and it will be compared

to the new measurement after refactoring.

36

5 Refactoring

Abstract – In this chapter, the refactoring phases are elaborated.

5.1 Introduction

After determining a number of software quality metrics (number of lines of code and

methods length) to improve, a refactoring process must be performed in order to

increase the quality.

The refactoring was started from the backend to the frontend. The reason for this

decision is that it is better to detect the inefficiencies in the backbone of the system as

soon as possible before they infect the other parts.

The approach was to refactor layer by layer. The layers of the LAMP architecture are

shown in Figure 14. Each time, the layer under refactoring must completely change

while the upper layer is still capable to communicate with the lower layer. Therefore,

some wrapper functions must be implemented in order to separate refactoring phases.

5.2 Process break down

In the process of refactoring of complex software with layered architecture with mul-

tiple functionalities, several techniques can be applied.

The first approach is to break down the software into functionalities. This means no

matter how the software is built, one can do vertical refactoring where functionalities

are separated and refactored individually. The prerequisite of this approach is to have

a clear separation between functionalities.

Figure 13 vertical refactoring

Another technique of refactoring is to break the software into meaningful horizontal

layers. This makes sense especially when software is built with a layered architec-

ture. The software in this case can be refactored layer by layer starting from the lower

layer. Since the data is modeled in the lowest layer, and the business logic is built on

37

top of this model, any inconsistency in the lowest layer is appeared in the higher

levels.

Figure 14 horizontal refactoring

5.3 Refactoring risks and strategies

As every process that changes a running (perhaps even working) system, refactoring

is not immune to introducing errors. Although there are several techniques that

should enable the programmer to avoid them or at least catch them early, introducing

a failure with refactoring can have serious consequences. Therefore, refactoring

should not be treated lightly, but instead be done with care and the possible problems

in mind.

Current code base of the DF is highly inefficient and lacks a standard approach. The

major findings of the code analysis were high redundancy, lack of documentation,

and lack of architectural pattern. Therefore, the refactoring decision was made. Re-

factoring code comes with the overhead of a heavy testing load.

Martin Fowler [7] has described a number of refactoring techniques. After the code

analysis, some techniques which are appropriate to apply and give the most benefits

have been selected.

Here is the list of refactoring techniques that we consider:

 Techniques that allow for more abstraction

o Generalize Type – create more general types to allow for more

code sharing

o Replace conditionals with polymorphism

 Techniques for breaking code apart into more logical pieces

o Extract Method, to turn part of a larger method into a new method.

By breaking down code into smaller pieces, it is more easily under-

standable.

 Techniques for improving names and location of code

o Rename Method or Rename Field – changing the name into a new

one that better reveals its purpose

38

o Move Method or Move Field – move to a more appropri-

ate Class or source file

Lack of automatic testing makes refactoring more difficult. The DF tool was not

developed using a Test Driven Development approach and neither were tests added

in the later stage, which makes refactoring a high risk. Since, usability is one of the

major requirements of the project, refactoring is already challenging.

Certain risk mitigation plans were made to minimize the refactoring risk:

 Schedule the change for a low development cycle or a low production cycle.

 Use proven design patterns where needed.

 Isolate the change from others to make it easier to find problems.

 Communicate regularly with other developers and stakeholders about the

change.

5.4 Generalize type technique

The first observation while analyzing the data model was that it has data redundan-

cies in the model. There are certain concepts inside the DF system which share func-

tionality. These concepts are: Block, Relation, Parameter, Validation, Transfor-

mation, Experiment, Image, and Text.

These concepts could be generalized as a root object called Node. This interpretation

has an impact on the data model as well. The question that was raised was: “How are

the object-oriented models implemented in the database?” To answer this question

table inheritance is explained in the next section.

5.4.1 Table inheritance

The result of the code analysis shows that the concepts block, parameter, relation,

validation, transformation, experiment, image, and text support the same sets of op-

erations and therefore they can be considered as a more abstract concept called Node.

The concrete classes can inherit from the abstract class Node.

There are three solutions to store inherited classes in a database. The problem is for-

mulated as below. The node concept is modeled as entity A. Other concepts such as

blocks, parameters, relations, etc. are modeled as entities B, and C. The attributes “a,

b, c, d” are those which are common in all concepts such as name, comment, etc. The

attributes e and f are those which are specific to a concept. For example the attribute

value belongs only to parameter concept.

Suppose we have three entities as below:

Entity (attribute1, attribute2 ...)

A (a, b, c, d)

B (a, b, c, d, e)

C (a, b, c, d, f)

There are three options to model these three concepts in the database [8] [9]:

5.4.1.1 Concrete Table Inheritance

Take each concept and map it to a single table. There is a separate table per concept.

39

Table {column1, column2 …}

TA {id, a, b, c, d}

TB {id, a, b, c, d, e}

TC {id, a, b, c, d, f}

Pros: There is no query complexity. This method is simple to implement and it is

easy to read and understand the database.

Cons: There is no common interface. There are common attributes and if one com-

mon attribute is to be modified or to be added then it has to be modified or added in

all tables.

If a query which uses the common attributes is needed, then query has to be made on

all tables.

According to some, it is recommended to use this method only if only leaf classes are

concrete.

The schema of the table design using this method is presented in Figure 15.

Figure 15 DF model using Concrete Table Inheritance

5.4.1.2 Single Table Inheritance

In this method all fields of all classes of an inheritance structure are mapped into a

single table.

TA {id, entity type, a, b, c, d, e, f}

40

The entity type can be B, or C.

Pros: There is no query complexity. It is simple to implement. By querying only one

table, one can retrieve meaningful information about all entities. For example one can

retrieve all entities with a certain value of the attribute “a” only by one query.

Cons: It is more error prone because some fields remain null for some concepts.

It is recommended where sub-tables do not have many additional columns. The

schema of the table design using this method is presented in Figure 16.

Figure 16 DF model using Single Table Inheritance

5.4.1.3 Joined Tables Inheritance

Each class is represented in one table and the attributes of a child class are retrieved

using a join between the class and its parents.

A {parent_id, a, b, c, d}

B {id, parent_id, e}

C {id, parent_id, f}

Pros: It has low storage footprint.

Cons: Increased query complexity to join tables and performance loss.

The schema of the table design using this method is presented in Figure 17.

41

Figure 17 DF model using Joined Table Inheritance

After analyzing the above solutions, the Single Table Inheritance was selected. The

reason is that in Single Table Inheritance, the number of joins is reduced compared to

Joined Table Inheritance and therefore it is preferable.

It is also preferable to simplify the backend code; therefore by choosing the Single

Table Inheritance over Concrete Table Inheritance, the business logic is removed

from the backend. This means that the backend is aware of only the node and not the

concrete objects.

5.5 Renaming technique

Two issues are addressed by renaming technique in the refactoring. First, the naming

conventions are not always respected. Second, the method and variable names are not

clear and understandable.

In order to deal with these issues, new names should be used which reveal the pur-

pose of the method or variable better and follow standard naming convention. This

improves the readability of the code. The maintainability of the code is improved as

well in the sense that developers are able to understand the code much faster which

leads to a better maintenance.

5.6 Extract method technique

5.6.1 Front-end and back-end communication

The communication between the frontend and the backend consists of a set of com-

mands on HTTP. Since the business logic is removed from the backend, the commu-

nication is also simplified. The block, parameter, relation, transformation, validation,

image, text, and experiment concepts are not in the communication anymore and we

have only nodes and links. Table 5 shows the number of use-cases after refactoring.

42

Table 5 Frontend-Backend communication after refactoring backend

Concept Functionality

Node Create, Update, Delete, Change Parent,

Get History

Link Create, Delete

Project Create, Delete, Open, Update, Export, Import

View Create, Update, Open, Get List

Unit Create, Update, Delete, Get List

RepresentationType Create, Update, Delete, Get List

5.7 Refactoring results

After the refactoring, the code is again analyzed to obtain the performance of the

refactoring process.

Since only the PHP is refactored the number of lines after the refactoring process is

recalculated. This number is decreased from 12087 to 8980. This means a reduction

of 25% in lines of code. This makes the code simpler and easier to maintain.

The number of tables is reduced from 30 to 10. After refactoring tables contain only

necessary information redundant data model is fixed.

The cyclomatic complexity of the code is also reduces from 709 to 611. These num-

bers are obtained from the tool called PHP Depend.

43

6 Database migration

Abstract – Users have been working with an old version of a database and they have

data that has to be preserved. After refactoring the database, a new requirement is

defined, which is database migration. Database migration also helps to validate the

refactoring result.

6.1 Introduction

Database migration is a one-time task. Once all old databases have been migrated to

the new ones, the migration project is not useful anymore, although it can always be

used to specify the semantics of the database.

6.2 Use case

Each user uses the database migration only once. The user inserts the old data base

configuration and the new database configuration and the system creates a new iden-

tical database as the old version in new format. The schema changes but the content

of the data remains the same.

6.3 Migration process

The migration process includes reading data from the old database, performing the

changes, and inserting them into the new database.

There are three types of main changes in the database which should be considered:

 Generalize type changes: As explained in the refactoring section, the gen-

eralize type technique is used in order to reduce the number of redundant data types.

In the previous design, for example, the concepts of block, parameter, image, text,

etc. were considered as different data types and therefore tables were designed for

each of the concepts. The result of studies showed that it was not necessary to keep a

table per concepts. One table called “node” therefore was allocated for all concepts

and the migration projects is responsible for reading those concepts from the database

and inserting them with new identifiers in the new database.

6.4 Migration results

The migration process is done for all concepts in the database of the design frame-

work. Although it is tested manually for a number of test database but there is no

proper validation.

An approach to validate the result would be to reverse migrate the migrated database

and validate if the result is identical to the original database.

44

 Data distribution: During the refactoring phase certain tables have been

removed and data has been distributed among the other tables. Some data was redun-

dant in the previous design and the redundant data is removed.

 Name changes: During the refactoring phase, certain names have been

changed in order to create more meaningful names. The migration project must take

care of the name changes and perform the migration accordingly.

Migration

Migration takes care of the changes of IDs.

45

7 Multi-user support

7.1 Introduction

The DF is a tool that allows access to multiple users at the same time on the same

project. This can create synchronization problems. For example, if a user is modify-

ing an object, the tool should be able to notify other users which are modifying the

same object in such a manner that the data remains consistent. Currently the DF has

multi-user support but it is not at a mature level. The assignment is to design and

implement a more robust multi-user support.

The DF is used as a visual modeling tool besides capturing the rationales during the

design process. Designers use certain concepts to model their systems. An example

of a concept is a block. A block can represent architectural elements such as compo-

nents, requirements, and structures. An instantiation of the block concept is a block

node which has data describing its attributes such as name, parent, and comment.

Since DF is used in a multi-user environment, there is a need to synchronize this

data.

There is yet another type of synchronization besides data synchronization, which is

synchronization of the representation. The objects have other data describing their

representation, for example, their position. The examples of these two types of syn-

chronization are described in sections 7.3.7 and 7.3.8.

In this chapter, first we study the git version control system because of its similarity

to our version control system. Then we explore the concepts in DF to support multi-

users, study some scenarios, and make a list of requirements of both types of syn-

chronization and their related requirements and scenarios. Finally we propose solu-

tions to address requirements.

7.2 Version control system

A version control system is used to manage the changes of documents. In this chapter

we study the DF as a version control system. In this section we study the object mod-

el and merge mechanism in git, one of the most popular version control systems. For

more (precise) information on git please refer to git documentations.

7.2.1 Git object model

In this section we describe how the git works internally. There are four types of ob-

jects defined in git: blob, tree, commit and tag. Every object consists of three parts:

type, size and content.

Blob: It is used to store file data. The Figure 18 illustrates a blob. If a file does not

change from one revision to another, git uses the same blob to represent the file data.

46

Figure 18 Blob structure in git

Tree: It is used like a directory to contain a number of files or trees.

Commit: It points to a single tree to represent what a project looked like at a certain

point in time. It also contains meta-information such as a timestamp, the author of the

changes, a pointer to the previous commit(s), etc.

Tag: To indicate a specific commit, tags are used.

Git builds a structure using these four types of objects and it manipulates them once

something changes.

For each commit, it creates a tree referencing to all folders and subfolders (trees) and

files (blobs). Once a change has been made, a new commit object is created and a

new tree structure is created for the new commit. For the files which are not changed

the previous blobs are used. For the files which are changes a new blob is created.

The Figure 19 shows the tree structure in git.

47

Figure 19 Object structures in git

7.2.2 Git merge

In git, documents are located on a branch called master. When a user wants to work,

he/she creates a branch and makes the changes on his/her own branch. When the

changes are completed, he/she merges the changes back to the master branch. The

Figure 20 shows a simple scenario.

A revision commit is when a user makes changes and submits his/her changes.

Commits are represented by circle in the Figure 20.

Figure 20 Merge in git version control system

Now suppose while the user was modifying his/her branch, another user makes

changes on another branch. The user has to merge the changes on his branch before

committing to the master.

User branch

Master branch

Commit

48

7.3 Concepts of DF versioning

As described in Figure 8, the design flow layer of the DF model contains a set of

system descriptions. The set of system descriptions, maintained in a DF store, is

organized as a tree. Each system description can have four states namely accepted,

declined, submitted, and pending.

The state is initially pending. It can be changed to submitted state. From submitted

state, it can be accepted or declined.

Each system description is derived from its predecessor by a design decision. This

design decision which addresses a question leads to a transformation of the system

description which is called proposal. The result of this proposal is a new system de-

scription.

Each system description can have a set of successors. One and only one successor

can be in the accepted state. If one of the successors is in the accepted state all other

successors are declined. Only the latest system description can have pending and

submitted system descriptions which are called alternatively proposals. Each set of

proposals address a question.

Each system description has one/multiple owner(s). If a system description is pend-

ing, there is only one owner and only the owner can see the pending system descrip-

tion. If a system description is submitted the ownership is shared and all users are

owners and they can access the design description. The ownership of an accepted or

declined design description is the one who accepted or declined. These accepted or

declined design descriptions are accessible to everyone.

The Figure 21 shows all the described concepts.

Merge

49

Figure 21 Tree-like system descriptions’ store

7.3.1 System description

The DF is a tool that can be used to model a system. It is composed of a number of

projects. A project contains a number of views. Each view is supposed to address a

number of design concerns in the perspective of a designer. Each view contains a

diagram associated with it. This diagram describes the design of a real system from

the perspective of a designer.

Each diagram contains a number of nodes. All views share the same nodes within a

project. Some views hide a number of nodes in order to address different concerns.

Views also keep the information related to the representation of the nodes. The data

is consistent is all views.

The set of nodes with representation data for all views is called system description.

The system description is versioned. Any modification of an attribute of an object

results a new revision of the system description. There is always the latest revision of

the system description available on the server.

A system description can have four states: accepted, submitted, pending, and de-

clined. In the next sections we describe these states. In Figure 22 the blue dots repre-

sent the accepted system description. (See Figure 26)

All descriptions are stored in the repository and the user only looks at the latest ac-

cepted system description and the pending description which are created by the user.

50

7.3.2 Design question

At any time during the design phase, a user can make questions addressing require-

ments to be analyzed for future solutions (new pending system descriptions). A ques-

tion that is usually imposed on a system can ask for adding a functional or non-

functional requirement, fixing an issue in the current design, or refactor-

ing/redesigning parts of the system. (See requirement 2)

 Requirement Current status

1 The DF must support multi-user mode in which
the number of users can be up to 200.

-

2 Every user must be able to create questions. Ok

The questions are not versioned. The project holds the questions and their descrip-

tion. Each question is answered with several proposals. Proposals are described in the

next section. (See Figure 26)

Users create questions to address specific problems. However, there is the possibility

to modify a system description without creating questions. In this case a default ques-

tion is created.

In Figure 22 the blue dots represent the accepted revisions of the system description.

Each revision of the system description contains nodes. Nodes can be added, modi-

fied, or removed from one revision to another. There is always only one latest revi-

sion of the system description. At any time during the design process, a question can

be created.

Figure 22 Design questions

In Figure 23, we demonstrate a question posed on a system. On the left side, the

latest revision of the system description is demonstrated. On the right side, a question

is posed.

51

Figure 23 Example of design questions

7.3.3 Proposal

A proposal is a transformation on a system description. Proposals are made to ad-

dress a design question. A number of modifications are made by a user to achieve a

system description proposed in the proposal. A modification is made each time to

modify attribute “X” of an object “Y”. Also, an attribute can be added or removed.

In Figure 24, each dot represents a proposal of the system description. Blue dots are

the accepted system descriptions. The accepted system descriptions are available on

the system and accessible by all users. Pending system descriptions, on the other

hand, are only available to the users working on the proposal associated to that sys-

tem description.

In Figure 24, in order to address a question, three proposals are created, each having

a number of modifications to achieve a system description. White dots represent

pending revisions of the system description. (See requirements 3, 4, and 5)

 Requirement Current status

3 User must be able to create proposals. Ok

4 When a user selects a proposal, only the pend-
ing system description of the selected proposal
must be displayed.

Pending system descriptions are
displayed on all proposals of the
user simultaneously.

5 When a user selects a proposal and makes a
modification, a new pending system descrip-
tion must be added to the selected proposal.

Ok

52

Figure 24 Proposals

In Figure 25, a proposal is created and a modification is made. Creation of the block

called “Unit Tables” is a modification which results in the system description on the

left side. This revision of the system description is still pending.

Figure 25 Example of proposals

Figure 26 illustrates the relations between system descriptions, questions, proposals,

and node.

53

Figure 26 Class diagram of the revision control in DF

7.3.4 Submit proposal

When a proposal is ready, the user may want other users to see his/her proposal. The

reason to submit a proposal is to allow other people to decide if the proposal should

be accepted. The DF does not support different user types. All users are of the same

type. The proposal can be accepted by the creator or another. If a proposal is not

submitted, the decision will be made only between the available submitted proposals.

(See requirement 6)

54

Figure 27 Submit proposal

A submit button must be designed, which is different from accept button explained in

the next section. (See requirement 7)

 Requirement Current status

6 If a user submits a proposal, other users must
be able to see the system description related
to the proposal.

The concept of submit currently
does not exist.

7 There must be a submit button. The concept of submit currently
does not exist.

7.3.5 Accept proposal

When there is a set of proposals to a question, a user sends an accept request for one

of the proposals. If there is no new revision on the server the request gets granted. As

a result the state of the design description associated to the proposal is changed to

accepted (from submitted). The latest accepted system description now belongs to the

accepted proposal. In this case the question is closed and other proposals are de-

clined. (See requirements 8, 9)

 Requirement Current status

8 When a user accepts a proposal, the latest
accepted system description is replaced by the
proposal and the status of the proposal chang-
es from “pending” / “submitted” to “accepted”
state.

Ok

9 If a proposal is accepted, other proposals re-
lated to the same question are automatically
declined but maintained in the database.

Other proposals can still be accept-
ed.

If the accept request is not granted, it means that another user has accepted a proposal

and the latest revision is not the same as the precedent of the proposal anymore. In

this case, a synchronization mechanism is needed. The synchronization is explained

in the next section.

55

Figure 28 Request cannot get granted before the latest system description has

been updated

In the Figure 29, proposal 3 is not submitted. This could be a user experimenting

without having the intention of submitting anything. This proposal must be removed

from the database. (See requirement 10)

 Requirement Current status

10 If a proposal is not submitted, and another
proposal is accepted, the pending proposal
and related system description must be re-
moved from the database.

Pending proposals are not removed.

The accepted proposals define a rooted path in the system description tree.

Figure 29 Accept proposal

7.3.6 Multiple users

56

A user can have multiple proposals for different questions. Multiple users can have

proposals to the same question (See requirement 11)

 Requirement Current status

11 Each project can have multiple questions. Each
question can have multiple proposals pro-
posed by multiple users.

Ok

Figure 30 Multiple users

57

7.3.7 Data Synchronization

When user “A” accepts a proposal, the modifications are transferred to the server and

the latest revision of the system description is changed. Other users (e.g. “B”) work-

ing on their proposals for other questions must be notified using a mechanism that the

latest revision has changed and they are no longer the successor of the previous revi-

sion. The modifications of the users must be revised in order to resolve the conflicts

if any. There are three scenarios which can happen:

1- If there is no overlap between what has been modified and accepted by user

“A” and what is being modified by the user “B”, there will be no merge. For

example a new node is added or a node is modified which is not being modi-

fied by the user “B”.

2- If the user “A” has added/removed information, that information is add-

ed/removed to/from the proposal of the user “B” only if user “B” has not

modified that information.

3- If the user “A” has removed a node, and the user “B” is not able to modify

the node anymore and it is removed from the view of the user “B”, too.

The scenarios 2 and 3 are illustrated in the Figure 31.

Figure 31 Merge scenarios

If a proposal is not synchronized with the latest revision, the proposal is not allowed

to be accepted or submitted. (See Requirement 12, 13)

 Requirement Current status

58

12 Users must send a request of acceptance. If
there is a newer revision of the system de-
scription on the server, the request does not
get granted and the user must get the updates
and resolve conflicts if any.

Not implemented.

13 If the latest revision of the system description
changes, all users must be notified and their
predecessor revision must be updated to the
new revision of the system description.

Users must get a warning within less than 5
seconds.

A warning is sent after 5 seconds.
The predecessor revision of the
pending revisions is not changed.

Figure 32 Data synchronization

The following scenario explains the expected behavior of the system.

- User “A” modifies the block “T.”

- User “B” modifies the block “T.”

- User “A” submits and accepts his modification of the block “T.”

- The system notifies user “B” that there are modifications from other users

and he must get the latest revision. Note that this notification is sent imme-

diately and it might take few seconds. If user “B” sends an accept request

before the notification has arrived, his request is not granted and he is asked

to update before accepting. He also gets a list of conflicts to resolve.

In case user “A” and “B” modify different blocks, the same procedure happens ex-

cept that there will be no conflict to resolve.

Data synchronization in different views:

A proposal can affect elements in all views. If the proposal has not been submitted

yet, the owner of the proposal is able to navigate between different views and see the

changes there. (See requirement 14)

59

 Requirement Current status

14 A selected proposal can be viewed in all views
of the user working on the proposal.

Ok

60

7.3.7.1 Scenarios

- The latest revision contains three concepts (DF, Database, Nodes Table)

- A user asks a question “Is it possible to implement units?”

- User “A” adds a proposal “Yes, using a unit table in the database”, and he

adds a Unit Table to the diagram.

Scenario 1 - Users modifying different objects

- In parallel, user “B” is working on the same diagram. He finds a typo. The

block “Node Table” must be called “Nodes Table” instead. He decides to

make a modification. He modifies the property name of the block object

1646. While he is making the modification, he is unaware of the changes of

user “A.”

- When user “A” submits and accepts his modification, the new modification

must not override the changes of user “B,” but user “B” must receive the

latest updates from user “A.”

61

In the Figure 33, the scenario 1 is demonstrated.

Figure 33 Scenario 1 - User modifying different objects

Scenario 2 - Users modifying the same object

- User “A” decides that the “Nodes” must be called “Objects.” As a conse-

quence the “Nodes” table is renamed to “Objects”. User makes the modifi-

cations.

62

- Before user “B” accepts his changes, user “A” accepts.

- User “B” using an update mechanism receives the changes of user “A.”

He/she cannot submit or accept any proposal before getting the updates.

When he receives the updates he knows that now the “Node Table” is called

“Object Table”. He/she decides if he wants to continue his changes using a

new name.

In the Figure 34, the scenario is demonstrated.

Figure 34 Scenario 2 - Users modifying the same object (before merge)

63

Figure 35 Scenario 2 - Users modifying the same object (after merge)

7.3.8 Representation Synchronization

The DF uses views to frame specific system concerns for multidisciplinary architects.

It is the equivalent of viewpoint in ISO 42010. Each view owns a number objects.

Some objects can be viewed in more than one view. For example a block “A” can be

present in only two views and not present in the third view. The block in each view is

placed in different places.

In this context, the representation means whatever attributes which are related to the

representation of data such as position and visibility. The representation synchroniza-

tion aims at keeping representation data of multiple users coherent.

7.3.8.1 Current issues

There are two major problems in the current implementation, which leads to two

requirements.

First, the history of the representation data is currently not logged. It means that by

reverting to the system description in the past, one cannot find the representation data

available.

Second, when a user modifies the representations, other users do not get any notifica-

tion unless they update their projects. If other users had also changed the same object,

their changes are immediately overridden by the update. (See requirements 16 and

17)

64

 Requirement Current status

15 When something has been modified in a pro-
posal, the system must verify whether this
modification has been previously modified in
the same proposal. If yes, a new revision must
not be created. Only the existing one must be
updated. This holds true for the representation
data as well.

Not implemented.

16 Log the history of the representation data Not implemented.

17 Representation data must be part of the revi-
sion of the system description. When accept-
ing a proposal, the data must be sent.

Not implemented.

65

7.3.9 Solutions

In this section we explain the structural and behavioral solutions related to multi-user

operations in the DF. There are two solutions proposed, one based on the legacy code

and one based on a redesign.

7.3.9.1 Solution based on the legacy code

In the legacy code, each node is versioned separately. Therefore, instead of System

description Revision, we have Node Revision.

When a project is opened, the latest state of the system is attained. In order to do so,

the latest accepted revisions of all the available nodes are calculated. Then the latest

pending revisions for the user making those changes for all nodes are calculated and

all are sent to the user.

After the implementation of the submit button, the submitted proposals for all the

nodes are calculated and they are sent to all users.

7.3.9.1.1 Class diagram

Here the class diagram of the proposed solution based on the legacy code is repre-

sented.

66

7.3.9.2 Solution based on a redesign

There are two main disadvantages of the current solution. The first one is its impos-

sibility to revert the project to a certain moment in time. In the current design, it is

possible to get the history of individual nodes, but it is not possible to see the snap-

shot of the system in a certain moment in the past.

The second disadvantage is that the system creates a new revision for each modifica-

tion of a node. This does not necessarily add any overhead but it makes the revision

tree more complicated than required and difficult to analyze. This is addressed in

requirement 15 and it can be solved in the legacy code as well.

In this section we explain a new solution which is inspired by the design of the git

revision system. In this solution, at any moment there will be a revision of a system

description which includes all design objects. Thus, it solves the first disadvantage of

the legacy design.

67

As explained earlier, at each system description revision, a set of node revisions are

stored. If a node is modified in a new system description, the set of node revisions

changes and the references to the new node revisions are updated.

Here we demonstrate the solution in an example. In the example described in Table

6, the first system description contains the node revisions 1, 2, and 3 which are in

Table 7. This means that at this revision, which is the first revision, there are three

nodes A, B, and C.

A user creates proposal 2 and proposes to rename node B to BB. In this proposal,

nodes A and C are still the same. Therefore, the system description points to node

revisions 1, 4, and 3 (only the reference to the new node is updated but still the list of

all nodes is kept)

In this way, at any time, there is a revision that contains all the data and the system

can be easily reverted to any revision.

Table 6 an example of the System description revision list

System

description

Revision

Previous

Revision

Node

Revisions

State Project Proposal

1 - {1,2,3} Accepted 1 1

2 1 {1,4,3} Declined 1 1

3 1 {1,5,3} Accepted 1 1

5 3 {6,5,7} Accepted 1 2

6 3 {8,5} Declined 1 2

68

Figure 36 Proposal numbers related to the system descriptions

Table 7 an example of the Node revision list

Node Revi-

sion ID

Node ID Name Value

1 1 A 10

2 2 B 20

3 3 C 30

4 2 BB 20

5 2 BBB 20

7 3 {1,9,3} Declined 1 2

69

6 1 A 100

7 3 C 300

8 1 A 1000

9 2 BBB 200

In order to revert to a particular revision or even in order to get the latest revision,

only one query on the system description table is required to get all the node revision

references, and using these references, nodes can be retrieved from the node revision

table.

7.3.9.2.1 Class diagram

In the new solutions revisions of nodes are kept separately. In each system descrip-

tion, a set of revisions are stored.

70

7.4 Results

In this section, the requirements for the multi-user support are analyzed. After a thor-

ough analysis, certain problems are recognized and categorized in a list of require-

ments.

There are four main activities:

- Synchronization of data based on the legacy code is developed.

- The functionality of submitting a proposal is analyzed and developed.

- The construction of the design description tree is modified so that the tree

cannot have a sequence of pending descriptions.

- Proposals can be switched and viewed separately.

These functionalities are developed and tested manually for simple scenarios. Addi-

tionally, the main functionalities are tested through set of test scenarios described in

section 8.7.1.2.

71

8 Testability

Abstract- This chapter provides a detailed analysis of the Testability phase.

8.1 Introduction

The testability phase is started to provide test support to the DF development. The

DF tool was developed without following a specific development approach. For this

reason, one of the non-functional requirements “testability” was not addressed in the

current version.

After conducting two FMEA sessions as mentioned in section 3.2, the requirement

“testability” was finalized.

In one of the common test based development approach TDD (Test Driven Devel-

opment), the test-first development approach is used. Which means, first a set of test

cases are written, and then development code is written to make those tests pass.

However, in the DF development, no such approach was used; hence test support is

to be provided for the legacy and future code.

8.2 Web Application Testing

The web application testing technique is exclusively adopted to test the applications

that are hosted on the web; the application interfaces and other functionalities are

tested. Apart from functional testing of individual and integrated components, some

of the testing types such as Performance, Security, Cross-

browser and Responsiveness are also considered in web testing [10]. Major web

testing techniques are listed below:

1) Functionality testing

It includes testing all the links in web pages, database connection, forms

used in the web pages for submitting or getting information from users. Be-

sides, it includes test of workflow of the system and test of data integrity.

2) Performance testing

Web application should sustain to heavy load. Web performance testing in-

cludes:

- Web Load Testing

- Web Stress Testing

Web load testing includes the test against accessing or requesting the same

page by multiple users. The application should handle many simultaneous

user requests such as, large input data from users, simultaneous connection

to DB, heavy load on specific pages.

Web stress testing includes the test against the stress provided on input

fields, login and sign up areas. The application should be able to handle the

stress and recover from crashes.

3) Interface testing

The main interfaces in web application are: web server and application serv-

er interface, application server and database server interface. Interface test-

ing includes the test to verify proper execution of interaction between the

servers and proper error handling. If database or web server returns any er-

ror message for any query from the application server then the application

server should catch and display these error messages appropriately to users.

72

4) Compatibility testing

It includes the test for the compatibility of web application against different

browsers, operating systems, mobile devices, and printing options. Applica-

tions should be able to execute the request in proper manner in a variety of

diverse platform.

5) Usability testing

It includes the test to check if the provided instructions are correct and satis-

fy purpose of the application. The application should be easy to use. Instruc-

tions should be provided clearly.

6) Security testing

It includes test against security breaches. All transactions, error messages,

security breach attempts should get logged in log files somewhere on web

server. Test includes: pasting URLs directly in the browser without login,

changing parameter of internal URLs, checking system reaction on all valid

input on input fields.

Among the checklist provided above, we mainly focus on functionality testing and

some usability support (e.g. HTML form validation and verification).

8.3 Functionality Testing

8.3.1 Traditional Approach

In a web application, there are two common approaches for functionality testing: End

to End testing and Unit testing. However, these two approaches are not mere substi-

tutes of each other; many times a mixed approach is preferred.

8.3.1.1 End to End Testing

End-to-end tests consist of requests made at the client side and observing whether the

correct response is returned.

Figure 37 End-to-end Testing Approach

Feature:

- Test initial Request and final

Response

- Black Box Testing

- Integration Test

Disadvantage:

- Difficult to determine the

point of failure

73

Example:

Create a DF Project:

1. Log in to the system (Pre-condition)

2. Hover over “Projects” menu

3. Select “Create project”

4. Fill in the project name

5. Press “OK”

6. Receive “Project successfully created” message

8.3.1.2 Unit Test (Isolating each layer)

Unit test consists of a test to confirm if each layer transmit and process message in a

correct form. In the figure below, four units are shown. In the JS layer a unit test

would be to check if correct message as intended is sent to the PHP layer. Similarly

in PHP layer, test would be to check if correct response is send to client side after the

correct request. A mock is used to deal with the database layer. Using a mock means

the data to and from database is correct.

Figure 38 Unit Testing Approach

Example:

Create Project (JS):

1. Log in to the system (Pre-condition)

2. Hover over “Projects” menu

3. Select “Create project”

4. Fill in the project name

5. Press “OK”

6. Send “createProject” message to PHP Layer

Create Project (PHP):

1. Receive “createProject” request with project name from JS layer

2. Send project created message

3. Send list of projects

Feature:

- Test each layer separately

- White box testing

Disadvantage:

- Sometime units behave

differently when integrated.

74

7.3.1.3 Hybrid Approach

In the hybrid approach, both end to end test and unit tests are performed. Some key

features are selected for the end to end test and a similar list of key units is tested.

8.3.2 Behavior Driven Development

8.3.2.1 Introduction

Behavior Driven Development (BDD) is a software development process that

emerged from the test-driven development approach [11]. Behavior-driven develop-

ment combines the general techniques and principles of TDD with ideas from do-

main-driven design and object-oriented analysis and design to provide software de-

velopment and management teams with shared tools and a shared process to collabo-

rate on software development.

In this approach the team provides a significant portion of functional documentation

in the form of user stories with executable scenarios or examples. Instead of referring

to ‘tests’, a BDD practitioner uses the terms ‘scenario’ and ‘specification’. BDD aims

to gather in a single place the specification of an outcome valuable to a user, general-

ly using the user stories, as well as examples or scenarios expressed in the form of

given-when-then; these two notations are often considered the most readable.

In emphasizing the term ‘specification’, the intent of BDD is to provide a single

answer to what many Agile teams view as separate activities: the creation of unit

tests and ‘technical’ code on one hand, and the creation of functional tests and ‘fea-

tures’ on the other hand. This should lead to increased collaboration between devel-

opers, test specialists, and domain experts. Rather than referring to ‘functional tests’,

the preferred term is ‘specifications of the product's behavior’.

Figure 39 BDD Workflow

Example of executable specification written in .feature file:

75

Feature indicates a user story which may contain one or more scenarios. The feature

section is used to describe the actual feature whereas Scenario define possible test

case. Scenarios are defined in a special format with given-when-then. Such struc-

tured requirement specification is defined in a special language called Gherkin,

which is a business readable and domain specific language that allows describing

software’s behavior without detailing how that behavior is implemented.

In the Design Framework development, BDD addresses two different issues gathered

during the FMEA session: “Testability” and “Requirements”. Since BDD uses exe-

cutable feature file as a test case, it couples requirements and tests together. Beside

that the major advantage of using BDD is a shared understanding. It brings technical

and non-technical people to the common understanding of features. Any team mem-

ber can write tests cases and each of those test cases are easily understandable. Due

to these advantages, BDD approach is used to address testability issue in the DF

development process.

8.3.2.2 BDD Tool Support

Some available frameworks for BDD are listed in Table 8.

Table 8 Available BDD frameworks

Frameworks Platform

Cucumber Ruby

Behat PHP

Behave Python

Codeception PHP

The Design Framework tool is developed using HTML5, JavaScript, PHP, and

AJAX. In the current state, the most suitable BDD framework to test PHP-based web

applications is Behat, so it is used as a test support framework for testing the DF tool.

76

Behat in combination with Mink provides a powerful test support for PHP based web

applications. Mink was developed to address two different issues in headless browser

emulator like Goutte and browser automation tool like Selenium [12]. A headless

browser is a web browser without a graphical user interface. In other words it is a

browser, a piece of software, that access web pages but doesn't show them to any

user. They're actually used to provide the content of web pages to other programs.

Selenium is slower than a headless browser but provides JS/AJAX test support.

While testing web applications, we need both features (JS/AJAX test support and fast

execution), and that is why Mink was developed.

Mink removes API differences between different browser emulators providing dif-

ferent drivers (Selenium Driver, Goutte Driver, etc.) for every browser emulator and

providing the easy way to control the browser, traverse pages, or manipulate page

elements.

 Some features and tool support related to Behat framework is described in the Table

9.

Table 9 Features and Tool Support

Technology Key features

Behat framework

- Open source BDD framework for PHP5.3 and

above.

- Recommended BDD framework for PHP based ap-

plications

Mink

- Open source bowser controller/emulator.

- Combination of browser controller and headless

browser emulator.

- Works with Behat

Selenium tool

- Browser automation tool

- Used for creating browser based regression automa-

tion tests

- Slower than headless browsing tools

- Open Source

PHPUnit

- Programmer oriented testing framework for PHP

- Open Source

PhantosJS, Goutte

(Headless browsers)

- APIs to crawl websites and extract data from

HTML/XML responses

- Fast execution

- Unable to test JS/AJAX pages

Table 10 BDD tool support for the Design Framework

Design Framework(Technology

Under Test)

BDD(Tool and Test Approach Support)

JavaScript Selenium (End to End Test)

PHP PhpUnit (Unit Tests)

Database PhpUnit (Unit Tests using Mock Objects)

8.3.3 Functional Testing Checklist

1) Testing links

77

- Test for the internal and outgoing links.

2) Testing for validation and negative input

- Test for invalid inputs like empty field, use of special characters (*, %, $, #,

@), character length.

- Test for validation of optional and mandatory fields.

Example:

- When I leave input field empty and click “OK” in createProject form, then I

should see error message “Empty name not allowed”.

- When I input special characters (*, %, $, #, @) or too long characters for

project name, Then I should see error message “Special character not al-

lowed” or “Project length too long”.

Such client based validations are handled during the HTML form design and

are later tested manually.

3) Testing workflow of the system

- Test for a full flow of a functionality.

Example:

- When I click on "Projects" in menu

- And I click on "createProject"

- And I fill in "createProjectName" with "project_name"

- And I click on "OK"

- Then a project with id 1 and name “project_name” is created

4) Testing data integrity

- Test for the maximum field lengths to ensure that there are no truncated

characters while storing in database.

- Test how negative integer numbers are handled by database and test the se-

mantics between data input and data stored.

- Check the maximum field lengths to ensure that there are no truncated char-

acters.

- If numeric fields accept negative values, test whether such value can be

stored correctly on the database and whether it is correct to accept negative

numbers.

- If a particular set of data is saved to the database check that each value gets

saved fully to the database; i.e., beware of truncation (of strings) and round-

ing of numeric values.

Example:

- When I create a project with character length 1000, check whether it is

stored fully in database without truncating.

Checklist Summary – Standard Practice

- All the mandatory fields should be validated.

- Asterisk sign should be displayed for all the mandatory fields.

- System should not display the error message for optional fields.

- Numeric fields should not accept the alphabets and a proper error message

should be displayed.

- Negative numbers if allowed should be validated properly.

- Division by zero should be handled properly for calculations.

78

- Maximum length of every field should be defined to ensure data is not trun-

cated.

- Confirmation message should be displayed for update and delete operations.

- All input fields should be tested against special characters.

- All the functionalities of the available buttons should be tested.

- Proper error message should be conveyed whenever any of the functionality

fails.

- All the uploaded documents should open properly.

- JavaScript should be tested to ensure it is working properly in different

browsers (IE, Firefox, Chrome, safari and Opera).

- All the data inside combo/list box should be arranged in chronological order.

8.4 Validating HTML Forms

In the DF, a total of 48 HTML forms are used. Common DF-form validation issues

are described below:

8.4.1 7.4.1 DF-form Validation Issues

1) Inconsistent Labeling across forms

- In the left image below, labels are in small case and with colon whereas in

the right image, labels are in capital case without colon.

- Position of labels in these two images is inconsistent. In the left image, la-

bels are in front of the input fields where in the right image, labels are above

the input fields.

2) Lack of input field validation and proper messaging

- There is no validation of input fields in most of the forms.

3) No indication of mandatory fields

- None of the mandatory fields are represented with * sign.

4) Inconsistent default position of cursor

- Default position of cursor while editing blocks (Image on left) and parame-

ter (image on right) are different. Default position of cursor while editing

block is at the first input field as highlighted below, while position of cursor

while editing parameter is the third input field.

79

5) Lack of proper handling of enabling and disabling of input fields and but-

tons

6) Inconsistent default values for dropdown

- In the right image below, dropdown of the “Parameter type” field has de-

fault value “general” whereas, in the left image, dropdown of the “unit”

field does not have a default value.

7) Lack of alphabetical order of data in dropdown box

- In the image below the data in a dropdown are not arranged in an alphabeti-

cal order. As a standard practice, they should be arranged in an alphabetical

order.

8) Data integrity issues (Consistency with form data and database fields)

80

- Due to the lack of validation of input fields, length of input fields and length

of same field in database are inconsitent resulting in data integrity issues.

8.4.2 7.4.2 HTML5 Form Validation Support

Unlike previous version of HTML, HTML5 comes with additional features. Proper

use of HTML5 features will help to address form validation issues. Below are some

of the most interesting features provides by HTML5:

1) The type Attribute

HTML5 added several new input types: color, date, datetime, datetime-

local, email, month, number, range, search, tel, time, url, week. Just by us-

ing the attribute “type” in the above example, the input field is validated to

accept only email format input.

2) The pattern Attribute

It specifies a regular expression to check the input value against the pattern.

In the above example, use of pattern attribute with “[a-zA-Z0-9]” value,

provides input field with a validation to accept only alphanumeric inputs.

3) Giving Hints – title Attribute

It specifies the hint for the input field.

In the above example, use of title attribute with value “Social security

Number”, provides hint to the users about the expected input.

4) The required Attribute

81

Specifies that an input field is required (must be filled out).

5) Validation against negative number

For the numeric input field, boundary can be set though max and min key-

word.

8.5 Test Strategy

In this section, two different test strategies which are used for testing the DF are

described.

8.5.1 Unit Test

A unit test focuses on a single “unit of code” – usually a function in an object or

module. By making the test specific to a single function, the test should be simple,

quick to write, and quick to run. This means we can have many unit tests, and more

unit tests means more bugs caught. Major benefits of unit tests are summarized be-

low:

- It reduces the level of bugs in production code.

- It saves development time.

- Automated tests can be run as frequently as required.

- It makes it easier to change and refactor code.

- It forces developers to confront the problem head on.

- They are a measure of code completion.

Figure 40 Create Block Scenario

In Object Oriented concept, unit testing applies to method, where each method is a

unit. In the DF, features are more important, so each feature is considered as a unit

while performing unit test in the DF. Figure 40 is an example of a scenario and a

work flow from front end to backend. In this feature a request is send from front end

82

to back end through a right click event from the user. Backend will receive a HTTP

request and in turn responds a respective JSON response. In the unit test, a set of

HTTP requests is fed to the test and set of expected JSON responses are asserted to

confirm the behavior. Figure 41 shows an example of HTTP request sent (left image)

from front end and respective JSON response (right image) received from back end.

This example shows the correct form of input and output expected in the test, HTTP

request is the test input and JSON response is the test output. Code snippet of a unit

test for creating and editing parameter is provided in appendix.

Figure 41 HTTP Request & JSON Response

 Set of features to be tested are provided in Table 11.

8.5.2 End to End Test

Unit test addresses a unit in a whole feature. Unit tests are not sufficient in many

occasions and similar is for the Design Framework. Sometime behavior of a system

after integration may not be correct even if units are correct. Due to this reason set of

End to End test is needed to make the DF even more robust.

In contrast to unit test, in End to End test Behavior Driven Development approach is

used which makes test cases more readable and understandable. The main reason

behind the use of BDD test approach in the DF is to minimize the gap between tech-

nical and non-technical users who are concerned with DF testing. Additional descrip-

tion about readable test cases and the technology behind BDD is discussed in Behav-

ior Driven Development section.

For a “Create Block” feature as shown in Figure 40, Figure 42 is an example of test

written using BDD approach.

83

Figure 42 Create Block Feature

Each of the statement provided in Given-When-Then-And, are mapped to a particular

function and hence the test is performed. Set of features to be tested using BDD ap-

proach are provided in Table 11.

8.6 Testing Challenge

In this section a testing challenge and a solution to that challenge is described.

8.6.1 Incompatible Technology

The technology used in front end of the Design Framework is HTML5 Canvas and

the technology used for testing the application through record and play is Selenium.

The Canvas is stateless; it does not keep reference of object above it, which makes it

impossible to record user interaction. It is not possible to inspect elements and make

assertions about the state of a canvas like in a DOM (Data Object Model). DOM

defines the logical structure of HTML documents and the way a document is ac-

cessed and manipulated.

Selenium follows DOM based testing approach. It searches the path inside the html

tags and executes the action to that particular location. It records the position of

DOM provided by HTML and can further simulate click event according to the DOM

position.

84

Figure 43 Data Object Model overview

When objects are rendered using canvas tags they are unavailable for Selenium tests

because it does not keep reference of those objects. Since the DOM is no longer

available (for free) inside the canvas tag, apps that live 100% inside the canvas tag

will no longer be tested/recorded by Selenium.

8.6.2 Solution for Incompatibility

To address the above problem it is necessary to write a wrapper as an adapter be-

tween two incompatible APIs. Such wrapper should be able to access the objects

inside the canvas and provide that state to selenium.

Figure 44 Use of JavaScript Wrapper

Browser cannot keep the coordinates of object clicked inside Canvas unlike normal

DOM objects. Due to this reason main challenge to create the wrapper API was to

store the instance of Canvas. Whenever an object was opened in a Canvas the coor-

dinates and type of that object was stored in an object form, and later that object was

exposed to Selenium.

Creating such object helped to keep the track of all objects in Canvas which removed

the problem of finding where exactly the object is located. We could than search any

objects in Canvas in current instance. Finally overriding the click event provided by

the browser helped to click in a particular object and hence the issue of incompatibil-

ity was resolved.

Code snippet of the JavaScript wrapper is provided in appendix.

85

8.7 Scope and Goal

8.7.1 Features to Test

8.7.1.1 Single User Features

The Design Framework development will be supported by three different kinds of

test sets. First, the PHP based Unit tests using PHPUnit, second, the JavaScript based

End to End test per DF concepts(Project, Block, Parameter, Relation, Dependency,

Text, Image, Experiment, Model) using BDD framework Behat, and third, the JavaS-

cript based Flow Test (End to End) per scenario using Behat. Second and third types

of test are both End-to-End test. Only a difference between the two is the second test

covers all the features per concept, whereas the third type of test includes single fea-

tures from all concepts covering almost all major features in one test scenario.

Set of test cases are provided in Table 11 below. Additional set of scenarios can be

created as per the need.

Table 11 Features to Test

Concepts Test Cases

Unit Test (PHPUnit) JS Test - E2E (Be-

hat + Mink)

Flow Test – E2E

(Behat + Mink)

Project

- Create Project

- Delete Project

- Create Duplicate

Project

- Open Project

- Update Project

- Create Project

- Delete Project

- Create Duplicate

Project

- Open Project

- Update Project

- Create Project

Block

- Create Block

- Edit Block

- Delete Block

- Get History

- Create Block

- Edit Block

- Delete Block

- Get History

- Create Block

Relation

- Create Relation

- Edit Relation

- Add Relation IO

- Remove Relation

IO

- Get History

- Create Relation

- Edit Relation

- Add Relation IO

- Remove Rela-

tion IO

- Get History

- Create Rela-

tion

Parameter

- Create Parameter

- Edit Parameter

- Delete Parameter

- Update units

- Get History

- Create Parameter

- Edit Parameter

- Delete Parameter

- Update units

- Get History

- Create Param-

eter

Validation

- Create Validation

- Edit Validation

- Delete Validation

- Get History

- Add Dependency

IO

- Remove Depend-

ency IO

- Create Valida-

tion

- Edit Validation

- Delete Valida-

tion

- Get History

- Add Dependen-

cy IO

- Remove De-

pendency IO

- Create Valida-

tion

Transformation

- Create Transfor-

mation

- Create Trans-

formation

- Create Trans-

formation

86

- Edit Transfor-

mation

- Delete Transfor-

mation

- Add Dependency

IO

- Remove Depend-

ency IO

- Get History

- Edit Transfor-

mation

- Delete Trans-

formation

- Add Dependen-

cy IO

- Remove De-

pendency IO

- Get History

Text

- Add Text

- Edit Text

- Add Text

- Edit Text

- Add Text

Image

- Add Image

- Edit Image

- Upload Image

- Add Image

- Edit Image

- Upload Image

Model

- Create Model

- Edit Model

- Get History

- Create Model

- Edit Model

- Get History

- Create Model

Experiment

- Create Experi-

ment

- Edit Experiment

- Create Experi-

ment

- Edit Experiment

- Create Exper-

iment

Representation

Type

- Create Represen-

tation Type

- Edit Representa-

tion Type

- Delete Represen-

tation Type

- Create Represen-

tation Type

- Edit Representa-

tion Type

- Delete Represen-

tation Type

- Create Repre-

sentation Type

Proposal

- Accept Proposal

- Decline Proposal

- Accept Proposal

- Decline Proposal

Beside the tests listed in Table 11, some input field validation tests are provided

using Behat.

Example:

- Test against special characters (%&*$#@) in input field

- Test against blank name in input field

8.7.1.2 Multi User Features

“Multi User Support” is a newly developed feature of the Design Framework tool. A

set of test scenarios are created and tested to verify the multi user feature. Three dif-

ferent test cases are listed below:

1) Test Case 1

Scenario: Change block name by both users, user2 accepts the change earlier than

user1.

Expected Result: Revision of user1 changes from “Block name changed from 'b1' to

'b2'” to “Block name changed from 'b3' to 'b2'”.

87

Figure 45 Multi User Scenario 1

Test case 1 can be described in feature file as in Figure 46 below.

Figure 46 Feature file of Scenario 1

2) Test Case 2

Scenario: Change block name by both users, user2 also adds a comment and accepts

the change

Expected Results:

- Revision of user1 changes from “Block name changed from 'b1' to 'b2'” to

“Block name changed from 'b3' to 'b2'”

- User1 can see the comment in b1

88

Figure 47 Multi User Scenario 2

3) Test Case 3

Scenario: Change block name by both users, user1 accepts and immediately user2

accepts before getting updates from user1.

Expected Result: User2 gets warning message about the update from other user.

Figure 48 Multi User Scenario 3

4) Test Case 4

Scenario: User 1 changes block name and submits proposal, later created two differ-

ent proposals and accepts one of them

Expected Result: User2 is able to collaborate with the changes from User 1. Accept-

ing one proposal removes the changes in other proposal.

89

Figure 49 Multi User Scenario4

Test case 4 can be described in feature file as in Figure 50 below.

90

Figure 50 Feature file of Scenario 4

8.8 Results

In this section, results obtained during the testability phase are described.

After the analysis of the requirements through the FMEA analysis, test support was

provided to the DF through unit tests and Behavior Driven Development approach.

Three different kinds of test sets are delivered, which are as follows:

- PHP based Unit tests, using PHPUnit

91

- JavaScript based End-to-End test per DF concepts, using BDD framework

Behat

- JavaScript based End-to-End test for multi-user feature, using BDD frame-

work

The delivered result does not cover all the possible unit tests and end-to-end tests.

However, it covers major test cases which can be used as a reference to write more

test cases in future, as per the need.

The verification and validation of the result was done with the help of test cases,

following the existing use cases and newly developed multi-user feature. Existing use

cases are known and were verified by other engineers involved in the DF. Similarly,

test case related to multi-user feature was verified by Arash who worked in that fea-

ture.

Above test sets are currently used by TNO-ESI. Provided test sets and the approach

used to setup test environment made the DF system more stable and maintainable.

Current and future developers will be benefited from the provided tests and approach.

Most importantly, the use of BDD based testing approach has made it easy to write

and understand tests, for both technical and non-technical people involved in the DF.

92

9 Conclusions

Abstract – In this chapter, we summarize the results obtained during the project as

well as the lessons learned.

9.1 Results

There were two parts in this project, which are delivered separately. The first part

concerns the refactoring of the DF. The second part concerns the additional multi-

user feature and testability.

The result of the first part is that the refactored project is delivered successfully and it

is currently used in the main line. The number of lines is reduced from 12000 lines of

code to 8000 lines of code.

The reduction of the number of lines makes the code base more maintainable and

reduces the complexity of the code.

The number of the tables in the database is reduced from 31 to 10. This means less

data redundancy and more data consistency in the database.

The multi-user part of the project includes an analysis of the requirements for the

multi-user support. The requirements are analyzed and they are partly implemented

and used in the main development line.

The testing part of the project includes providing test support to the Design Frame-

work. The requirements were gathered and analyzed and finally test support was

provided to the Design Framework through unit test and Behavior Driven Develop-

ment approach. A set of unit tests and end-to-end tests including the test for multi

user support is delivered.

Results obtained in each phase of the project is currently used by TNO-ESI.

9.2 Lessons Learned

The first part of the project concerns the refactoring of the DF. During the refactoring

process several lessons which were learned.

The first lesson is that in order to refactor a code, it is always important to have a test

framework in place. The DF did not use any test framework and therefore during the

refactoring process, every time a change is made, a manual test is required to verify if

the system is still working properly.

The second lesson learned is that it is very important to break down the process of

software refactoring into meaningful small independent processes. Each small pro-

cess should maximize the number of homogenous changes which are possible to be

performed in a single step preferably during one day. By trial we found a balance for

the number of changes that the team was able to perform.

The third lesson learned was that it is very important to define the requirement scope

as soon as possible otherwise requirement becomes vague. Requirement of the pro-

93

ject was not clear in both phases, so it was necessary to go through the available

materials, generate set of requirement and discuss and negotiate with stakeholders.

The fourth lesson learned was that regular communication with stakeholders about

the progress or issues (if any) is very important, it brings all stakeholders on the

common ground. Many times technical issues lead to delay in the progress as com-

mitted but after clearly explaining the bottleneck, requirements were adjusted.

95

10 Project Management

Abstract – In this chapter, we explain about the project management during this pro-

ject. This project is partly done in pair and partly as an individual.

10.1 Introduction

This project was separated into two parts. The first part of the project was done in a

group of two and the second part of the project was done individual.

During the first part of the project, an agile approach was practiced. The require-

ments were split into parts. The sprint was defined as one week. Every morning, in a

stand-up meeting each member described what they were going to do during the day.

Tasks were estimated weekly and a burn chart was made every day after the compel-

lation of the tasks.

The multi-user part of the project was more of a requirement analysis. The approach

in project management was different from the first part. A document was prepared

and risk management was done on a weekly basis to determine if the analysis was

going in the right direction.

The testability part of the project started with the requirement gathering. After FMEA

session testability requirement was ensured. It was an individual task, so project

management was different then the first phase. Each week set of progress was

demonstrated keeping the final milestone in mind.

10.2 Work-Breakdown Structure

The nine-month duration of the project was broken into three parts. The first part,

which was done in a group of two, concerned reverse engineering and redesign of the

initial implementation.

The second part of the project, which was done individually. One of the requirements

was to implement a multi-user feature and other requirement was to provide test-

support to the DF system. The final part of the project was spent on documentation.

Of the nine months of project time, five months was spent on the first part, three

months on the second part, and one month on the last part.

10.3 Project Planning and Scheduling

The assignment was to refactor a code and it started in a team of two persons. In

order to do so, a system analysis was required at the start of the project. The plan was

to analyze the system for two months. After two months we came up with a list of

problems to solve. Based on the problems, we spent one month to experiment, proto-

type, and propose a new design for the database. We spent one month to redesign the

PHP part. At the end we delivered the first version.

96

After this period, we came up with a set of new issues to solve, so we had to spend

half a month in order to solve new issues. At the end of this period, we delivered the

second version.

From this point the project was divided into two parts. One person had to build a test

framework and the other person had to implement the multi-user support for the DF.

In multi-user part, one month was spent on gathering the requirements and three

months in implementing the features. Third version was delivered at the end of this

phase.

In testability part, one and half months were spent on research and requirement final-

izing and another one and half month for implementation. Set of test cases and the

test framework was delivered at the end of this phase.

Finally both of us spent one month writing the report. The rest of time was spent on

maintenance of the system.

Figure 51 Gantt chart of the first phase of the project

97

Figure 52 Gantt chart of the multi-user phase

Figure 53 Gantt chart of Testability phase

10.4 Milestone Trend Analysis

There were three different milestones. First milestone was in April, after PHP rede-

sign and initial database redesign.

Second milestone was in May, after redesigning database for the second time to re-

duce the inner joins. Change in database also resulted in the need of change in code.

A migration code was delivered besides the refactored code in order to migrate from

the old database to the new database.

Finally third milestone was at the end of August after implementing multi-user and

testing support.

98

10.5 Conclusions

The project planning went quite smoothly, although at the start the scope was not

very clear. The database design and PHP design overlapped at the start but we tried

to separate them in order to take control over the process.

The multi-user requirement gathering and implementation were predicting to be in

two completely separate phases but at the end they overlapped.

In a nutshell, the planning was flexible and changed a few times during the process,

but the milestones were reached.

99

11 Project Retrospective
This chapter summarizes the overall result indicating success failure analysis of the

project.

Figure 54 Project Success Criteria

Evaluating project success should include both process and outcome criteria [13], as

illustrated in Figure 54.

The three process-related criteria include:

1. Time: The project came in on schedule.

2. Cost: The project came in on budget.

3. Product: The project produced a product of acceptable quality and met other

product-related specifications, including requirements, usability, and ease of

use, modifiability, and maintainability.

The three outcome related criteria include:

1. Use: The project’s resulting product/service is being used by its target con-

stituencies.

2. Learning: The project increased stakeholder knowledge and helped prepare

the organization for the future challenges.

3. Value: The project will directly result in improved efficiency and/or effec-

tiveness for the client’s organization.

Taken together, the six criteria above yield a more comprehensive view of the project

success.

As mentioned in the section 1.2 different stakeholders are interested in different out-

come of the project. TNO-ESI supervisor is interested in consistent design, imple-

mentation and documentation, TU/e supervisor is interested in a consistent design

and quality report, and we are interested in enhancing design skills and learning new

technology which will add value for our future career.

100

Looking at the above mentioned six criteria, project was successfully completed. Set

of goals were assigned for the pre-defined duration of nine months. At the end of the

available time two different milestones were reached: First, with the team of two

people to redesign the Design Framework and second, an individual assignment to

provide new multi-user and testing support. Outcome from both milestones are used

in the current development branch by TNO-ESI.

101

12 Bibliography

[1] "Design Framework Official Website," [Online]. Available: http://df.esi.nl/.

[2] P. P. L. a. H. V. V. Kruchten, "Building up and reasoning about architectural

knowledge," Quality of Software Architecture, pp. 43-58, 2006.

[3] "SysML Official Website," [Online]. Available: http://sysml.org/.

[4] R. H. T. P. Hristina Moneva, "A Design Framework fr Model-based

Development of Complex Systems," 32nd IEEE Real-Time Systems Symposium

and 2nd Analytical Virtual Integration of Cyber-Physical Systems Workshop,

pp. 1-8, 2011.

[5] ISO/IEC/IEEE 42010, System and software engineering - Architecture

description, International Standard Organization, 2011.

[6] "Apache Friends," [Online]. Available:

https://www.apachefriends.org/index.html.

[7] M. Fowler, Refactoring: Improving the design of existing code, Addison

Wesley, 1999.

[8] M. Fowler, Patterns of Enterprise Application Architecture, Addison-Wesley

Professional, 2003.

[9] "Propel," [Online]. Available: http://propelorm.org/Propel/documentation/09-

inheritance.html.

[10] "Tutorials Point," [Online]. Available: http://www.tutorialspoint.com.

[11] "Wikipedia," [Online]. Available: https://en.wikipedia.org/wiki/Behavior-

driven_development.

[12] "Mink Behat," [Online]. Available: http://mink.behat.org/en/latest/.

[13] R. R. Nelson, "Project Retrospectives: Evaluating Project Success, Failure, and

Everything in Between," University of Minnesota , 2005.

102

Appendix

P: Probability

I: Impact factor

Table 12 FMEA Analysis - Developers

Scenario P I P*I Rank

Architecture and Design

There are no distinctive error codes users can respond on 5 1 5 4

No clear development practice (design, develop, text,

document)

No clear design and documentation

Build and installation is not enough documented

Missing high level architecture document

Design choice are not documented

No clear iterations, sprints, releases

No clear development practices

Testability

No clear test cases and no automation 3 4 12 1

Requirement

No clear priorities in design roadmap 5 2 10 2

Initial requirements are not clear

No clear prioritization

No clear requirement for multi user

No clear insight in usage(end-use scenarios)

103

Usage

No clear view of the installed base 2 2 4 5

No realistic usage scenarios from practice and industry

No access to end user data

Tool

No proper IDE support for development and debugging 3 2 6 3

No proper execution trace logging or debug tool

Deployment

Performance not well understood 2 5 10 2

Client environment affects behavior

Server environment affects performance

Dependency on Oce` with little support

Table 13 FMEA Analysis - End User

Scenario P I P*I Rank

Documentation

No usage examples provided 4 2 8 6

No clear distinction on which DF version do I have now,

which new features were introduced

No local help (On the server and context sensitive)

Inspirational corner “Architectural patterns”, where to

find and what to share?

Representation / Position Inconsistencies

Unwanted position of blocks when unhiding or refresh- 4 3 12 3

104

ing

Unwanted behavior of visible elements

Screen does not look like last time opened(Expected)

When I reopen my DF session, it should have the same

look and feel even after upgrading(no messed up views)

Another user have messed up my view

Data Inconsistencies

Lack of multiuser support 4 5 20 1

Changes are overridden

Lack of consistent view

Do not delete things that are still in use

Error prone

Multi user inconsistency

I want to have warnings for inconsistencies

Browser Support

My browser is not fully supported 3 3 9 5

DF in tablet, only left click works

Browser dependency

Message Handling / Performance

Lack of proper messaging 5 3 15 2

Slow execution

No feedback on “longer actions”, user presses again

Too slow in longer actions

105

When DF backend is doing a time consuming task, I

want to know the set of progress

Bad performance indication

“Busy” sign is confusing

Better error and completion message

Unclear error messages, what to do?

Error messages visible only for few seconds then they

disappear.

 UI

When someone changes my models, I want to be noti-

fied

5 2 10 4

Not enough color contrast

Too many clicks

UI is not very intuitive (too many clicks, difficult to find

function, not consistent behavior and representation)

Representation types of other projects are present in my

project which creates confusion, same for unit.

Actions can be optimized but need end user input.

Simplicity, I want to see only the essential concepts.

Check progress per user “custom queries”

External Service/Server

Breaking server 2 4 8 6

I don’t care that service X is not started, everything

should work always

Which models are supported in this instance?

106

Server is down (What to do? Whom to call?)

If any service is down on the server, I get the notification

(Example: Excel)

JS Wrapper API Code Snippet

Unit Tests Snippet

107

About the Authors

Navaraj received his MS in Computer Science and In-

formation Engineering from National Taiwan University

of Science and Technology, Taiwan in 2012. He did his

MS thesis on Information Retrieval entitled “Reviewer

Recommendation using Academic Tag Extraction based

on Boolean and Vector Space Model”. His thesis pro-

posed a recommendation system which assists journal

and conference editors to find suitable reviewers for the

proposal. After his studies he worked as Software Engi-

neer in Leapfrog Technology Inc., a software develop-

ment company based in Nepal. Between 2013 and 2015

he worked at the Stan Ackermans Institute of Eindhoven

University of Technology, where he completed the

Software Technology program.

Arash was born in March, 1987 in Isfahan, a city in

the center of Iran. He graduated with a B.Sc. in Soft-

ware Engineering at University of Isfahan in Isfahan,

Iran and moved to France to pursue his graduate

studies. He graduated with an M.Eng. in Computer

Science at ENSEEIHT in Toulouse, France in 2011.

For the final project of his master thesis, he joined

the media system research laboratory in Singapore as

a Research Assistant. He continued his research in

Multimedia system laboratory at Telecom ParisTech

in Paris, France. As an industrial experience, he

completed a professional degree in engineering at

Eindhoven University of Technology.

