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1. INTRODUCTION. 

1.1. Circuits containing periodically-operated switches. 

Circuits containing periodically-operated switches are in 

some respects the simplest circuits with time-varying elements. 

Nevertheless~ a general theory of these circuits is not known al

though various systematic methods of analysis D3,30, 37, 66-69] 

and syn thesis [ 37, 67, 68 ] have been published by Bennett, Desoer, 

Kurth and the author, following an earlier analysis of a particularly 

simple case by Belevitch [10]. A certain amount of additional work 

has been done by the author (including a treatment by means of an 

integral equation related to the Wiener-Hopf equation of the the~ry 

of optimum filters), but this has notbeen published. 

For certain subclasses, however, theories have been deve

loped which are valid within certain limitations. For switched modu

lators (such as the ringmoiulator, etc.) a simplified theory exists 

which assumes the modulators to be connected to strongly idealized 

filters. This theory was first proposed by Caru thers [ 20 J and 

Kruse [_ 64 J and has been extended by various au thors. It is · described 

in the books by Tucker ~9, 100 ], Belevitch [12] and (toa lesser 

exten t) Henkler [ 55] • Its main deficiency is that i t assumes in 

fact the filters to be "overidealized" in the sense that they cannot 

be approximated arbitrarily closely by means of rea lizable networks. 

The sampled data systems form another subclass which seems 

to have been described first by Oldenbourg and Sartorius [ 75] and 

which has been treated extensively in the literature (among the many 

books on this subject, see e.g. [ 58, 59, 97, 98 J). In this case 

however the approach is closer to control system theory than to true 

network theory; different parts of the system under consideration 

are usually assumed to be interconnected by means of decoup~ing de

v:i.ces so that the analysis problem is appreciably simplified. 

In the present series of lectures, we shall deal exclusively 

with a third subclass formed by the resonant transfer circuits. For 

these, a theory has now evolved which can be considered to be a 

true and general network approach. 
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In several respects, this theory bears a close relationship to 

the theory of Sampled data control systems. 

There exist, of course, many other types of circuits 

containing periodically-operated switches, which do not fall, or 

at least, do not necessarily fall into one of the subclasses mentioned 

above (see e.g. [ 2, 47, 52, 65, 71, 89, 95 ]). For the sake of brevity, 

however, we have to omi t discussing them her·e any further. 

· 1.2. Resonant-transfer circuits. 

The resonant-transfer principle has been discovered inde

penden tly by Haard and Svala [54] in 1952, by Cattermale [ 21 , 22 ] in 

1954, by French [48] in 1955 and by Lewis [72] in 1957, although 

the basic idea behind i t is not really new (see e.g. [ 51] . ). The aim 

of all these inventors was to find an efficient and bidirectional 

methad of PAM modulation/demodulation for use in TDM-PAM (time

division multiplex, pulse-amplitude modulation) electronic telephone 

exchanges *. For such exchanges, the modulation/demodulation process 

has to be a lmast lossless and of equal quality in either direction 

of transmiss ion. 

Later on, it has been realized that the resonant-transfer 

principle could also be used advantageously for various other 

applications, in partictilar in PCM (pulse-code modulation) eneaders 

[ 23, 24, 28] for delta modulation a nd for conventional AM (amplitude 

modulation) with SSB (single sideband) or DSB (double sideband) 

transmission. One can, of course, also take advantage of the possi

bility that resonant-transfer circuits can serve simultaneously as 

PAM and as AM modulators. In an electronic TDM-PAM exchang e one 

can e ·.g. enter the exchange at audio frequency at the subscriber s i de 

and leave it again at carrier frequency at the junction side. In this 

case the frequency transposition should not only be done towards 

frequencies of the form F.:!:,f (F the sampling frequency, f the input 

frequency) a s i s commonly do:ne in ordinary modulators, but als o 

towards frequencies of the form nF+f(n a positive integer). 

* For a general discussion of electronic TDM-PAM exchangès, see e.g. 

[ 7' 8' 9' 26' 34' 53' 63' 73' 76' 77' 81 ' 90' 91 ' 92' 96 J • 
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Among the first studies on resonant-transfer circuits, 

the most important is certainly the one by Cattermale [22, 23] • 

The paper by Kraus [61] takes up similar ideas but complements 

them in various respects. Same of the results first given by Catter

male have later been found independently by Thomas [94 ]. Stimulated 

by Cattermole's work, a general theory of resonant-transfer 

circuits has been developed by the au thor [38 - 46 ] • Other methods 

of analysis have been publisbed by Desoer [29] , Svala [93] , French 

and Harding [49],Perkins [78] , May and Stumps [74] , Kaden [60] 

Feder [36] , Darré [27] and Leberwurst [70] • Broux has examined 

certain crosstalk [16] and amplification [17, 18] problems. 

Various non-reciprocal resonant transfer devices have been described 

by Adelaar [3] and Edrich [32, · 33] • Further contributions are due. 

toAdelaar [4, 5, 6 ], Price [83] , Svala [92] , Rosenoer. [private 

communica ti on ] ,Aà.gaard [1] and Kraus [62] • A very incomplete list 

of additional patents is [35, 85-88] • Many of the papers on 

electronic TDM-PAM switching systems mentioned in the footnote on 

page 1.2. also contain descriptions of the resonant-transfer principle. 

A new possibility ~f application for the resonant-transfer 

principle has been discovered more recently. Posehenrieder [81] had 

noticed thà.t a certain chain matrix derived in[43] is very similar 

to the chain matrix of variou~ distributed-parameter two-ports. This 

has led him to propose the realization of filter networks built of 

capacitances and resonantTtransfer switches only and having pro

perties mathematically identical to those of certain transmission

line networks and machanical filters. Further research into this 

subject by the author has shown that even more flexible designs 

than these proposed by Posehenrieder can be realized. These corres

pond in a certain sense to the most flexible of the transmission

line circuits originally proposed by Richards [84] , (i.e. those 

in which capacitances and inductances of a lumped parameter circuit 

are individually replaced by transmission-line elenents), but 

without invalving the technological difficulties which make these 

transmission-line circuits impractical. These results appear here 

for the first time. 
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It is clear that only a summary of the various results 

obtained so far in the theory 'of resonan t-transfer circuits can 

be given in these lectures, and that proofs, if given at all, can 

only be ske tched. For. further resu lts as well as for all details, 

the original literature should be consulted. 
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2. GENERAL PROPERTIES OF PERIODICALLY-VARYING CIRCUITS. 

In order to simplify the subsequent discussions, we shall 

summarize in this section some general properties of periodically

varying circuits, to which also belang the circuits containing 

periodically-operated switches. We assume throughout that we are 

dealing with linear circuits, even if this is not explicitly 

stated. 

2.1. Fundamental properties. 

Since all differential equations descrihing the network 

are linear and have real coefficients, the methad of analysis by 

means of complex exponentials remains valid, just as for linear 

constant networks. 

Consider then a network whose parameters are varying 

with period T and assume that a complex excitation 

x(t) = A ept (2 .1) 

is applied to it, where A and pare complex constants. As Zadeh ~02] 

and Belevitch ~~ have pointed out the steady-state response 

to (2.1) can be written 

Y = A H(p,t) (2.2) 

where the system function H(p,t) is independentof A and periadie 

in t with period T. If the actual excitation is equal to the real 

part of (2.1), the actual steady-state response will be equal to 

the real part of (2.2), and every other possible response differs 

only by an additive term corresponding to a free oscillation. 

Unless a system function is in fact independent of. t, its 

value depends also on the choice of the time ~rigin. If the time 

origin is shifted from ~ero to t , H(p,t) is changed int~ H(p,t+t ). 
0 0 

H(p,t) can also be developed into a Fourier series, 

6o 
jnQt 

H(p,t) = E H e (2.3) n 
n=- oo 

where 
Q= 21tF, F = 1/T . (2.4) 
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A qu~ntity such as H. ejn!:tt will be called the component of order 
n 

n of H. By 

H jnQto 
e • n 

shifting the time origin to t , H is changed into o n 

From these considerations, we conclude that if a perio

dically-varying circuit is driven by an excitation of the form 

(2.1), the factorept is justas superfluous as in case of constant 

circuits. Thus, if i(t) and v(t) are e.g. a current and a voltage 

under exponential steady , state conditiöns, it will in general be 

sufficient to consider the periadie functions I=I(t) and V=V(t) 

defined by 

(2.5) 

Just as in case of constant networks, we may then speak of the 

current I and the voltage V instead of the current i and the 

voltage v. If clarity requires, these latter ones will also be . 

called respectively the instantaneous current and the instantaneous 

voltage. 

We shall henceforth aasurne that rms values are used 

throughout. This way, the physical excitation actually applied is 

n times the real part of the complex excitation, and the response 

actually obtained is then also ·~times the real part of the 

corresponding complex response, 

2.2. Power transmitted • . 

ponsider a port of a periodically-varying circuit and 

let V and I be respectively the voltage and the current at this 

port under exponential steady-state conditions. We have 

V = L: V ejnQt, 
n n 

Assuming p = j oo , wi th w re al, and 

I = L: I e j nQt • 
n n 

(k = any integer), 

the average power P delivered through the port is given by 

P = Re V* I 
n n n 

(2.6) 

(2.7) 

(2.8) 



-2.3-

Whenever we write p = jW , we shall always assume that 

wis real. Furthermore, whenever power is considered we shall al

ways assume p = jw , with w satisfying (2.7). 

2.3. Effective behaviour. 

Consider a periodically-varying circuit N terminated 

at port 2 by a constant resistance R2 and at port 1 by a souree 

of voltage e = E ept (E a constant) in series with a constant 

resistance R1 (fig. 2.1). The following system functions are 

particularly important, the transfer function 8 21 defined by 

_{R;' v2 -~ 
821 (p,t) = 2~R~. 1r = -2VR1R2 I 2/E (2.9) 

2 . 

and the reflection function 8 11 defined by 

811 (p,t) = (2V1 - E)/E = (E- 2R1I 1 )/E. 

These definitions are analogous to those of the transfer ànd 

reflection coefficients of constant networks. 

(2.10) 

The Fourier expansions of V1 , 1 1 , v
2 

and I
2 

can be written, 

with i = 1 or 2, 

V.(t) = L: 
~ n 

jhQt 
V. e , 
~n 

and those of 8 21 and 8 11 

We have for the 821 h, the conversion coefficient of order n, 

~fff1 V 2 n _ r;::--;;-r = 2 1~ ~ = -2 ~R1 R2 ,r2 /E 
2 . . n 

(2.1 1 ) 

and for 8 11 n' the reflection coefficient of order n, 

(2 .12) 

=(Z10- R1)/(Z10 + R1)' 

s11n = 2V1n/E = - 2I1nR1/E, n F 0 (2.13) 

where Z1o= V1of 110 is the effective input impedance at the 

complex frequency p. 
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Finally, let P be the maximum power which can be 
ma x 

delivered by the source, P 1n the power delivered through port 1 

by the component of order n, and P
2

n the power delivered to the 

load by the same component, we have 

p 
ma x 

2 
=IEI/4R1 , 

2 Is I = P /P 21n 2n max~ 

P. 
~n 

= Re V~ I . 
~n m 

n I O. 

2.4. Reciprocity and quas~reciprocity. 

i = 1 or 2, 

If a linear constant network is reciprocal, we have 

s 21 =s 12 , i.e. the transmissibn properties between ports 1 and 2 are 

the same in the direction 1 ·- 2 as in the direction 2 - 1. Extension 

of the concept of reciprocity to linear periodically-varying net

works requires that the frequency transposition, which then usually 

takes place, and the dependenee of the system functions on the 

choice of the time origin be taken intb account. We shall therefore 

say that a periodically-varying network is reciprocal between ports 

1 and 2 with respect to t
0 

if, after shifting the time ~rigin to 

t , the transmission properties are the same in both directions 
0 

under the following conditions: if for the direction 1 -2 the 

(complex) frequency injected at port 1 is p
1 

and the useful 

frequency recei ved at port 2 is p
2

, the useful frequency recei ved 

at port 1 for the direction 2 -1 is again p
1 

if p
2 

is injected 

at port 2. Taking into account the fact that p
2 

is necessarily 

of the form p 1 + jn Q as well as the rule given in par. 2.1. for 

the influence of a change of the time origin on a syste m function , 

the conditions for reciprocity between p6rts 1 and 2 can be written 

as follow: There exists a value t 0 such that the conversion 

coefficients satisfy the two (equivalent) relations 

/""\' -J·2not0 s21n(p) = s12,-n (p + jn~~e . (2.14) 
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S ( ) S ( . Q' -j2n0t0 
12 p = 21 p + Jn ,e n ,-n , 

After shifting the time origin to t , the following relations 
0 

are then satisfied 

s12 . (p + jnQ), ,-n 

8 12n(p) ~ 821,-n(p + jnQ). 

As Duinker [31 ] and Belevitch [12] have shown, a circuit is 

reciprocal with respect to a time t if its only time-varying 
0 

(2.15) 

elements are resistances varyi ng symmetrically in time with respect 

to t • As a switch is by definition a limiting case of a varying 
0 

resistance, circuits with periodically-operated switches will be 

reciprocal if all switches operate symmetrieallyin time with 

respect to a certain time t • 
0 

From a practical point of view, the reciprocity so 

defined is too severe and cannot be satisfied by certain networks 

which, however, are perfectly usable in bidirectional circuits. 

For this reason, we shall make use of the more general concept 

of quasi-reciprocity which we define as follows. We shall say that 

a periodically-varying circuit is quasi-recipiocal if th~ trans

mission in the direction 2 -1 differs from the one in the direction 

1-2 only by a uniform delay 6 1 at the stage of the frequency p 1 
and a uniform delay 6 

2 
at the stage of the frequency p

2 
•. This 

implies that the following two (equivalent) conditions be 

satisfied 

S ( . Q) 2p 1l + jn fi. 6 - 6 1 
) = 12 p + Jn e ,-n 

where 
2 61 ~ 61- IJ. 2. 

From the point of view of a signal traversing the 

(2.16) 

(2.17) 

(2.18) 

circuit, the total delay difference 2 IJ. is the only one of impor

tance*.Moreover,if we change the time origin to t
0
,this difference 26 

* According to the choice of the signs of 6 1 and 6 2 adopted here, 
2A expresses in fact the additional delay of direction 2 - 1 

with respect to the delay of direction 1 --.2. 
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is not altered while 6 1 is replaced by 6'-2t ~ 
. 0 

The concept of quasi-reciprocity can, of course~ also 

be applied to constant circuits. Such a circuit will be called 

quasi-reciprocal between ports 1 and 2 if we have 

Note that for a gyrator we h~ve s21 = - s
12 

which cannot b~ 

'satisfied for all frequencies by this expression. 

(2.19) 
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3. BASIC PRINCIPLES OF RESONANT-TRANSFER CIRCUITS. 

3.1. Basic resonant transfer circuits. 

Consider first the circuit of Fig. 3.1. It contains two 

equal capacitances C, one transfer inductance 2L and a switch S, 

which tagether form the simplest type of resonant-transfer arrange

ment. 

Suppose that the switch S is being closed at t=O and that 

it is being opened again at t = ~, where 

(3.1) 

is equal to half the resonant period of the circuit. The charge 

initially present on the left-hand capacitance will then p~ecisely 

have been transferred to the right-hand capacitance and vice-versa. 

Withother words, by keeping the switch closed fora period equal 

to ~ , we have obtained a means to produce a controlled interchange 

of the charges initially present on the two capacitances. 

Another circuit which produces the same result .is shown 

in Fig. 3.2. where we assume that the switches s 1 and s
2 

are closed 

simultaneously fora period still given by (3.1). The advantage of 

this new circuit is that certain parasitic capacitances which are 

unavoidable in practical situations can be absorbed into the central 

capacitance 2C/3. 

Consider next the simple resonant-transfer circuit shown 

in Fig. 3.3.It camprises two two-ports N1 and N
2 

which, for 

simplicity, we may assume to be · identical. At pott 1, it is fed 

by a souree of voltage E, resistance R1 and frequency p = jw, and 

at port 2 it is terminated by a resistance R2 • Ports 3 and 4 are 

interconnected by a small inductance 2L and a switch s. At h igh 

frequency, N1 and N2 reduce at ports 3 and 4 to simple capacitances c. 
The two capacitances C, the inductance 2L and the switch S togéther 

clearly form a ~esonant-transfer arrangement with -r· given by (3.1). 

We assume tha:t 't is very small compared to all other resonant periods 

and time constants of the complete circuit (i.e. the circuit 

including N 
1

, N 
2 

and the termina ti ons). 
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Suppose now that S operates periodically at a rate 

F = 1/T; more precisely, suppose that S is closed during transfer 

periods defined by 

(3.2) 

t = m T, m m = • • • • • -2, -1 , 0, 1 , 2 , •• ( 3. 3 J 

and that it is open otherwise. If we assume furthermore that 

• « T we can clearly distinguish between a short-time and a 

long-time behaviour. The short-time behaviour is determined by the 

resonant-transfer arrangement alone. For the long-time behaviour, 

however, the detailed phenomena in this resonant transfer arrange-

ment are without importance. It simply acts as if at regular discrete 

instants tm giveh by (3.3) the two capacitances C would instantaneously 

interchange their charges. 

The current i flowing between terminals 3 and 4 must be 

of the general form (2.5). On the other hand, it is composed of 

short pulses so that we can write 

I = J Ä( t) (3.4) 

where 
00 

L: ó(t- mT), 
m=-oo (3.5) 

ó(t) being,in the usual notation,a unit impulse which we may 

assume to be ideal and J being a constant (in general complex) 

having the dimensions of a current. Moreover, if N2 has suitable 

low-pass properties and if w<Q/2 = ~F, the output signal appearing 

at port 2 wïll again be an almest sinusoidal signal of the same 

frequency was the input signal. This shows that the circuit of 

Fig. 3.3. can serve to transferm a sinusoidal iriput signal first 

into a corresponding PAM-signal i(t) and then back into a continuous 

signal similar to the original one. Furthermore, as N
1 

has been 

assumed to be identical to N
2

, the low-pass properties of N
1 

in turn 

will prevent the various frequency components (except w) contained 

in (3.4) form reaching the souree resistance R
1

• 



This is essential if high overall transmission efficiency should be 

obtained since these other frequency components would dissipate part 

of the available energy in R1 • 

An ~portant result of Cattermole's theory can now be 

stated: lossless transmission in either direction is obtained be

tween the input and output ports 1 and 2 if N1 and N2 are ideal open

circuit low-pass filters with cut-off frequency f equal to half the c 
sampling rate, i.e. if f = F/2. This result is quite remarkable since 

c 
no similar result for conventional modulator circuits is known. As 

has been mentioned in the introdûction, the ideal filters used in 

the theory of conventional modulators are in fact 11 overidealized11 , 

but this is clearly not the case here. 

Ca t termole, [ 22, 23 ] has shown tha t the same ideal open

circuit filter as the one mentioned above can also serve as ideal 

filter for various other types of resonant transfer circuits. One 

of these is the circuit with intermediate storage shown in Fig. 3.4 
where s 1 and s

2 
operate both at the same rate but not simultaneously. 

The resonant-transfer : arrangement is formed in this case by the 

three capacitances c, the two inductances 21 and the two switches 

s1 and s
2

• The transfer in either direction therefore occurs in 

two steps, the middle capacitance C serving as temporary storage 

device. 

Despite the importance of Cattermole's results, we shall 

omit discussing his theory any further, since all results obtained 

by him also follow from the more general theory te be presented here. 

3.2. Need for a more general theory. 

The discussion given in par. 3.1 leaves many questions 

open. Among these, the most important are perhaps the following: 

1. How can we analyse the circuit if the two networks N
1 

and N
2 

are distinct 1 In this case, we also want to tolerate that the 

two capacitances, which have been designated both by C ~n Fig.3.3 

and which we shall henceforth designate respectively b~ c
1 

and c;, 
may be distinct. This problem is o~ practical importance. In a 

telephone exchange, a local line may e.g. be connected to N1 and 

a trunk line to N2 .In this case,N1 and N2 may still both be 
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low-pass filters, but economy considerations require that the 

filter connected to the local line be less elaborate than the one 

connected to the trunk line. It mayalso be, however, that we want 

to select an AM-modulated signal for the trunk transmission, in 

which case N
2 

will have to be a band-pass filter while N1 may 

still be a low-pass filter. 

2. In addition to the arrangements considered by Cattermole, various 

other resonant transfer arrangements are of interest. The question 

is, therefore, how the behaviour of the most general resonant

transfer arrangement can be described in a simple and general 

way. 

3. What are the general expressions for the conversion and reflection 

coefficients ? 

4. What is the influence of the unavoidable losses in the resonant

transfer arrangement as well as the influence of the timing 

errors (duration of the transfer period nat equal to the ideal)? 

5. What are the general conditions which must be satisfied in order 

to insure egual quality of transmission in bDth directions ? 

As true reciprocal behaviour is usually no langer possible for 

time-varying circuits, we want at least to obtain quasi-recipr~ 

~ behaviour, i.e. we want the transmission properties in bath 

directions to differ at most by a constant (frequency indepen

dent) delay. 

6. What are the general conditions which must be satisfied in order 

to insure absence of reflection at one or bath terminal ports ? 

?. What are the general conditions which must be satisfied by N1 
and N2 to be ideal filters, i.e. filters such that lossless trans

mission of the overall circuit is obtained ? Such ideal filters 

are desired nat only for audio-ta-audio transmission .but also 

if frequency translation is involved. 
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8 .. In a TDM-PAM exchange, the networks N1 and N
2 

must werk under 

different eperating conditions (in particular tagether with 

different types of resonant-transfer arrangements) depending 

on the way the conneetion is set up in the exchange, What are 

the conditions for N1 and N
2 

to be ideal univeraal filters, i.e. 

ideal filters providing equal perfomance in these different 

si tua ti ons ? 

9. In practical lew-pass situations, ene always wants tö have a 

cut-off frequency lower than half the sampling rate, i.e. 

f < F/2. Under these circumstances, is it still possible to con-
c 

cèive ideal realizable networks having the properties of ideal 

filters, and more specifically of ideal univeraal filters ? More 

precisely, can an algorithm bè given allowing to design networks 

N1 and N
2 

wh6se performance is arbitrarily close to the ideal one~ 

10. Similar questions arise for band-pass problems. 

11. Although an algorithm such as the one mentioned under 9 . allows 

to design filters with arbitrary goed perfomance, it does not 

furnish optimum filters, i.e. filters whose performance is the 

best possible Under gi ven condi ti ons such as number of elemen ts , 

structure etc. The question is thus how optimum filters can be 

designed for given perf~nce criteria. 

12. What simplifications arise for the filter design problem in case 

of narrow band transmission ? 

13. Although lossless transmission can theoretically be obtained, 

some losses , which occur mainly in the decoupling transfarmers 

contained in N1 and N
2

, are unavoidablé. If these losses are 

too large, they have te be compensated, and one may even wish to 

realize an overall amplification. This can e.g. be achieved by 

including bidirectional active elements (negative resistances), 

in the resonant-transfer arrangements. The question is then how 

to design the arrangement under these conditions in order to 

insure proper behaviour. 
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14. What are the consequences for the stability of the circuit if 

active elements are provided and if at the same time absence 

of reflections is required ? In particular, what general stability 

criterion can be given and how does such a criterion depend on the 

amount of loss compensation or amplification required ? 

15 • . What are the consequences for the filter design problem resulting 

from the stability criterion mentioned unde.r 14? 

16. What is the crosstalk between various channels in case of time

division multiplexing ? 

17. How can the theory be extended to various other domains of 

application of the resonant-transfer principle, such as resonant

transfer n-ports, PCM and delta modulation circuits, resonant

transfer N- pa th filters, etc. ? 

In the subsequent sections, we shall briefly expose a very 

general theory by means of which the above questions can be answered, 

or at least partially be answered. In this theory, we shall always 

assume that from the point-of-view of the long-time behaviour, 

the pulse duration may be considered to be infinitely small. It is 

true that for certain applications it would be useful to dispose 

of first order expressions which take into account the deviation 

from this assumption. Such expressions, however, have not yet been 

compu ted, al though the theories exposed in (291 and [37] could be 

useful for this problem. 

In the last section, finally, we shall show how the general 

theory, which will be discussed bereafter, leads to a completely new 

type of application of the resonan~-transfer principle, the 

realization of filters built of capacitances and resonant~transfer 

switches only. Such a resonant-transfer switch may be formed by 

a transfer inductance and an ordinary (electroni6) switch, (as is 

also the case in the circuits of Fig. 3.3 and 3.4), or by such 
an ordinary switch tagether with additional transistors and 

capacitors [87] • This way, completely inductorleas filters can 

.even be obtained. 
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4. PULSE IMPEDANeES• 

4.1 • . Definition of the concepts pulse impedance and step resistance. 

eonsider an impedance Z(p) which reduces at high frequency 

to a capacitance e defined by 

e = 1/ lim p Z(p) • 
p-+oo 

, Suppose that we apply to it a current of the form 

i= I ept, I = I(t) = J~(t-t ) 
0 

(4.1) 

where J is a constant having the dimensions of a current and where 

A(t) is the pulse-train given by (3.5). The current pulses thus 

occur at the instants 

t = t + mT, m o m = ••••• -2 , -1 , 0 ,.1 , 2 , ••••• 

where we may e.g. assume without any restrictions that 

0 ~ t < T. 
0 

(4.3) 

(4.4) 

the 

Let v = V ept be the voltage appearing across Z due to 

current (4.2). elearly, V= V(t) is a periadie function of 

time of period T. At the instants t given by (4.3), V jumps m 
suddenly from a value Vb to a value V a, the subscripts "b" and 11 a 11 

standing respectively for "before" and 11 after". V a and Vb are bath 

proportional to J and we can write 

u = ZJ (4.5), (4.6) 

where 
(4.7) 

The proportionality coefficients Z and Re have the dimensions of 

impedances and will be called respec ti vely pulse impedance and 

step resistance. ~ is dependent on p and has a real and an imaginary 

part, 

(4.8) 
Re turns out to be a positive constant given by (seé also par. 4.2) 

Re = T/2 e. (4.9) 
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If we .interpret U as a voltage arid J as a current, (4.5) can be 

considered to express Ohm's law between U, J and z. Various other 

reasons for calling Z an impedance will be seen later. We also 

have 

V = u + ReJ vb = u RCJ' a 
(4.10) 

z J 
rv 

w = vb = ZbJ a a 
(4.11) 

where z z rv rv 

= + Re zb = z - Re• a 
(4.12) 

Suppose now that z is the input impedance of a network 

N to which a souree of voltage E ept (E a constant) is applied at 

terminals 1-1' and which is fed at 2~2' by a current (4.2) (Fig.4.1a, 

the superfluous factor ept having been dropped). The voltage 

v = V ept appearing across 2-2' can be computed by applying the 

superposition principle. With Va and Vb having the same meaning as 

before, and U being still defined by (4.?), we obtain 

where E is the voltage which would appear across 2-2' if the 
0 

( 4. 13) 

rv 

voltage souree were acting alone and where the pulse impèdance Z 

is the same as in (4.5). Expression (4.6) is still valid but a 

term E has to be added to the right-hand memhers of all four . 
0 

equations (4.10) and (4.11). Expression (4.13) clearly canbe re-

presented by the equivalent circuit of Fig. 4.1b. 

The significanee of this equivalent circuit can considerably 

be enhanced by calculating the average power transmitted to N via 

port 2. This can be done either by a frequency domain analysis, using 

(2.8), or by a time domain analysis calculating the power trans-

mitted by each pulse. One obtains 

P =Re U*J = Re U J*, (4.14) 

which is the expression one would obtain from Fig. 4.1b if U and 

J are considered to be ordinary steady-state quantities. For E = 0, 

i.e. for the situation under which (4.5) is valid, we obtain as 

for ordinary impedances, using (4.8), 

p = R IJI2 • (4.15) 
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It should be clear that any ether conclusions which can be drawn 

from expressions such as (4.5), (4.13), (4.14) and (4.15) .in case 

of constant networks in the sinusoidal steady-state also remain 

valid. Thus, e.g., the maximum power P which can be derived ma x 
from the circuit of Fig. 4.1a by means of a current of the form 

(4.2) is given by 

P =IE 12! 4 R max o • (4.16) 

4.2. Explicit expressions for the pulse impedance. 

By means of methods similar to these used in the theory 

of the z-transform, one obtains for the pulse impedance ·tne following 

expres si ons 

z 00 

= l:: Z(p + jnQ) (4.17) 
n:-oo 

z 00 A(mT)e-mpT . (4.18) = Re + T l:: 
m=1 

where Q is given by (2.4) and where A(t) is the impulse response 

corresponding to Z(p), i.e. 

Z(p) =.~ {A(t)} , (4.19) 

the symbol .~ standing, as usual, for the Laplace transfarm 

operator. (4.17) is easiest derived by means of a frequency domain 

analysis, noting that (Va + Vb)/2 must be equal to the value of 

the Fourier development of V(t) at the points of discontinuity 

t = t • (4.18) is easiest derived by means of a time domain analysis m 
by summing over the effects of all previous pulses up to t=-oo , 

The expression (4.9) for Re can be obtained by either of these 

analyses. 

where 

An integral expression for Z is 

T Z(q) aL·oo 
---;.( ...... q -"'-p_,),_T-

o-joo 1- e 

a < a < Re p , 
0 

dq 

a being the largest of the real parts of the poles of Z(p). 
0 

(4.20) 

(4.21) 



-4.4-

For p = jw , (4.20) is strictly valid only if Z is minimum

reactive, but it can easily be extended to the limitin~ case of 

non-minimum-reactive impedances by proper modification of the path 

of integration. (4.17) can be derived from (4.20) by closing the 

contour of integration by means of a large semi-eirele in the 

right-half plane, while (4.18) can be obtained by series expansion 

of the integrand of (4.20) ,making use of (4.19). 

As Z(p) is capacitive at high frequency, we can write 

with 

N 
Z(p) = l: 

i=1 

B. 
~ 

p-p~ 
~ 

T N 
Re= T/2 e = -2 l: B., 

i=1 ~ 

or, if multiple poles are present, 

with 

N 

Z(p) = i~1 

Re = T/2e 

N. B 
~ ik 

k~1 (p-p. )k 
N. ~ 

T ~ 
= 2 E Bi 1' 

i=1 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

where Nis the number of distinct poles and N . the degree of multi-
~ . 

plicity of the ith pole. Z can now be computed by means of (4.17), 

(4.18) or (4.20); in the l~tter case, the contour of int&gration 

has to be closed by means of an infinite half-eirele in the left 

half-plane. The result is best expressed in a new variable 

<ji = tanh (p T/2) 

or, for p = j w , 

We obtain from (4.22), 

and from (4.24), 

N 
2 T z Z'C<P)= = L; 

N. 
~ 

L; <llRe+(1-<P ) 2 
i=1 k=1 

where 
<I>- tanh(p. T/2) i- ~ ' 

(4.26) 

4> = tan ( wT/2). (4-27) 

ij>' -<P. 
. ~ 

(4.28) 

Bik k-1 1 a 
(k-1) ! k-1 <ji - <ji. a pi ~ 

(4.29) 

(4.30) 
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The derivation of (4.28) and (4.29) assumes in fact that 

Z(p) is minimum-reactive. These expressions remain valid, however, 

even in case of non-minimum-reactiva impedances since impedances 

of this latter type have a physical meaning only as limiting cases 

of minimum-reactive impedances. 

For p = j w, we also obtain from (4.8) and (4.17}, 

(4.31) 

· where 
00 

R(<p)= 'f R( w + nQ), X(<p)= E X(w+nQ). (4.32) 
n=-oo n=• oo 

Henceforth, Z(<~) shall also be called the '<!> -transform 

of Z(p). Although ~(<j>) is unique fora given Z(p), there exist 

an infinite number of inverse transforms Z(p) for a given Z(<j>·). This 

follows from the fact that there exist an infinite number of 

different p. which satisfy (4.30) for a givEm <P •• 
~ ~ 

It is often advantageous to make use of normalized 

quantities which we shall define as follows, R being a normalizing 
0 

resistance to be specified in each individual case: 

Z=r + jx = Z/R , :r = R/R , x = X/R (4.33) 
0 0 0 

~ ~ 

jx z/R , R/R ' X/R (4.34) z = r + = r = x = ' 0 0 ' 0 

c = T/2R , C= C/C = R /R (4.35) 
0 0 0 0 c 

i\ = pT/2 i\. = p.T/2 ( 4.36) 
~ ~ 

V - CJ:Jr/2 = 1t f/F (4.37) 

b. = B.C (4.38) 
~ ~ 0 

We then have e.g. 

<P = tanh À. (a) ' <p = tan \i (b) (4.39) 

N b. 
'Zf.. À.) E l. (4.40) = 

i:;;1 i\_f...i 
N 

1/c = lim f...z(f...) E bi (4.41) = i=1 ' À.-+ co 



-4.6-

N 1 -<!><!>· 
~ ( q,·) ;:: L: b.; -;i~-:·,,;!1.. • 

i:::1 ... 'I' 'I'~ 
(4.42) 

The variable <1> corresponds to the variable w in troduced 

by Johnson, Lindorff and Nordling [57] and is related to the 

variable z= ept used in the z-transform theory by 

<j>;(z-1 )/(z+1) • 

It has the interesting property that 

Re <1>~0 if Re p ~ 0 (4.43) 

where equally placed symbols correspond to one another. 

From an expression such as (4.17), one might conclude 

that, except for a missing factor 1/T, Z is identical to the usual 

z-transform [59] • This is not so since in the usual z-transform 

theory an expression such as (4.17) is only valid for transfer im

pedances having at least a double zero at infinity, while here this 

zero is essentially simple. 

The pulse sequence impedances G and G1 used by Catter- . 

male [22,23] are related to za and zb by 

Za = G T , Zb = G1 T • 

Kraus [62] has proposed to replace the variables U and 

J by new variables U' and J' defined by 
pto 

U' = U e 
pt 

J' = J e o 

In this case, the definition of Z is not modified and the power 

relations also remain valid. Although there are certain advantages 

to using these new variables, we have prefered not to do so in 

order to keep the formulas given here in agreement with those 

given in [43]. 

4.3. Properties of the pulse i mpedance and the step resistance. 

From the results of the two previous paragraphs, many 

useful properties of the pulse impedance and the step resistance 

can be obtained. Among these, the following should be mentioned: 

1. Z(<i>) is a Brune function (rational positive real function) of 

the variable <I> if Z(p) is a Brune function of the variable p 

(follows from (4.28),(4.29)and (4.43)together with(4.15)or(4.32)). 
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The converse, however, is .not always true, i.e. nom of the in

verse transforms of a Brune function Z(~) has to be a Brune 

function; example: a function Z(~) for which R(<p) is zero for 

a certain real value of <p without being identically zero for 

all 4> cannot correspond to any Brune function Z(p) (cf.property 

3 mentioned belowJ. 

2. Z(~) is minimum-reactive in ~if and only if Z(p) is minimum

reactive in p (fellows from (4.30) and (4.43)). 

' 3. If for ~ = j<p , RC<p) is zero for any particular value of <p , 

it is identically zero for all <p , (follows from (4.32) by noting 

that R(w) cannot be zero in an infinite number of points unless 

it is identically zero). 

4. Z( ~) is a reaetanee function of the variable ~ if Z(p) is a 

reac tance func ti on of the variable p, and vice versa • . Further

more, although Z(p) has to be capacitive at high frequency, 

Z( ~) may have a pole at ·~ =00 • More precisely we have the follo-

wing 

where 

correspondences 

z(t.) = 1 /t.c, 

z ( t.) À. 
= 2 2 c (À. +\I . . ) 

0 

I tan v I, <po = 
0 

c 1 ; c/ ( 1 + <p 2 ) 
0 

;;( (j)) 

' 
;:(~) 

V · o 

2 = c cos \1 
· o 

= 

= 1/~c 

<P = 
c' (<1>2 +<p 2) 

0 

ltan 
-1 

I 4>o 

Note that ~(~) in (4.45) reduces to 1/<l>c for v = nn, i.e. 
0 

for f = nF (n an integer), a nd that it reduces to 1\i/c for 
0 

V = (2n + 1) n/2, i.e. for f =(2n + 1)F/2. 
0 0 

(4.44) 

(4.45) 

(4.46) 

(4.47) 

5. Z(~) is the input impedance of anideal open~circuit filter 

in the ~-domain if Z(p) is the input impedance of an ideal 

open-circuit filter in the p-domain, and vice versa. More 

precisely, limiting ourselves to low-pass filters with cut-off 

frequency f ~F/2 and R = R in the pass-band, we have for c 0 

z ( j v ) = r ( v) + jx ( v) , 
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= n f /F ~n /2 , 
c r(v) B -I 1 = R -

0 0 for lvl>v 

x(v)= 

and for 

c' 

the correspondin~ ~(j~) 
R {1 for 1~ 1 < ~c = 

= Ro = 0 for 1~1> ~ , 
c 

x 
R 

0 

1 = - j ln 
1t j ~:KPc • 

~-~ c 

tan \1 
.c 

(4.48) 

(4.49) 

(4.50) 

(4.51) 

Similar relations have been obt~ined in case of band-pass 

filters. All these relations can best be proved by first 

computing r(~) by means of (4.32), which is relatively 

simple to do. The imagi:r.ary part ~(~) can then be obtained 

directly by noting that z(ïj)) is minimum-reactive at the 

same time as z(p) so that the Bayard-Bode relätions [15] can 

be applied. 

Z' and Re are related by 

z(1) Re, zC-1) = -R = e (4.52) 

n/e 00 r< ~) 1L~J 
~ 

dv = I d~ r 
2c 0. 0 1+l 

(4.5;3) 

where in this last expression the equality or inequality 

sign holds depending on whether z(À), and therefore also 

.Z(<j.>) is minimum-reactive . or not. 

7. Z(~) and Re are permanent, i.e. independent of the choice 

of the time origin. This needs some explanation as we have , l 

nowhere assumed in sectien 4 that we are ~ealing with 

time-variable circuits. In fact, however, we may assume 

that the circuit under consideration belengs to a larger 

circuit containing e.g. periodically-o~erated switches. In 

this case, a change of the time crigin will modify the para

meter t in (4.2) as well as the system functions of the to-o ~ 

tal circuit, but will leave unchanged the values of Z and Re· 
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5. GENERAL PROPERTIES OF RESONANT-TRANSFER CIRCUITS. 

5.1. Mathematical definition of the resonant transfer. 

A general resonant-transfer two-port is shown in Fig. 5.1 

where the following assumptions are supposed to be fulfilled: 

* s1 and s
2 

are switches which operate periodically at a r~te F=1/T. 

N1 and N
2 

are constant networks ( usually filters) while N 
0 

may 

contain further periodically-operated switches eperating at the 

same rate as s1 and s
2

• z
3 

is the input impedance of N1 at port 3 

when terminated at port 1 by resistance R1 (i.e. with E = .0). 

Similarly, z
4 

is the input impedance of N
2 

at port 4 when terminated 

at port 2 by R
2

• c 1 and c
2 

are related to z
3 

and z
4 

by 

1/c1 = lim p Z3(p), 1/C
2
= lim p Z4(p) (5.1) 

p-ooo p-+ 00 

The switches s1 and s
2 

are closed during very short transfer :eeriods 

't1 
'U 

't2 't2 1 
(5.2) t ... 

2 . < t <·t +- and t - 2 
<t < t2m + 2-1m 1m 2 2m 

of duration 't'1 and "'2 respectively, where 

(5.3) 

m = ••••• -2, -1, 0, 1, 2 , ••••• 

and are open otherwise. t 1m and t 2 m do nat have to cortespond to 

the same instants, i.e. we may have t
1 
~ t

2
; more precisely, we may 

write 

(5.4) 

where we may e.g. assume without any restrietion that 

Similarly, we may have .-
1 

::/ .-
2

, a lthough this is usually less 

essential. The circuit is fed by a souree of voltage E and . complex 

frequency p; the currents traversing the ports 3 and 4 are. r
3 

a nd 

I
4 

respectively, and the voltages across these ports are v
3 

and 

v
4

, the factor ept being again omitted everywhere. 

* In practical situations, one of the switches s1 or s
2 

may often 

be omitted without affecting the behaviour of the circuit. 



-5.2-

~ 1 and~2 are of such short duration that we can again 

distinguish between short-time and long-time behaviour. The short

time behaviour is determined by the resonant-transfer arrangement 

alone, i.e. by C1 , c
2

, s1 , s
2 

and N
0

• This resonant-transfer arrange

ment is such that v
3 

and v4 change appreciably during the corres

ponding transfer periods. The currents 1
3 

and 1 4 are thus composed 

of short pulses which carry appreciable charges across s
1 

and s
2 

respectively. From the point of view of the long-time behaviour, 

we may thus write 

(5.6) 

where the "currents11 J and J are (complex) constauts and where . 3 4 
1:. (t) is defined by (3.5). Furthermore, we may assume that v

3 
changes suddenly at each t = t 1m from a value v

3
b to v

3
a, and 

v4 at each t = t 2m from v4b to v4a. We can thus define "voltages" 

u3 and u4 by 

and we can write, according to what we have seen in par. ' 4.1, 

where 

E 
0 

(5.7) 

(5.10) 

are the step resistances corresponding to c1 and c
2 

respectively, 

z3 and z4 the pulse impedances corresponding to z3 and z4 respectively 

and where E is the open-circuit voltage measured at port 3 of net-
o 

work N1 when port 1 is fed by the souree E in series with R
1

• 

Without going into any physical detail, we can now for

mally define a resonant-transfer arrangement as a means for 

establishing two independent linear* relations between the quantities 

v
3
a' v

3
b' V4a and V4b• More precisely, we postulate at present that 

* As we are dealing with linear circuits, we assume that the 

resonant-transfer arrangement is linear too. 



-5.3-

the arrangement composed of N
0

,c1 ,c
2

,s 1 and s
2

(Fig.5.1) imposes the 

existence of two such relstions whose coefficients depend 

exclusively on this arrangement but not on the rest of the circuit 

(they may depend, of course, on pandT). Solving theseequations 

with respect to v
3

a and v4a, we can write 

va = Bvb 

wtiere va and vb are the veetors 

V 
a 

and where B is the voltage transfer matrix 

(5.11) 

(5.12) 

whose elements only depend on the resonant-transfer arrangement 

itself. 

Taking into account (5.7) and (5.9), we can now transfarm 

(5.11) into two linear relations between u
3

, u4 , J
3 

and J 4• These 

two new relations thus define a certain equivalent two-port N., 
~ 

called .interconnecting two-port, with port voltages u
3 

and u4 
and port currents J

3 
and J 4• Finally, taking into account (5.8) 

we obtain for the original circuit of Fig. 5.1 the equivalent 

circuit shown in Fig. 5.2. 

The two-port N. can, of course, be characterized by the 
~ 

various matrices used in conventional two-port theory. Hereafter, 

we shall make use of its chain matrix A defined by 

u3 = A33u4 - A34J4 

J3 = A43U4 - A44J4 

and related to B by 

A33 = [ (1 +B33)( 1-B44)+ B34B43J / 2 B43 

A34= [ (1 tB33)( 1+B44)- B34 B43J RC2/2 B43 ' 

(5.16) 



as well as (inc~dentally) )of its impedance matrix . 
,w33 w34 

w =~43 w44 • 
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(5.20) 

The matrix B, however, presents also many advantages. It can be 

shown that it cannot cease to exist for Re p~O if the two-port N 
0 

(Fig. 5.1) is composed of passive elements, including, possibly, 

periodically-operated switches. The scattering matrix S. 
1 

with respect to terminating resistancesRC
1 

at port 3 and 

port 4 is related to B by 

B34 R) 
B44 

where 

The interconnecting two-port clearly is reciprocal if 

and i t js quasi-reciprocal if 

where ~ is a certain constant. 

-p~ e 

of N. 
1 

RC2 at 

(5.21) 

(5.22) 

(5.24) 

Note that the various two-port parameters of N. do not 
1 

have to be constants but may depend on p. 

5.2. Computation of the conversion and reflection coeffici ents. 

With the aid of the equivalent circuit of Fig. 5.2, the 

conversion and reflection coefficiénts of the original circuit 

of Fig. 5.1 can now be computed. 
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Using the definitions given in sectien 2, we obtain* e.g. in terms 

of the chain matrix of N., 
l. -jnQt2 

s21 n (p) = 2 VR1 R~ M1 (p) M2 (p+jnQ)e /DA' (5.25) 

s11o(p) 
2 

(5.26) = p1-2 R1NA4 M1(p)/DA' 

s11n(p) -2R1NA4M1 (p) 
-jnQt1 .. 

<5·27) = M1 (p+jnQ)e /DA 

-jnQt 
s12n(p) =2 VR1R21 M1(p+jnQ)M2(p)e 

1
det À/DA ' (5.28) 

-jnQt 
S22n(p) =-2R2NA3M2(p) M2(p+jnQ)e 2/DA' 

where 2 11 (p)-R1 222(p)-R2 p p -
1 = 2 11(p)+R1 ' 2- 222(p)+R2 ' 

NA3 = A43z3 + A33' N A4= Alf3'Z4 + A44' 

~ ~ ~ 

DA= A43z3z4 + A44z3 + A33Z4+ A34• 

In these expressions, z 11 , z
22

, M
1 

and M
2 

are the following 

quantities:z11 is the open-circuit input impedance of N1 seen 

(5.30) 

(5.31) 

(5.32) 

(5.33) 

from port 1, z22 the open-circuit input impedance of N
2 

seen from 

port 2, M1 the open-circuit voltage ratio of N1 in the direction 

1- 3 if N1 is fed at port 1 by a voltage souree of resistance R1 , 

and M2 is the open-circuit voltage ratio of N2 in the direction 

2 -4 if N2 is fed at port 2 by a voltage souree of resistance R
2

• 

As we assume N1 and N2 to be reciprocal, M
1 

is also equal 

to the current transfer ratio of N1 in the direction 3-1, when port 

1 is termina ted by R1 , a nd M2 is als o equal to the current transfer 

ratio of N2 in the direction 4- 2 when port 2 is termin:ated by R
2

• 

* The expressions given in [ 43 J fellow from these given here if 

we chose t 1 = O, t
2 

= T1 • 
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5.3. General properties of the interconnecting two-port. 

Some of the important properties of the interconnecting 

two-port N. are the following: 
~ 

1. The only parameters of N1 and N
2 

having any influence on the 

various matrices by means of which N. can be described are 
~ 

the capacitances c1 and c2 • Consequently, the properttes of 

N. depend exclusively on the resonant-transfer arrangement it
~ 

self. 

2. The interconnecting two-port is permanent, i.e. its two-port 

parameters are independent of the choice of the time origin. 

3. The average power P delivered to the two-port N of . Fig. 5.1 
0 0 

is given by 

(5.34) 

This corresponds to the power dissipated in the two-port N. 
~ 

of the circuit of Fig. 5.2 . if this circuit iè interpreted as 

in ordinary steady-state analysis. 

4. Ni is passive at the same time as N
0

• 

5.4 • . Reciprocity and guasi-reciprocity. 

As has been done above, we shall assume hereafter that the 

networks N1 and N2 are reciprocal. Under these conditions, the 

circuit of Fig. 5.1 will be reciprocal in the sense discussed in 

par. 2.4. if, and only if the following conditions are. satisfied 

by the interconnecting two~port: 

1. N. itself is reciprocal, i.e. (5.23) is satisfied. 
~ 

2. The coefficients A
33

, A
34

, A
43 

and A44 are either all single-

valued (e.g. rl'itional) functions of 4> or they are all the pro

duct of ~1-~ r· or 1/ ~ 1- <P·2 ' by single-valued functions of <l> • 

In terms of the matrices B or W, condition 2 just mentioned can 

also be replaced by the following two conditions to be satisfied 

sirnul taneously: 
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3. The coefficients B33 and B44 (the coefficients w33 and w44 ) 
are single-valued fu nc ti ons of <ji. 

4. The coefficients B34 and B43 Cw34 and w43 ) are either bot? 

single-valued func tions of <ji or both the product of'J\- <1>
2 . or 

1/ ..J1 - 4>
2 1 

by single-valued functions of <l>. 

Similarly, the circuit of Fig. 5.1 will be quasi-reei

procal in the sense diseussed in par. 2.4 if, and only if the follo

wing eonditions are satisfied by the intereonnecting two-port: 

1 • 

2. 

N. itself is quasi-reciproeal, 
~ 

The eoefficients A33 , A34 , A43 
product of e-p~ , where ~ is a 

i.e. (5.24) is satisfied. 

and A44 are either all the 

certain constant, by single-

valued funetions of <j> , or they are all the product of 

~1- <j>·
2 

1 

e -p ~ or e -p~ / V1- q,2 ' by single-valued func ti ons of <j> • 

Here again, in terms of the matrices B and W, condition 2 just 

mentioned can also be replaced by the following two conditions to 

be satisfied simultaneously: 

3. 

4. 

The coefficients B33 and B44 Cw33 and w44 ) are both single

valued functions of c)> • 
p~ -p~ ( p~ . ·e-p~) The quantities B34 e and B43 e Q3W 4 e and w43 -~ 2 . 

both the product of V1- cp- or 1/ 1-c)> by single-valued 

functions of cj> • 

5.5. Absence of reflection at the terminal ports. 

are 

In this paragraph, we shall assume throughou t tha t p=j w • 

Furthermore, for reasans of simplicity we assume that only one 

useful frequency has to be considered at eaeh terminal port; this 

éxcludes in particular DSB input or output signals. We shall say 

that no reflection oecurs at a port at whieh the circuit is being 

fed by a s~urce if no power is returned neither at the frequency 

of the souree itself nor at any of the additional frequencies 

generated in the circuit. 

Assume first that the circuit under consideration is fed 

at port 1 as shown in Fig. 5.1, with p=p1 =jw1 • 
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No reflection will occur if for p=j~1 the reflection f u nction 

s11 Cp,t) is identically zero for all t, or, what amounts to the 

same, if all the reflection coefficients s11 n(p) (n= ••••• -2, . 

-1, 0, 1, 2, ••••• ) are zero for p=j ~ 1 • Using the res~lts of 

par. 5.~, and assuming that N1 is lossless, this leads to the 

following two conditions to be satisfied for p=j~1 , 

for n /; O, (5.35) 

(5.36) 

the asterisk expressing, as usual, the complex conjugate of the 

corresponding quantity, Expression (5.36) can equivalently be 

expressed in terms of the mà trix B by . 

(5.37) 

where 

These conditions can be interpreted as expressing that the power 

available from the source, i.e. IEI
2/4 R1 , is completely trans

mitted to N via port 3. 
0 

Assume next that the circuit is fed at port 2 instead of 

1, with p=p2 =j<üz, and that N
2 

is lossless. No reflection will 

occur in this case if we have for p=j~2 , 

for n I O, 

and 

this last condition being equivalent with 

(5.39) 

(5.40) 

In practice absence of reflections will usually be 

required simultaneously in both respective pasa-bands of· the 

filters N1 and N
2

, i.e. for all useful frequencies ~1 at port 1 and 

for all useful frequencies~ 
2 

at port 2. 



In this case, we may always assume tha t a frequenc.y w 1. irtjected 

at port 1 is received as w
2 

it port 2 and vice versa, i.e. 
w_w _ mQ 
2 1 - (5.41) 

where m is an integer. Assuming that N
1 

and N
2 

are lossless (at 

least at the useful frequencies w1 and w 2 respectively), the 

conditions (5.35) to (5.40) must then be satisfied simultaneously, 

the first three at p=j w 1 and the last three at p=j w 2 =jw1 +jm Q. 

For circuits which are at least quasi-reciprocal, however, (5.36), 

(5.37), (5.39) and (5.40) do notchange if pis replaced by 

p+jn Q. In this case, these four conditièns may thus be tested 

either at p=jw 1 or at p=jw2 • 

As we shall see later, the simplest ideal filters for 

resonant-transfer circuits are those for which Z is equal to Re 
in the pass-band. If N1 and N

2 
are such filters, we thus have 

2'3 == RC1' Z4= RC2' (5 .42) 

i.e. P 
3 

= P4 = O. (5.37) and (5.40) then reduce respectively to 

and (5.43) 

which are remarkablY simple. They express that v
3

a does not depend 

on v3b, and v4a not on v4b. 

If the conditions (5.43) are fulfilled , they will usually 

be fulfilléd ' at all values of p, in contrast to (5.35)to . (5.40) 

which will usually be realized at most in the ;respective pass-bands 

of the filters N1 and N2 • 



-6.1-

6. DIRECT AND INDIRECT RESONANT-TRANSFER. 

6.1. Direct resonant-transfer. 

Suppose that the two switches s1 and s
2 

operate simul

taneously, i.e. that t 1 =t
2 

and -r 1=-c
2

= 't'. Suppose furthermore that 

the netwerk N
0 

in Fig. 5.1 is without memory, i.e. that no energy 

is stared in it at the beginning of each transfer period~ and that 

N is constant during each transfer period. If these various con-
o . 

ditions are fulfilled, we say that the resonant-transferis direct, 

and the netwerk N is then called a resonant-transfer switch. 
0 

Consider under these conditions the netwerk N corres-
a 

ponding to the resonant-transfer arrangement during a transfer 

period and let z33' z34' z43 and z44 be the elements of its impa

dance matrix (Fig. 6.1). We obtain 

Y' -1 
where A...-r 

( 6.1) 

(6.2) 

{ }represents the inverse Laplace transfarm taken at 

t= -r. In this case, the two~port Ni is thus constant. It is 

furthermore reciprocal if z
34

=z
43

, as can be seen ;froin (5.23). 

All the reciprocity conditions given in par. 5.4. are then satis

fied, the overall circuit of Fig. 5.1 being reciprocal with 

respect to t
0
=t1 or t

0
= t 1+T/2. This is in agreement with the 

general réciprocity condition discussed in par. 294. The equivalent 

circuit of Ni for z34=Z43 is a Gesistive two-port. 

In most practical situations, N can be separated into 
a 

two parts which differ at mast by a different choice of the 

impedance level.'Designating in this case by Z and Z respectively 
0 c . 
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the open-circuit and the short-circuit impedance of the l~ft one 

of these two parts, the relations (6.1) and (6.2) can be replaced 

by simpler relations leading to the equivalent circuits shown ~n 

Fig. 6.2 where 

c =(1+B )/(1-B ), c c . Tl=(1+B )/(1-B ), 
0 0 

B =C
1
X-1 

{Z } , 
0 't 0 

B =C
1
;(-1 {Z } , 

c 't c 

In practice, one usually has 

0~ c«1, 

In the1 ideal case c =0, Tl= oo , N . thus reduces to a simple 
l. 

through-connection. 

6.1.2. Basic direct resonant-transfer arrangements. --------------------------------------------

(6.3) 

(6.4) 

(6.5) 

(6.6) 

Consider first the árrangement of Fig. 6.3 where R and 
s 

R tak~ into account the unavoidable losses in the coil. · 
p 

We use the following notation: 

2C1c2 I 1 
C= 

C1+C2 ' (I) = 
vLc' 

-c'=n/w' ' c c 

w'L R QsQ;,e 
Q = ~ Q - ____;,e_ 

R - 'L ' Q= Q +Q s p wc 6 s p 

(6.?) 

(6.8) 

In this case, we always have T) = oo while c can be compu ted by 

means of the results of pa r. 6.1.1. Limiting ourselves here to 

high quality inductors and small timing errors, i.e. asçuming 

that 

Q » 1 and h-'t' 1/-c' « 1 (6. 9) 

(6.10) 
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Consider next the arrangement of Fig. 6.4 where we 

assume 
L1 c2 Rs1 ~ and c = 

C1+C2 

L2 
= ~= = 

Rs2 Rp2 0 3 
(6.11) 

We still u se the notatien (6.7) and (6.8) as well as 

Q' = 2Q Q /(4Q +Q ) s p s p 
(6.12) 

Assuming again that (6.9) holds as wellas Q'» 1, we obtain 

for c the same expression (5.53) as before while we obtain for ~ 

2 2A 2 
1/~ = n:/8Q' + n ( -r- -r' )/'+ -r' • (6.13) 

6.1.3. Inductorless resonant-transfer arrangement. -------------------------------------------

If the arrangements of Figs. 6.3 - and 6.4 . are lossless 

(Q =Q = co) and if the timing error is zero (-r ='t"), the total 
s p 

charge qo transmitted in the direction from c1 to c2 is given by 

(6.14) 

where q1b is the charge initially present on c 1 and q2b the 

charge ~nitially present on c
2

• This is precisely twice the charge 

which would be transmitted if we had simply interconnected c
1 

and c
2 

via an arbitrary resistance (which may simply be the 

lead resistance) until the voltages across c 1 and c
2 

have . become 

equal. In this case the precise duration of the transfer period 

is unimportant as long as it is long enough compared to the time 

constant of the transient behaviour. The great disadvantage is, 

however, that a considerable loss of energy now occurs, the 

equivalent circuit of N1 being in this case a simple series rasis

tanee equal to Rcs=Rc1+Rc2 • 

All this suggests to conceive a different type of 

arrangement in which c 1 and c
2 

are first simply interconnected 

via an ordinary (electronic) switch and in which some electronic 

means is provided which suèsequently doubles the charge trans

mi tted via this switch. A dovice ha ving these properties is 
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is described in a recent Siemens patent [B7J and is also mentioned 

in [82] • It is shown in Fig. 6.5 where the resonant-transfer 

switch N camprises two auxiliary transistors and two aux~liary 
0 

capacitances, with 

(6.15) 

The time constant of the discharge across the switch S has to 

be much smaller than the duration Tof a transfer period while 

the time constant of c
5 

(C6) with the input resistance of 

transistor T1 (T
2

) has to be large compared to T• The advantages 

of the circuit of Fig. 6.5 are thus that precise timing becomes 

much less important and that no coils are needed. 

6.1.4. Direct resonant-transfer circuit. 
---------------------------------

For a direct resona:nt-transfer circuit with a resonant

transfer arrange~ent as described in par. 6.1.1., the complete 

equivalent circuit becomes as shown in Fig. 6.6. The conversion 

and reflection coefficients can be computed either directly from 

this circuit or from the general expressions derived in par. 5.2. 

Neglecting higher order terros in c and 1/ TJ 

2YR
1

R
2
' M

1 
(p)M

2 
(p+jnQ) 

5 21n= 
Z3+Z4 +eRGs +Z3Z4/TJ Rep 

we obtain e.g. 

In particular, for c= 1/TJ = 0 and p=jw, we obtain, assuming 

the networks N
1 

and N
2 

to be lossless, 

(6.16) 

(6.17) 

where R
3

(w) is the real part of z
3

(jw) and R4 (w) the real part 

of z4 ( j w). 
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6.2. Resonant-transfer with intermediate storage. 

The most important circuits with indirect resonant

transfer are those with (capacitive) intermediate storage~ A 

circuit of this type is shown in Fig. 6.7 where the transfer 

occurs in two steps. s 1 and s
2 

are never closed simultaneously, 

i.e., referring to our aarlier notatien defined in par. 5.1, we 

have 

(6 .. 18) 

(6.19) 

On the other hand, s3 opens and closes at the sametime as s
1

, and 

s4 at the same time as s2 • N~ and N~ are resonant-transfer switches, 

i.e. N' together with c
1 

and C forms a direct resonant-transfer 
0 0 

arrangement N', and N" together with C and c
2 

a direct resonant-a o o 
transfer arrangement N". R' may be the leakage resistance. of C 

a o o 
while S · and R may or may not be present. If they are, R may, 

0 0 0 

according toa proposal by Adelaar[ 6], be a negative resistance 

connected periodically across C
0 

when s
3 

and s4 are open in 

order to produce an amplification of the sample stored on C • . 0 

S and R may, however, also be used as a clamping device if 
0 0 

unilateral transmission is required (par. 9.2). 

the 

can 

From the point of view of the long-time behaviour, 

curre nts r
5 

and r 6 across the switches s
3 

and s4 respectively 

be written 

(6.20) 

where Ll(t) is again defined 

voltage v =V ept across C , 

by (3.5). For the (instantane~us) 

0 0 0 -a. 
v ( t

1 
-0) = e 2 

o m 

we can write 

V (t
2 

-0) o m 
~1 . 

= e V (t2.
1 

-T2+0) 
0 ~û. 

(6.21) 

(6.22) 
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where t 1m and t
2

m are defined by (5.3) and where the (poeitive 

or negative) constants a
1 

and à
2 

characterize the influence of 

S , R and R'. At each instant t
1 

, V changes suddenly from a 
o o o m o 

value which we call v
5

b to a value v
5
a' and at each t 2m, it 

changes suddenly from V6b to V6a• This allows US to define 

"voltages" u5 and u6 by 

while we also have 

where 
RC = T/2C • 

0 0 

The interconnecting two_port N. of the equivalent 
~ 

(6.23) 

(6.24) 

circuit of Fig. 5.2 can now be considered to be composed of three 

two-ports N!, N'! 1 and N'! in cascade (Fig. 6.8). N_• is_ simply the 
~ ~ ~ -i 

interconnecting two-port corresponding toN'; it can be 
a -

characterized e.g. by its chain matrix A' which can be computed 

as discussed in sectien 6.1. Similarly, N'! corresponds to N" 
~ a 

and can be characterized by its chain matrix A". The two~port 

Ni_' has constant image impedances equal to Rco· lts scattering 

matrix with respect to terminations RCo is given by 

and its chain matrix A"' is given by 

·(cash ( a +pT/2) 
-pt:-a• . 

A"'=e 
sinlt(a+pT/2)/RCo 

or equivalently by 

sinh( tt+pT/2)) 

cosh(a +pT/2) 

A" I-- ll" .. h "' -p 6. -a I I •r:2' .no cos '-"9 ' 11-(jr, 

(6.25) 

(6.26) 

(6.27) 
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where 

T2-T1 0.1+0.2 a. _a. 
0.1 2 1 

/::;. = 2 a. = 2 = 2 

c + 

<j>tgh a RCo ( 4> + tgh")) 
A"' 

= ( <!> 

. . 
0 

+ tgha)/RCo 1 +<!> tgha 

If N! and N'! are re ciproc;al, the original circuit will be 
l. l. 

quasi-reciprocal if <X'=O, and . it will be reciprocal if in 
• 

addition /::;.= 0. A possible equivalent circuit of the original 

circuit is shown in Fig. 6.9 which camprises two three-port 

gyrators two delay lines (T1 and T
2

) and two attenuators 

(6.28) 

(6.29) 

(a..> o, i=1 or 2) or amplifiers c~~ < 0), all with characteristic 
l l. 

impedance equal to Rco· 

All the transmission and reflection properties of the 

circuit of Fig. 6.7 can now be computed. In the simplest case 

Ni and Ni_ are simple through Conneetiens whi).e a. 1 =a.2=o. 

We then have e.g. * 
2~ RCoM1 (p)M2 (p+jn Q) ~ ep /::;. -jnQt2 

s = . 21n ~ '""' 2 ~ ~ 
<j>(Z3Z4+RCo ) + RCo(Z3 + Z4) 

and for p=jw, assuming N1 and N2 to be lossless, 

2 2 4( 1+w )RCo R
3 

( w) R4 ( w+nQ) 

lj4>CZ3Z4+R~o)+ RCo(Z3+Z4) 12 

while similar expressions hold for s 12n. 

6.3. Ideal filters. 

' 
(6.30) 

(6.31) 

We shall say that the networks N1 and N2 are ideal filters 

for direct resonant-transfer circuits if they are such that in 

their respective pas~-bands (6.17) becomes unity, i.e. equal to 

its highest possible value.Similarly, we shall say that N1 and 

* Here ag<ün, the formulas given in[ 43] fellow from those given 
here if we choose t 1=0, t2=T1. 
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N
2 

are ideal filters for resonant-transfer circuits ~ith intermediate 

starage if they are such that in their respective pass-bands (6.31) 

beoomes equal to unity. The general conditiöns for ideal . filters are 

different in these two situations and shall not be reproduced 

here. We shall limit ourselves instead to what we call ideal 

univeraal filters. 

The concept of ideal univeraal filter arises e.g. in 

the following way. In an electronic TDM exchange based on the re

sonant-transfer principle, a same filter will at certain times 

have to work tagether with an arrangement with direct transfer and 

at other times with an arrangement with intermediate stórage, 

depending on the way the conneetion is established in the exchange. 

One can thüs wonder if it is possible to specify N1 and N
2 

in 

such a way that (6.17) and (6.31) both bec~me equal to unity. 

It turns out that in order to obtain this we must have for the 

value of n and all the values of w under consideration 

R
3

(w)= R4 (nG+oo)=R3 (~)=R4 (~) =Rco , (6.32) 

x3 C~)= x4 <~) =0 (6.33) 

where R3' R4, R3 and R4 are the real parts of z3, z4, z3 

and z4 respectively, while x3 and x4 are the imaginary parts of 

z
3 

and z4 • Consequently, an ideal univeraal filter can be 

defined as fellows. 

Consider the netwerk N of Fig. 6.10 which is terminated 

at port 1 by a resistance , R
1

• We assume that the input impedance 

Z(p) at port 2 reduces at high frequency to a capacitance C, 

i.e. we assume (4.1) to hold. Let M(p) be the open-circuit voltage 

ratio in the direction 1-2 when N is fed at port 1 by a voltage 

souree in series with R1 • We shall say that Nisanideal 

univeraal filter if the following conditions are satisfied for all 

paas-band • frequencies w : 

where R0 i .s a constant, the conditL•n for M( j w) expressing in 
fact the lossleasness of N at the ~~equencies ~. 

(6.34) 
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All ideal filters as well as the ideal universal filters 

discussed so far are in fact filters for single-sidè-band (including 

low-frequency to low-frequency) transmission. These concepts 

can however easily be extended to situations where the signal is 

transmitted in double-sideband form at one or both terminal 

ports. This leads to the concept of ideal univeraal filter for 

double-sideband transmission for which (6.34) has to be replaced 

by 

/M(jw) /2 = R
0
/R1 • (6.35) . 

that R 
0 

So far, we have assumed in (6.34) and (6.35) 

is any constant. With the aid of a theorem due to Kintchine and 

Ostrowski (see e.g. [14], vol. II, pp. 157-158), as wellas (4.52) 

it can be shown, however, that this constant R is necessarily 
0 

equal to the step resistance R
0

=T/2C corresponding to Z(p). With 

other words, the input capacitance of an ideal univeraal filter 

is necessarily equal to C =T/2 R • 
0 0 

6.4. Influence of losses and timing errors on the overall performance. 

In order to get an idea of the influence of the losées 

and timing errors on the overall performance, it is useful to 

compute s21 n under the assumption that (6.32) and (6.33) are 

fulfilled. Retaining only first order terros in c à.nd 1/TJ , we 

obtain for direct resonant-transfer circuits 

1// s21nl = 1 + c+ 1/"' (6.36) 

and for circuits with intermediate starage 

(6.37) 

where c• and TJ' refer toN!, and é' and TJ" toN'! • In first 
~ ~ 

approximation the influence of the losses and timing errors 

is thus to add a frequency independent loss. 
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7. THE FILTER DESIGN PROBLEM 

7.1. Realization of ideal universal filters. 

7.1.1 General principles of the reaetanee campensatien procedure~ 
----------------------------------------------------------

We shall assume in this and the following paragraphs 

that we are dealing with low-pass filters. Some particularities 

of the band-pass problem will be discussed,later. 

Normalized quantities will be used throughout, the constant 

resistance R in the pass-band being, of course, chosen as 
0 

normalizing resistance. The conditions (6.34) éan then be written 

z(j<p)=1, r(Y)=1 , ( 7.1) 

where r 1=R1/R
0 

is the normalized terminating resistance. 

For the ideal open-circuit low-pass filter studied in 

par. 4.3, the two last conditions (7.1) are clearly satisfied. If 

in addition, fc=F/2, i.e. cpc=CIO, the first condition (7.1) is 

also satisfied. This corresponds to the ideal universal filter 

already studied by Cattermole [22,23] • 

Consider next the two-port N shown in Fig. 7.1 where 

we assume N' to be an ideal open-circuit low-pass filter of 

· cu t-off frequency f < F /2 and z (À.) to be a reaetanee which is 
c n 

capacitive at high frequency. The input impedance z'(i\.) of N' is 

then given by (4.48) and (4.49), with z replaced by z', 

and the corresponding pulse impedance is given by (4.50) and 

(4.51), with z replaced by z'. The two-port N of Fig. 7.1 can 

thus be made arbitrarily close to an ideal universal filter with 

an arbi trary cut-off frequency f < F/2 if we can indicate c 
a succession of reaetanee functions 

z1 (i\.) , z2 (i\.), ••••••• , zn(i\.), ••••• 

such tha t in the pass-band of N' their cp-trans forms 

z1 Cc!>), ~2 Cq~), •••••• , zn(<j)), ••••• 

tend more and more towards the value z defined hy 
0 

,..., 
·~ ( Ij>) 

0 
.J.. j<p c +<I> = ln -
1t j4> -cl> 

c 

(7.2) 

(7.4) 
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Since every reaetanee function in the tj> -domain can 

be transformed back into a reaetanee function in the À domain 

having a zero atÀ = oo, the problem will be completely solved 

if we can indicate a succession of reaetanee functions (7.3) 

having the required property. Such a succession of reaetanee 

functions is indeed given by 

~ ( '''') . 2 z 'I' = J -n 1t 

wn-1 (jc.pc/tj>) 

pn(jc.pc/<Jl) 

where P is the Legendra polynomial of degree n and where 
n 

W 1 is, in the notation of Jahnke and Emde, the auxiliary 
n-

(7.5) 

polynomial of degree n-1 occurring in the theory .of the spherical 

functions of the second kind [56,101]. That (7.5) is indeed 

a reaetanee function can be shown by continued fraction expansion 

of (?.4) [ 79] • It can also be shown by direct calculation that 

the input capacitance of N has the value mentioned at the end 

of par. 6.3. 
The procedure of obtaining an ideal univeraal filter 

by the methad just described will be called reaetanee compènsation. 

It can equally WEÜl be applied to the realization of ideal 

univeraal band-pass filters, starting from an ideal open-circuit 

band-pass filter. 

7.1.2. Practical considerations. 

In a practical situation, the open-circuit filter N' 

to be compensated will, of course, be non-ideal. Similarly the 

compensating reaetanee z (À) should be the si~plest one which 
n 

is still compatible with the given performance criterion. 

This does not imply, however, that the subscript n should 

necessarily be as smallas possible. For low-pass filters, e.g., 

the number of inductances as well as the number of capacitances 

required for the realization of a z (À) with odd subscript n 
n 

is the same as for the next highest even value of n. 

Consequently, only even values of n are of interest in this case. 
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In particular, z2 (À) corresponds to a parallel resonant circuit, 

~4 (À) can be realized by means of two parallel resona·nt circuits 

in series, z 6 (À) by three such circuits, etc. As zn(À) only has 

to produce a correcting effect, a single parallel resonant circuit 

will be sufficient ; in most practical situations. 

The restrietion to even values of n does not apply to 

band-pass filters. If compensation is required in the neighbour

hood of both cut-off frequencies, the simplest possible compen

sating reaetanee is formed by a parallel resonant circuit in series 

with a simple capacitance. 

The method of reaetanee compensation is in some respects 

similar to the well-known method of m-derivation. As can be 

concluded from a theory given by Belevitch [11] , filters 

equivalent to m-derived filters o-an be obtained by adding a -- ..... ~ 

suitable reaetanee either in series with the open-circuit port 

of an open-circuit filter or in shunt with the short-circuit 

port of a short-circuit filter. 

The compensating impedance used in the circuit of Fig.7.1 

does not necessarily have to be a reactance. Consider e.g. the 

function z" (qs) which for imaginary values of Ij> is given by 

z" c j<.p) =r11 c <.p) + jxll < <.p) 

where 0 forl<.pl< <.pc , 
r" < <.p) ::: 0 <<.p < 00 

1 forl<.pl> c 
<.pc ' 

(?.8) 

x" ( <.p) ::: j .1 ln~+<i> c 
n; -<i> 

c 
• 

Clearly, z" (Ij>) is the input impedance of an ideal open-eireu i t 

high-pass filter in the ij) -dpmain. In the À -domain, however, the 

corresponding z" (À) is the ~;npu t impedance of an ideal open-circuit 

band-pass filter of anyone < .f the following three types, f .' and 
-c 

fc being respectively the lcwer and the upper cut-off frequency 
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and f c 
being the smallest positive solution of <p =tan( 1tf /F), c c 

1 • f' = nF + f f'=(n + 1/2)F 
' -c c c 

2. f' -c 
=(n + 1/2)F 

' 
f'=(n + c 1)F- f c' 

3. f' = nF + f f'=(n + 1)F - f 
-c c c c 

where n is a non-negative integer. Furthermore, in the 

step-ban~ the real part r" ( v) of i" ( j v) is r" ( v)=O in all three 

cases, wh,ile in the pass-band r" ( v) =1 for type 1 and 2 ," md , ... 
' 

r" ( v) = 1/2 for type 3. 

If z (À.) in Fig. 7.1 is replaced by anyone of the impedances 
n 

z"(À.) thus defined, the resulting two-port Nis again anideal 

univeraal low-pass filter. It is no longer purely reactive 

although it is $till lossless in the pass-band of N'. A purely 

reactive compensating impedance can be derived from z"(À.) by simply 

short-circui ting or open- circui ting the termina ting resistance 

of the band-pass filter. This does not affect its input impedance 

in the stop-band (i.e. in the pass-band of N' as well as at all 

other frequencies corresponding to l<pl< <pc• 

The simplest practical realization of the impedances 

z"(À.), clearly, is a parallel resonant circuit shunted by a 

resistance. 

7.2. Effective (insertion) loss design. 

Although in principle, the methods described above 

allow to design arbitrarily good filters, they do not furnish 

filters which are optimum for a given performance criterion 

(e.g. smallest number of elements or smallest number of inductèrs 

for given attenuation requirements).The design of such optimum 
I 
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filters requires that we first establish a set of necessary and 

sufficient conditions for the realizability of the mathematical 

expressions to be considered. 

We shall limit ourselves here to the case of a 

symmetrical lossless ( c = 1/T) = 0, N1 and N
2 

purely reactive) 

direct resonant-transfer circuit. We shall assume in addition 

that the open circuit voltage ratios M
1

:M
2

=M are normal, i.e. that 

they have no multiple poles. The conversion coefficient s21 n(À) 

of a direct resonant-transfer circuit having these various 

properties satisfies the following necessary and sufficient 

conditions (written in termsof normalized quantities):. 

1. It is of the form 

= m(À)m(À +j2nlt) 
N b. 1-<l>~ 
l: ~ ~<!>. 

i=1 
~ 

where N is a positive integer and where the parameterS ~
~ 

(7.10) 

are related to certain other parameters À. by <1>.= tanh À .• 
~ ~ ~ 

2a. The parameters À. are real or complex numbers with non-positive 
~ 

2b. 

2c. 

3. 

real parts. Moreover, if k is the number of parameters À. 
~ 

which are purely imaginary, we have O~k < N. We shall 

assume that these purely imaginary parameters are those 

labelled i=N-k+1 to i=N. 

All complex À. occur in conjugate pairs. 
~ 

All À. are distinct. 
~ 

m(À) is a rational function of the form 

m ( À) = f ( À)/ d ( À) 

where the polynomial d(À) is related . to the À. by 
~ 

N-k 
d <À) = rr 

i=1 

and where f(À) is an arbitrary real even or odd polynomial 

(7.11) 

(7.12) 

in À of degree smaller than N-k. The coefficient of the term 

of highest degree in f(À) may without any restrietion be 

chosen equal to unity. 
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4a. For 1~ i~ N-k, the parameters bi are related to the Ài and 

to t-he polynomial f( À) by 

b. = + 2 f
2 

( À. ) I d (- Ài) dI ( À. ) 
l. l. l. 

N-k 
n p .. __ 2 - À~) 

1=1 'l 1 

I i 
where the upper sign corresponds to f(À) even and the lower 

sign to f(À) odd, and where d 1 (Ä) represents the derivative 

of d( À) with respect to À. 

4b. For N-k+1~ i~N, the parameters b. are arbitrary real positive l. . 
numbers, the only restrietion being that the b.'s corresponding 

l. 
to two conjugate À. 's have to be identical. 

l. 

7.2.2.Some practical considerations. ------------------------------
With the aid of the above realizability conditions, 

the design of an optimum filter can now be reduced to a mathematical 

optimization problem which, however, is more difîicult than in 

ordinary filter design. 

Firstly we note that we have to consider simultaneously 

the transmission of the useful signal as well as the suppression 

of all unwanted signals generated in the circuit. Due to this, 

a certain number (in general at least two) of the functions 

s21 n ( À), corresponding to different values of the subscript n, 

have to be considered simultaneously. 

Let us examina next the pass-band attenuation A. (i.e. 

the attenuation at the useful values of wand n). We want to 

approximate A in such a way that 

A ~ A , s sm 
(?.14) 

where 

Ad=(A -A . )/2 , 
max ml.n 

A =(A +A . )/2 , 
s max ml.n 

A and A . being respectively the maximum and the minimum 
max ml.n 

valuestaken by A, and Ad and A being preassigned quantities. m sm 
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In contrast to conventional filters, the value of A . cannot 
m~n 

become zero since this ~óuld require the filters to block 

perfectly all unwanted frequency components, i.e. to have an 

infinite number of attenuation poles (the unwanted frèquency 

components would otherwise dissipate part of the available energy 

in the terminating resistances). The value of A can thus 
sm 

certainly not be smaller than a certain value A . , otherwise no 
s m~n 

solution can exist. Furthermore, forA >A . , the obtainable 
a s m~n 

attenuation of the unwanted signals will be a function of the 

value of 

possibly 

that the 

A and will be optimum for a certain value A of A , s so . s 
for A = A • On the other hand, it seema most likely 

s sm 
optimum value 

There may be different situations in which the optimum 

attenuation requirement is not simply given by (7.14), or in 

which e.g. also the shape of the phase characteristic is of 

importance. Whatever the requirements may be, it is éertain that 

we cannot expect that an explicit salution of the optimization 

problem can ·ever be found. In practice, iterative methods of 

optimization will thus always have to be used. 

Note also that in case of effective loss design, there 

is usually no advantage tochoosefor the parameter k mentioned 

in par. 7.2.1. anv value other than k = o. 

7.3. Filters for narrow-band transmission. 

We say that we are dealing with narrow-band transmission 

if the bandwidth of the filters is small compared to F. In this 

sense, low-pass filters may thus also be narrow-band filters. 

It can be shown that in case of narrow-band direct 

resonant-transfer circuits, the design of the filters can often 

be reduced to an ordinary filter design problem. 
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In particular, if both networks N1 and N2 are low-pass filters; 
.. -

onemay firstdesign an ordinary filter with symmetrical structure 

which is subsequently split in two equal halves (aee example 

Fig. 7.2). If a DSB signal ia required at port 2, the filter N
2 

may subsequently be tranaformed by a low-pass to band-pass trans

formation, after which its impedance level should be divided 

by 2 (Fig. 7.3). 
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8. AMPLIFICATION IN RESONANT-TRANSFER CIRCUITS. 

8.1. Means of realizing amplification in resonant-transfer arrangements. 

The simplest practical way of achieving loss compensation . 

or amplification in resonant-transfer circuits for bidirectional 

transmis~ion is to include active devices in the resonant-transfer 

arrangemert. For TDM systems in particular, this often offers the 

possibility of using the same active device in common fö~ a large 

number of 'channels. 

The simplest active arrangement is perhaps the one pro

posed by Adelaar [ .6] and already mentioned in par. 6.2. In this 

case, no r~flection occurs since the amplification takes place 

when the sample is stored in t~e intermediate capacitance C '• 
0 

Many methods of amplification in direct resonant~transfer 

arrangements have been proposed ~,44,87,88,90,103,104] • In the 

arrangement of Fig. 6.5 , amplification can be obtained by 

choosing c3 > c
1 

and c4 > c
2

• An interesting method achieves 

amplification by parametrically varying one or several of the 

reactive elements contained in an arrangement such as the one of 

Fig. 3.1. This method has been proposed by Holzwarth, Sabban and 

Schlich te [ 88, 103,104] a~d is further discussed in [ 33} • 
An active direct resonant-transfer arrangement which 

allows to satisfy a large number of requirements is shown in 

Fig. 8.1 [ 44] . In this case, an intermediate shunt capacitance C 
0 

is provided which allows e.g. the paraaitic capacitance of the 

highway in an electronic TDM .exchange to be taken into account~ 

Further requirements are that L1' L2 and c are discharged at 
0 

the end of the transfer period (in order to avoid crosstalk as 

well as voltage surges when the switches s1 and s
2 

are being opened) 

and that the conditions (5.43), i.e. B33=B44=0, are fulfilled. 

The circuit has first been proposed in [ 43] and has been analyzed 

in the symmetricAl case by Rosenoer [private communication] • 
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For the case of greatest practical importance, th~ element 

values found by him can be put into the following form (the 

capacitance C being assumed to be given): 

2 
LC:: --=.....:;,;_-=-~ 

rr.
2

(1-cl)
2 

R' C= 't' 2 ' 
rr.a. ( 1-a. ) 

where 't' is the dura tion of the transfer period, a. a gain 

coefficient defined by 

and where L = L1=L2 , C=C1=c2 , R=R1 =R2 and R'=R 1

1=R•
2

• 

( 8.1) 

(8.2) 

(8.3) 

(8.4) 

We conclude from the above expressions that for moderate 

gains (0 <a. <1), only Rand R become: negative. The circuit then 
0 

camprises three negative and two positive resistances. The 

highest possible gain (corresponding toa.= 1) which can be 

securt:~d according to (8.1) .to (8.4) is equal to Tt nepers or 

roughly 27 db • 

Broux [17,18] has further analyzed the arrangement of 

Fig. 8.1 as well as various related ones. He has examined the 

possibility of realizing not only a gain but also a partial 

compensation of the unavoidable losses, taking into account the 

inherent imperfectionsof the negative resistances as well as the 

various oparating positions of the switches s
1

, s
2 

and S
0 

(this last 

one not shown; it may have to be provided across C as a clamping 
0 

device in order to avoid crosstalk). In any case, proper behaviour 

of the arrangement of Fig. 8.1 for 0 <a. <1 requires that R1 and 

R2 be open-circuit stable and R
0 

short-circuit stable. 
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8.2. Stability of active resonant-transfer circuits. 

If a resonant-transfer circuit contains an arrangement 

with activa elements, the overall circuit may easily beco~e 

unstable. We shall discuss hereafter a stability criterion which 

has been found under the assumption that the circuit is at least 

quasi-reciprocal, that the conditions (5.43), i.e. B33=B44=0, 
are fulfilled at all frequencies and that the networks N1 and N2 
are lossless in their respective pass-bands. We also assume that 

z
3 

and z4 can be considered to be equal to RC
1 

and RC
2 

in the 

passbands of N1 and N
2 

respectively, but not outside of these 

pass-bands. If w falls into the pass-band of N1 andiW+n Ql into 

the pass-band of N
2

, we have under the various assumptions just 

mentioned 

I s 1 2
· < j w + j n Q ) I 2 = I b I ,-n (8.5) 

where 
(8.6) 

Thus, there will be overall amplification if lbl >1 and overall 

attenuation if lbl < 1. 

Consider next the conversion and reflection coefficients 

derived in par. 5.2. They all contain a denominator term which, 

for B
33

=B44=o, can be written 

(8.7) 

where p 3 and p 4 are given by (5.38) and b by (8.6). If B34 and 

B43 have na poles in the right half plane, as will usually be 

the case, instability can only occur if D has zerosin the . right 

half plane, i.e. if the plot of b p 
3 

p4 for p=jw encircles the 

point +1, This will never occur if 

I b I < 1 t?2 
ma x (8.8) 

where p max is the maximum value of'.ilp3 pd at real frequencies, i.e. 

because of the periodici ty of p 
3 

and p 4 , between w =0 and w = Q /2. 
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At first glance, the criterion (8.8) may seem toa 

severe, but this is usually not the case. This is due to the . fact 

that in an electronic TDM exchange many different combinations 

of filters and resonant-transfer arrengements may be established 

depending on the way the conneetion is established in the exchange. 

The coefficients p
3 

and p4 behave like reflection 

coefficients of ordinary impedances with respect to positive 

resistances. Their moduli can thus not exceed unity.According to 

(8.5) and (8.B), no gainis possible for p =1. Even the losses 
ma x 

ocurring in the terminating transfermers of practical circuits 

cannot be compensated in this case since these losses can be 

considered to occur in the terminations rather than in the circuit 

itself. 

We conclude from all this, that filters obtained by pure 

reaetanee campensatien (pars
1
7.1.1 and 7.1~2) cannot be used in 

combination with active resonant-transfer arrangements since in this 

case the input pulse impedance is reactive in the stop-band. 

Pmax can however be made as ; small as we like by means of the 

compensation methad described in par. 7.1.3. The original filter 

N' should then not be unnecessarily steep since otherwise a slight 

misadjustment of the compensating impedance may substantially 

increase the value of P and thus lead to instability. Although 
ma x 

this has notbeen mentioned in par. 7.1.3, note that ideal ûniversal 

filterscan also be obtained by means of the same compensatión · 

method even if the transition range between pass-band and stop-band 

is not infinitely steep. 
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9. SOME SPECIAL APPLICATIONS OF THE RESONANT-TRANSFER PRINCIPLE. 

9.1. Resonant-transfer circuits for pulse-code modulation. 

A resonant-transfer circuit for PCM application is shown 

in Fig. 9.1. The laad circ~it consists in this case of a simple 

capacitance c2 • In addition ,o this, a clamping switch (n6t shown} 

may be provided across c 2 , which discharges this capacitance 

each time befare the switch S closes _again. Usually, the resonant

transfer arrangement will be of the simplest possible type as 

indicated in the figure. In this case, the equivalent circuit is 

as shown in Fig. 9.2, although a more general interconnecting 

two-port could equally well be provided between ports 3 and 4. 

We shall use hereaftar the same notation as in the previous 

paragraph/il. 

For a circuit with clamping, we have v4b=O, whence from 

(5. ?) to (5. 9), z4=Rc2 • For a circuit without clamping, z4=Rc21 <1> • 

The main quantity of interest is now v4a. We shall 

define a transfer coefficient S by 
a 

It has the property that 

where 

w2 being the average energy per sample stared on c
2 

and W 
ma x 

(9.2) 

(9.3) 

being the maximum avera ge energy availa blefrom the souree during 

the time interval T. 

For the circuit with clamping, we obtain for S 
a 

i.e., if N1 is lossless, 

(9.4) 
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No amplitude distortien will occur if N1 is an ideal univeraal 

filter (Z3=R3=Rc1 in the pass-band), and wethen have 

lsa(jw) I =2V c 1Ci/ (C1+C2 )(1+c) • 

This expression reaches its maximum value 1/(1+c) for C1=c
2

• 

For a circuit without clamping, we obtain for S 
a· 

vR1 Rc2'< 1 +<I>) M1 < p) 
s (p) = -------

a RC2 + cp(Z3+ c RCs) 

i.e~, if N1 is lo~sless, 

Jsa (jw)l 
2

= (1+</)Rc2 R3 (w)/l 

(9.6) 

No amplitude distortien will occur only if N1 is an ideal univeraal 

filter with 

and we then have 

- 2 
JS (jw) I = (1-c)/(1+c) • a 

(9.9) 

(9.10) 

It is clear that general realizability criteria 

similar to those mentioned in par. 7.2.1. can also be given for 

the circuits described here. 

9.2. Non-reciprocal resonant-transfer circuits. 

The resonant-transfer principle can also be applied 

to the realization of essentially non-reciprocal circuits. 

A few examples of such circuits will be discussed. As can be 

concluded from the general discuesion in par. 2.4., all these 

circuits must contain at least two switches which do not both 

operate symmetrically in time with respect to · a same instant t • 
0 

A first example is offered by the circuit of Fig. 6.7., 
discuseed in par. 6.2, where we assume that the samples 

transmitted via C
0 

in the direction 5 -+ 6 do not undergo any 
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attenuation ( a. 1 =0) while per fee t clamping is applied by means 

of s to the samples transmitted in the opposite direction 
0 

( a. 2=oo). We also assume C1=C2=C, i.e. Re1=Re2=Re• The two-port 

Ni' (Fig. 6.8) is then determined by 

B" ' - B" ' - B" ' - 0 55 - 66 - 56 - ' 

It can be represented as an isolator of impedance matrix 

(9.11) 

in cascade with a delay line of delay T1 and characteristic 

impedance Re (Fig. 9.3). The isolator itself can be represented 

by a gyrator of gyration reaiatanee Re in series with a 

two-port consisting of a single ~h~nt ~esistance Re• 

An even simpler resonant-transfer arrangement for the 

realization of án isolating device is shown in Fig. 9.4 where we 

assume that the two capacitances C, the inductance 2L ánd the 

switch s ferm an ideal resonant-transfer arrangement as discussed 

in par. 3.1 (Fig. 3.1). To thi~ is added a clamping devic~ . 

consisting of an auxiliary switch S 
a 

and a very. small reaiatanee R • 
a 

Immediately after each transfer period, S 
a closes for a very short 

but long enough period to produce a practic.lly complete discharge 

of the left-hand capacitance. We then have B
33

:B44=B34=o and B43=1 

so that the corresponding two-port Ni is a simple isolator of 

impedance matrix (9.11). This is the same two-port as the ene 

obtained from Fig. 9.3 in the limiting case T1 -o. 
A gyrator resonant-transfer arrangement has been proposed 

by Edrich [ 32,331 (Fig. 9.5a, with e1=C2=e). The switch S is closed 

during transfer periods of duration 

't = 1t" LC1 
(9.12) 

which are immediately followed by periods of duration 
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during which the swi te h S is open and S closed. The c arresponding 
a 

two-port Ni is determined by 

Its impedance matrix 

corresponds to a simple gyrator of gyration reaiatanee Rc=T/2C. 

In view of the discussion to be given in par. 10.2, it 

is uaeful to generalize the Edrich gyrator to the case C
1
i c2 • 

The . capacitance C must then be replaced in (9.12) by C=2C1c2/(C1+C
2

) 

and in (9.13) by c2 , while (9.14) must be replaced by 

where 

B =-1- p 
43 

This leads again to an impedance matrix of the simple form 

(9.15), with Re replaced by Rc2=T/2C2 • 

(9.16) 

A resonant-transfer circulator [19] device fir~t 

proposed by Adelaar [ 3] is shown in Fig. 9. 6. We assume tha t the 

three switches operate periodically but not simultaneously in the 

order s1 , s2 , s
3

• Transmission thus always takes place via the 

intermediate storage capac,itance. From Fig. 9.6, we can still 

derive an equivalent circuit as has been done in par. 5.1, but 

this equivalent circuit ia now. a three-port. In particular, Ni is now 

a threeport circulator with a delny line in cascade with each one of 

its ports, all characteristic impedances being equal to Re~ According 

to the order in which the switches are assumed to operate, the 

direction of circulation is clock~ise. 
,I 

Another resonant-transfc:r circulator device l:ias been 

proposed by Edrich [ 32,33 ] • The ~or.responding resonant-transfer· ~· 
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arrangement is shown in Fig. 9.7. The switch s1 is closed during 

transfer periods of duration 1: = nf'Lë1. These are immediately 

followed by transfer periods of the same duration during which 

s2 is closed. The ~nterconnecting three-port Ni is a simple 

circulator of characteriatic impedance Re and clockwise direction 

of circulation. 

The Edrich circulator is simpler than the one proposed by 

Adelaar.This latter one,however, offers greater flexibility when used 

e.g. as a device for realizing 2-wire/ 4-wire transitions in an 

electronic TDM-exchange. It is also more advantageous if more than 

three ports have to be provided. 

Various other non-reciprocal resonant-transfer circuits, 

including devices with non-reciprocal parametrie amplification, 

have also been proposed hy Edrich [32 ,33] • He has made no use, 

however, of the representation of these circuits by mearis of the 

equivalent circuit first derived in [43] • That this representation 

ia particularly simple also for non-reciprocal circuits is clear 

from the few examples which we have just discussed. 

In all these examples, we have assumed that the resonant

transfer switches are composed of ordinary switches and inductances. 

One could, of course, equally well use other types of resonant

transfer switches. In this case, some of the above circuits may 

have to be modified slightly. A circuit which e.g. produces the same 

gyrator effect as the one of Fig. 9.5a but which in a certain sense 

is more general, is shown in Fig. 9.5b, the resonant~transfer 

switches RS 1 and RS2 being represented by ordinary switches 

surrounded by circles. From a circuit such as the one of Fig. 9.5b, 

one may thus not conclude that all parts of the resonant-transfer 

switches involved _do necessarily have to be duplicated. This is 

certainly not the case for the circuit of Fig. 9.5a, and is also 

not the case if resonant-transfer switches of the type discuseed 

in par. 6.1.3~ are used. 
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10. FILTERS COMPOSED OF CAPACITANCES AND RESONANT-TRANSFER SWITCHES. 

10.1 Filters composed of capacitances and resonant-transfer switches 

in cascade. 

Consider first the circuit with .· intermediate èapacitive 

storage shown in Fig. 6.7. We assume that neither S nor R are 
0 0 

present, and we also neglect R~, i.e. a.1=a.2=0. Under these 

circumstances, the expression (6.26) for the chain matrix of the 

two-port Nf! becomes . 

e
-pl\(cosh (pT/2) 

A= 
sinh (pT/2f'Rco 

RCo sinh (pT/2)) • 

cosh (pT/2) 
(10.1) · 

Except for the factor e-Pil, this is precisely the chain matrix of 

a lossless transmission line or a lossless element of a machanical 

filter, the characteristic impedance being in both cases RCo and 

the length l=v T/2 where v is the speed of propagation. This 
p p . 

has led· Posehenrieder [82] to propose the realization of filters 

composed of resonant-transfer switches and capacitances having 

properties similar to those of filters built by connecting 

transmission line elements or machanical elements in castade, 

with the advantage, of course, that T is now determined very 

precisely by the clock pulses and not by the machanical length 1 

of the element•. 

The circuit proposed by Posehenrieder is shown in Fig. 10.1. 

In addition to the networks N1, and N2 and their terminations, it 

comprises a certain number of capacitances c3, c4 ••••• , en, all 

separated from one another as well as from N1 and N
2 

by resonant

transfer switches (represented again by the ordinary symbol of a 

• For a summary of the state of the art in the theory of 

transmission line filters, see e.g. the session devoted to thi~ 

subject at the recent PIB symposium [80] • There exists also an 

extensive litèrat~re ' on machanical filters. A book devoting 

a chapter to this subject is [50] • 
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switch surrounded by a circle). Two resona~t-transfer switches 

connected to a same capacitance may not be closed at the same time. 

The networks N1 and N
2 

may simply consist of the capacitances c
1 

and c
2 

respectively, or they may be more elaborate RC-networks. 

From the point of view r of the general theory to be. exposed 

hereafter, there is no reason ~ot to accept inductances toa. These 

should however be excluded since one of the IU~poses of the circuit 

of Fig. 10.1 is precisely the realization of inductorleas filters. 

If all inductances are to be proscribed, the resonant-transfer 

switches may e.g. bè as described in par. 6.1.3. There may however 

also be cases in which at least the small (and cheap) inductors 

required by the circuit of Fig. 3.1 will be acceptable. 

If we assume that all resonant-transfer switches are ideal, 

the equivalent circuit of Fig. 10.1 is as showri in Fig. 10.2 where the 

netwerk Nik (k=3,4, ••••• n) has a chain matrix as given by (10.1), 

wi tl-:1 RCo replaced by RCk =T/2Ck and 6. replaced by 6. k" The factors 

ëpó.k simply produce a factor e-pó.' with Ó.= 6.
3

+ 6.4 + •••• • +Ó.n' 

in the resuiting chain matrix of the total interconnecting two-port 

N .• At wars t, i.e. for 6. ::/ 0, this factor simply causes the overall 
l. 

circuit to be quasi-reciprocal. If even this is not acceptable, 

one can still adjust the timing of the various switches in. such 

a way that 6.= 0. In any case, we may omit this factor from our 

further considerations. 

If we do this, the circuit of Fig. 10.2 is equivalent 

to a cascade of tra nsmission line elements or mechanical filter 

elements of charact•ristic impedances RC3 ' RC4 ' ~w •••• RCn' 

connected between terminal impedances z
3 

and z4 • The problem 

of designing the circuit of Fig. 10.1 thus becomes similar to a 

classical filter design problem. The networks N1 and N2 should 

b~ simple RC-filters reqüired to eliminate the additional sidebands 

which are located further away. 

As is also true for simple transmission line and 

machanical filters, the circuit of Fig. 10.1 has the 

disadvantage that attenuation polee: at real frequencies 

cannot be realized. Pot:.chenrieder (82] has indica ted 



a methad to evereome this objection, but this methad is less 

flexible than the one to be described in par. 10.2. We shall 

therefore not discuss it here. 

10.2. General LC-networks in the 4>-domain, using inductorleas networks 

in the p-domain_. 

Consider a n-port N built of capacitances only (Fig.10.3). 

Suppose that we conneet toeach terminal port k (k=1, 2, ••••• n) 

an inductance Lk (corresponding to the situation of Fig.10.3 with 

all the switches Sk closed). The resulting LC-circuit will have n_ 

different natural frequencies w1 , w2 , ••••• " wn. We shall choose 

the Lk in such a way that wk=(2k-1)w1 • All frequencies wkare thus odd 

harmonies of w1 • 

Suppose next that we add a switch Sk in series *ith 

each Lk, as indicated in Fig. 10.3. If we close all the switches 

Sk at t=O, assuming that some charges were present in N for t< 0, 

the resulting currents ik in the inductances will all go through 

zero again at t=T , where 

• (10.2) 

We may thus open all the switches at t=T , after which all the 

voltages vk=vka will be precisely equal to the negative of their 

values vkb befare the switches had been closed, i.e. 

vka + vkb = 0 • ( 1 o. 3) 

The charges qk which are transmitted across the switches Sk to 

produce this effect are precisely double these which would be 

transmitted if the Lk were replaced by small resistances and the 

switches were kept closed until the circuit has come to rest. 

This remark makes clear that ~he inductances could in fact be 

replaced by electronic charge · doubler devices similar to the one 

described in par. 6.1.3. The p~operty of such devices to require 
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less precise timing is particularly important for the present 

application since the higher harmonies involved in the circuit 

with inductances increase considerably the influence of timing 

errors. 

A circuit such as the one of Fig. 10.3 may .still be 

called a resonant-transfer arrangement. Similarly, each Sk with its 

associated ~ .or electronic charge doubler device may still be . 

called a r~sonant-transfer switch. As these resonant-transfer 

switches have to work tagether as a group, it may be better, 

however, to call them collectively coupled resonant-transfer 

switches. 

10.2.2. Realization of inductances in the 4> -domain by means of capacitances --------------------------------------------------------------------in the p-domain. 
---------------

We have seen in par. 9.2. that a gyrator can easily be 

realized .in· the equivalent circuit. It must thus be possible 

without difficulty to realize the dual of a given pulse impedance. 

Assume e.g~ that the gyrator device of Fig. 9.5 is used 

as resonant-transfer arrangement in the circuit of Fig. 5~1. The 

driving-point impedance seen in Fig. 5.2 from port 3 to the 

right is then equal to R~2/Z4 , i.e. the dual of z4• In particular, 

if the network N2 in Fi~. 5.1 reduces simply to the capacitance c2 
and if R2 =00

, i.e. if z4 = Rc
2

1<V , this expressl:m becomes 

equal to <V RC2 , or in normalized quan ti ties <V/ c2 where c2=C2/C 
0

, 

with C =T/2R , R being the normalizing resistance. The new pulse 
0 0 0 . 

impedance thus . corresponds to a normalized induc tance 12=·i/ c2 
whereas the original pulse impedance corresponds to a normalized 

capacitance c
2

• If the purpose of the gyrator device of Fig.9.5 

is simply to realize an inductance in the <V -domain, as has just 

been described, there is no need, of course, to have the switch 

S operate right after the switch S: The inversion of the charge 
a 

on c
2 

may now take place any time between two consecutivetransfer 

periods. 
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It is interesting to derive the same results from 

the circuit of Fig. 6.7 where we omit again S , R and R'. If 
0 0 0 

we assume that the two-port Ni' of Fig. 6.8 is short-circuited 

at port 6 (U 6=0), we obtain from the equations of Ni'• independently 

of T1 , 

u 5/ J 5 = <I> Re o • 

u6=o, however, corresponds precisely to v6a= -v6b, i.e. to a 

device which inverts the charge on c2 at the instante t=t2m. 

As an example, consider the circuit of Fig. 10.4. lts . 

resonant-transfer arrangement contains main resonant-transfer switches 

(represented by the symbol of an ordinary switch surrounded by a 

double circle) and auxiliary resonant-transfer switches (represented 

by the symbol of an ordinary switch surrounded by a single circle). 

All switches operate periodically at a rate F=1/T. The main switches 

are closed during main tran5fer periods and the auxiliary switches 

during auxiliary transfer periods interlaced with the main ones. 

All capacitances of the resonant-transfer arrangement as well as the 

terminating resistances have been indicated in Fig. 10.4 by their 

normalized values. The notatien used hereafter is the same as 

in the previous sections. 

Let us assume first that the auxiliary switches are not 

present. We can number the branches by attributing to them the 

values of the indices of the corresponding capacitances c • For 
m 

m=1 or 2, branch m is formed by the input of netwerk N m (together 

with the termination) seen from 3-3' or 4-4' respectively. From the 

point of view of the long-time behaviour, the current in branch m can 

be written, omitting as usual the factor ept, 

I = J ~ ( t-t ) m m o 
where t is independent of m. Furthermore,we can define 

0 

(10.4) 

- :.' 
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voltages vma, vmb and 

U = (V +V b)/2 m ma m 

corresponding to the voltage V acDoss c • m m 
For each node, an equation such as 

~J =0 m 
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can now be written. For a loop such as the one formed by c5 , 
c6 and c

7 
we have similarly ~ Vma = ~Vmb = o, i.e. 

~u = o • m 
This last equation also holds for a loop containing one or 

severa1. resonant-transfer switches. Let us indeed desigriate by 

(10.5) 

(10.6) 

(10.7) 

Vk the voltage across resonant-transfer switch k, with corresponding 

voltages Vka and Vkb • For a loop containing resonant-transfer 

switches, equations of the form 

~ V ma+ ~ V ka = ~ V mb + E V kb = O 
can then certainly be written. According to (10.3) (with accents 

added to conform with our present notation) we have, however, 

vka + vkb = o, whence (10.7) follows immediately. 

Additional relations between the J and U are m m 
dètermined by the elements present in Fig. 10.4. Thus, (5.8) can 

still be written for the branches 1 and 2 respectively, while 

the (normalized) pulse impedances of the branches containing 

a simple capacitance are given by 1/ <j> c • m 
It is easy now to reestablish the presence of the 

auxiliary resonant-transfer switches. According to par. 10.2.~· ,the 

normalized pulse impedances 1/~cmof the branches in question willthen 

aimply have to be replaced by <j>l , with 1 =1/c • Hence, the m m m . 
equivalent circuit of Fig.10.4 becomes as shown in Fig. 10.5. 

It should be clear now that arbitrary LC-networks 

can be realized in the q, -domain by means of the method exposed he re. 
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The number of auxiliary switches required is equal to the 

number of inductances to be realized. The number of main switches 

is in principle equal to the number of inductances plus two, 

although it may be smaller. One must simply make sure that for 

every loop of the equivalent circuit containing either z3, z4 or 

an inductance, the eerrasponding loop of the original circuit 

contains a main switch. This way one insures that the charges of 

all these capacitances of the resonant-transfer arrangement which 

either beleng to a terminating netwerk or are connected to an 

auxiliary switch can vary freely between two consecutive main 

transfer periods without affecting the charges on the ether 

capacitances. In the example of Fig. 10.4, none of the main 

switches indicated can be eliminated without vialating this rule. 

The fact that all the main switches in a circuit such 

as the one of Fig. 10.4 have to operate simultaneously may cause 

difficulties if more complicated structures are involved. In this 

case, one can use resonant-transfer arrangements composed of saveral 

parts in cascade, seperated by intermediate starage capaóitances. 

The filters obtained this way are thus in a certain sense a 
combination of these described in pars. 10.1 and 10.2 respectively. 
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