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Te INTRODUCTION,

M1ele Circuits containing periodically-operated switches.

Circuits containing periodically-operated switches are in
some respects the simplest circuits with time-varying elements.
Nevertheless, a general theory of these circuits is not knbwn al-
though various systematic methods of analysis 13,30, 37,-66-69]
and synthesis [ 37, 67, 68 ] have been published by Bennett, Desoer,
’Kurth and the author, following an earlier analysis of a particularly
simple case by Belevitch [10] . A certain amount of additional work
has been done by the author (including a treatment by means of an
integral equation related to the Wiener-Hopf equation of the theory
of optimum filters), but this has not been published.

For certain subclasses, however, theories have been deve-

loped which are valid within certain limitations. For switched modu-

lators (such as the ringmodulator, etc.) a simplified theory exists
which assumés the modulators to be connected to strongly idealized
filters. This theory was first proposed by Caruthers [ 20 J and

Kruse [ 64 ] and has been extended by various authors. It is described
“in the books by Tucker [99, 100 ], Belevitch [12] and (to a lesser
extent) Henkler[ 55] . Its main deficiency is that it assumes in

fact the filters to be "overidealized" in the sense that they cannot
be approximated arbitrarily closely by means of realizable networks.

The sampled data systems form another subclass which seems

to have been described first by Oldenbourg and Sartorius [ 75] and
which has been treated extensively in the literature (among_the many
books on this subject, see e.g. [ 58, 59, 97, 981). In this case
however the approach is closer to control system theory than to ﬁrue
network theory; different parts of the system under consideration
are usually assumed to be interconnected by means of decoupling de-
vices so that the analysis problem is appreciably simplifiéd.

In the present series of lectures, we shall deal exclusively

with a third subclass formed by the resonant transfer circuits. For

these, a theory has now evolved which can be considered to be a

true and general network approach.
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In several respects, this theory bears a close relationship to
the theory of sampled data control systems. | v

There exist, of courée, many other types of cifcuits'
containing periodically-operated switches, which do not fall, or
at least, do not necessarily fall into one of the subclasses mentioned
above (see e.g.[ 2, 47, 52, 65, 71, 89, 95 1). For the sake of brevity,

however, we have to omit discussing them here any further.

‘1426 Resonant-transfer circuits.

The resonant-transfer principle has been discovered inde~
pendently by Haard and Svala [54] in 1952, by Cattermole [21, 22 ] in
1954, by French [48] in 1955 and by Lewis [ 72] in 1957, although
the basic idea behind it is not really new (see e.g.[ 511 ). The aim
of all these inventors was to find an efficient and bidirectional
method of PAM modulation/demodulation for use in TDM-PAM (time~-
division multiplex, pulse-amplitude modulation) electronic telephone
exchanges *. For such exchanges, the moduiation/demodulation process
has to be almost lossless and of equal quality in either direction
of transmission. _

Later on, it has been realized that the resonant-transfer
principle could also be used advantageously for various other
applications, in particular in PCM (pulse~code modulation) encoders
[ 23, 24, 28 ] for delta modulation and for conventional AM. (amplitude
modulation) with SSB (single sideband) or DSB (double sideband)
transmission. One can, of course, also take advantage of the possi-
bility that resonant-transfer ciréuits can serve simultaneously as
PAM and as AM modulators. In an electronic TDM-PAM exchahge one
can e.g. enter the exchange at audio frequency at the subscriber side
and leave it again at carrier frequency at the junction side. In this
case the frequency transposition should not only be done towards
frequencies of the form F+f (F the sampling frequency, f the input
frequency) as is commonly domne in ordinary modulators, but also

towards frequencies of the form nF+f(n a positive integer).

* For a general discussion of electronic TDM-PAM exchanges, see e.g.

(7,8, 9, 26, 34, 53, 63, 73, 76, 77, 81, 90, 91, 92, 96 7.
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Among the first studies on resonant-transfer circuits,
the most important is certainly the one by Cattermole [22, 23] .
The paper by Kraus [61] takes up similar ideas but complements
them in various respects. Some of the results first given:by Catter~
mole have later been found independently by Thomas [94 ]. Stimulated
by Cattermole's work, a general theory of resonant-transfer
circuits has been develbped by the author [38 - 46 ].'ther methods
of analysis have been published by Désoer (29] , Svala [93] , French
and Harding [491],Perkins [78] , May and Stumps [74] , Kaden [60] ,
Feder [36] , Darré [27] and Leberwurst [70] . Broux has examined
certain crosstalk [16] and amplification [17, 18] problems.
Various non-reciprocal resonant transfer devices have been described
by Adelaar [3] and Edrich [32, 33] . Further contributions are due.
to Adelaar [4, 5, 6 1, Price [83] , Svala [92] , Rosenoer [private
communication J],Aagaard [1j and Kraus [62] . A very incémplete list
of additional patents is [35, 85-88] . Many of the papers on
electronic TDM~PAM switching systems mentioned in the footnote on
page 1.2. also contain descriptions of the resonant-transfer principle.
A new possibility of application for the resonant-transfer
principle has been discovered more recently. Poschenriéder [(81] had
noticed that a certain chain matrix derived in[43] is very similar
to the chain matrix of various distributed~parameter two-ports. This
has led him to propose the realization of filterrnetworks,built of
capacitances and resonantwrtransfer switches only and having pro-
. perties mathematically identical to those of certain transmission-
line networks and mechanical filters. Further research into this
subject by the author has shown that even more flexible designs
than those proposed by Poschenrieder can be realized. These corres-
pond in a certain sense to the most flexible of the transmission-
line circuits originally proposed by Richards [84] , (i.e. those
in which capacitances and inductances of a lumped parameter circuit
are individually replaced by transmission-line elements), but
without involving the technological difficulties which make these
transmission-line circuilts impractical. These results appear here

for the first time,
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_ It is clear that only a summary of the various résults
obtained so far in the theory 'of resonant-transfer circuits can
be given in these lectures, and that proofs, if given at all, can
only be sketched. For further results as well as for all detalls,

the original llterature should be consulted
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2. GENERAL PROPERTIES OF PERIODICALLY-VARYING CIRCUITS.

In order to simplify the subsequent discussions, we shall
summarize in this section some general properties of periodically-
varying circuits, to which alsd.belong the circuits containing
periodically-operated switches., We assume throughout that'we are
dealing with linear circuits, even if this is not explicitly
stated. o

2.1, Fundamental properties.

Since all differential equations describing the network
are linear and have real coefficients, the method of analysis by
means of complex exponentials remains valid, just as for linear
constant networks. ' '

Consider then a network whose parameters are varying

with period T and assume that a complex excitation

x(t) = A Pt | (2.1)

is applied to it, where A and p are complex -constants. As Zadeh [102]
and Belevitch [1Q have pointed out the steady-state response

to (2.1) can be written

v(t) = Y eP¥, ¥ = a4 H(p,t) | C(2.2)

where the system function H(p,t) is independentof A and periodic

in t with period T. If the actual excitation is equal to the real
part of (2.1), the actual steady-state response will be equal to
the real part of (2.2), and every other possible response differs

only by an additive term corresponding to a free oscillation.
Unless a system function is in fact independent of t, its

value depends also on the choice of the time origin. If the time

origin is shifted from zero to t _, H(p,t) is changed into'H(p,t+t°).

H(p,t) can also be developed into a Fourier series,

& . C
H(p,t) = & H_ eI (2.3)
N=e=
where

Q= 21]:F, F = 1/T & ‘ (2.4)
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A quantity such as H.eJth will be called the component of order

n of H. By shifting the time origin to t - H is changed‘into
o eJth o . .

- From these considefations, we conclude that if a perio—
dically-varying circuit is driven by an excitation of the form
(2.1), the factor eP% g just as superfluous as in case of constant
circuits, Thus, if i(t) and v(t) are e.g. a current and a voltage
under exponential steady.state conditions, it will in general be
sufficient to consider the periodic functions I=I(t) and.V=V(t)
defined by |

i= TP, v=v oP* | | (23]

Just as in case of constant networks, we may then speak of the
current I and the voltage V instead of the current i and the
voltage v. If clarity requires, these latter ones will also be
called respectively the instantaneous current and the 1nstantaneous
voltage.

We shall henceforth assume that rms values are used
throughout. This way, the physical excitation actually applied is
V'Z times the real part of the complex excitation, and the response
actually obtained is then also V2' times the real part of the

corresponding complex responsey

2.2, Power transmitted..

Consider a port of a periodically-varying circuit and
let V and I be respectively the voltage and the current at this
port under exponential steady-state conditions. We have

jnQt jnQt

V=2xV_ e $ : - I=321I e P (2.6)
n n n n
Assuming p = j , with greal, and
w # k/2 . (k = any integer), : (2.7)

the average power P delivered through the port is given by

= _ .
P=vis= z Py P = Re yn I (2.8)
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Whenever we write p = j®w , we shall always assume that
w is real. Furthermore, whenever power is considered we shall al~-

ways assume p = jw , with @ satisfying (2.7).

2.3, Effective behaviour.,

Consider a periodically-varying circuit N terminated
at port 2 by a constant resistance R »and at port 1T by a source
of voltage e = E eP (E a constant) in series with a constant

resistance R, (fig. 2.1). The following system functions are

particularly important, the transfer function 821 defined by _
' Ry v,
and the reflection function 511 defined by
S,,(pyt) = (2v, - E)/E = (E - 2R,I,)/E. (2.10)

These definitions are analogous to those of the transfer and
reflection coefficients of constant networks,
The Fourier expansions of V1, I1, V2 and 12 can be written,

with 4 = 1 or 2,

V.(t) = 5 v, edB¥ I.(t) = ¢ 1, ei0¥t
i n in i ~n in
and those of SZ1 and S,]1 7
ant 14 _ . ,]th
(p,t) = z Syqy © s S11\p,t)- i CPP .
We have for the 821n’ the conversion coefficient of order n,
R, V
v 2n _ .
SZ']n = 2‘§£ < = -2 \[R,]Ra,l n/E 7 : (2.1'_‘)
and for S11n, the reflection coefficient of order n,
=(2v, . - E)/E = (E - 2R,I1,.)/E
0 10 1710 (2.12)
=(2,q = B4/ (2,4 + Ry, )
S0 = 2V1n/E = - 211nR1/E, n#0 _ (2.13)

where Z,.= V1O/ I,o is the effective input impedance at the

complex frequency p.
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Finally, let Pmax be the maximum power which can be

delivered by the source, P1n the power delivered through port 1

by the component of order n, and P n the pdwer delivered to the

2
load by the same component, we have
. 2 - * -
max =|E | /L+R1, P, = Re V¥ I. i=1or 2,
2
lS21nI B P2n/Pmax7
1S.. |1+ P, /P =1
110 10’ " max !
2 .
1830017 * P/ Ppax = 09 n £ 0.

2.4, Reciprocity and quasireciprocity.

If a linear constant network is reciprocal, we:have
521=S12, i.e. the transmission properties between ports 1 and 2 are
the same in the direction 1 = 2 as in the direction 2 — 1., Extension
of the concept of reciprocity to linear periodically¥vafying net-
works requires that the frequency transposition, which then usually
takes place, and the dependence of the system functions on the
choice of the time origin be taken into account. We shall therefore

say that a periodically-varying network is reciprocal between ports

1 and 2 with respect to~to if, after shifting the time origin to

to’ the transmission properties are the same in both directions
under the following conditions: if for the direction 1 -2 the
(complex) frequency injected at port 1 is P, and the useful
frequency received at port 2 is pa, the useful frequency ?eceived
at port 1 for the direction 2 =1 is again Py if P, is injected

at port 2. Taking into account the fact that P, is necessarily

of the form Py o+ jnQ as well as the rule given in par. 2.%7. for
the influence of a change of the time origin on a system function ,
the conditions for reciprocity between ports 1 and 2 can be written
as follow: There exists a value t, such that the conversioﬁ
coefficients satisfy the two (equivalent) relations '

I'4 - . -jzngto .
Sz1n‘p) = 545, on (p + jnQe o (2.14%)
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-j2nft,

S12n(p) = 821’_11 Fp + jnQe (2.15)

After shifting the time origin to to, the following relations

are then satisfied

Sp1p(P) = S12,-n(P* nsd),

S12n(p) = 521’_n(p + jnQ).

As Duinker [31 ]and Belevitch [12 ] have shown, a circuit is
reciprocal with respect to a time to if its only time-varying
elements are resistances varying symmetrically in time with respect
to to. As a switch is by definition a limiting case of a varying
resistance, circuits with periodically-operated switches will be
reciprécal if all switches operate symmetricallyin time with
respect to a certain time td' '

From a practical point of view, the reciprocity so
defined is too severe and cannot be satisfied by certain networks
which, however, are perfectly usable in bidirectional circuits.
For this reason, we shall make use of the more general concept

of guasi-reciprocity which we define as follows. We shall say that

a periodically-varying circuit is quasi-reciprocal if the trans-
mission in the direction 2 -1 differs from the one in the direction
1-+2 only by a uniform delay A, at the stage of the frequency P,
and a uniform delay &

2
implies that the following two. (equivalent) conditions be

at the stage of the frequency Py This

satisfied
Sp1p(P) = S5 _ (0 + jne2P A+ ImAA =AY (5 46
S, (p) = (p + Jm)'e-zpzx - jnQ(a +A')__' (2:77)
n 21,~n
wasre 28= A4+ By, 240 = A, 0,. (2.18)

From the point of view of a signal traversing the
circuit, the total delay difference 2 & is the only one of impor-

tance*,Moreover,if we change the time origin to to,this difference 24

* According to the choice of the signs of Ay and i adopted here,
24 expresses in fact the additional delay of direction 2 =1

with respect to the delay of direction 12,
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is not altered while A' is replgced by A'—Zto. .

The concept of quasi-reciprocity can, of course, also
be applied to constant circuits. Such a circuit will be called
quasi-reciprocal between ports 1 and 2 if we have

2p A

qu(p) = 812(p) e (2.19)

Note that for a gyrator we have 521 = = 812 which cannot be

‘'satisfied for all frequencies by this expression.
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5 BASIC PRINCIPLES OF RESONANT-TRANSFER CIRCUITS.

%3¢1. Basic resonant transfer circuits.

Consider first the circuit of Fig. 3.1. It contains two

equal capacitances C, one transfer inductance 2L and a switch S,

which together form the simplest type of resonant-transfer arrange-

ment,
Suppose that the switch S is being closed at t=0 and that

it is being opened again at t = T, where

T =7 .VLC _ | £3.7)
is equal to half the resonant period of the circuit. The charge
initially present on the left-hand capacitance will then precisely
have been transferred to the right-~hand capacitance and vice-versa.
With other words, by keeping the switch closed for a period equal
to T , we have obtained a means to produce a controlled intérchange
of the charges initially present on the two capacitances.

Another circuit which produces the same result is shown
in Fige. 3.2. where we assume that the switches 5, and 82 are closed
simultaneously for a period still given by (3.1). The advantage of
this new circuit is that certain parasitic capacitances wﬁich are
“unavoidable in practical situations can be absorbed into the central
capacitance 2C/3.

Consider next the simple resonant-transfer circuit shown

in Fig, 3.3;It comprises two two-~ports N1 and N, which, for

simplicity, we may assume to be:identical., At poit 1, it is fed

by a source éf voltage E, resistance R,| and frequency p = jw, and

at port 2 it is terminated by a resistance Rz. Ports 3 and 4 are
interconnected by a small inductance 2L and a switch S. At high
frequency, N1 and N2 reduce at ports 3 and 4 to simple capacitances C.
The two capacitances C, the inductance 2L and the switch S together
clearly form a resonant-transfer arrangement with ¢ given by (3.71).

We assume that T is very small compared to all other resonant periods

and time constants of the complete circuit (i.e.. the circuit

including N, N2 and the terminations).
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Suppose now that S operates periodically at a rate
F = 1/T; more precisely, suppose that S is closed during transfer

periods defined by

T T
t, =5 <t<t +3, (3.2)
t = m T' . m>= cecoe —2' -1, O, 1; 2,0c(3-3)

and that it is open otherwise. If we assume furthermore that
‘T & T we can clearly distinguish between a short-time and a
long-time behaviour. The short-time behaviour is determined by the
resonant-transfer arrangement alone., For the long-time behaviour,
however, the detailed phenomena in this resonant transfer arrange-
bment are without importance. It simply acts as if at régular discrete
instants tm given by (3.3) the two capacitances C would instantaneously
interchange their charges.

The current i Zflowing between terminals 3 and 4 must be
of the general form (2.5). On the other hand, it is composed of

short pulses so that we can write

i= Iept, I = Ja(t) : ' (3.4)
where

(o=}

A(t) = T mzil_mb(t - mT), (3.5)

&(t) being ,in the usual notation,a unit impulse which we may
assume to be ideal and J being a constant (in general coﬁplex)
having the dimensions of a current. Moreover, if N2 has suitable
low-pass properties and if w<Q/2 = nF, the output signal appearing
at port 2 will again be an almost sinusoidal signal of the same
frequency w as the input signal. This shows that the circuit of
Fig. 3.3. can serve to transform a sinusoidal inputlsignal‘first
into a corresponding PAM-signal i(t) and then back into a éontinuous

signal similar to the original one. Furthermore, as N, has been

1
assumed to be identical to NZ’ the low-pass properties of N1 in turn
will prévent the various frequency components (except o) contained

in (3.4) form reaching the source resistance R, .
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This is essential if high overall . transmission efficiency should be
obtained since these other frequency components would dissipate part
of the available energy in R1. '

An important result of Cattermole's theory can now be
stated: lossless transmission in either direction is obtained be-
tween the input and output ports 71 and 2 if N1 and Né are. ideal open=-
circuit low-pass filters with cut-off frequency fc equal to half the
sampling rate, i.e, if fc = F/2, This result is quite remarkable since
no similar result for conventional modulator circuits is known. As
has been mentioned in the introduction, the ideal filters used in
the theory of conventional modulators are in fact 'overidealized",
but this is clearly not the case here, |

Cattermole, [ 22, 23] has shown that the same ideal open~-
circuit filter as the one mentioned above can also serve as ideal
filter for wvarious other types of resonant transfer circuits. One

of these is the circuit with intermediate storage shown in Fig. 3.4

where S1 and S2 operate both at the same rate but not simultaneously.
The resonant-transfer: arrangement is formed in this case by the
three capacitances C, the two inductances 2L and the two switches
81 and 82..The transfer in either direction therefore occurs in
two steps, the middle capacitance C serving as temporary storage
device.

Despite the importance of Cattermole's results, we shall
omit discussing his theory any further, since all results obtained

by him also follow from the more general theory te be presented here.

%.2. Need for a more general theory.

The discussion given in par. 3.1 leaves many questions
open. Among these, the most important are perhaps the following:
1. How can we analyse the circuit if the two networks N, and N

1 2
are distinct ? In this case, we also want to tolerate that the

two capacitances, which have been designated both by C in Fig.3.3

and which we shall henceforth designate respectively by 01 and C2,
may be distinct. This problem is of practical importance. In a '
telephone exchange, a local line may e.g. be connected to»N1 and

a trunk line to N2.In this case,N; and N, may stili both be
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low-pass filters, but economy considerations require that the
filter connected to the local line be less elaborate than the one
connected to the trunk line, It may also be, however, that we want
to select an AM-modulated signal for the trunk transmission, in
which case N, will have to be a band-pass filter while N1_may

2
still be a low-pass filter,

In addition to the arrangements considered by Cattermole, various
other resonant transfer arrangements are of interest. The question

is, therefore, how the behaviour of the most general resonant-

transfer arrangement can be described in a simple and general

waye.

What are the general expressions for the conversion and reflection

coefficients ?

What is the influence of the unavoidable losses in the resonant-
transfer arrangement as well as the influence of the timing

errors (duration of the transfer period not equal to the ideal)?

What are the general conditions which must be satisfied in order

to insure egual quality of transmission in both directions ?

As true reciprocal behaviour is usually no longer possible for

time-varying circuits, we want at least to obtain guasi-recipro-

cal behaviour, i.e., we want the transmission properties in both
directions to differ at most by a constant (frequency indepen-
dent) delay.

What are the general conditions which must be satisfied in order

to insure absence of reflection at one or both terminal ports ?

What are the general conditions which must be satisfied by N1

and Nz‘to be ideal filters, i.e. filters such that lossless trans-

mission of the overall circuit is obtained ? Such ideal filters

are desired not only for audio-~to-audio transmission but also

if frequency translation is involved.
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8. In a TDM~PAM exchange, the networks N1 and N2 must work under

different operating conditions (in particular together with
different types of resonant~transfer arrangements) depending
‘on the way the connection is set up in the exchange, What are

the conditions for N1 and N, to be ideal universal filters, i.e.

2
ideal filters providing equal perfomance in these different

situations ?

9¢ In practical low-pass situations, one always wants to have a

cut-=off frequency lower than half the sampling rate, i.e.

fc< F/2. Under these circumstances, is it still possible to con-
ceive ideal realizable networks having the properties of ideal

filters, and more specifically of ideal universal filters ? More
precisely, can an algorithm bé given allowing to design networks

N1 and N2 whose performance is arbitrarily close to the ideal one°
10. Similar questions arise for band-pass problems.,

11, Although an algorithm such as the one mentioned under § . allows:
to design filters with arbitrary good perfomance, it does not

furnish optimum filters, i.e. filters whose performance is the

best possible under given conditions such as number of elements |
structure etc, The question is thus how optimum filters can be

designed for given perfomance criteria.

12, What simplifications arise for the filter design problem in case

of narrow band transmission ?

13. Although lossless transmission can theoretically be obtained,
some loSses , Which occur mainly in the decoupling transformers
contained in N1 and N2, are unavoidable. If these losses are
too large, they have to be compensated, and one may even wish to
realize an overall amplification. This can e.g. be achieved by

including bidirectional active elements (negative resistances),

in the resonant-transfer arrangements., The question is then how
to design the arrangement under these conditions in order to

insure proper behaviour,



-3o 6-

14, What are the consequences for the stability of the circuit if
active elements are provided and if at the same time absence
of reflections is required ? In particular, what general stability
criterion can be given and how does such a criterion depend on the

amount of loss compensation or amplification required ?

15. . What are the consequences for the filter design problem resulting

from the stability criterion mentioned under 14?2

16, What is the crosstalk between various channels in case of time-

division multiplexing ?

17. How can the theory be extended to various other domains of
application of the resonant-transfer principle, such as resonant-

_transfer n-ports, PCM and delta modulation circuits, resonant-

transfer N-path filters, etc., ?

In the subsequent sections, we shall briefly éXpose a very
general theory by means of which the above questions can be answered,
or at least partially be answered. In this theory, we_shall always
assume that from the point-of-view of the long-time behaviour,
the pulse duration may be considered to be infinitelyismail. It is
true that for certain applications it would be uséful to dispose
of first order expressions which take into account the deviation
from this assumption. Such expressions, however, have not yet been
computed, although the theories exposed in [29] and [37] could be
useful for this problem, ' ‘

Tn the lust section, fimally, we shall show how the general
'theory, which will be discussed hereafter, leads to a completely new
type of application of the resonant-transfer principle, the

realization of filters built of capacitances and resonant-transfer

switches only. Such a resonant-transfer switch may be formed by
a transfer inductance and an ordinary (electronic) switch, (as is

also the case in the circuits of Fig. 3.3 and 3.4), or by such
an ordinary switch together with additional transistors and

capacitors [87]) . This way, completely inductorless filters can

even be obtained.
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PULSE IMPEDANCES.

Definition of the concepts pulse impedance and step resistance.

Consider an impedance Z(p) which reduces at high frequency

to a capacitance C defined by

C =1/ 1lim p Z(p) . (4.1)

P>

, Suppose that we apply to it a current of the form

pt . 1

i=1ce"", I(t) = JA(t-to) , | (4,2)

it

where J is a constant having the dimensions of a current_énd where
A(t) is the pulse-train given by (3.5). The current pulses thus

occur at the instants

tm = to + mT, m = 00000-2,-1 ,0,'1,2, EEEK) (1""03)

where we may e.g. assume without any restrictions that
0g t <T. (hok)

Let v =V ept be the voltage appearing across 4 due to
the current (4.2). Clearly, V = V(t) is a periodic function of
time of period T. At the instants t  given by (443), V jumps

suddenly from a value Vb to a value>Va, the subscripts "b" and "a"

standing respectively for "before" and "after", Va and Vb are both
proportional to J and we can write

U = %J (4.5), (va-vb)/z = RJ - (4.6)
where '

U= (v, +V))/2 . (4.7)

The proportionality coefficients Z and RC have the dimensions of

impedances and will be calledrespectively pulse impedance and

step resistance. 2 is dependent on p and has a real and an imaginary

part, : :
| 7=%+3%. | (4.8)
R, turns out to be a positive constant given by (see also. par. 4,2)

R, = T/2 C. ’ (k.9)
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If we interpret U as a voltage and J as a current, (4.5) can be
considered to express Ohm's law between U, J and 7. Various other

reasons for calling Z an impedance will be seen later. We also

have
V. =U+RJ, vV, =U - RJ, : (4.10)
V. =243 , Vo = 24, (4e11)
where ~ ] ~ =
Z, =14+ R, Z, =% = Rge (4.12)

Suppose now that Z is the input impedance of a network
N to which a source of voltage E ept (E a constant) is applied af
terminals 1-1' and which is fed at 2-2' by a current (4.2) (Fig.k.la,
the superfluous factor ept having been dropped). The voltage
v=yV ePt appearing across 2-2' can be computed by applying the
superposition principle, With Va and Vb having the same meaning as

before, and U being still defined by (4.7), we obtain

U=E_ + 2 - (B13)

where Eo is the voltage which would appear across 2—2"if'the
voltage source were acting alone and where the pulse impedance 7
is the same as in (4.5). Expression (4.6) is still valid but a
term Eo has to be added to the right-hand members of all four.
equations (4,10) and (4.11). Expression (4.,13) clearly can be re-
presented by the equivalent circuit of Fig. 4.1b.

The significance of this equivalent circuit can considerably
be enhanced by calculating the average power transmitted to N via
port 2. This can be done either by a frequency domain analysis, using
(2.8), or by a time domain analysis calculating the power'trané-

mitted by each pulse. One obtains
P = Re U*J = Re U J*, (bo1h)

which is the expression one would obtain from Fig. 4.1b if U and
J are considered to be ordinary steady-state quantities., For E = O,
i.e. for the situation under which (4.5) is valid, we obtain as

for ordinary impedances, using (4.8),

P =RIGP, O (4.15)



b2,

-L" 03--

It should be clear that any other conclusions which can be drawn
from expressions such as (4,5), (4.13), (4.14) and (4.15) in case
of constant networks in the sinusoidal steady-state also femain
valid, Thus, e.g., the maximum power Pmax which can be deiived
from the circuit of Fig. 4.71a by means of a current of the form
(4,2) is given by

2, .
P =IE 12/ b B -, BN ORT

Explicit expressions for the pulse impedance,

By means of methods similar to those used in the theory
of the z~-transform, one obtains for the pulse impedance the following
expressions ' '
Z

N=e—co

T z(p + jnQ) - (4.17)

Z

Ry + T °z°1 A(uT)e "OPT : (4,18)
m= o F

where Q is given by (2.4) and where A(t) is the impulse response

corresponding to Z(p), i.e. _
2(p) = K (A(%)} | (4.19)

the symbol L standing, as usual, for the Laplace transform

operator. (4,17) is easiest derived by means of a frequency domain
analysis, noting that (Va + Vb)/2 must be equal.to the vélue of

the Fourier development of V(t) at the points of discontinuity

t = tm' (4,18) is easiest derived by means of a time domain analysis
by summing over the eftfects of all previous pulses up to t==w ,

The expression (4.9) for RC can be obtained by either of these
analyses.

An integral expression for Z is

O 4o
2= aT' /] quz 7 da | (4,20)
TJ U-j‘x’ 1 = e q~=P »
where 9,< o< Rep, (4,21)

9, being'the largest of the real parts of the poies of Z(p).
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For p = jo , (4.20) is strictly valid only if Z is minimum-
reactive, but it can easily be extended to the limiting case of
non-minimum-reactive impedances by proper modification of the path
of integration. (4.17) can be derived from (4.20) by closing the
contour of integration by means of a large semi-circle in the
right-half plane, while (4.,18) can be obtained by series expansion
of the integrand of (4.20),making use of (4.19), | |

As Z(p) is capacitive at high frequency, we can write

N Bi
Z(p) = T —, : (ko22)
i=1 P-Pi o .
with p N l'/
R, =T/2C=35 L B, (4.23)
i
i=1
or, if multiple poles are present,
N Ni Bik
= X
z2(p) = ;I L Top, % (4.24)
N, , .
i
with T .
Ry = T/2C = 5 i_>_31 By g | (4.25)

where N is the number of distinct poles and N, the degree of multi-
plicity of the ith pole. 7 can now be computeé by means bf (4,17,
(4,18) or (4.20); in the lat ter case, the contour of integration
has to be closed by means of an infinite half-circle in the left

half-plane. The result is best expressed in a new variable

¢ = tanh (p T/2) - (4.26)
or, for p = juw ,
= o , ' ¢ = tan (wT/2). : (4=27)

We obtain from (4.22),

v & . 7 -9 4

Z=124) =35 121 B, T=v (4.28)
and from (I-I-.ZL})’ :

N
N i B k-1

v, gy T ik 1
72 = Z(P)= ¢r +(1-¢7) = = z e (4.29)

C 2 421 ket (k=1)! apik-1 ¢ -9, R

where 4= tanh(p, 17/2) S (k30)
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The derivation of (4.28) and (4.29) assumes in fact that
7(p) is minimum-reactive. These expressions remain valid, however,
even in case of non-minimum-reactive impedances since impedances
of this latter type have a physical meaning only as limiting cases
of minimum-reactive impedances.

For p = jw, we also obtain from (4.8) and (4.17),

Z(ip)= R(p) + j X(o) | (4.31)
' where 0 '
R(p)= n_}‘f R(w+ nQ),  X(¢)= L Xsn@). o (B32)

Henceforth, Z(&) shall also be called the 4)-transfofm

of Z(p). Although Z(¢) is unique for a given Z(p), there exist
an infinite ﬁumber of inverse transforms Z(p) for a given Z(¢). This
follows from the fact that there exist an infinite number of
different p; which satisfy (4,30) for a given¢ .. |

It is often advantageous to make use of normalized .
quantities which we shall define as follows, Ro being a normalizing

resistance to be specified in each individual case:

z=r + jx = Z/Ro, T = R/Ro, X = X/Ro , (4,33)
=%+ 3X=2R, T=RR, X = E/Ro 3 (ﬁ.s@) ‘
C, = T/2R_, c= C/C_ = RO/RC ; (4.35)
A= pT/2 A =B /2 O (.36)
v = ol/2 = Tf/F ; ' | (4.37)
bi'= B.C, - l (4.38)

We then have e.g.

¢ = tanh A (a), ® = tan Vv (b) _ : (4.2%9)
Noob, '
1} = B ' )
Z M) o v SO (4.40)
N _
/e = lim Az(A) = sZq4 b1, o (4.41)
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N .
2(¢) = T b, L.20% (b.42)
i=

11 b-dy |
The variable ¢ corresponds to the variable Ww introduced
by Johnson, Lindorff and Nordling [57] and is related to the

pt

variable z= e used in the z-transform theory by

gp=(2~1)/(2+1) .
It has the interesting property that

Re $20 if Re p Z O ' (k,43)

where equally placed symbols correspond to one another.,

From an expression such as (4.17), one might conclude
that, except for a missing factor 1/T, 7 is identical to the usual
z-transform [59] . This is not so since in the usual z-tfansform
theory an expression such as (4.17) is only valid for transfer im-
pedances having at least a double zero at infinity, while here this
zero is essentially simple, |

The pulse sequence impedances G and G1 used by Catter-
mole [22,23] are related to 2a and ib by '

Za =GT, ﬁb =G, T .

Kraus [62] has proposed to replace the variablés U and
J by new variables U' and J' defined by
pt ' pt

U =U e °© J'" = J e © ¥

In this case, the definition of 7 is not modified and the power
relations also remain valid, Although there are certain advantages
to using these new variables, we have prefered not to do so in
order to keep the formulas givén here in agreement with those

given in [43].

Properties of the pulse impedance and the step resistance.

From the results of the two previous paragraphs, many
useful properties of the pulse impedance and the step resistance
can be obtained. Among these, the following should be mentioned:

1. Z2(¢) is a Brune function (rational positive real function) of

the variable ¢ if Z(p) is a Brune function of the variable p

(follows from (4.28),(4.29)and (4.43)together with(4,15)or(4.32)).
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The converse, however, is not always true, i.e. noneof the in~

verse transforms of a Brune function Z($) has to be a Brune

function; example: a function Z(¢) for which ﬁ(@) is zero for

a certain real value of ¢ without being identically zero for

all ¢ cannot correspond to any Brune function Z(p) (cf.property

3 mentioned below).

Z(¢) is minimum-reactive in ¢if and only if Z(p) is minimum-

2.
reactive in p (follows from (4.30) and (4.43)).
If for ¢ = jo , R(@) is zero for any particular value of ¢ ,
it is identically zero for all ¢ , (follows from (4.32) by noting
that R(w) cannot be zero in an infinite number of points unless
it is identically zero).

L,

7Z(¢) is a reactance function of the variable ¢ if Z(p) is a

reactance function of the variable p, and vice versa. Further-

more, although Z(p) has to be capacitive at high frequency,

Z(¢) may have a pole at ¢ =, More precisely we have the follo-

wing correspondences

z(A) = 1/Ac, 2( )
z(\) = ———EL——E“ , z(¢)
c(A"+v_ )
o
where
0 = | tan v J, : v,
c' = /(1 + woz) = 8 cosz\)o

il

1/¢e (L.4h)
— (4. 45)

¢ (WPag ?)
= Jtan™! g | (4, 16)
(b b7)

Note that z(¢¥) in (4.45) reduces to 1/9c for Vo= nt, i.e,

for £ =
o)

v =
(o}

nF (n an integer), and that it reduces to ¢/c for

(2n + 1) ®/2, i.e. for fo=(2n ¥ TIFR/2,

5. §(¢) is the input impedance of an ideal open-circuit filter

in the ¢-domain if Z(p) is the input impedance of an ideal

open-circuit filter in the p-domain, and vice versa. More

precisely, limiting ourselves to low-pass filters with cut-off

fréquency fcsiF/Z and R = Ro in the pass=-band, we have for

z(jv) = r(v)+jx(v),
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1 for Ivl <v =mnf /FLn/2,
r(v) = -ﬁ- ={ ©c. S (L.48)
. To 0 for vl >wv, ' :

C
vt v
=—j%lnlf, ,C

x(v)= :
v~ Ve

; O (bb9)

o} ]

o}

and for the correSpondin% 2(59)
¢

o % 1 for | < wc = tan vc

r(p) = - : : (4.50)
o 0 for lel> @,

oL 1 bre

x((p) = ?ﬁ( = j ;‘:‘ an ‘P-(Pc » ) . (4-51)
o] C

Similar relations have been obtained in case of.band-pass
filters. All these relations can best be proved by first
computing r(¢) by means of (4.32), which is relatively
simple to do. The imaginary part %(9) can then be obtained
directly by noting that z(¢) is minimum-reactive at the

same time as z(p) so that the Bayard-Bode relations [(15] can
be applied. ' 1

% and R. are related by

C o
7(1) = R, (BG=1) = R (4.52)
/2 .
I>7 Fay= s =2 ap »  (4.53)
o 0 1+g

where in this last expression the equality or ineéuality

sign holds depending on whether z(A), and therefore also

Z(¢) is minimum-reactive.or not.

Z(¢) and RC are permanent, i.e. independent of the choice

of the time origin. This needs some_explanatiom as we have -~ 1
nowhere assumed in section 4 that we are dealing with
time-variable circuits. In fact, however, we may -assume

that the circuit under consideration belongs to a larger
circuit containing e;g. periodically-onerated switches. In
this case, a change of the time origin will modify the para-

meter to in (4.2) as well as the system functions of the to-
tal circuit, but will leave unchanged the values of Z and Rge
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GENERAL PROPERTIES OF RESONANT-TRANSFER CIRCUITS.

Mathematical definition of the resonant transfer.

A general resonant-transfef two-port is shown in Fig. 5.7
where the following assumptions are supposed to be fulfilied:
S, and S, are switches which operate periodically at a rate F=1/T.
N,I and N_ are constant networks (usually filters)»while'Nd'may

2
contain further periodically-operated switches operating at the

- same rate as S1 and SZ' Z3 is the input impedance of N1_at port 3

when terminated at port 1 by resistance R, (i.e. with E =.0).
Similarly, Z4 is the input impedance of N

at port 2 by R, C1 and C

> at port 4 when terminated

are related to Z3 and 24 by

2 2

1/¢, - 1n g 75(9) 1/02=p5i: p Z,(p)  (5.1)

The switches 81 and 82 are closed during very short transfer periods
- :

: T T T,
b, mok & tCh, * oe snd b 2t <t +.2 (5.2)
m "~ 2 m 2 2 2m ~ 2 O 2m " 2 .
of duration T and T, respectively, where
t1m = t1 + nT, . t2m = t2 + nT,

(5.3)

‘m>: veoee "'2, -l‘. O, 1, 2, eeo 00

and are open otherwise. t1m and th do not have to correspond to

the same instants,; i.e. we may have t,l # ta; more precisely, we may

write

t, = t, + T T="T, + T, (5.4)
where we may e.g. assume without any restriction that

0gT, <T, 0<T,g T. , (5.5)

Similarly, we may have T, =4 Ty although this is usually less
essential. The circuit is fed by a source of voltage E and complex

frequency p; the currents traversing the ports 3% and 4 are I, and

-
Iq respectively, and the voltages across these ports are V_, and

3

Vq, the factor ept being again emitted everywhere.

* In practical situations, one of the switches S1 or SZ may often

be omitted without affecting the behaviour of the circuit.
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T4 and'r2 are of such short duration that we can again
distinguish between short-time and long-time behaviour. The short-

time behaviour is determined by the resonant-transfer arrangement

alone, i.e. by C,, C,» 844 8, and N_. This resonant-transfer arrange-
ment is such that V3 and V4 change appreciably during the corres-
ponding transfer periods., The currents 13 and Ih are thus composed

of short pulses which carry appreciable charges across Sjland 32
respectively. From the point of view of the long-time behaviour,

. we may thus write

I3 = Jq Alt-t,), I, = Jy A(t-tz)_ | (5.6)

where the "currents" J3 and J, are (complex) constants and where
A (t) is defined by (3.5). Furthermore, we may assume that V3

changes suddenly at each t = t1m from a value V., to V, , and

3b 3a
V), at each t = t2m from qu to an. We can thus define "voltages"

U3 and U4 by .
U3 = (v3a+v3b)/2, U, = (v4a+vqb)/2 : (57}

and we can write, according to what we have seen in par. 4.1,

U’3 = EO -’ZBJB, UL‘. = ZL’.JLI.’ (508)

(VBb-VBa)/a = RCWJB’ (vhb-v4a)/2 = RC2J4 v (5.9)
where

Ry, = T/ac1 , Ry, = T/202 | (5.10)

are the step resistances corresponding tq C1 and C2 respeqtively,
%3 and §4 the pulse impedances corresponding to Z3 and Zq'respectively
and where Eo is the open=~circuit voltage measured at port 3 of net-
work N1 when port 1 is fed by the source E in series with-R1.

Without going into any physical detail, we can now for-
mally define a resonant-transfer arrangement as a means for
establishing two independent linear* relations between the quantities

v V4a and ka' More precisely, we postulate at present that

3a’ V3b’

* As we are dealing with linear circuits, we assume that the

resonant-transfer arrangement is linear too.
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the arrangement composed of No C C S and S (Flg 5.1) 1mposes the

existence of two such relations whose coefflclents depend : _
exclusively on this arrangement but not on the rest of the circuit
(they may depend, of course, on p and T). Solving these equations

with respect to 'V and V#a’ we can write

3a

Va = B Vb | (5.11)

where Va and Vb are the vectors

v i

LA s S v, = V3b$ (5.12)
Vq 4y

a
and where B is the voltage transfer matrix -

Bss By »

B (5.13)
Byz By

whose elements only depend on the resonant-transfer arrangement
itself, '

Taking into account (5.7) and (5.9), we can now transform
(5.11) into two linear relations between U3’ Uy» J4 and J4. These

two new relations thus define a certain equivalent two-port Ni'

called interconnecting two-port, with port voltages U3 and UL+
and port currents J3 and J,. Finally, taking into account (5.8)
we obtain for the original circuit of Fig. 5.7 the equivalent
circuit shown in Fig. 5.2. _ f

The two-port N. can, of course, be characterized by the
various matrices used in conventional two-port theory. Hereafter,

we shall make use of its chain matrix A defined by

Uy = gy = dagpdy O (5.1k)

Ty = Aus0y = A9, (5.15)
and related to B by »- 

Agz =0 (14B55) (1-By, )+ By)B, 51 /2 By (5.16)

A= L (1*333)(1+344)- Bsy, Byl R,,/2 Bz v (5.17)
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A5 = [(1-B5;)(1-By, )~ By) B, 51/2 Ryq By | (5.18)

Ay, = [(1—B33)(1+B44)+ 334 343] Rg, /2 L B43 3 (5.19).

as well as (incidentally) of its impedance matrix

W W
wof 33 3k

Wz Wiy

. - _ (5.20)

. The matrix B, however, presents also many advantages. It can be
shown that it cannot cease to exist for Re p>0 if the twoéport No
(Fig. 5.1) is composed of passive elements, including, possibly,
periodically-operated switches. The scattering matrix Si of Ni

with respect to terminating resistancesR at port 3 and R at

C1 c2
port 4 is related to B by
By, VY
Baz  Bay VY |
By By,
where
Y = Ryy/Ro, = C1/C,. S (5.82]
The interconnecting two~port clearly is reciprocal if
W C.B
det A= Pt = g2t = 1 (5.23)
L3 2743

and itisquasi-reciprocal if

det A = 2% o 13k -pa
"W, " CoBux
43 2743

where A is a certain constant.

(5.24)

Note that the various two~port parameters of Ni do not

have to be constants but may depend on p.

5.2. Computation of the conversion and reflection coefficients.

With the aid of the equivalent circuit of Fig. 5.2, the
conversion and reflection coefficients of the original circuit

of Fig. 5.7 can now be computed,
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Using the definitions given in section 2, we obtain* e.g.: in terms

of the chain matrix of Ni’

. -ant2
SZ1n(P) = 2 VR1R£ Mq(p) M2(p+gng)e /Dy . (5.25)
S,40(P) = pq=2 RN, M° 1(p)/Dy s (5.26)
' -jngt11
S11n(p) = -2R,N,,M 1(p) M, (p+jnQle /DA : (5.27)
| ok TS
S12n(p) =2 VR1R2'M1(p+3nQ)M2(p)e det A/DA , (5,28)
. 2 :
S550(P) = py ~2R,N) 5 M, (p)/Dy (5.29)
-jnot, S
Szzn(P) =-2R, N, ;M 2(p) M, (p+jnQ)e /DA,_ (5.30)
where o _ Z,,(p)-R, o _ Z,,(P)-R, : "
1 Z11Zp5+R1 ! 2 Z222p5+R2 ’ . e
Npg = Bzl + ABB, Ny,= A%’ZL+ i Aug, - (5.32)
Dy= Ayzlsly + AyyZs + A33Zh+ Az (5.33)
In these expressions, 211, Z22, M1 and M2 are the following
quantities:Z11'is the open-circuit input impedance of N1_seen
from port 1, Z22 the open~-circuit input impedance of N2 seen from

port 2, M1 the open=circuit voltage ratio of N1 in the direction

1- 3 if N1 is fed at port 1 by a voltage source of resistance R1,

and M2 is the open-circuit voltage ratio of N, in the direction

2
2 -4 if N2 is fed at port 2 by a voltage source of resistance R2.
As we assume-N1 and N2 to be reciprocal, M1 is also equal

to the current transfer ratio of N1 in the direction 3-1, when port
1 4is terminated by Rq, and M2 is also equal to the current transfer

ratio of N, in the direction 4~ 2 when port 2 is terminated by R,.

* The expressions given in [43 ] follow from those given nere if

we chose t1 = 0, t2 = T1.
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5.%. General properties of the interconnecting two-port,

5.4,

Some of the important properties of the interéonnecting

‘two-port N, are the following:

1, The only parameters of Nq and N2 having any influencé on the
- various matrices by means of which Ni can be described are
the capacitances C1 and CZ' Consequently, the properties of
Ni depend exclusively on the resonant-transfer arrangement it-

self.

2. The interconnecting two-port is permanent, i.e. 1ts two -port
parameters are independent of the choice of the tlme Orlgln.
3. The average power Po delivered to the two-port NO of.F;g. 561
is given by ‘
— * * V .
PO = RQ(U3J3 + UQJL'.). (5034‘) .
This corresponds to the power dissipated in the two-port N
of the circuit of Fig. 5.2.if this circuit is interpreted as

in ordinary steady-state analysis.

4, Ni is passive at the same time as No'

.Reciprocity and guasi-reciprocity,.

As has been done above, we shall assume hereafter that the
networks N1 and N2 are reciprocal. Under these conditions, the
circuit of Fig. 5.7 will be reciprocal in the sense discussed in
par. 2.4, if, and only if the following conditions are satisfied
by the interconnecting two-port: |
1. N, itself is reciprocal, i.e. (5.23) is satisfied.

2. The coefficients A33’ A34’ A43 and A44 are either all single-
valued (e.g. ratlonal) functlons of ¢ or they are all the pro-
duct of V1 & or 1/ N 1= ¢ by single-valued functions of ¢ .

In terms of the matrices B or W, condition 2 just mentioned can

also be replaced by the following two conditions to be satisfied

simultaneously:
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3, The coefficients B33 aLnd.BM+ (the coefficients W33,and W44>
are single~valued functions of ¢. v
L4, The coefficients 334 and B,+3 (W34 and W43) are either_?ojh
single-valued functions of ¢ or both the product ofvié ¢~ or
1/ N1 - ¢2 by single-valued functions of ¢, v'
Similarly, the circuit of Fig. 5.7 will be guasi-reci-
Erocal in the sense discussed in par. 2.4 if, and only if the follo-
wing conditions are satisfied by the interconnecting two-port:
1, N, itself is quasi-reciprocal, i.e. (5.24) is satisfied.
2. The coefficients A33’ A34’ Aer and A44 are either all the

PA

product of_e- y, where A is a certain constant, by single-

valued functions of ¢ , or they are all the product of
=p A -pb , \f 2! .
1= ¢2 e P oreF / 1-‘V2 by single-valued functions of ¢ .
Here again, in terms of the matrices B and W, condition 2 just
mentioned can also be replaced by the following two conditions to
be satisfied simultaneously:
5. The coefficients B;, and B, (W33 and un) are both single-
valued functions of ¢ . “
s pA -pPA PA 3 -PA
L, The quantities Bz, © and By; e (g L © an@ W#B e *°) are
both the product of WVI-¢ or 1/ V1-¢" by single-valued

functions of ¢,

Absence of reflection at the terminal ports.

In this paragraph, we shall assume throughout that p=jy .
Furthermore, for reasons of simplicity we assume that only one
useful frequency has to be considered at each terminal port; this
excludes in particular DSB input or output signals., We shall say
that no reflection occurs at a port at which the circuit is being
fed by a source if no power is returned neither at the freguency
of the source itself nor at any of the additional frequencies
generated in the circuit.,.

Assume first that the circuit wunder consideration is fed

at port 1 as shown in Fig. 5.7, with P=p,=Jw; e
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No reflection will occur if for p:jm1 the reflection function
S1q(p,t) is identically zero for all t, or, what amounts to the
same, if all the reflection coefficients Sq1n(p) (N= seses =2,
“1y, Oy 1, 2, eeses) are zero for p=j ©,. Using the results of
par. 5.2, and assuming that N1'is lossless, this leads to the

following two conditions to be satisfied for p:jm1,

M, (p + jngQ)=0 for n £ 0, _ : (5:35)

Zg = (ABB%L+ + A34)~/ (A4324 4 AQA), ' (5.36)

the asterisk expressing, as usual, the complex conjugate of the
corresponding quantity, Expression (5.36) can equivalently be

expressed in terms of the matrix B by.

By + Byups*ey =0} +py det B - (5.57)
where = i £ il
P3=(25 - Ryq)/(25 + Roq), 04=(Z4-R02)/(ZL++RCZ)25 .8)

These conditions can be interpreted as expressing that the power
available from the source, i.e. IE12/4 R, is completely trans-
mitted to No via port 3. .

Assume next that the circuit is fed at port 2 instead of
1, with p=p2=jg2, and that N2 is lossless. No reflection will

occur in this case if we have for p=jw,,

M2(p + jnQ)=0, for n £ 0O, ' (5.38)
_and ~ N N )
zi; = (AMZ3 + A34)/(A43Z3 + A33), | (5.39)

this last condition being equivalent with

By, + BBB%p;; = pof + Py det B, (5.40)

In practice absence of reflections will usually be
required simultaneously in both respective pass-bands of the
filters N1 and N2, i.e. for all useful frequencies w, at port 1 and

1

for all useful frequenciesw , at port 2.

2
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In this case, we may always assume that a f.‘c‘equency@,I injected
at port 1 is received as w

U W, = mQ _ (5f41)

> at port 2 and vice versa, i.e.

| where m is an integer. Assuming that N1 and N2 are lossless (at
least at the useful frequencies W, and w5 respectively), the
conditions (5.35) to (5.40) must then be satisfied simultaneously,
the first three at p=j @ 4 and the last three at p=j w2=jw1+jm§2.
For circuits which are at least quasi-reciprocal, however, (5.36),
(5.37), (5.39) and (5.40) do not change if p is replaced by

p+jn Q. In this case, these four conditions may thus be tested

either at p:jm1 or at p=jw2-

As we shall see later, the simplest ideal filters for
resonant-transfer circuits are those for which Z is equal to R

C

in the pass-band. If N1 and N2 are such filters, we thus have

Zy = Roq Zy= Rgpo (5.42)
i.e. 93 = p, = O, (5.37) and (5.40) then reduce respectlvely to

1333 = 0 and BL;.}_F =0 , . - (5.43)

which are remarkably simple. They express that V3a does not depend
on V3b’ and V4 not on V4b .

If the conditions (5.43) are fulfilled , they will usually
be fulfilled' at all values of p, in contrast to (5.35)to (5.40)
which will usually be realized at most in the respective pass-bands

of the filters N1 and N2.
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DIRECT AND INDIRECT RESONANT-TRANSFER.

Direct resonant-transfer,

6.1.1.General properties of a direct resonant-transfer arrangement.

Suppose that the two switches S1 and 82 operate simul-

taneously, i.e. that t,=t, and T,=T,= T. Suppose furthermore that
the network No in Fig. 5.1 is without memory, i.e. that no energy
is stored in it at the beginning of each iransfer period, and that
No is constant during each transfer period. If these.various con-
ditions are fulfilled, we say that the resonant-transfer is direct,

and the network No is then called a resonant-transfer switch.

Consider under these conditions the network Na.corres-
ponding to the resonant-transfer arrangement during a transfer

period and let Z33, 234, Z#B and th be the elements olets impe-
dance matrix (Fig. 6.1). We obtain

-1 -1 |
B55=C %t (254}, B3, =C X7 {25}, (6.1)

-1 =1

where £7 { } represents the inverse Laplace transform taken at

t=7t. In this case, the two~port Ni is thus constant. It is
furthermore reciprocal if Z34;243, as can be seen from (5.23).
All the reciprocity conditions given in par. 5.4. are then satis-
fied, the overall circuit of Fig. 5.7 being reciprocal with
respect to t0=1:,l or to=t1+T/2. This is in agreement with the
general reciprocity condition discussed in par. 2.4. The equivalent
circuit of Ni for Z3L+=Z43 is a sesistive two-port.

In most practical situations, Na can be separated into
two parts which differ at most by a different choice of the

impedance levelfDesignating in this case by Zo and Zc respeétively
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the open-circuit and the short-circuit impedance of the left one
of these two parts, the relations (6.1) and (6.2) can be replaced

by simpler relations leading to the equivalent circuits shown in

Fig. 6.2 where

€ =(1+Bc)/(1-Bc),_ 1T=(1+Bo)/(1-B°), , (6f3)
-1 -1 C

B°=C1x T{ZO} 9 BC=C1K T {Zc} ’ . (6.1"‘)

R;=Roq+Ross RCP=Rc1R02/§Rc1+RCZ). (6.5)

In practice, one usually has

0 e« 1, 1T & oo (6.6)

In the ideal caseg =0, n=w, Ni thus reduces to a simple

through-connection.

Consider first the arrangement of Fig. 6.3 where R_ and
RP take into account the unavoidable losses in the coil. "

We use the following notation:

2,05 v . . . ¢
C= T+, , w = ﬁ?i? " T =n/wc " (6.7)
'L . R A,
Q = __..l_c 5 Q = -—R—' ’ Q: = . (608)
s Rs P wcL ‘ Qs+Qp v

In this case, we always haven = e« while € can be computed by
means of the results of par. 6.1.1. Limiting ourselves here to
high quality inductors and small timing errors, i.e. assunming

that
Q » 1 and |t=1'|/1" « 1 (6.9)

we obtain
e =n/h4Q + n2(7~'ﬂ)2/4t'2. (6.10)
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Consider next the arrangement of Fig. 6.4 where we

assume

Ly Gy Ry By Ci+C,
g = e g = and co= ; (6.11)
2 1 T2 p2 :

We still use the notation (6,.7) and (6.8) as well as

Q= 20,/ eq) L= (L2 . (6.12)

Assuming again that (6.9) holds as well as Q'» 1, we obtain

for ¢ the same expression (5.53) as before while we obtain for n

1/n1 = n/8Q" + na(r-'ﬂ);@ 2, - (6.13)

ity o " O 0 N B 0 D o B o D A S P G D S S A e S P S P D Y G e G P P Y g

If the arrangements of Figs. 6.3. and 6.4. are lossless
(QS=QP= ) and if the timing error is zero (vt =1¢'), the total

charge q, transmitted in the direction from C1 to C2 is given by

2¢, 2¢c, |
9= 7 Yy " Tac- Gop’ (6.14)
o C.+C, Y T ClaC, %eb |

where A1y is the chargg initially present on C1 and A5y the
charge initially present on Ca. This is precisely twice the charge
which would be transmitted if we had simply interconnected C1
and C2 via an arbitrary resistance (which may simply be the
lead resistance) until the voltages across C1 and 02 have become
equal. In this case the precise duration of the transfer period
is unimportant as long as it is long enough compared to the time
constant of the transient behaviour., The great disadvantage is,
however, that a considerable loss of energy now occurs, the
equivalent circuit of Ni being in this case a simple series resis-
tance equal to RCs=RC1+R02'

All this suggests to conceive a different type of
arrangement in which C1 and C2 are first simply interconnected
via an ordinary (electronic) switch and in which some electronic

means is provided which sutsequently doubles the charge trans-

mitted via this switche. A device having these properties is
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is described in a recent Siemens patent [87] and is also mentioned
in [82] . It is shown in Fig. 6.5 where the resonant-transfer
switch No comprises two auxiliary transistors and two aukiliary

capacitances, with

The time constant of the discharge across the switch S has to

be much smaller than the duration 7 of a transfer period‘while
the time constant of C5 (06) with the input_resistance'Sf
transistor'T (T ) has to be - large compared to t. The advantages
of the clrcult of Fig. 6.5 are thus that precise timing becomes

much less 1mportant and that no coils are needed,

DEEesy xesopant-transier civouit,

For a direct resonant~transfer circuit with a resonant-
transfer arrangement as described iﬁ par., 6.1.1., the complete
equivalent circuit becomes as shown in‘Fig. 6.6. The conversion
and reflection coefficients can be computed either directly from
this circuit or from the general expressions derived in par. 5.2.

Neglecting higher order terms in g and 1/m , we obtain e.g.

2\/12_""1122 M, (p)MZ(p+an)
S21n= 5 '~ (6016)

L+l + eRCS+ZBZ'L+/n Rop

In particular, for e= 1/ = O and p=jw , We obtain, assuming

the networks N1 and N2 to be lossless,
‘1521n(jw)l = 4R (m)Rq(w+nQ)/lZ +qu , (6.17)

where R3(w) is the real part of Zj(jw) and Ru(w) the real part
of Z,(jw.
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Resonant-transfer with intermediate storage.

The most important circuits with indirect resonant-
transfer are those with (capacitive) intermediate storage. A
circuit of this type is shown in Fig. 6.7 where the transfer

occurs in two steps. S,I and S, are never closed simultaneously,

2
i.e., referring to our earlier notation defined in par. 5.1, we

have

O<T1 <T ] 0 <T2 & & 1 (6¢18)
T, >( T1+12)/2 3 . T2> (T1+Té)/ 2 . . (6.19)

On the other hand, 33 opens and closes at the same time as Sq, and
54 at the same time as SZ' Né and Ng are resonant-transfer switches,
i.e. Né together with C1 and Co forms a direct resonant-transfer

arrangement Né, and Ng together with Co and C, a direct resonant-

transfer arrangement N;. Ra may be the leakagi resistance. of Co
while So and Ro may or may not be present. If they are, Ro may,
according to a proposal by Adelaar [ 61 y be a negative resistance
connected periodically across C° when 83 and 84 are open in
ordep to produce an amplification of the sample stored on Co'
So and Ro may, however, also be used as a clamping deviqe if
unilateral transmission is required (par. 9.2).

From the point of view of the long-time behaviour,
the currents 15 and I6 across the switches S3 and 54 reépectively

can be written
I5=J5A (t-t,) I = J6A(t-t2) : (6.20)

where A(t) is again defined by (3.5). For the (instantaneous)

voltage v°=Voept across Co’ we can write
-
- 2
v (t, -0) =e v (t, =T,+0) | , .(6.21)
9

vo(tam-O)

e vo(tZZﬂ-T2+O) (6022)
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where t, and t, are defined by (5.3) and where the (positive

or negative) c¢onstants %, and «_ characterize the influence of

2 .

S , R and R'. At each instant t, , V_changes suddenly from a
o o o m* "o ‘

value which we call V5b to a value V5a’ and at each tam,.lt

changes suddenly from v6b to v6a’ This allows us to define

"yoltages" U5 and U6 by
while we also have

(v5a - vsb)/a = J5RC° . W6a - v6b)/2 = J¢Rg (6.23)

where :
Ry, = T/2C, . _ (6.24)

The interconnecting two_port Ni of the equivaleht
circuit of Fig. 5.2 can now be considered to be composed of three
two-ports NI, NY' and Ny in cascade (Fig. 6.8). N' is simply the
interconnecting two-port corresponding to Né; it can be“
characterized e.g. by its chain matrix A' which can be computed
as discussed in section 6.71. Similarly, N; corresponds to N;
and can be characterized by its chain matrix A". The two=-port
N;' has constant imagg impedances equal to RCo' Its scattering

matrix with respect to terminations R, is given by

Co
"PT -Q
0 e 2 e
(6.25)
=pT , =0 :
e 1 . 0
and its chain matrix A"' is given by
cosh(® +pT/2) R, sinh( a+pT/2)
~pA-ar ’ i Co _
A"'z._e ‘. ! (6.26)
sinh(a+pT/2)/RCo : cosh(a +pT/2)

or equivalently by

‘ oA gt :
A'"'=Ay" cosh®e £ a‘/ 1-¢2, o (6.27)
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where
T.=-T : o +0 o Ao 4
1 ; 1
A = 22 ’ QA = 12 2 5 atrt = 22 5 (6.28)
1+ ¢tgha Ry (¥ + tgh%).
AUt = ' ' . (6.29)
(¢ + tgha)/RCo 1T +¢ tgha

If Nf and‘N; are reciprocial, the origimal circuit will be’

guasi-reciprocal if «'=0, and it will be reciprocal if in

addition Z: 0. A possible equivalent circuit of the original

circuit is shown in Fig. 6.9 which comprises two three-port

gyrators , two delay lines (T1 and T2) and two attenuétors

(ai > 0, i=1 ar 2) or amplifiers (ai < Q0), all with characteristic

impedance equal to RCo'
All the transmission and reflection properties of the

circuit of Fig. 6.7 can now be computed. In the simplest case

N! and N; are simple through connections while a4 =0 =0,

- 2 2
We then have e.g. *

2VR1R2 RCOM1(p)M2(P+jn® -"1_4,2 ePA -jnQtp

S (6.30)
2']1'1 ~ ~ 2 ~ ~ ’ .
¢(Z324+RCO ) + RCO(Z3 +2,)
and for p=jw , assuming N1 and N2 to be lossless,
o 4(1+92)Rg R,(w) R, (wnQ)
- o 3 4
18,51, (30) %= (6.31)

. 2 [~ 2
while similar expressions hold for S12n'

6.3, Ideal filters,

We shall say that the networks N1 and N2

for direct resonant-transfer circuits if they are such that in

are jdeal filters

their respective pass-bands (6.17) becomes unity, i.e. equal to

its highest possible value.,Similarly, we shall say that N, and

* Here agoein, the formulas given in[ 43] follow from those given
here if we choose*1=0, t2=Tq.
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N2 are ideal filters for resonant-transfer circuits With.intermediate
storage if they are such that in their respective pass-bands (6.31)
becomes equal to unity. The general conditions for ideal filters are
different in these two situations and shall not be reprqduced
here. We shall limit ourselves instead to what we call iﬂﬁéi

universal filters,

The concept of ideal universal filter arises e.g. in

the following way. In an electronic TDM exchange based on the re-
sonant-transfer principle, a_Same filter will at certain times

have to work together with an arrangement with direct transfér and
at other times with an arrangement with intermediaté storage,
depending on the way the connection is established in the exchange.
_One can thus wonder if it is possible to specify N1 and N2 in |
such a way that (6,17) and (6.,31) both become equal to unity.

It turns out that in order to obtain this we must have for the

value of n and all the values of w under consideration

Ry(0)= Ry (new)=R3(9)=R, (¢) =R  , o (6.32)
X5 (0)= X, () =0 (6.33)
where Ry, Ry, §3 and ﬁL are the real parts of Zz; Z, Zé-

and ﬁq respectively, while iB and XL are the imaginary parts of
23 and §4 . Consequently, an ideal uaiversal filter can be
defined as follows.

Consider the network N of Fig. 6.10 which is terminated
at port 1 by a resistancehR1. We assume that the input impedance
Z(p) at port 2 reduces at high frequency to a capacitance C,

i.e., We assume (#.1) to hold. Let M(p) be the open-circuit voltage
ratio in the direction 1-2 when N is fed at port 1 by a voltage
source in series with’R1. We shall say that N is an ideal
universal filter if the following conditions are satisfied for all
pass~band frequencies W : | ,
%(ig)=R(u)=R _, | M(jw)|%=R /R, (6.34)

where R  is a constant, the conditi:n for M(jw) expressing in
fact the losslessness of N at the firequencies ®.
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A1l ideal filters as well as the ideal universal filterg

discussed so far are in fact filters for single~sideé-band (including

low-frequency to low-frequency) transmission. These concepts
can however easily be extended to situations where the signal is

transmitted in double-sideband form at one or both terminal

ports., This leads to the concept of ideal universal filter for

double~-sideband transmission for which (6.34) has to be replaced
by : .
%(j9)=2R(w)=R , M(jw) |1 = R /R,. (6.35)

So far, we have assumed in (6.34) and (6.35) that R,
is any constant. With the aid of a theorem due to Kintchine and
Ostrowski (see e.g. [14], vol. II, pp. 157-158), as well as (4.52)
it can»be shown, however, that this constant Ro is necessarily
equal to the step resistance RC=T/ZC corresponding to Z(p). With
other words, the input capacitance of an ideal universal filter

is necessarily equal to C°=T/2 R .

Influence of losses and timing errors on the overall performance.

In order to get an idea of the influence of the losses
and timing errors on the overall performance, it is useful to
compute S,, under the assumption that (6.32) and (6.33)_are
fulfilled. Retaining only first order terms in gand 1/ , we

obtain for direct resonant-transfer circuits

1/ 8,0, 1 =1 +e+ 1/n, - (6.36)

and for circuits with intermediate storage
1/ | S2’|n| =1+ +e" +1/q" + 1/q" " (6.37)

where €' and 7n' refer to Ni, and €' and " to N; . In first
approximation the influence of the losses and timing errors

is thus to add a frequency independent loss.
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THE FILTER DESIGN PROBLEM

Realization of ideal universal filters.

We shall assume in this and the following paragraphs
that we are dealing with low-pass filters. Some particularities

of the band-pass problem will be discﬁssed,later.

Normalized quantities will be used throughout, the constant

resistance R0 in the pass~band being, of course, chosen as

normalizing resistance. The conditions (6.34) can then be written

2(j9)=1, r(M=1, M) [P=1/2,  (7.1)

where rq_R /R is the normalized terminating resistance.

For the ideal open-circuit low-pass filter studled in
par. 4.3, the two last conditions (7.1) are clearly satisfied. If
in addition, f_=F/2, i.e. ¢ ==, the first condition (7.1) is
also satisfied. This corresponds to the ideal universal filter
already studied by Cattermole [22,23] |

Consider next the two-port N shown in Fig. 7.7 where
we assume N' to be an ideal open~circuit low-pass filter: of
cut-off frequency f <F/2 and z (A) to be a reactance which is
capacitive at high frequency. The input impedance z'(\) of N' is
then given by (4.48) and (4.49), with z replaced by z',
and the corresponding pulse impedance is given by (4.50) and
(4.,51), with Z replaced by Z'. The two-port N of Fig. 7.1 can
thus be made arbitrarily close to an ideal universal filtér with
an arbitrary cut-off frequency fc < F/2 if we.can indicate

a succession of reactance functions
Z,](}\) 9 Z2(>\.)9 esecocse g Zn()\), ssas0s - (702)

such that in the pass-band of N' their ¢-transforms

%00y @) 4 eveeen 4 Z (0D, aael. o (7.3)
tend more and more towards the value %o defined by
z QR dgy SHat? (7.4)

¢ -¢
e
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Since every reactance function in the ¢ -domain can
be transformed back into a reactance function in the A domain
having a zero atA = =, the problem will be completely solved
if we can indicate a succession of reactance functions (7.3)

having the required property. Such a succession of reactance

functions is indeed given by

W, (39 /9)
2 n-1 c
® F_(30/9) R

where Pn is the Legendre polynomial of degree n and where

%’n(w) = j

Wn_1 is, in the notation of Jahnke and Emde, the auxiliary
polynomial of degree n-1 occurring in the theory.of the spherical
functions of the second kind [56,101] . That (7.5) is indeed
a reactance function can be shown by continued fraction expansion
of (7.4 791 . It can also be shown by direct calculation that
the input capacitance of N has the value mentioned at fhé'end
of par. 6.3.

The procedure of obtaining an ideal universal filter

by the method just described will be called reactance compensation.

It can equally well be applied to the realization of ideal
universal band-pass filters, starting from an ideal open-circuit

band-pass filter.

Practical considerations.

In a practical situation, the open-circuit filter N'
to be compensated will, of course, be non-ideal, Similarly the
compensating reactance zn(k) should be the simplest one which
is still compatible with the given performance criterion.
This does not imply, however, that the subscript n should
necessarily be as small as possible., For low-pass filters, e.g.,
the number of inductances as well as the number of capacitances
required for the realization of a zn(h) with odd subscript n
is the same as for the next highest even value of n.

Consequently, only even values of n are of interest in this case,
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In particular, ZZ(K) corresponds to a parallel resonant circuit,
zu(x) can be realized by means of two parallel resonant circuits
in series, z6(k) by three such circuits, etc. As zn(x) only has

to produce a correcting effect, a single parallel resonant circuit
will be sufficient; in most practical situations. '

The restriction to even values of n does not apply to
band-pass filters. If compensation is required in the néighbour-
hood of both cut-off frequencies, the simplest possible cbmpen-
sating reactance is formed by a parallel resonant circuit in series
with a simple capacitance,

The method of reactance compensation is in some respects
similar to the well-known method of m-derivation. As can be
concluded from a theory given by Belevitch [11] , filters
equivalent to m-derived filters eanm be obtained by adding a - -
suitable reactance either in series with the open-circuit port
of an open-circuit filter or in shunt with the short-circuit

port of a short-circuit filter.

The compensating impedance used in the circuit of Fig.7.1
does not necessarily have to be a reactance., Consider e.g. the

function 2"(¢) which for imaginary values of ¢ is given by

Z' () =T" (@) + jx" (o) . (7.7
where ~ 0 for|¢l< 9, s .
r"((p) = 0 <(p < o , . (?.8)
1 f°r|¢|> (Pc s © ;
- 1 ¢+¢c :
X"( (p) = j ‘;t" 1n _(Pc ° : (709)

Clearly, ;"(¢) is the input impedance of an ideal open-~circuit
high-pass filter in the ¢ -domain., In the A -domain, however, the
corresponding z"(A) is the ‘nput impedance of an ideal open-circuit
band-pass filter of anyone ¢f the following three types, {é and

f¢ being respectively the lcwer and the upper cut-off frequency
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and fc being the smallest positive solution of ¢b=tan(nfc/F),

1._ £fr.=nofF + fc . | féz(n + 1/2)F ,
1 = [ -
2. f! =(n+1/2)F , fl=(n + 1)F - £,
- - )
3. f! =nF+f , fc—(n + 1)F £

where n is a non-negative integer. Furthermore, in the
stop-band the real part ' {(v) of g"{(jv) is r"(wv)=0 in all three
cases, whlle in the pass-band r"(v) =1 for type 1 and 2, aad
" (y) = 1/2 for type 3. ,

If zn(x) in Fig. 7.1 is replaced by anyone of the impedances
z" ()\) thus defined, the resulting two-port N is again an ideal
universal low-pass filter. It is no longer purely reaétive
although it is $till lossless in the pass-band of N', A purely
reactive compensating impedance can be derived from z"(A) by simply
short-circuiting or open-circuiting the terminating resistance
of the band-pass filter. This does not affect its input impedance
in the stop-band (i.e. in the pass-band of N' as well as at all
other frequencies corresponding to lol< P e

The 51mplest practical realization of the 1mpedances
z"(A), clearly, is a parallel resonant circuit shunted by a

resistance.

Effective (insertion) loss design.

Reallzablllty condltlons.

Although in principle, the methods described above
allow to design arbitrarily good filters, they do not furnish
filters which are optimum for a given performance criterion
(e.g. smallest number of elements or smallest number of inducters

for given attenuation requirements),The design of such optimum

'
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filters requires that we first establish a set of necessary and
sufficient conditions for the realizability of the mathematical
expressions to be considered,

We shall 1limit ourselves here to the case of a

symmetrical lossless (e= 1/n = 0, N, and N, purely reactive)

2
direct resonant-transfer circuit. We shall assume in addition

that the open circuit voltage ratios M1=M =M are normal, i.e. that

they have no multiple poles. The conversion coefficient 521n(X)
of a direct resonant-transfer circuit having these various
 properties satisfies the following necessary and sufficient
conditions (written in terms of normalized quantities):

1 It is of the form

m(A)m(\N +j2nn)
N 1= 5
£ Py T—"b‘i

i=1 _
where N is a positive integer and where the parameters ¢i

Syqn (M) = (7.10)

are related to certain other parameters %1 by ¢i= tanh Xi.

2a. The parameters ki are real or complex numbers with non-positive
real parts. Moreover, if k is the number of parameters_?»i
which are purely imaginary, we have 0Lk < N, We shall
assume that these purely imaginary parameters are thoée
labelled i=N-k+1 to i=N, »

2b. All complex Xi occur in conjugate pairs.

2c. All Xi are distinct.

3, m(A) is a rational function of the form
m(A) = £(N)/a(r) - (7.11)

where the polynomial d(A) is related to the Ai by

N-k
da(A) = 11 (;\-xi) (7.12)
i=1 '

and where f(A) is an arbitrary real even or odd polynomial
in A of degree smaller than Nek. The coefficient of the term
of highest degree in f(\) may without any restriction be

chosen equal to unity,
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Lg, For 1€ i< N=k, the parameters b, are related to the %i and
to the polynomial f(A) by

2 \
b=+ 2 £7(N)/a(=A)d" (N)

(7.13)
N-k

- o2 2 2

PO/ 08 - )
A1

where the upper sign corresponds to f(A) even and the lower

1

sign to f(A) odd, and where d'(A) represents the derivative
of d(A) with respect toA. '

4b, For N-k+1g£ i< N, the parameters bi are arbitrary real positive
numbers, the only restriction being.that the bi's corresponding

to two conjugate Ai's have to be identical.

With the aid of the above realizability conditions,
the design of an optimum filtexr can now be reduced to a mathematical
optimization problem whiéh, however, is more difficult than in
ordinary filter design. 4

Firstly we note that we have to consider simultaneously
the transmission of the useful signal as well as the suppression
of all unwanted signals generated in the circuit. Due to this,
a certain number (in general at least two) of the functions
Saqn(%), corresponding to different values of the subscript n,
have to be considered simultaneously.

Let us examine next the pass-band attenuation A (i.e.
the attenuation at the useful values of wand n), We want fb

approximate A in such a way that

A A, O (7.8)

Ad $ Adm ’ s sm
where S
A=A -A . 0/2, A=(a A, )/2, (7.15)
A and A . Dbeing respectively the maximum and the minimum
max min .

values taken by A, and Adm and Asm being preassigned quantities.



7e5.

wF P

In contrast to conventional filters, the value of Amin cannot
become zero since this would require the filters to block
perfectly all unwanted frequency components, i.e. to have an
infinite number of attenuation poles (the unwanted frequency
components would otherwise dissipate part of the available énergy
in the terminating resistances). The value of A_ can thus

certainly not be smaller than a certain value As , otherwise no

min
s min’ the obtainable

attenuation of the unwanted signals will be a function of the

solution can exist. Furthermore, for'As> A

value of As and will be optimum for a certain value Aso of AS,
possibly for As = Asm; On the other hand, it seems most likely

that the optimum value of A, corresponds to A

d a~Aam*

There may be different situations in which the optimum
attenuation requirement is not simply given by (7.14), or in
which e.g. also the shape of the phase characteristic is of
importance. Whatever the requirements may be, it is certain that
we cannot expect that an explicit solution of the optimizétion
problem can ever be found., In practice, iterative methods of
optimization will thus always have to be used,

Note also that in case of effective loss designi there
is usually no advantage to choose for the parameter k mentioned

in par. 7.2.7. any value other than k = O,

Filters for narrow-band transmission,

We say that we are dealing with narrow-band transmission
if the bandwidth of the filters is small compared to F. In this
sense, low-pass filters may thus also be narrow-band filters.

It can be shown that in case of narrow-band direct
resonant-transfer circuits, the design of the filters can often

be reduced to an ordinary filter design problem.
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In particular, if both networks N1 and N2 are low-pass filters,
one may firstdesign an ordinary filter with symmetrical structure
which is subsequently split in two equal halves (see example
Fig. 7.2). If a DSB signal is required at port 2, the filter N,
may subsequently be transformed by a low-pass to band-pass trans-
formation, after which its impedance level should be divided

by 2 (Fig. 7.3).
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AMPLIFICATION IN RESONANT-TRANSFER CIRCUITS.

Means of realizing amplification in resonant-transfer arrangements,

The simplest practical way of achieving loss compensation
or amplification in resonant-transfer circuits for bidifectional
transmisgion is to include active devices in the resonant-transfer

arrangement. For TDM systems in particular, this often offers the

. possibilitfy of using the same active device in common for a large

number of channels, . .

The simplest active arrangement is perhaps the one pro-
posed by Adelaar [6] and already mentioned in par. 6.2, In this
case, no reflection occurs since the amplification takes place
when the sample is stored in the intermediate capacitance Cd'

Many methods of amplification in direct resonant-transfer
arrangements have been proposed [5,44,87,88,90,103,104] . In the
arrangement of Fig. 6.5 , amplification can be obtained by
choosing C3 >-C1 and Cl+ >>CZ. An interesting method achieves
amplification by parametrically varying one or several of the
reactive elements contained in an arrangement such as the one of
Fig. 3.7. This method has been proposed by Holzwarth, Sabban and
Schlichte [ 88, 103,104] and is further discussed in [33] .

An active direcé regsonant-transfer arrangement which
allows to satisfy a large number of requirements is shown in
Fig, 8.1 [ 44] . In this case, an intermediate shunt capacitance Co
is provided which allows e.g. the parasitic capacitance of. the
highway in an electronic TDM exchange to be taken into account.
Further requirements are that L,, L, and C_ are discharged‘at
the end of the transfer period (in order to avoid crosstalk as
well as voltage surges when the switches 81 and S, are being opened)

2
and that the conditions (5.43), i.e. =B,,,=0, are fulfilled.

Bss

" The circuit has first been proposed in [43 ] and has been analyzed

in the symmetricil case by Rosenoer [ private communication] .
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For the case of greatest practical importance, the element
values found by him can be put into the following form (the

capacitance C being assumed to be given):

2 c 2.2

2(1+a o ‘
ICs —t———s o= , (8.1)
na('l-aa = € 3(1-0L2)
12 (3-0°) T '
RC==~ — T R'C='—~—_15- N (8.2)
1= no (1=a")
2
R o=m 2T L (8.3)
2nal1+a”) (4+a”)
where T is the duration of the transfer period, a a gain_ﬂ
coefficient defined by
' T
Bys = By, = € (8.4)

and where L = L1=L C=C1=C2, R=R,=R_ and R':R'1=R'

’ .
We conclide from the ablvezexpressions thit.forvmoderate
gains (0 < a <1), only R and R become: negative. The circuit then
comprises three negative and two positive resistances., The
highest possible gain (corresponding to a= 1) which can be
secured according to (8.1) to (8.4) is equal to © nepers or
roughly 27 db .,
Broux [17,18] has further analyzed the arrangement of
Fig. 8.1 as well as various related ones. He has examined.the
possibility of realizing not only a gain but also a'partial
compensation of the unavoidable.losses, taking into account the
inherent imperfectionsof the negative resistances as well as the
various operating positions of the switches Sqs S2 and So (this last
.one not shown; it may have to be provided across Co as a clamping
device in order to avoid crosstalk). In any case, proper behaviour
of the arrangement of Fig. 8.1 for 0 < a <1 requires that R, and

R2 be open-circuit stable and Ro short-circuit stable,
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Stability of active resonant-transfer circuits.

If a resonant-transfer circuit contains an arrangement
with active elements, the overall circuit may easily become
unstable, We shall discuss hereafter a stability criterion which
has been found under the assumption that the circuit is at least
quasi-reciprocal, that the conditions (5.43), i.e. B33=344=0,
and N

1 2
are lossless in their respective pass-bands. We also assume that

are fulfilled at all frequencies and that the networks N

23 and 24 can be considered to be equal to RC1 and RCZ ip the
passbands of N1 and N2 respectively, but not outside of these
pass-bands. If w falls into the pass-band of N, and | wen Q| into
the pass~band of NZ’ we have under the various assumptions just
mentioned

[ B

|321n(j“’)r2 = IS,]Z-’_n(jw +jn Q) =lo |l (8.5) |

where

Thus, there will be overall amplification if [bl >1 and overall

attenuation if [bl <1, ' v : »
Consider next the conversion and reflection coefficients

derived in par. 5.2. They all contain a denominator term which,

for B33=B##=O, can be written

D=1-b 0, | (8.7)

Wherep 3 and p , are given by (5.38) and b by (8.6). If B34 and
343 have no poles in the right half plane, as will usually be
the case, instability can only occur if D has zeros in the right
half plane, i.,e. if the plot of b LN for p=jw encirclgs the

point +1, This will never occur if

2
where p is the maximum value oprBpJ at real frequencies, i.e.
because of the periodicity of p3 and Py between w =0 and(o=S2/2.
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At first glance, the criterion (8.8) may seem too
severe, but this is usually not the case. This is due to the. fact
that in an electronic TDM exchange many different combinations
of filters and resonant-transfer arrengements may be established
'depending on the way the connection is established in the exchange.

The coefficients P3 and p, behave like reflection
coefficients of ordinary impedances with respect to positive
resistances. Their moduli can thus not exceed unity}AccOrding to
(8.5) and (8.8), no gain is possible for Ppax™1" Even the losses
ocurring in the terminating transformers of practical circuits
cannot be compensated in this case since these losses can be
considered to occur in the terminations rather than in the circuit
itself. . ‘

We conclude from all this, that filters obtained by pure
reactance compensation’(parsr7.1.1 and 7.1,2) cannot be used in
combination with active resonant-transfer arrangements since in this
case the input pulse impedance is reactive in the stop-band.
P max 20 however be made as small as we like by means of the
compensation method described in par. 7.7.3. The original filter
N' should then not be unnecessarily steep since otherwise a slight
misadjustment of the compensating impedance may substantially
increase the value of pmax and thus lead to instability. Although
this has not been mentioned in par. 7.71.3, note that ideal universal
filters can also be obtained'by means of the same compensation:
method even if the transition range between pass-band and stop-band

is not infinitely steep.
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SOME SPECIAL APPLICATIONS OF THE RESONANT-TRANSFER PRINCIPLE,

Resonant-transfer circuits for pulse~code modulation,.

A resonant-transfer circuit for PCM application:is shown
in Fig. 9.7. The load circuit consists in this case of a simple
capacitance CZ' In addition §o this, a clamping switch (not shown)
may be provided across CZ' which discharges this capacitance
each time before the switch S closes.again. Usually, the resonant=
transfer arrangement will be of the simplest possible tyée as
indicated in the figure. In this case, the equivalent circuit is
as shown in Fig. 9.2, although a more general interconnécﬁing
two-port could equally well be provided between ports 3 and 4.

We shall use hereafter the same notation as in the previous
paragraphsg.

For a circuit with clamping, we have Vhbzo,.whepce from
(5.7) to (5.9), §4=R02. For a ¢ircuit without clamping, %4;R02/¢ .

The main quantity of interest is now V4a. We shall

define a transfer coefficient Sa by

v .
" 1 La v
S e o o, . : (9.1)
a RC2 E ‘

It has the property that

4

[S
a

¢}

2
1“= W,/ W (9.2)

where
2
I 02/2 s W

2 _

W2 being the average energy per sample stored on C

max
> and Wmax
being the maximum average energy available from the source during
the time interval T,

For the circuit with clamping, we obtain for Sa

17Ce

ieeo, if N1 is lossless,

S (P)=2V RyR' M, (p)/ [ ZB*Rca‘“c Roob v ; (9.4)
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2

| 5,(30) P2 bR, Riw)/ | Z54Ro,+ e Ry | SR (9.5)

No amplitude distortion will occur if N, is an ideal universal

filter (§3=R3=R01 in the pass-band), and we then have

lSa(jw) | =2V c1c'2'/ (c1+02)(1+c l : (9.6)

This expression reaches its maximum value 1/(1+¢) for Ci:CZ.

For a circuit without clamping, we obtain for Sa‘

W(u(b) M, (p)

s (p) = — C(9.m)
RC2 + ¢(Z3+c RCS) ‘
i.e,, if N1 is lossless,

P2

I8 GGl = (1+¢7IR,R W)/ | Rop+ie (Bgr eRy) |

(9.8)

No amplitude distortion will occur only if N1 is an ideal universal

filter with
Co/Cy = Rgq/Rgp=(1-c)/(1+e), o 9.9)

and we then have

5, G 17 = (1=e)/C1ee) o C (9.70)

It is clear that general realizability criteria
similar to those mentioned in par. 7.2.7. can also be given for

the circuits described here.

9.2. Non-reciprocal resonant-transfer circuits.

The resonant-transfer principle can also be applied
to the realization of essentially non-reciprocal circuits.
A few examples of such circuits will be discussed. As can:be
concluded from the general discussion in par. 2.4., all these
circuits must contain at least two switches which do not both
operate symmetrically in time with respect to a same instant to.
A first example is offered by the circuit of Fig. 6.7.,

discussed in par. 6.2, where we assume that the samples

transmitted via Co in the direction 5 = 6 do not undefgo any
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atteﬁuation (a 1=0) while perfect clamping is applied by means
of §_ to the samples transmitted in the opposite direction
( aa:m). We also assume C,=C,=C, i.e. Ry;=R,,=R,. The two-port

Ny (Fig. 6.8) is then determined by

" ”"e " " "'PT1 .
B55 = B66 = B56 = 0, B65= e 9

It can be represented as an isolator of impedance matrix

R 0

(9.11)
2RC RC
in cascade with a delay line of delay T1 and characteristic
impedance RC (Fig. 9.3). The isolator itself can be represented
by a gyrator of gyration resistance RC in series with a
two-port consisting of a single shunt resistance RC’
An even simpler resonant-transfer arrangement for the

realization of an isolating devicé is shown in Fig. 9.4 where we
assume that the two capécitances C, the inductance 2L and the
switch S form an ideal resdnant-transfer arrangement as discussed
in par. 3.1 (Fig. 3.1). To this is added a clamping device
donsisting of an auxiliary switch Sa and a.very-small resistance Ra'
Immediately after each transfer period, Sa qloses_for a -very short
but long enough period to produce a practically complete discharge
of the left~hand capacitance, We then have 333=B44=334=Q and B43=1

so0 that the corresponding two-port N, is a simple isolator of

impedance matrix (9.11). This is theiSame two-port as the one
obtained from Fig. 9.3 in the limiting case T1 - 0,

A gyrator resonant-transfer arrangement has been proposed
by Edrich [ 32,33 (Fig. 9.5a, with c,=C =C). The switch S is closed

during transfer periods of duration

2

v =nVIC : ' a— (9.12)
which are immediately followed by periods of duration

Ta -nVoic , Y' - (9.13)
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during which the switch S is open and Sa closed, The corresponding

two—port~N is determined by

i

B33=B1,,=01 By ==By3=] - (98

Its impedance matrix

o) |
: (9.15)
Y. |

corresponds to a simple gyrator of gyration resistance RC=T/ZC.
In view of the discussion to be given in par. 10.2, it
is useful to generalize.the Edrich gyrator to the case C1¥‘CZ.
The. capacitance C must then be replaced in (9.12) by C=201CZ/(C1+02)
and in (9.13) by C,s while (9.174) must be replaced by

B332By,=p o Byy=1=p » Byz="1-P (9416)

where _
This leads again to an impedance matrix of the simple form
(9.15), with R, replaced by R02=T/202.

A resonant-transfer circulator [19] device first
proposed by Adelaar [ 3] is shown in Fig. 9.6. We assume that the
three switches operate periodically but not simultaneously'in the
order S1, Sa, S3‘ Transmission thus always takes place via the
intermediate storage capacitance., From Fig. 9.6, we can still

derive an equivalent circuit as has been done in par. 5.1, but

this equivalent circuit is now a three-port. In particular, Ni is now
a threeport circulator with a delay line in cascade with each one of
its ports, all characteristic impedances being equal to Rc; According
to the order in which the switches are assumed to operate, the
direction of circulation is clockyise. '

Another resonant-transfer circulator device has been

proposed by Edrich [ 32,33 ] . The :or¥esponding resonant-transferﬁ
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arrangement is shown in Fig. 9.7. The switch 5, is closed during
transfer periods of duration t=rnV LC'. These are immediately
followed by transfer periods of the same duration during which
32 is closed. The interconnecting three-port Ni'is a simple

circulator of characteristic impedance RC and clockwise direction
of circulation,.

The Edrich circulator is simpler than the one proposed by
Adelaar.This latter one,however, offers greater flexibility when used

e.g. as a device for realizing 2-wire/ U-wire transitions in an
electronic TDM-exchange. It is also more advantageous if more than
three ports have to be provided, | , |

Various other non-reciprocal resonani-transfer circuits,
including devices with non-reciprocal parametric amplification,
have also been proposed by Edrich [32,33] . He haé made no use,
however, of the representation of these circuits by means of the
equivalent circuit first derived in [43] , That this representation
is particularly simple also for non-reciprocal circuits is clear
from the few examples which we have just discussed,

In all thesé examples, we have assumed that the fesonant-
transfer switches are composed of ordinary switches and inductances,
One could, of course, equally well use other types of resonant-
transfer switches. In this case, some of the above circuits may
have to be modified slightly. A circuit which e.g. prdducés the same
gyrator effect as the one of Fig. 9.5a but which in a certain sense
is more general, is shown in Fig. 9.5b, the resonant-transfer
switches RS1 and RSZ being represented by ordinary switches
surrounded by circles, From a circuit such as the one of Fig. 9.5b,
.one may thus not conclude that all parts of the resonant-transfer
switches involved do necessarily have to be duplicated. This is
certainly not the case for the circuit of Fig. 9.5a, and is also
not the case if resonant-transfer switches of the type discussed

in par. 6.1.3. are used,
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FILTERS COMPOSED OF CAPACITANCES AND RESONANT-TRANSFER SWITCHES.

Filters composed of capacitances and resonant-transfer switches

in cascade,

Consider first the circuit with: intermediate Capacitive
storage shown in Fig. 6.7. We assume that neither. S, nor_Ro are
present, and we also neglect Ré, i.e. a1=a2=0. Under these
circumstances, the expression (6.26) for the chain matrix of the

two-port Niﬂ becomes .

cosh (pT/2) R. sinh (pT/2)

A= o7 P2 e . (10.1)
sinh (pT/Z)ﬁCO cosh (pT/2)
PA

Except for the factor e , this is precisély the chain matrix of

a lossless transmission line or a lossless element of a . mechanical
filter, the characteristic impedance being in both cases RCo and !
the length 1=va/2 where vy is the speed of propagation. This

has led ' Poschenrieder [82] to propose the realization of filters

‘composed of resonant-transfer switches and capacitances having

properties similar to those of filters built by connecting
transmission line elements or mechanicai elements in cascade,
with the advantage, of course,.that T is now determined very
precisely by the clock pulses and not by the mechanical length 1
of the element*.,

The circuit proposed by Posthenrieder is shown in Fig. 10.1.
In addition to the networks N1Land N2 and their terminations, it
comprises a certain number of capacitances CB’ Cq cece sy Cn' all

separated from one another as well as from N1 and N, by resonant-

, . 2
transfer switches (represented again by the ordinary symbol of a

For a summary of‘the state of the art in the theory. of
transmission line filters, see e.g. the session devoted to this’
subject at the recent PIB symposium [80] . There exists also an
extensive litérature-on mechanical filters. A book devoting

" a chapter to this subject is [50] .
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switch surrounded by a circle), Two resonant-transfer.switches
connected to a same capacitance may not be closed at thé séme time,
The networks N1 and N2 may simply consist of the capacitances C1
and 02 respectively, or they may be more elaborate RC-networks.
From the point of view ' of the general theory to be exposed
hereafter, there is no reason not to accept indﬁctances too. These
should however be excluded since one of the purposes of the circuit
of Fig. 10.1 is precisely the realization of inductorless filters.
If all inductances are to be proscribed, the resonant-transfer
switches may e.g. be as described in par. 6.1.3. There may however
also be cases in which at least the small (and cheap) inductors
required by the circuit of Fig. 3.7 will be acceptable.

If we assume that all resonant-transfer switches are ideal,
the equivalent circuit of Fig. 10.71 is as shown in Fig. 10.2 where the
network Nik (k=3,4, 2seeeo n) has a chain matrix as given by (10.1),
ok =126
&Ptk simply produce a factor e—pA, with &= 4

with R, replaced by R and A replaced by A The factors

x°
. 3+ A4 TR +An,
in the resulting chain matrix of the total interconnecting two-port
Ni' At worst, i.e. for A ¥ O, this factor simply causes thé overéll
circuit to be quasi-reciprocal. If even this is not acceptable,
one can still adjust the timing of the various switches iﬁ.such
a way that A= O, In any case, we may omit this factor from our
further considerations.

If we do this, the circuit of Fig. 10.2 is equiﬁalent
to a cascade of transmission line elements or mechanical filter
elements of chargcteristic impedances 893’ RCQ’ veesee ch,
connected between terminal impedances Z3 and ZM' The problem
of designing the circuit of Fig. 10.7 thus becomes similar to a
> should

be simple RC-filters required to eliminate the additional sidebands

classical filter design problem. The networks N1 and N

which are located further away.
As is also true for simple transmission line and

mechanical filters, the circuit of Fig. 10.71 has the
disadvantage that attenuation poles at real frequencies

cannot be realized. Poechenrieder [82]has indicated
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a method to overcome this objection, but this method is less
flexible than the one to be described in par. 10.2. We shall

therefore not discuss it here,

10.2. General LC-networks in the ¢-domain, using inductorless networks

in the p-domain,

O e O D S > A ot D oy T T PP T Y OO0 Wt W o s P e WD T Dy T wy D e e W A e W > e e i ™

Consider a n-port N built of capacitances only (Fig.10.3).
Suppose that we connect to each terminal port k (k=1, 2, +.... n)
an inductance Lk (corresponding to the situation of Fig.10.3 with
all the switches Sk closed). The resulting LC~circuit will have n
different natural frequencies qu m2‘ sses @ wn' We shall choose
the L, in such a way that wk=(2k-1)w1. All frequencies ® are thus odd
harmonics of w®,_,

1

Suppose next that we add a switch S5, in series with

k
each Lk’ as indicated in Fig. 10,3. If we close all the switches

Sk at t=0, assuming that some charges were present in N for t< O,
the resulting currents ik in the inductances will all go through

zero again at t=T , where
T = TC/W,] . . (1002)

We may thus open all the switches at t=7T , after which all the
voltages Ve Viea will be precisely equal to the negative of their

values i before the switches had been closed, i.e.

vka + vk_b = O e (1003)

The charges 9y which are transmitted across the switches Sk to-
produce this effect are precisely double those which would be
transmitted if the Lk were replaced by small resistances and the
switches were kept closed until the circuit has come tQ rest.
This remark makes clear that khe inductances could in fact be
replaced by electronic charge = doubler devices similar to the one

described in par. 6.1,3. The piroperty of such devices to require
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less precise timing is particularly important for the present
application since the higher harmonics involved in the circuit
with indﬁctances increase considerably the influence of,timing
errors. v '

A circuit such as the one of Fig. 10.3 may still be

called a resonant-transfer arrangement. Similarly, each Sk with its

associated Lk.or electronic charge doubler device may still be

called a resonant-transfer switch. As these resonant-transfer

, switches have to work together as :a group, it may be better,

however, to call them collectively coupled resonant-transfer

switches,

e I G D e G e G S e S G — D T D D D ST G S . T G = T o S O TP . W e D S - W —— - s e e = e aw

We have seen in par, 9.2. that a gyrator can easily be

realized in- the equivalent circuit. It must thus be possible

without difficulty to realize the dual of a given pulse impedance.
Assume e.g. that the gyrator device of Fig. 9.5 is used

as resonant-transfer arrangement in the circuit of Fig. 5;1. The

driﬁing-point_impedance seen in Fig. 5.2 from port 3 to the

right is then equal to RéZ/ﬁh’ i.e. the dual of‘zu. In particular,

if the network N in Fig. 5.1 reduces simply to the capacitance 02

and if R2 =%, ji,e, if Z4 = RCZ/¢ , this expression becomes

equal toq>Rca, or 1p normalized quantities <b/c2 where 02=02/Co’

with CO=T/2RO, Ro being the normalizing resistance. The new pulse

impedance thus corresponds to a normalized inductance 12;i/02
whereas the original pulse impedance corresponds to a normalized
capacitance c,. If the purpose of the gyrator device of Fig.9.5
is simply to realize an inductance in the ¢ -domain, as has just
been described, there is no need, of course, to have the switch
Sa operate right after the switch S: The inversion of the charge
on C, may now take place any time between two consecutive transfer

2
periods.
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It is interesting to derive the same results from
the circuit of Fig., 6.7 where we omit again S,» R, and R!. If
we assume that the two~port Ng' of Fig. 6.8 is short-circuited
at port 6 (U6=0), we obtain from the equations of Ng', independently
of T1,

US/J5 = ¢RC° L

U6=O, however, corresponds precisely to V6a= -V6b' i.e. to a
device which inverts the charge on 02 at the instants tzta .

m

10.2+3, Realization of eguivalent LC~-networks.
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As an example, consider the circuit of Fig. 10.4., Its
resonant-transfer arrangement contains main resonant-transfer switches
(represented by the symbol of an ordinary switch surrounded by a
double circle) and auxiliary resonant-transfer switches (represented
by the symbol of an ordinary switch surrounded by a single circle).

All switches operate periodically at a rate F=1/T., The main switches

are closed during main transfer periods and the auxiliary switches

during auxiliary transfer periods interlaced with the main ones.

A1l capacitances of the resonant-transfer arrangement as well as the
terminating resistances have been indicated in Fig. 10.4 by their
normalized values, The notation used hereafter is the same as
in the previous sections.

Let us assume first that the auxiliary switches are not
present., We can number the branches by attributing to them the
values of the indices of the corresponding capacitances cm. For
m=1 or 2, branch m is formed by the input of network Nm (together
with the termination) seen from 3-3' or 4-4' respectively. From the
point of view of the long-time behaviour, the current in branch m can

be written, omitting as usual the factor ept,

I, =J, 8(t-t ) (10.4)

where to is independent of m, Furthermore,we can define
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voltages vma’ Vmb and

U= (Vo V)2 | - (10.5)

~corresponding to the voltage Vm acposs ¢ .

For each node, an equation such as

EJm=O _ (10.6)
. can now be written. For a loop such as the one formed by cs,
¢ and c7 we have similarly Z Vma = EVmb = 0, i.e.
U =0. - (0.7)

This last equation also holds for a loop containing one or
several resonant-transfer switches. Let us indeed designate by
Vi the voltage across resonant-transfer switch k, with corresponding

ka

voltages V. and Vib o For a loop containing resonant-transfer
switches, equations of the form o

Z‘Vma+ ZVI'{a = ZVmb + EVf{b = 0
can then certainly be written. According to (10.3) (with accents
added to conform with our present notation) we have, however,
Vi + Vi = 0, whence (10.7) follows immediately.

Additional relations between the Jm and Um are
determined by the elements present in Fig. 10.4. Thus, (5.8) can
still be written for the branches 1 and 2 respectively, while
the (normalized) pulse impedances of the branches containing
a simple capacitance are given by 1/<pcm. _

It is easy now to reestablish the presence of the
auxiliary resonant-transfer switches. According 'to par. 10.2.2, the
normalized pulse impedances 1/¢cmof the branches in question will then
simply have to be replaced by ¢l , with 1m=1/cm. Hence, the
equivalent circuit of Fig.10.4 becomes as shown in Fig. 10.5.

‘It should be clear now that arbitrary LC-networks

can be realized in the ¢ -domain by means of the method exposed here,
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The number of auxiliary switches required is equal to the
number of inductances to be realized. The number of main switches
is in principle equal to the number of inductances plus two,
.although it may be smaller, One must simply make sure that for
every loop.of the equivalent circuit containing either §3’ §4 or
an inductance, the corresponding loop of the orlglnal circuit
contains a main switch. This way one insures that the charges of
all those capacitances of the resonant-transfer arrangement which
: either belong to a terminating network or are connected to an
auxiliary switch can vary freely between two consecutive main
transfer periods without affecting the charges on the other
capacitances. In the example of Fig. 10.4, none of the main
switches indicated can be eliminated without violating this rule,
 The fact that all the main switches in a circuit such
as the one of Fig. 10.4 have to operate simultaneously may.cause
difficulties if more complicated structures are involved. in this
case, one can use resonant-transfer arraﬁgemenhscomposed of several
parts in cascade, seperated by intermediate storage capacitances.
The filters obtained this way are thus in a certain sense a

combination of those described in pars. 10.1 and 10.2 réspectively.
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