
 

SICONOS IST-2001-37172

Citation for published version (APA):
Camlibel, M. K., Wouw, van de, N., & Nijmeijer, H. (Eds.) (2004). SICONOS IST-2001-37172: deliverable D5.2
stability of non-smooth systems. (DCT rapporten; Vol. 2004.096). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

            • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
            • You may not further distribute the material or use it for any profit-making activity or commercial gain
            • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/68f40943-8a2d-4eef-a623-e3da9a192e40


SICONOS IST-2001-37172 

Deliverable D5.2 
Stability of non-smooth 

systems 

Report No. DCT 2004.96 

Editors: Kanat Camlibel, Nathan van de Wouw, Henk Nijmeijer 
Eindhoven, The Netherlands, August 2004 



SICONOS IST-2001-37172 
deliverable D5.2 



Table of Contents 

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

Some Results on the Stability and Stabilization of lSt  and 2nd Order Nonsmooth Systems . 5 
Jean-Matthieu Bourgeot ( INRIA  Rhone-Alpes), Sophie Chareyron ( INRIA  Rhone-Alpes), 
Bernard Brogliato ( INRIA  Rhone-Alpes), Pierre-Brice 'flieber ( INRIA  Rhone-Alpes) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Stability of Cone Complementarity Systems 10 
Kanat Camlibel (Tilburg University), Maurice Heemels (Eindhoven University of 
Technology), Arjan van der Schaft (University of Twente), Hans Schumacher (Tilburg 
University) 

A Negative Bendixson-like Criterion for a Class of Hybrid Systems . . . . . . . . . . . . . . . . . . . . .  17 
Alexander Pogromsky (Eindhoven University of Technology), Henk Nijmeijer (Eindhoven 
University of Technology), Koos Rooda (Eindhoven University of Technology) 

Analysis of the Zero Average Dynamics Control Method for a Linear Converter . . . . . . . . . .  33 
Fabiola Angulo (Universidad Nacional de Colombia), Mario di Bernardo (University of 
Bristol), Enric FOSSQS (Technical University of Catalonia), Gerard Olivar (Technical 
University of Catalonia) 

Some Special Features of Stability for Mechanical Systems Subject to Unilateral Constraints 44 
Laura Menini (Universitci di Roma Tor Vergata), Antonio Tornambd(Universitd di Roma 
Tor Vergata) 

. . . . . . . . . . . . . . . . . . . . . . . . .  Attractivity of Equilibrium Sets of Systems with Dry Friction 49 
Nathan van de Wouw (Eindhoven University of Technology), Remco Leine ( E T H  
Zentrum) 





1 

Introduction 

In this report, the results on the stability of non-smooth systems attained within WorkPackage 
5 of SICONOS are presented. 

Let us first motivate why the issue of stability is a crucial one within the scope of Workpackage 
5 and the project of SICONOS in general. Firstly, from the mere viewpoint of the analysis of the 
dynamic behaviour of non-smooth systems, knowledge on the stability of solutions of these systems 
is imperative for gaining understanding on the global dynamics of such systems. Secondly, from the 
perspective of bifurcation analysis, results on stability are of vital importance, since a bifurcation 
is often directly related to the (change in) stability properties of a certain solution undergoing 
the bifurcation. In this sense, there is a direct link with the work of WorkPackage 4. Finally, 
the ultimate goal of WorkPackage 5 is to develop design techniques for the synthesis of stable 
controllers and observers for various classes of non-smooth systems. Stability results will form the 
foundation on which such results will be built. 

A second question that may be raised is why a considerable effort in this direction is needed 
given the fact that an extensive amount of literature already exists on the stability of smooth 
systems. The first reason is that many stability results for smooth systems are based on properties 
of such systems which are defined by the grace of their smoothness. For example, one may think 
of stability results for equilibrium points based on the linearization of smooth systems. Such 
linearization may not be well-defined everywhere even for systems with mild non-smoothness (e.g. 
systems described by differential equations with a continuous, but non-differentiable vector field). 
Consequently, the applicability of such results does not translate directly to non-smooth systems. 
A second reason may be recognized in the fact that non-smooth systems may exhibit types of limit 
solutions (for which the stability should be assessed), which do not exist for smooth systems; for 
example, equilibrium sets in Filippov-type systems. 

In order to structure the results discussed in this report, we will categorize non-smooth systems 
with respect to their degree of non-smoothness or discontinuity: 

- Non-smooth, continuous systems, such as systems described by continuous differential equa- 
tions with a continuous, non-smooth vector field, which has a discontinuous Jacobian; An 
example can be a mechanical system with a one-sided flexible support. 

- Discontinuous systems with a time-continuous state, such as systems described by differential 
equations with a discontinuous vector field, which can be transformed into differential inclu- 
sions with a set-valued right-hand side (often called Filippov systems, referring to  the Filippov 
solution concept). Mechanical systems with Coulomb friction, modelled by a set-valued force 
law, are a well-known and important engineering example of such systems; 

- Discontinuous systems with state jumps. Sometimes such systems are called impulsive systems. 
Mechanical systems with impacts, inducing jumps in the velocity can be formulated within 
this class of systems. 

It is emphasized that different types of solution concepts are needed to define the solution of these 
different types of systems. 

Moreover, the material in this report will involve stability results for different types of limit 
solutions of non-smooth systems: 

- equilibrium points, being either on or outside switching surfaces (indicating the surfaces in 
state space at which the system exhibits non-smoothness and/or discontinuity); 

- equilibrium sets; such limits sets can typically occur in Filippov systems; 
- periodic solutions. 



We like to stress that the specific results involve the formulation of conditions under which such 
limit solutions exhibit certain stability properties. These stability properties may vary from sta- 
bility in the sense of Lyapunov, asymptotic stability to attractivity. 

In every subsequent chapter the authors have chosen a mathematical framework, ranging from 
complementarity systems, piece-wise smooth differential equations, evolution variational inequal- 
ities and differential inclusions to measure differential equations and, which is most suitable to 
describe the type of system under study and the stability result obtained. In some results, the 
perspective of a purely mathematical system formulation, e.g. a class of complementarity systems, 
is chosen, whereas other contributions focus on mechanical systems with friction and/or impacts 
or electrical networks, in which the physical properties are used explicitly to obtain the results. 

The organization of the report is as follows. It consists of six chapters each reporting the contri- 
bution of a different team. The first contribution summarizes the contribution of the French team 
in the frameworks of evolution variational inequalities (EVIs) and measure differential inclusions 
(MDIs). The authors report various stability results, mainly in the sense of Lyapunov stability, for 
EVIs and MDIs. Among these results, one can find extensions of absolutely stability problem and 
Krakovskii-LaSalle invariance principle to nonsmooth dynamical systems. The second contribu- 
tion concentrates on the cone complementarity systems (CCSs). The solutions of these systems go 
through a succession of periods of smooth evolution separated by instantaneous events that mark 
transitions of one set of laws of evolution to another. Events may be externally induced or inter- 
nally induced. In a framework that allows state jumps, the authors provide sufficient conditions 
for the (asymptotic) stability of CCSs. For somewhat restricted subclasses of CCSs, necessary and 
sufficient conditions for asymptotic stability are also presented. The third contribution concerns 
periodic orbits of certain piecewise linear hybrid systems. After presenting a new version of the 
generalized Bendixson's criterion, conditions in terms of linear matrix inequalities are given for the 
absence of limits cycles in linear relay feedback systems. In order to obtain these results, certain 
stability/dichotomy-like properties of solutions with respect to each other are used. 

The first three contributions consider fairly general classes of nonsmooth systems. Another 
approach is to consider specific classes of systems. This allows to exploit further the underlying 
structure that is imposed by the problem under consideration. The last three contributions take 
this approach and look at stability issues in the contexts of power converters and mechanical 
systems. 

The fourth contribution considers systems that are obtained from DC-to-DC buck converters by 
averaging techniques and investigates bifurcations of the equilibrium points, in which the stability 
of the equilibrium points plays a central role. It presents theoretical as well as experimental results. 
The fifth contribution is devoted to mechanical systems subject to unilateral constraints. The 
presence of unilateral constraints calls for a solution concept that allows jumps in the velocities. 
This contribution addresses the problem of stabilization of equilibrium points and trajectories. The 
sixth and the final contribution is also devoted to mechanical systems, more precisely mechanical 
systems with Coulomb friction. Due to the set-valued nature of the adopted friction law, the 
dynamics of these systems can be described by differential inclusions (of Filippov-type). In this 
chapter, conditions for the attractivity of equilibrium sets of such systems are formulated. 
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I Introduction 

The works of C 0 1  concern several types of nonsmooth dynamical systems which are either comple- 
mentarity systems, or closely related like evolution variational inequalities and measure differential 
inclusions. Various aspects of stability have been studied: the regulation problem (extension of the 
Lagrange-Dirichlet theorem, regulation of the position and contact forces), the tracking control 
problem (how to  extend the well-known passivity-based controllers, to the case of a Lagrangian 
system subject to frictionless unilateral constraints), extensions of the Lyapunov second method 
and of the Krakovskii-LaSalle invariance principle to a class of evolution variational inequalities 
(relying on the co-positivity of matrices wMh respect to the admissible domain of the state space). 
These studies generally make large use of convex analysis tools and of modelling formalisms us- 
ing complementarity problems and differential inclusions, like Moreau's sweeping process. The 
types of formalisms that have been studied, handle first order systems (with absolutely contin- 
uous solutions), and second order systems (with solutions of bounded variation in time). In a 
complementarity systems language, they roughly correspond to relative degree zero, one and two 
LCS. 

2 Formalisms 

2.1 Evolution variational inequalities 

Let K C Rn be a nonempty closed convex set. Let A E RnXn be a given matrix and F : Rn + Rn 
a nonlinear operator. For (to,xo) E R x K ,  we consider the problem P(to,xo): Find a function 
t + x(t) (t 3 to) with x E CO([to, +m); Rn), 2 E LEc(to, +co; Rn) and such that: 

Here (., .) denotes the Euclidean scalar product in Rn. The corresponding norm is denoted by 
1 1  . 11. The system in (1) is an evolution variational inequality which we denote as LEVI(A, K )  
when F - 0. It follows from standard convex analysis that (1) can be rewritten equivalently as 
the differential inclusion 

g (t) +  AX(^) + F(x(t)) E -NK(x(~)) 

I x(t) E K, t 3 to 

where NK(x(t)) = {S E Rn : (s, v - x(t)) < 0, V v E K )  is the normal cone to K a t  x(t). In case 
K = {x E Rn : Cx + d 2 0) for some matrix C E Rmxn and vector d E Rm, we can rewrite (1) as 
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where X E Rm is a Lagrange multiplier, and the second line of (3) means that both y and X have 
to be non-negative, and orthogonal. System (3) belongs to the class of Linear Complementarity 
Systems (LCS) with a relative degree r , ~  2 1 between y and A. The equivalences between various 
first-order formalisms has been established in [I]. 

2.2 Second order Complementarity Problem 

Dynamical systems which may experience non-permanent contacts of perfectly rigid bodies can 
be described through two different formulations: one based on complementarity problem that is 
presented in this section 2.2; the other one based Measure Differential Equation is presented in 
the next sections 2.3. 

First, let's see how systems with non-permanent contacts can be described through a second 
order complementarity problem. These systems are complementarity Lagrangian systems, with 
Lagrangian function C = T(q, q) - U(q), where T(q, q) = 4 q T ~ ( q ) q  is the kinetic energy, U(q) 
is the differentiable potential energy. The dynamics may be written as: 

where q E Rn is a vector of generalized coordinates, M ( q )  = MT(q) E RnXn is the posi- 
tive definite inertia matrix, F(q)  E Rm represent the distance to the constraints, X q  E Rm 
are the Lagrangian multipliers associated to the constraints, u E Rn is the vector of general- 
ized torque inputs, C(q, q) is the matrix of Coriolis and centripetal forces, G(q) contains - con- 

servative forces. V denotes the Euclidean gradient, i.e. VF,(q) = (2,. . -  ,$)' E Rn and 

VF(q) = (VFl (q), . . . , VFm(q)) E Rnxm. The impact times will be denoted generically as tk 
in the following. We assume that the functions F,(-) are continuously differentiable and that 
VF,(q(tk)) f 0 for all tk. 

A major discrepancy of complementarity systems compared to systems with switching vector 
fields, is that their state may be discontinuous, and that they may live on lower-dimensional spaces. 
This creates serious difficulties in their study [2] [8]. 

The Lagrangian system in (4) is fully actuated, i.e. dim(u) =dim(q). This excludes for instance 
lumped joint flexibilities. In case dim(u) <dim(q) the system is said to be underactuated and the 
control problem is much harder to solve. The first instance in the Control and Robotics literature 
where such a complementarity model has been used, is in [lo]. One very specific feature of systems 
as in (4) is their intrinsic nonsmoothness, which hampers one to tangentially linearize them in 
the neighborhood of trajectories. Consequently linear controllers generally fail to stabilize such 
complementarity systems, and nonlinear feedback controllers have to be designed. 

The description of a collision rule is needed to complete the description of second order com- 
plementarity problem, it is a relation based on a geometrical approach, between the post-impact 
velocities and the pre-impact velocities. In this work, the collision rule is chosen as in [13]: 

where ~(tj!) is the post impact velocity, q ( t i )  is the pre-impact velocity, and en is the restitution 
coefficient, en E [0, 11. We refer to the next section for the geometrical description of the constraint 
set @(q) and its tangent cone I ( q )  at q(t) (see figures 1 where the sets q, I ( q )  are depicted). 
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2.3 Second order Measure Differential Equation 

In this section, we first give a geometrical description of dynamical systems which may experience 
non-permanent contacts of perfectly rigid bodies and then a formulation for nonsmooth dynamical 
system is given based on Measure Differential Equation. 

Geometrically speaking, the non-overlapping of rigid bodies can be expressed as a constraint 
on the position of the corresponding dynamical system, a constraint that will take the form here 
of a closed set @ c Rn, assumed to be time-invariant, in which the generalized coordinates are 
bound to stay [13]: 

b't E R, q( t )  E Q. 

This way, contact phases correspond to phases when q(t) lies on the boundary of @, and non- 
contact phases to phases when q(t) lies in the interior of @. We can define then for all q E @ the 
tangent cone [9] 

and we can readily observe that if the velocity q(t) has a left and right limit at an instant t ,  then 
obviously -q- (t) E I (q ( t ) )  and q+(t) E I(q(t)) .  

Now, note that I ( q )  = Rn in the interior of the domain @, but it reduces to a half-space or 
even less on its boundary (Fig. 1): if the system reaches this boundary with a velocity q- $ I ( q ) ,  
it wm7t be able to coixtixde its movemeiit with a veIocity $ = 4- and still stay in @ (Fig. i j .  A 
discontinuity of the velocity will have to occur then, corresponding to an impact between contacting 
rigid bodies, the landmark of nonsmooth dynamical systems. 

We can also define for all q E @ the normal cone [9] 

and we will see in the inclusion (8) that it is directly related to the reaction forces arising from 
the contacts between rigid bodies. 

Now, note that N(q) = (0) in the interior of the domain @, and it contains at least a half-line of 
Rn on its boundary (Fig. 1): this will imply the obvious observation that non-zero contact forces 
may be experienced only on the boundary of the domain @, precisely when there is a contact. 
Discontinuities of the contact forces might be induced because of that, what will be discussed 
later. 

In the end, note that with these definitions, the state (q(t) , q(t)) appears now to  stay inside 
the set 

Discontinuities of the velocity may have to occur in the case of Lagrangian systems experi- 
encing non-permanent contacts between rigid bodies. A mathematically rigorous way to allow 
such discontinuities in the dynamics of Lagrangian system has been proposed through Measure 
Differential Equation [13,14], 

with dt the Lebesgue measure and d r  the reaction forces arising from the contacts between rigid 
bodies, an abstract measure which may not be Lebesgue-integrable. This way, the measure acceler- 
ation dq may not be Lebesgue-integrable either so that the velocity may not be locally absolutely 
continuous anymore but only with locally bounded variations, q E lbv([to, TI, Rn) [13,14] 

Functions with locally bounded variations have left and right limits at every instant, and we 
have for every compact subinterval [a, r] C [to, T] 

Ju,T, dq = 4+(r) - q-(a). 
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Fig. 1: Examples of tangent cones I ( q )  and normal cones N ( q )  on the boundary of the domain @, and 
example of a trajectory q( t )  E @ that reaches this boundary with a velocity q- $! I(q). 

Following [13], we will consider that the non-permanent contacts that may be experienced by 
our Lagrangian systems are perfectly unilateral, frictionless and soft. Expressing the Rn valued 
measure d r  as the product of a non-negative real measure dp and a Rn valued function r; E 

Lll,,([to, TI, dp; Rn), 

d r  = r; dp, (7) 

The set of constraints is said frictionless and soft if the total contact impulse dr  satisfies 

For a more in-depth presentation of these concepts and equations which are quite subtle, the 
interested reader should definitely refer to [14]. 

3 Stability analysis 

3.1 Stability of evolution variational inequalities 

The stability of EVI as in (1) has been investigated in [3,4,6,7]. The work in [3] concerns an 
extension of the absolute stability problem in the case where the feedback branch contains maximal 
monotone operators (allowing for instance nonsmooth multivalued functions like the graph of 
complementarity relations between two variables). This stability framework has been used in [11] 
to design stable observers for a class of nonsmooth dynamical systems. In [7] Lyapunov's second 
method is investigated for linear EVIs (i.e. F(x )  = 0 in (1)). Starting from general sufficient 
conditions on the Lyapunov function, various criteria are proposed which allow one to  test whether 
or not the fixed point is stable, or unstable. Many examples are provided (among them positive real 
electrical circuits). In [4] the Krakovskii-LaSalle invariance principle is extended to EVIs (nonlinear 
vector fields F ( x )  are included). In [6], necessary conditions for the asymptotic stability of EVIs 
are derived. It is known that a necessary condition for the asymptotic stability of the unique fixed 
point of an. ODE, is that the degree of its vector field be equal to 1. This result, that is not well 
known in the Systems and Control community, is here extended to a class of EVIs as in (1). The 
proofs heavily rely on the invariance of the degree by continuous homotopy. Necessary conditions 
for asymptotic stabilization of controlled linear EVIs are deduced. 



Stability and Stabilization of lSt and 2nd Order Nonsmooth Systems 9 

3.2 Stability of second order Complementarity Problem 

The paper [3] also deals with Lagrangian systems as in (4). An extension of the Lagrange-Dirichlet 
(also known as the Lejeune-Dirichlet) theorem, which relates the potential energy to the fixed 
point stablity, is proposed. This is a natural extension as the nonsmoothness in (4) comes from 
the complementarity relations and the impact law, which are both dissipative (more exactly the 
complementarity conditions define a maximal multivalued monotone operator between the La- 
grange multiplier and the "distance" function). The framework of the absolute stability problem 
(a feedback interconnection of two dissipative systems) is recovered with the feedback branch 
containing a maximal monotone operator representing aii the nonsmooth effects. 

3.3 Stability of second order Measure Differential Equation 

The Lyapunov stability theory is usually presented for dynamical systems with states x = (q, q) 
that vary continuously with time [12,15]. Because of the possible discontinuities of their velocity, 
this might not be the case for nonsmooth Lagrangian dynamical systems. But, Lyapunov stability 
theory is in fact not strictly bound to continuity properties: thus we can state for example the 
Lyapunov Stability Theorem, see [5], that can be proved in a very similar way t o  what can be 
found in [12,15]. This theorem, derived for nonsmooth dynamical systems, differs essentially from 
the smooth case by the global assumptions on the system state: a discontinuous flow allows possible 
jumps of the system state outside any neighborhood of the stable set, and so global conditions are 
needed on the system state to take into account such discontinuous behaviors. 
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P Pnt roduct ion 

The standard literature on dynamical systems is mostly concerned with systems that evolve in 
time according to  a set of rules depending smoothly on the current state of the system. However, 
in many areas of engineering as well as in other fields, one is often confronted with systems that are 
most easily modelled a s  going through a succession of periods of smooth evolution separated by 
instantaneous events that mark transitions of one set of laws of evolution to another. Events may 
be externally induced or internally induced. To come up with a precise mathematical formulation 
of systems with events is a nontrivial matter, in particular because one has in general to allow for 
the possibiiity that a state jump is associated with events and so it would be too restrictive to 
require solutions to be continuous, let alone differentiable. 

Complementarity systems (CSs) provide a modelling framework for a class of dynamical sys- 
tems with externally and/or internally induced events. Our previous work [2-8,151 was mainly 
focused on modelling issues, such as existence and uniqueness of solutions, and characterization 
of jumps at the event times. This note, however, reports the initial results on the stability of CSs 
that are obtained within the SICONOS project. In particular, we present sufficient conditions for 
the Lyapunov stability of CSs with both externally and internally induced events. For stability 
considerations, one of the difficulties is to cope with the externally induced jumps in the state 
variables. One of our contributions is to show, under a passivity condition, that the stored energy 
decreases instantaneously whenever a jump occurs. 

The organization as follows. We begin with introducing cone complementarity systems in the 
next section. Afterwards, we very briefly review the notion of passivity. This will be followed the 
mathematical formulation of a solution concept, well-posedness results, and characterization of 
the jumps for cone complementarity systems. After these preparations, we attack the stability 
problem and present sufficient conditions. Finally, some necessary and sufficient conditions will be 
presented in the restricted case of bimodal planar CSs. 

2 Switched cone complementarity systems 

In this note we deal with the switched cone complementarity systems of the form 

where (z, x, w) E IRm+n+m, 7i : IR+ + {-1,O, lIrn is the switching function, and 
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When one considers only the constant switching function n(t) = 0 for all t E B+, above 
system is reduced to the linear complementarity system [3,4,7,8,15,16]. In case one considers the 
switching functions ni(t) = 0 for all i = 1,2,. . . ,l and for all t, and ni : B+ + {-1,l) for all 
i = l + 1, l + 2, . . . , m, it is reduced to the switched complementarity systems [2,6]. 

The systems of the type (1) were first studied in [5] with an eye towards modelling of power 
electronics converters. 

Passivity notion will play a crucial role in our development. The next section is devoted to a 
quick review of the subject. 

3 Passivity of a linear system 

Ever since it was introduced in system theory by V. M. Popov [13,14], the notion of passivity has 
played an important role in various contexts such as stability issues, adaptive control, identification, 
etc. Particularly, the interest in stability issues led to the theory of dissipative systems [18] due to 
J. C. Willems. 

Definition 1. [18] A linear system C(A, B, C, D)  given by 

x(t) = Ax(t) + Bz(t) 

w (t) = Cx(t) + Dz(t) 

is called passive, or dissipative with respect to the supply rate zTw, if there exists a nonnegative 
function V : Bn + B+ such that for all to < tl and all trajectories (z, x, w) of the system (4) the 
following inequality holds: 

If exists, the function V is called a storage function. 

The following proposition is one of the classical results of systems and control theory. 

Proposition 1. [18] Consider a system C(A, B, C, D) for which (A, B,  C) is a minimal repre- 
sentation. The following statements are equivalent. 

- E(A, B,  C, D) is passive. 
- The transfer matrix G(s) := D + C(sI  - A)-lB is positive real, i.e., x*[G(X) + G*(X)]x 2 0 

for all complex vectors x and all X E C such that Re(X) > 0 and X is not an eigenvalue of A. 
- The matrix inequalities 

and K = K~ 2 0 have a solution K.  

Moreover, in case E(A, B, C, D) is passive, all solutions K to the linear matrix inequalities (5) 
are positive definite and K is a solution to (5) if and only if V(x) = ;xTKx defines a storage 
function of the system E(A, B,  C, D) . 

Our main aim is to present the available results on the stability of the switched cone complemen- 
tarity systems (1). To do so, we first study well-posedness (in the sense of existence and uniqueness 
of solutions) of the system (1). 
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Let us consider only the constant switching functions for the moment, i.e. ~ ( t )  = 7i E {-1,O, lIm 
for all t. Define C := C*. Then, we have the following cone complementarity system 

Some nomenclature is in order. Let C G Rm be a cone. Given an m-vector q and an m x m matrix 
M ,  the linear cone complementarity problem LCCP(C, q, M) is to find an m-vector z such that 

If such a vector z exists, we say that z solves (is a solution o f )  LCCP(C,q, M). The following 
proposition is an immediate consequence of [2, Theorem 11.71. 

Proposition 2. Suppose that M i s  nonnegative definite. Let 

QM := {Z I z E C, M Z  E C*, and z T ~ z  = 0). 

Then, the following statements are equivalent. 

1. LCCP(C, q, M) i s  solvable. 
2. q E &$. 

With these preparations, we are in a position to formulate a well-posedness result for systems (6). 

Theorem 1. Consider the cone complementarity system ( 6 ) .  Suppose that C(A, B,  C, D) i s  pas- 
sive and the triple (A, B ,  C) i s  minimal. Let 

QD := {Z I z E 6, Dz E 6, and Z ~ D Z  = 0). 

Then, the following statements are equivalent. 

1. For a given initial state XO, there exist an absolutely continuous state trajectory x with x(0) = 
xo and a pair (z, w) E C p ( R + ,  Rm+") such that (6) are satisfied for almost all t 3 0. 

2. Cxo E Q*D. 

Moreover, i f  such a triple (z,x, w) exists then the state trajectory x and col(B, D + DT)z are 
unique. 

Above theorem considers only a constant switching function. Next step is to extend this theo- 
rem to arbitrary switching functions. Arbitrary switching introduces the possibility of discontinu- 
ous state trajectories. An immediate question is how to define a jump in the state that is triggered 
by a switching. A natural way of introducing a jump rule can be obtained via the stored energy 
in the system. To formalize this idea, let 

QD(C) := {z I z E C, Dz E C*, and Z ~ D Z  = 0). 

Suppose that T is an isolated switching time. Consider the minimization problem 

minimize (3 - x ( T - ) ) ~ K ( ~  - x(T-)) 

subject to C3 + Fu(T+)  E QZ,(C,,T+l) 

where < H +CTK< is a storage function for the system Z(A, B, C, D). Passivity of the system 
allows us to prove that the above minimization problem has a unique solution for any z(T-) and 
n(T+). Note that the condition (8b) implies that there exists a solution for the initial state 3 after 



Stability of Cone Complementarity Systems 13 

the time instant T due to Theorem 1. Our jump rule defines the solution 3 of the above problem 
as the state at  T+. Note that 3 is the closest state (in the metric defined by the storage function) 
to the state before the jump among the states for which there exists a solution after the jump. 

In the sequel of the paper, we consider switching functions .rr : R+ --+ {-1,0, ljrn that have 
only isolated discontinuities. Such switching functions will be called admissible switching function. 
The set rf is defined as the union of the discontinuity points of a function f and zero. 

Theorem 2. Consider the switched complementarity system (1). Suppose that C ( A ,  B ,  C,  D) is 
passive and the triple (A ,  B ,  C )  is minimal. Let K be such that < H ;cTK< is a storage function 
jor the system Ejk,  B,C, Dj. Also let an initial state xo and an admissible switching function 
.rr be given. Define T = F, U F,. Then, there exist a state trajectory x and a pair ( z ,  w) E 

c',OC (R+ , Rm+ m, such that 

1. x(0-) = xo and x is absolutely continuous at all points 0 < t @ r. 
2. ( 6 )  are satisfied for almost all 0 < t $ r. 
3. For times 0 < t E r, x(t+) is the unique minimum of 

minimize ( Z  - x ( ~ - ) ) ~ K ( Z  - x(t-))  

subject to CZ E Q$(C,(t+)). 

Moreover, if such a triple ( z ,x ,  w) exists then the state trajectory x and col(B, D + ~ ~ ) z  are 
unique. 

Tine next lemma characterizes the jumps in the state variable. 

Lemma 1. Let Z be the solution of the minimization problem (9). Then, there exists a unique 
E such that Z = x(t-) + BZ. 

As a consequence of the above lemma, one can think of the jump at time instant t as a result of 
an impulse Z& in the z variable. Here, & is the Dirac distribution that is supported at the time 
instant t .  Alternative characterizations of the jump multiplier Z can be given as follows. 

Theorem 3. Suppose that t E P and x(t+) is the unique solution of the minimization problem 
(9). Let z E Q(C,(t+)) be such that Z = x(t-) + BZ. Define Q := QD(C,(~+)). Then the following 
characterizations can be obtained for 2. 

1. The jump multiplier Z is the unique solution to 

& 3 v I C(x(t-)  + Bv) E Q* (10) 

2. The cone Q is equal to pos N := {NX I X 2 0) and Q* = {v I NTv 2 0) for some real matrix 
N. The re-initialized state x(t+) is equal to x(t-) + BNX and = NX where is a solution 
of the following ordinary LCP. 

3. The jump multiplier Z is the unique minimizer of 

minimize 4 (x(t-)  + B V ) ~ K ( X ( ~ - )  + Bv) 

subject to v E Q 

5 Stability 

In this section we discuss the stability of switched complementarity systems (1) under a passivity 
assumption. The Lyapunov stability of hybrid and switched systems in genera! has dready received 
considerable attention [1,9-12,191. From now on, we denote the unique global trajectory for a given 
switch function .rr and initial state xo of a switched complementarity system by (uT>"O, xT~"O, yT>"O). 
For the study of stability we consider the source-free case. 
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Definition 2 (Equilibrium point). A state % i s  an  equilibrium point of the switched comple- 
mentarity system ( I ) ,  if for all admissible switching functions .rr xT>'(t)  = 3 for almost all t 2 0 
and all .rr, i.e. for all solutions starting in the state stays in Z.  

Note that in an equilibrium point x = 0 ,  which leads in a simple way to the following charac- 
terization of equilibria of a switched complementarity system. 

Lemma 2. A state 3 i s  an  equilibrium point of the switched complementarity system ( I ) ,  if and 
only i f  for all ?i E {-1,O, l I m  there exist z" E Rm and w" E Rm satisfying 

o = A e + B z "  

w" = C Z  + Dz" 

C" 3 2" I w" EC;. 

From this lemma it follows that 3 = 0 is an equilibrium. Note that if A is invertible we get 
3 = -A-'Bz" and 

which is a homogeneous LCP over a cone. 

Definition 3. Let Z be an  equilibrium point of the switched complementarity system ( 1 )  and d 
denote a metric on  Rn. 

1. I(: i s  called stable, if for every E > 0 there exists a 6 > 0 such that d(xT3"O(t), E )  < E for almost 
all t > 0 whenever d ( x o ,  e) < 6 and .rr being an admissible switching function. 

2. Z is called asymptotically stable if 3 i s  stable and there exists an  q > 0 such that 
limt-m d(xT>"O(t), Z )  = 0 whenever d (xo ,  3) < 6 and .rr being an  admissible switching func- 
tion. B y  limt-oo d(xT~"o( t ) ,  Z )  = 0 we mean that for every E > 0 there exists a t,  such that 
C Z ( X ~ ~ " ~  ( t) ,  a ) ,  2)  < E whenever t 2 t,. 

Theorem 4. Consider the switched complementarity system (1) .  Suppose that C(A, B, C ,  D )  is 
passive and the triple (A,  B,  C )  i s  minimal. Let K be such that < H ; c T ~ <  i s  a storage function 
for the system C(A, B, C, D).  The system ( 1 )  has only stable equilibrium points 3. Moreover, i f  
 AT^ + K A  < 0 i s  invertible 3 = 0 is  the only equilibrium point, which is  asymptotically stable. 

6 Bimodal and planar complementarity systems 

In this section, we will be dealing with the bimodal linear complementarity systems of the form 

where A E Rnxn7 c E Rn, d E R, and b E Rn. Note that (15) can be obtained as a special case of 
the switched cone complementary systems with m = 1 and ~ ( t )  = 0 for all t E R+. 

A solution (2, x ,  w )  of the system is called periodic if all three functions are periodic. 
Note that (15)  can be replaced by 

in case d > 0 and by 

A x  if ( cTx ,  c T A x , . .  . , cTAnpl 2 )  b 0 ,  
P A X  if c T x  = 0 and ( c ~ A x , c ~ A ~ x , . . . , c ~ A ~ - ~  X )  d 0 
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in case d = 0 and cTb > 0 where P = I - b(cTb)-lcT. 
Consider the system (16).  Suppose that A has a real eigenvalue, say p. Let v be an eigenvector 

corresponding to this eigenvalue. We can assume that cTv 2 0 without loss of generality. The state 
trajectory of (16)  that starts from the initial state xo = v is x ( t )  = exp(pt)v .  Depending on the 
sign of the eigenvalue p, this trajectory might be stable or unstable. This argumentation gives the 
following necessary condition for stability with arbitrary state space dimension n. 

Lemma 3. Suppose that d > 0 .  A necessary condition for the asymptotic stability of the system 
(15)  is that neither A nor A - bd-lcT has a real nonnegative eigenvalue. 

When the state space dimension (i.e., n) is 2,  one can derive necessary and sufficient conditions 
as in the following theorem. 

Theorem 5. Consider the LCS (15) with n = 2 and (cT,  A) is  an observable pair. The following 
statements hold. 

I .  Suppose that d > 0. The origin is the unique asymptotically stable equilibrium point of the LCS 
(15) if and only if 
(a) neither A nor A - bd-lcT has a real nonnegative eigenvalue, and 
(b) i f  both A and A - bd-lcT have nonreal eigenvalues then a l /w l  + a2/w2 < 0 where a1 f iwl 

(wl > 0 )  are the eigenvalues of A and a2 f iw2 (w2 > 0 )  are the eigenvalues of A - bd-lcT. 
2. Suppose that d > 0.  The LCS (15) has a nonconstant periodic solution if and only if both A 

and A - bd-lcT have nonreal eigenvalues, and a l / w l  + a2/w2 = 0 where a1 & iwl (wl > 0 )  
are the eigenvalues of A and a2 f iw2 (w2 > 0 )  are the eigenvalues of A - bd-'cT. Moreover, 
i f  there i s  one periodic solution, then all other solutions are also periodic. And, .rr/wl + r / w 2  
i s  the period of any solution. 

3. Suppose that d = 0. The origin is  the unique asymptotically stable equilibrium point of the 
LCS  (15) if and only if A has no real nonnegative eigenvalue and [I - b(cTb)-lcT]A has a real 
negative eigenvalue (note that one eigenvalue is  already zero). 

Remark 1. Observe that the conditions derived in Theorem 5 item 1 are connected to the ones 
obtained in [17], where a stabilizing controller of the type max(0, F z )  was designed for a linear 
system with nonnegative control inputs. As the closed-loop actually becomes a linear complemen- 
tarity system, the design of the matrix F must be such that the closed-loop system satisfies the . ~ 

conditions above. 

References 

1. M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. 
IEEE Transactions on Automatic Control, 43(4):475-482, 1998. 

2. M.K. Camlibel, W.P.M.H. Heemels, A .  J .  van der Schaft, and J.M.Schumacher. Switched networks 
and complementarity. IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, 
50(8):1036-1046, 2003. 

3. M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher. O n  linear passive complementarity systems. 
special issue 'Dissipativity o f  Dynamical Systems: Applications i n  Control' (dedicated t o  V .M.  Popov) 
o f  European Journal of Control, 8(3):220-237, 2002. 

4. M.K. Camlibel, W.P.M.H. Heemels, and J.M. Schumacher. T h e  nature o f  solutions t o  linear passive 
complementarity systems. In 38th IEEE Conference on Decision and Control, Phoenix (USA) ,  pages 
3043-3048, 1999. 

5. M.K. Camlibel, L. Ianelli, and I?. Vasca. Modelling switching power converters as complementarity 
systems. In 43rd IEEE Conference on Decision and Control, Bahamas, 2004. 

6.  W.P.M.H. Heemels, M.K. Camlibel, A.J. van der Schaft, and J.M. Schumacher. Modelling, well- 
posedness, and stability o f  switched electrical networks. In 0. Maler and A. Pnueli, editors, Hybrid 
Systems: Computation and Control, LNCS 2623, pages 249-266. Springer, Berlin, 2003. 

7 .  W.P.M.H. Heemels, M.K. Camhbel, and J.M. Schumacher. O n  the dynamic analysis o f  piecewise- 
linear networks. IEEE Trans. on Circuits and Systems-I: Fundamental Theory and Applications, 
49(3):315-327, March 2002. 



16 Kanat Camlibel et al. 

8. W.P.M.H. Heemels, J.M. Schumacher, and S. Weiland. Linear complementarity systems. SIA M J. 
Appl. Math., 60(4) :1234-1269, 2000. 

9. M. Johansson and A .  Rantzer. Computation o f  piecewise quadratic Lyapunov functions for hybrid 
systems. IEEE Transactions on Automatic Control, 43(4):555-559, 1998. 

10. Z .  Li, C .  B .  Soh, and X .  Xu. Lyapunov stability o f  a class o f  hybrid dynamic systems. Automatica, 
36(2):297-302, 2000. 

11. D. Liberzon and A. S. Morse. Basic problems in  stability and design o f  switched systems. IEEE 
Control Systems Magazine, 19(5):59-70, 1999. 

12. A .  N. Michel. Recent trends in  the stability analysis o f  hybrid dynamical systems. IEEE Transactions 
on Circuits and Systems I: Fundamental Theory and Applications, 46(1):120-134, 1999. 

13. V. M .  Popov. Hyperstabiiity and optimality o f  automatic systems with severai control functions. 
Revue Roumaine Sci. Tech. Electrotech. et Energ., 9:629-690, 1964. 

14. V .  M .  Popov. Hyperstability of Control Systems. Springer-Verlag, New York,  1973. 
15. A.J. van der Schaft and J.M. Schumacher. T h e  complementary-slackness class o f  hybrid systems. 

Mathematics of Control, Signals and Systems, 9:266-301, 1996. 
16. A.J. van der Schafl and J.M. Schumacher. Complementarity modelling o f  hybrid systems. IEEE 

Transactions on Automatic Control, 43(4):483-490, 1998. 
17. F .  Willems, W.P.M.H. Heemels, B. de Jager, and A.A.  Stoorvogel. Positive feedback stabilization o f  

centrifugal compressor surge. Automatica, 38:311-318, 2002. 
18. J.C. Willems. Dissipative dynamical systems. Archive for Rational Mechanics and Analysis, 45:321- 

393, 1972. 
19. H. Y e ,  A .  N .  Michel, and L. Hou. Stability theory for hybrid dynarnical systems. IEEE Transactions 

on Automatic Control, 43(4):461-474, 1998. 



A Negative Bendixson-like Criterion 
for a Class of Hybrid Systems 

Alexander Pogromsky, Henk Nijmeijer, and Koos Rooda 

Dept. of Mechanical Engineering, Eindhoven University of Technology, The Neihe~Iands 

Abstract. A condition which ensures the absence of periodic orbits for nonsmooth dynami- 
cal systems is presented. The condition is a higher dimensional generalization of Bendixson's 
criterion applicable to differential inclusions that are useful in the description of hybrid sys- 
terns. The main argument is based on contraction analysis of the d-measured volume along 
the system trajectories. A connection to methods for estimates of the Hausdorff dimension 
is emphasized. For a class of hybrid systems described by a linear system and a relay feed- 
back the conditions are presented in the form of linear matrix inequalities. A simple but 
illustrative example is analyzed. 

Discontinuous dynamical systems and, particularly, relay systems have attracted considerable at- 
tention over the last decades. While the mathematics of smooth dynamical systems still produces 
new and interesting discoveries, in applied disciplines it has been realized that for many appli- 
cations discontinuities should be taken into account. For example, discontinuities can be used to 
simplify modelling of friction in mechanical systems, to design disturbance tolerant sliding mode 
controllers, to deal with a switching control strategy in manufacturing systems, and so on. One of 
the hot topics in research in the control community are the so called hybrid dynamical systems, 
which combine continuous and discrete dynamics. Although the existing literature on this subject 
includes a growing number of monographs and papers (see e.g. [I-51, to mention a few), those 
systems are far from being understood. 

Hybrid systems, being nonlinear dynamical systems, can have a very rich behavior and one of 
the main theoretical problems is to predict and to understand these without explicitly solving the 
equations describing the system. In this paper we study oscillatory behavior in nonlinear hybrid 
dynamical systems that recently receive lots of attention in the control community [6,7]. The class 
of systems we study is described by nonlinear differential equations with discontinuous right hand 
side. A particular result that is obtained here is a generalization of Bendixson's negative divergency 
test for that class of systems. This simple test gives a sufficient condition for the nonexistence of 
periodic orbits for smooth planar systems. This classical result claims that if in a simply connected 
domain the divergency of a vector field does not change sign, then this domain does not contain a 
periodic orbit. A classical proof of this statement is based on the divergence theorem and cannot 
be generalized to the higher dimensional case. The main purpose of this paper is to present a 
possible generalization of the Bendixson result in arbitrary dimension taking into account the 
possible discontinuity of the right hand side. There are several higher dimensional generalizations 
of this criterion, see, e.g. [8-121. Muldowney and Li [9-111 used an approach based on compound 
matrices to prove a negative Bendixson-like criterion. In this paper we investigate this question 
by a method which allows to estimate the Hausdorff dimension of invariant compact sets [13-171. 
In doing so, we first present a generalization for an estimate for the Hausdorff dimension formula 
for non smooth systems and then, based or, that result we prove a negative criterion for the 
nonexistence of periodic orbits. 

From a practical point of view a design based on global stability of a system can be too restric- 
tive and conservative. A possibIe weaker criterion is that all trajectories tend to a set consisting of 
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equilibrium points; that is the system can not exhibit oscillatory behavior. This fact indicates the 
importance of Bendixson-like criteria for the design and control of dynamical systems. A similar 
motivation can be found, for example in a recent paper [18], where for smooth systems a condi- 
tion was presented which guarantees that almost all trajectories tend to an equilibrium. Another 
approach to simplify the stability analysis of discontinuous systems is based on the generalization 
of the Invariance Principle for differential inclusions, see e.g. [19]. 

A general idea behind the proof of the nonexistence criterion is relatively simple. If one is able 
to show that in a simply connected positively invariant domain the (semi)flow generated by the 
system contracts the area of some initial surface, it is sufficient to claim that no periodic orbits 
can lie inside this domain. By reversing time, the same holds true for area-expanding systems. 
Together with Liouville's theorem this argument gives another proof of Bendixson's criterion that 
can be generalized to arbitrary dimensions. To characterize the area of a surface one can use the 
so called Hausdorff 2-measure, so the area-contracting systems are those for which the Hausdorff 
2-measure of any initial measurable set vanishes with time. 

The main method employed in our study is based on stability/dichotomy-like properties of 
solutions with respect to each other rather than with respect to some invariant sets. The first 
results in this direction were developed by Demidovich [20], see also [21] and Yoshizava [22]. 
Methods based on similar ideas are appreciated now in the control community [23-251. A natural 
way to investigate those properties is based upon linearization of the dynamical system along any 
given trajectory which excludes the consideration of non smooth systems. In this paper instead of 
linearization we investigate the behavior of some quadratic forms defined for a pair of trajectories 
of the system, and which allows to consider discontinuous systems. The conditions presented in 
this paper are formulated in terms of inequalities involving two eigenvalues of some matrix pencil. 

The paper is organized as follows. In Section I1 we present necessary background material. 
Section I11 contains some result on estimation of the Hausdorff dimension of invariant sets. Based 
on these results in Section IV we present a new version of a generalized Bendixson's criterion. 
Particular attention is then drawn to LMI based results for linear systems with relay feedback. 

2 Hausdorff dimension 

Consider a compact subset K of Rn. Given d > 0, E > 0, consider a covering of K by open spheres 
Bi with radii ri 5 E (see Figure 1). Denote by 

p(K, d, E) = inf C rf 
i 

the d-measured volume of covering of the set K.  Here the infimum is calculated over all &-coverings 
of K .  There exists a limit, which may be infinite, 

It can be proved that pd is a Bore1 regular measure on Rn (see [33]). 

Definition 1 The measure pd is called the Hausdorff d-measure. 

Some properties of the measure pd can be summarized as follows. There exists a single value 
d = d,, such that for all d < d,, pd(K) = +co and for all d > d,, pd(K) = 0, with 

d, = inf{d : pd(K) = 0) = sup{d : pd (K)  = fool. 

(see Proposition 5.3.2 in [16]). 

Definition 2 The value d, i s  called the Hausdorff dimension of the set K .  
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Fig. I: The Hausdorff Zmeasure is approximated by the cross-sections of little bails with the surface. 

In the sequel, we will use the notation dimH K for the Hausdorff dimension of the set K .  
For the control community the notions of Hausdorff measure and Hausdorff dimension are not 

of common use and we like to clarify the above definitions. 
Suppose we have a two-dimensional bounded surface S with area m(S). We cover this surface 

by open spheres as required in the definition of the Hausdorff measure. Then, for d = 1 and d = 3 
we have 

pl(S) = lim p(S, 1, E) = +cq 
E'O 

ps(S) = lim p(S, 3, E) = 0, 
E'O 

while for d = 2 we have 

This example illustrates the behavior of pd(K) for a given K as a function of d. Namely, for values 
of d less than dimHK, pd(K) is infinity and for all values of d greater than dimHK pd(K) is zero 
(see Proposition 5.3.2 in [16]). This situation is schematically presented on Fig. 2. 

Fig. 2: Properties of the Hausdorff d-measure. 

For the "good" sets such as a piece of an arc, a piece of a smooth surface, etc. the Hausdorff 
dimension can be used as the dimension in the normal sense (i.e. in the sense of Brouwer, or 
Lebesgue). This follows from the result (see, e.g. Proposition 5.3.5 in [16]) which claims that for a 
set K of positive n-i-dimensional Lebesgue measure the Hausdorff diinension of K is n. However for 
other sets such as the Cantor set the value of the Hausdorff dimension can be fractional. Sets of 
such type are often encountered as invariant sets of "chaotic" systems, that makes the Hausdorff 
dimension of invariant sets an important characteristic for "chaotic" systems. 
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3 Upper estimates for the Hausdorff dimension of invariant compact 
sets 

The extremal property of the Hausdorff dimension suggests an idea of how to estimate it for 
invariant sets of dynamical systems. Namely, if one is able to prove that for a given set K its 
Hausdorff d-measure is zero, then it follows that d is an upper estimate of the Hausdorff dimension 
of K .  A possible way to show that the Hausdorff d-measure is zero is to prove the following 
inequality 

where v < 1, cp is some mapping and K its invariant set, i.e. cp(K) = K and hence pd(cp(K)) = 

pd(K). This identity together with (2) implies that pd(K) = 0. 
When cp is a flow generated by a system of differential equations inequality (2) follows from 

the fact that the d-measured volume of an open neighborhood of the invariant set K decreases 
along the system trajectories. This observation suggests to employ a Lyapunov-like technique to 
estimate the Hausdorff dimension of invariant sets. 

As has been mentioned in the Introduction, a generalization of Bendixson's criterion can be 
derived if one is able to show that in some simply connected region there are no invariant sets 
with Hausdorff dimension greater than or equal 2. This result can be obtained if one takes a 2- 
measured volume as a Lyapunov function candidate. However, in this section we present a more 
genera! rewh which holds for aE arhitrxy &-measure and in the next sectim we prese~t  a higher 
dimensional generalization of Bendixson's criterion. 

Consider a system of differential equations 

where f : 0 -+ Rn is a (possibly) discontinuous vector field defined on some open positively 
invariant set 0, and which satisfies conditions guaranteeing the existence of solutions x(t, xo) in 
0 in some reasonable sense, that is, if the function f is discontinuous and satisfies some mild 
regularity assumptions, one can construct a set-valued function f bounded on any compact set 
according to numerous possible definitions (e.g., Filippov convex definition, Utkin's equivalent 
control, etc.) such that a solution of the differential inclusion 

is called a solution for system (3). We require that the solution x(t, xo) is an absolutely contin- 
uous function of time. Additionally we assume that if the solution x(t, xo) is (right)-unique then 
continuous dependence on initial conditions in forward time is guaranteed. 

The parameterized mapping xo H x(t,xo), t > 0, or the semi-flow will be denoted as cpt : 
n -t n. 

Consider a scalar differentiable function V : f2 x 0 t R, V(x, x) = 0. 
Define the time derivative of the function V along two solutions xl(t, xlo), x2(t, x20) of (3) as 

follows 

Since V is Lipschitz continuous and the solutions xi(t, xio) are absolutely continuous functions of 
time, the derivative 

exists almost everywhere in [0, mini Ti), where Ti is the maximal interval of existence of the solution 
xi(t, zio) in n .  
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For the function V we can also define its upper derivative as follows 

v* ( x l ,  x 2 )  = sup 
Ei€f(z i )  8x2 

Then for almost all t > 0 it follows that 

We formulate the following hypothesis: 
Hi. 'i'nere exists a continuousiy differentiable 'IL x n symmetric matrix vahei: function P 

defified in the domain 0, such that the function 

satisfies the following inequalities 

and 

for all X I ,  x2 E Q and some al, a2 > 0 with a symmetric continuous matrix valued function Q ,  
bounded on Q. 

H?. All solutions starting in f2 are defined for all t > 0. 
We begin with the following preliminary result: 

Lemma 1 Suppose the assumptions HI and H2 are satisfied. Then any solution x ( t , x o )  to (3), 
xo E Q is right-unique. 

Proof. We prove the statement under the weaker assumption that for all X I ,  2 2  E f2 

for some L > 0. Here we used a standard asymptotic notation O(.) .  Then 

almost everywhere. The absolutely continuous function ~ e - ~ ~  does not increase, and if xl  = x2 
it follows that V ( x l ( t ) ,  x2 ( t ) )  = 0 for t > 0. Thus the right-uniqueness is proved. 

The previous lemma shows that the Cauchy problem (3) is well-posed and continuous depen- 
dence on initial conditions follows. 

Let Xl(x)  2 X2(x) > . . . > Xn(x), x E 0 be the ordered solutions to the following generalized 
eigenvalue problem 

which are real since both Q and P are symmetric. 
Consider a compact set S of finite Hausdorff d-measure for some d = do + s ,  d 5 n, where 

do E N and s E [ O , l ) .  Suppose that S E Q, then p t (S )  E Q for all positive t. Now we formulate 
the following result. 

Theorem 1 Suppose hypotheses HI and H2 are satisfied. If for some d = do + s ,  0 < do 5 n, 
0 5 s < 1 it follows that 

Then 

lim pd (p t  (s)) = 0. 
t+oo 
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The proof is based on the construction of a finite set of affine maps Rn + Rn which locally 
approximate pt. Then using the linear part of those maps we approximate how the d-measured 
volume is changed under those maps to compute the change of pd(pt ( S ) ) .  The proof of this theorem 
is presented in the Appendix. 

The main result of this section is the following theorem. 

Theorem 2 Suppose hypotheses HI and H2 are satisfied, and there exist positive integer do and 
real s E [O,l) such that 

Suppose that there is an  invariant compact set K E Q. Then dimHK 5 do + s. 

Proof. From the previous result it follows that pd(pt(K)) + 0 as t -+ m. Since K is invariant 
pd(K) = pd(pt (K)). Therefore pd(K) = 0. 

For the continuously differentiable right-hand side of system (3) the previous theorem can be 
formulated in infinitesimal form. 

Corollary 1 [17] Suppose that hypothesis H2 is  satisfied and there i s  an  invariant compact set 
K E Q. Assume also that there i s  a continuously digerentiable symmetric uniformly positive 
definite n x n matrix junction r" defined and bounded i n  f2 such that the solutions of the following 
generalized eigenvalue problem 

satisfy the inequality (7), with the matrix Q defined as 

Then  dimHK < do + S .  

In [17] this result was derived using the linearization of the flow pt with an approach close 
to that due to Douady-Oesterlk [13] and Leonov [16]. It is now seen that this result can also be 
obtained from a more general argument which is applicable to discontinuous systems. 

We have only presented local conditions that are easier to verify analytically for particular 
examples. One can derive a further generalization via integral conditions of the form 

which can be useful for numerical methods. 

3.1 Example: t h e  Lorenz system 

It is well known that all trajectories of the Lorenz system 

are ultimately bounded for arbitrary positive a ,  r, b; that is, there is an invariant compact set K. 
Let us estimate its Hausdorff dimension. 
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Proposition 1 Suppose the parameters of the system are such that the following inequality 

i s  satisfied for all initial conditions. Then 

Proof. The Jacobian of the Lorenz system is 

and let P be .= ( ' ! H E )  
then 

We know that X1 + A2 + X3 = -2(0 + 1 + b), and from -2(a + 1 + b) < 0 it follows that X3 < 0 
for all x, y, z. Hence, by Corollary 1, to find an upper estimate of s it is sufficient to  find a lower 
estimate of X3. Given this estimate, we then evaluate the upper bound on the Hausdorff dimension 

The smallest negative eigenvalue of some symmetric matrix Q is a number r; such that the matrix 
Q - X I  is positive definite as long as X < r(. For all nonpositive X the following matrix inequality 

is satisfied, where PI = diag{r/a, 1 , O ) .  Therefore, to find a lower estimate for X3 it is sufficient to 
find a lower estimate of the smallest nonpositive solution of the following equation 

Using the inequality (9) and neglecting the term Xy2/2b (since we are looking for a negative lower 
estimate of the smallest solution for A) it is then straightforward to complete the proof. 

In [26] it has been proved that for the standard values of parameters of the Lorenz system a = 
10, r = 28, b = 813, the inequality (9) is satisfied. Thus in this case, dimHK 5 2.4013. A typical 
trajectory of the Lorenz system for those values of the parameters is presented in Fig. 3. 

The inequality (10) claims that the Hausdorff dimension of the invariant set of the Lorenz 
system is bounded by the Lyapunov dimension of the origin. This statement is known as the 
Eden conjecture [27] which has been proved by Ljashko [28] for a certain set of parameters. The 
method proposed by Ljashko does not depend on the estimates of the ultimate bounds for the 
system trajectories but leads to very cumbersome calculations. Recently Leonov found a set of 
parameters of the Lorenz system for which the Lyapunov dimension of the Lorenz attractor equals 
to the local Lyapunov dimension of the origin [29]. Our result can be proved with a much simpler 
derivation. 
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Fig. 3: A typical trajectory of the Lorenz system. 

4 A higher-dimensional generalization of Bendixson's criterion 

We begin with some definitions. 

Definition 3 [32] A set S c Rn i s  called d-dimensional rectifiable set, d E N i f  pd(S) < co and 
,ud-almost all of S i s  contained in the union of the images of countably many Lipschitz functions 
from Rd to Rn. 

The rectifiable sets are generalized surfaces of geometric measure theory. Any 1-dimensional 
closed rectifiable contour y bounds some two-dimensional rectifiable set, for example the cone over 
7. 

A set is said to be simply connected if any simple closed curve can be shrunk to a point 
continuously in the set. 

Theorem 3 Suppose that assumptions HI and H2 are satisfied, let Q be a simply connected set. 
Suppose that 

for any x E Q. Then no  periodic orbit can lie entirely in Q. 

Proof. The proof of Theorem 3 follows an idea used in the proof of the Leonov theorem ( [31], see 
also Theorem 8.3.1 in [30]). Suppose (11) holds but there is a periodic orbit y passing through a 
point xo y := {x I 3 t  > 0, x = x(t, xo)) which lies entirely in Q. 

Since as assumed the function f is bounded on any compact set it follows that there is a positive 
constant L > 0 such that for all xo E y 

and thus the set y is an image of a Lipschitz continuous function. Therefore the set y is a rectifiable 
one-dimensional set. From the theorem on existence of area-minimizing surfaces (see Theorem 5.6 
in [33]) it follows that there exists a 2-dimensional rectifiable set S E Rn such that its boundary 
is y and it has minimal Hausdorff 2-measure. 

Let S be a rectifiable two-dimensional set S c 52 with boundary y. The existence of such set 
follows from the fact that Q is simply connected. As before, we denote by cpt the flow of system 
(3). Let p(S) be the Hausdorff 2-measure of a 2-dimensional surface S .  Since y is invariant under 
cpt and cpt(S) c Q for any t > 0 (a is positively invariant) we have 

inf p (cpt(S)) 2 p(S) > 0. 
t2o 
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At the same time, using (11) from Theorem 1 it follows that 

lim p (cpt (S)) = 0, 
t+oo 

which contradicts (12). Therefore, (11) ensures the absence of periodic trajectories lying in 52. 

It is worth noting that this theorem being applied to smooth systems together with its time 
reversed version (for smooth systems we have local right and left uniqueness) gives the classical 
Bendixson divergency condition. 

The main idea of the proof (see [31]) is based on the existewe of a surface with mi~imal  area 
given its boundary. Although the mathematical problem of proving existence of a surface that has 
minimal area and is bounded by a prescribed curve, has long defied mathematical analysis, an 
experimental solution is easily obtained by a simple physical device. Plateau, a Belgian physicist, 
studied the problem by dipping an arbitrarily shaped wire frame into a soap solution. The resulting 
soap film corresponds to a relative minimum of area and thus produces a minimal surface spanned 
by that wire contour. A classical solution to Plateau's problem can be found, for example, in [34] 
with some regularity assumptions on the contour y that can be violated if y is a closed orbit 
corresponding to  a periodic solution of a system of differential equations with discontinuous right 
hand sides. Fortunately, the argument based on geometric measure theory allows to overcome this 
difficulty. 

It is worth mentioning that the hypothesis of the previous theorem can be relaxed. Particularly, 
one can relax the assumptions on positive invariance, simple connectivity of f2 and assumption 
H2 on the existence of the solutions for the infinite time interval. Indeed, from the proof of 
Theorem 1, it follows that if S E 52 then n(cpt(S), d) decays monotonically provided S is of finite 
Hausdorff d-measure. Therefore, if condition (11) is satisfied in an open domain 52 (not necessarily 
simply connected and positively invariant) then 52 does not contain those invariant one-dimensional 
rectifiable sets y that lie entirely in f2 and for which the corresponding 2-dimensional rectifiable 
sets S bounded by y lie entirely in 52 and have minimal measure n(S, 2). The proof in this case 
is again by contradiction: the condition (11) implies monotonic decay of n(cpt(S), 2) with time. 
However, y is invariant and S has minimal measure n(S, 2) among all two-dimensional rectifiable 
sets bounded by y and thus n(cpt(S), 2) cannot decay. This relaxed condition can be used, for 
example, to disprove the existence of periodic orbits of a particular kind, as can be seen from 
Figure 4: if condition (11) is satisfied in torus 52 with P(xl)  = In, then the torus R does not 
contain periodic orbits of type A, while it can contain periodic orbits of type B. Note also, that 
this relaxed condition being applied to planar systems is tantamount to simple connectivity of 52 
due to the Jordan theorem. 

The final remark in this section is that the theorem can disprove not only the existence of 
periodic orbits, but also invariant sets of more general nature - homoclinic and/or heteroclinic 
orbits since they are rectifiable sets as well. 

4.1 Example 

Consider the following system: 

x = Ax + Bu, u = -sign(y), y = Cx 

where x E R3, u, y E R1 and the matrices A, B,  C are given as follows 

with positive b. Consider the smooth function (4) in the form 
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Fig. 4: If the condition (11) is satisfied in the torus R for P = I, then no periodic orbits of type A can lie 
entirely in R. 

For this system the corresponding solution according to the Filippov convex definition coincides 
with the Utkin solution [I]. At the discontinuity points of the right hand side, the corresponding 
set valued function in the differential inclusion is obtained by the closure of the graph of the right 
hand side and by passing over to a convex huii. As shown in [i], p.i55, these procedures do not 
increase the upper value of V* and hence it is sufficient to compute the derivative of V only in 
the area of continuity of the right hand side. The derivative of V in this area satisfies 

The previous theorem suggests that if min{a, P )  > -1, a sufficient condition for the absence of 
periodic solutions is 

To demonstrate that the violation of the condition (14) can result in oscillatory behavior we 
performed a computer simulation for the following parameter values: a = 1, P = -1/2, b = 1. The 
results of the simulation are presented in Figure 5. It is seen that the system possesses orbitally 
stable limit cycle. 

Fig. 5: Oscillatory behavior for a + ,B > 0. 
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4.2 A n  LMI based criterion for Lur'e systems with discontinuous right hand  side 

In the previous example the matrix A was chosen as a sum of a diagonal and a skew-symmetric 
matrix that made all necessary calculations trivial. Next we present an LMI based criterion which 
ensures the absence of periodic solutions for the following system: 

x = Ax + Bu, u = -bsign(y), y = Cx (15) 

where x E Rn, n 2 2, u, y E R1, b > 0 and the matrices A, B, C are of corresponding dimensions. 

WL ,,..,, c' *.Fmnn + h  + + h  rllcuxGlll 4 uuppvoe brcab ~ , ~ e r e  exists p iind posititte definite matrix P such that the f d b ~ i ~ g  
inequality 

i s  satisfied. Then if 

the system (15) does not have periodic solutions. 

Proof. According to (16) the matrix P satisfies the following equation P B  = CT. Thus taking the 
derivative of the following function 

yields (as in the previous example it is sufficient to compute the derivative in the area of continuity 
of the right hand side) 

Now consider the smallest solution An of the following equation 

det(PA + A T P  - XP) = 0 (18) 

From the hypothesis it follows that An 2 2p. On the other hand if Xi, i = 1,. . . , n are the solutions 
of (18) then 

Since 

Xi 2 Xn 

it follows that 

XI + A2 5 2(trA - (n  - 2)p) < 0 

and according to Theorem 3 the system (15) has no periodic solutions. 

5 Conclusions 

In this paper we presented a new discontinuous version of a Bendixson's like criterion. The cri- 
terion is based on a new result on estimation of the Hausdorff dimension of invariant sets for 
(possibly) discontinuous systems. The new criterion can be applied for the design and control of 
discontinuous systems when the requirement of global stability is too restrictive. Our study is 
based on dichotomy-like properties of solutions of dynamical systems with respect to each other 
rather than with respect to some invariant sets. We hope that further development of this approach 
will allow better understanding bifurcations in nonsmooth dynamical systems [36]. 
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Appendix. Proof of Theorem 1 

We begin with some definitions. 
Let Ex, be an open ellipsoid in Rn centered at the point xl and determined as 

Let al(E) = aa(E) = . . . = an(E) = E be the lengths of the semi-axes of the ellipsoid E 
computed in the metric defined by quadratic form qTP(xl)q . Represent an arbitrary number d, 
0 < d I n in the form d = do 4- s, where do E W and s E [O, 1) and introduce the fdlowing 

Given a compact set S. Fix a certain d and E > 0 and consider all kinds of finite coverings of the 
compact S by ellipsoids Ex,. If d = 0 we put [wd(EXi)]'Id = a1 (Ex,)).  Similarly to  the definition 
of Hausdorff d-measure we denote 

nd (S,  d, E )  = inf x w ~ ( E x , )  = inf ad 7 

where the minimum is calculated over all coverings. 
Since the matrix function P(x)  together with its inverse is bounded in an open neighborhood 

of S and since any ellipsoid Ex% can be covered by some ball and any ball can be covered by an 
ellipsoid Ex, for an appropriate E ,  the value 

rd ( S )  = sup n (S ,  d, E )  
€ > O  

can also serve as the Hausdorff measure and for definition of the Hausdorff dimension: 

where a,i, is the lower bound of the smallest singular value of P(xl )  over &-neighborhood of S,  
a,,, is the upper bound of the greatest singular value of P(xl ) .  

Now consider a class R of positive definite matrix functions defined and bounded together with 
its inverse in some open neighborhood of S. For R E R consider ellipsoids 

As before let ai(Ex,), i = 1,. . . , n be the lengths of its semiaxes computed in the metrics defined 
by the quadratic form vTP(xl)q and ordered in decreasing order. The d-measured volume of this 
ellipsoid computed in the same metric is then given by 

do ( d o  ) ( d ~  ai)  
~ d ( E ~ ~ ) = I I ~ i ( a d ~ + i ) ~ =  n a i  

i=l i= 1 i=l 

Suppose that the ellipsoids Ex, cover S and introduce the following notation 

%d(S, d, E )  = inf x w~(E, , ) ,  
i 

where the minimum is calculated over all coverings and all R E R. Since P E R it follows that 
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Our next step is to consider a(cpt(S), d )  as a function of time. Similarly to the proof of Lemma 
1 it follows that the ellipsoid Ex, is transformed by cpt into a set that can be covered by the 
ellipsoid 

From the time invariance of the system it follows that a(cpt (S), d )  satisfies the following inequalities 

for some positive M. Therefore we have just established the following claim 

Claim. a(cpt(S), d )  is an absolutely continuous function of time and its derivative exists almost 
everywhere for t > 0 provided S is of finite Hausdorff d-measure. 

According to  assumption HI 

for almost all t  > 0 with the higher-order function h satisfying 

This inequality can be rewritten in the following form 

where 

where the supremum is taken for 0 I t  < T and (xl - ~ 2 ) ~ P ( x i ) ( x l  - 5 2 )  I E ~ .  

Notice that limt,,,o Qts(xl) = Q(xl) .  
Given E > 0 and sufficiently small t  > 0, consider a finite covering of S by ellipsoids Ei(&) 

centered at points ti and defined by 

Due to (22)  the mapping cpt transforms each ellipsoid of this covering into an ellipsoid E{(x(t,  ti)) 
centered at x(t, ti) and defined as 

and therefore, if {Ei(ti)} covers S then {E,!(x(t,&))} covers cpt(S). 
To estimate ud(Ei(Ji)) from below notice that 

where ail > ai2 > . . . > ai, are the singular values of the affine operator Ci that transforms the 
ellipsoid 

into the ellipsoid Ei(xi) computed in the metric defined by the quadratic form qTP(xi)q, that is 
a&, j = 1, . . . , n are the solutions A; to the following generalized eigenvalue problem 
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with Li being the matrix corresponding to the linear part of the operator Li. 
Let us estimate the singular values of the affine operator Li. The linear part of this operator 

should satisfy 

To estimate the Xi it is convenient to estimate the singular values (in the same metric) of the 
inverse operator L i l ,  i.e. to find solutions A;, j = 1, .  . . , n of the following problem 

Using the Weierstrass theorem about diagonalization of a regular matrix pencil it follows that 
can be represented in the form 

where Xij are the solutions of the following generalized eigenvalue problem 

Finally, from (23) one concludes that 

and therefore 

where the supremum is calculated for 0 5 7 5 t for sufficiently small t and {q I (xi - q)TP(xi)(xi - 
q )  < E ~ ) .  Since %(S, d, E) 5 r(S,  d, E) it follows that 

sup(1 + tXzl) (1 f tXi2) . . . (1 + tXido) (1 + tXido+l)"~(S, d, E) > r((pt (S) , d, E) - 
~ , T , E  

Taking the limit for E -+ 0 and t 4 0 and using time-invariance of the system one concludes that 
the right derivative of r(cpt(S), d) exists for almost all t 2 0 and is bounded from above by 

provided S is of finite Hausdorff d-measure. Since r(cpt(S), d) is an absulutely continuous function 
of time it decays to  zero monotonically and exponentially. The result now follows from the left 
inequality (21). 
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1 Introduction 

Switched mode power converters can be modelled as variable structure systems because of the 
abrupt topological changes that the circuit, commanded by a discontinuous control action, under- 
goes; actually they are linear piecewise-smooth dynamical systems. As piecewise-smooth dynamical 
systems, sliding control mode should provide good control strategies. However, because of the dis- 
continuities in the module of the dynamics on the switching surface, the resulting designs operate 
at variable switching frequency, this leading to an undesirable chattering phenomenon axd b d e r -  
ing the design of the regulatorlinverter filter elements. The Zero Average Dynamics (ZAD) control 
scheme, recently proposed in [4], tries to conjugate the advantages of fixed frequency implemen- 
tations and the inherent robustness of sliding control modes. It is based on an appropriate design 
of the output that guarantees the fulfilment of the specifications and on a specific design of the 
Pulse Width Modulator duty cycle in such a way that the output average in each PWM-period is 
zero. 

There are several possible PWM implementations, such as leading, trailing and centered pulse. 
The third, in turn, can be single or double updated. This paper deals with a buck converter 
controlled by a ZAD algorithm which is implemented in a single updated centered PWM. As 
for the output, for robustness purposes a linear combination of the error and its derivative is 
considered as in [2] and [3]. The error dynamics time constant appears as a bifurcation parameter. 
The first part of the report deals with the duty cycle equilibrium value and to steady state. Stability 
analysis, as the output time constant varies, is performed using a first linear approximation and 
Floquet and Lyapunov exponents. For the output time constant lying in certain interval, the 
overall system results in a stable, fixed frequency, robust controlled satisfactory performance. In 
the second part, average theory (perturbation theory in mathematics) is used t o  support the 
aforementioned satisfactory performance. To be precise, a centered ZAD-PWM scheme will be 
considered and steady-state maximum values for the error and the sliding surface in a sampling 
period will be computed as well. 

A complete introduction to power converters can be found in [6], and a fast overview includ- 
ing control, in [7]. Nonlinear phenomena in power electronics, bifurcations, chaos and control of 
chaos are widely reported in [I]. The problem under consideration appeared when a Zero Average 
Dynamics control scheme was implemented to a buck converter using a centered Pulse Width 
Modulator. The unexpected duty cycle saturation led us to study the problem in the field of 
nonlinear phenomena. 

2 Statement of the Problem 

The dc-to-dc buck converter can be modeiled as the dynamical system 
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The state variables are the capacitor voltage v and the inductor current i. The control signal u 
takes discrete values in the set {-1,l) depending on the switch position. The plant can also be 
described by the dimensionless system 

where xi = VIE, x2 = d&i, t = T/v%? and y = k&. Or in a more compact form 

where x and u are the state vector and the control input respectively and A and b the corre 
sponding matrix and vector. 

The sliding surface S, a proportional-derivative expression in the error, as in BiIalovic [2] and 
Carpita [3], is defined by 

as the output to be regulated to zero. xiref is the reference dimensionless output voltage to be 
tracked and 5 a constant parameter; actually, the time constant of the first order ODE the error 
wiii fuiiii. k very rich dynamics is observed as constant ks varies. in order to obtain it, let us state 
some basics on PWMs and ZADs. 

A centered Pulse Width Modulator with duty-cycle4 dk and period T operates as follows: 

Then, substituting u from Eq. (5) into Eq. (3) and solving the Ordinary Differential Equation, we 
obtain the T-period Poincari! map associated to the PWM, which results in 

Zero Averaged Dynamics schemes search for duty cycles dk that force output zero average in 
each sampling period. That is, 

Obtaining dk from this equation demands the solution of a transcendent equation in each iter- 
ation, which is not feasible in an on line implementation. Hence, considering a linear piecewise 
approximation of the output S the duty cycle results in 

Actually, dk = sat(&) because dk E [0, T] must be fulfilled. 

4 There is an abuse of language with the word duty-cycle: dk  E [0, TI, instead of dk  E [O, 11. 
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3 Dynamical analysis 

The system equilibrium points and equilibrium duty cycle are computed in this section as functions 
of the bifurcation parameter k,. For simplicity, let us move to the regulation problem; then xlTef, 
x2,,f = yxlTef are constant. From Eq. (7) and a previous remark, 

Assuming the equilibrium point (xT, xa) = (xlre f ,  yxlTe f )  is reached, then S(0) = 0 and Eq. (9) 
results in 

Hence, the duty cycle in equilibrium is 

Thus, the equilibrium duty cycle is g(l + xlTef) if the PWM action follows the scheme 
(+I, -1, +l) ,  and $ (1 - xlT, f )  otherwise. Additionally, since xlref E [-I, 11, both expressions 
are completely symmetric. The PWM scheme (+i,  -1, +i)  is assumed throiighoiit the paper. 

Stability analysis: In several simulations, k,  = 4.5 was taken and no stability limit was 
found. However, open-loop stability analysis suggests the existence of such a limit. In order to 
obtain it, let us consider xlTef = 0.8 and let the bifurcation parameter k,  vary in the interval 
[0.1,4.7]. Then, let us 

- take dk = d* as in Eq. (11) 
- linearise the system around the fked point of the Poincarh map, and 
- compute the corresponding eigenvalues. 

Results are shown in Table 1. Figures were truncated at the fourth decimal. 

Table 1: Equilibrium point and eigenvalues of the linearised system. (xlref = 0.8) 

On the one hand, if parameter k ,  decreases, the negative zige~vdue decreases to the poi& 
leaving the unity circle, while the other eigenvalue remains inside the unity circle. On the other 
hand, if parameter k,  increases, both eigenvalues remain inside the unity circle. The evolution of 
the stable and the unstable eigenvalues is shown in Fig. 1 and 2, respectively. 
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Fig. 1: Evolution of the stable eigenvalue. 

Fig. 2: Evolution of the unstable eigenvalue. 
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Table 2: 2T-periodic cycles. (xlref = 0.8) 

4 Bifurcations and Chaos 

Previous simulations suggest different qualitative behaviors for the controlled system. Particularly 
interesting is the presence of unsaturated 2T-periodic orbits and a saturated duty cycle together 
with an unsaturated one, yielding again a 2T-periodic orbit; the latter becomes 4T-periodic and 
then a route to chaos follows. The first bifurcations are due to one of the eigenvalues of the Jacobian 
of the Poincark map crosses the stability limit by -1, yielding flip bifurcations [5]. 

Since the results are very similar for all the reference values varying in the interval [0.5,0.8], 
from now on oniy a reference vaiue of 0.8 wiii be considered. Some of those doubiy periodic 
behaviors are shown in Table 2. Note the saturation value of the duty cycle for 5 ,  = 3.24. More 
details are depicted in Figs. 3, 4 and 5, where the output voltage, the current and the duty cycle 
are respectively plotted versus the bifurcation parameter k, .  

0.5 1 1.5 2 2.5 3 3.5 4 4.5 
bifurcation parameter 

Fig. 3: Bifurcation diagram. Voltage vs ks 

As for the saturated/unsaturated duty cycle for 2T-periodic orbits, the bifurcation parameter 
critical value is k ,  = 3.24, approximately. At k,  = 3.1, the 2T-periodic cycles yield 4T-periodic 
ones and these, in turn, 8T-periodic ones at k,  = 2.8. As k,  continues decreasing, chaos appears. 
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0.1 t , I 

0.5 1 1.5 2 2.5 3 3.5 4 4.5 
bifurcation parameter 

Fig. 4: Bifurcation diagram. Current vs k,  

0.5 1 1.5 2 2.5 3 3.5 4 4.5 
bifurcation parameter 

Fig. 5: Bifurcation diagram. Duty cycle vs k, 
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The evolution of the Floquet exponents real part as parameter 5, varies is displayed in Fig. 6 
The evolution of the Lyapunov exponents in terms of parameter k, is displayed in Fig. 7. It is 

worth noting that the zero crossing point of the Floquet and Lyapunov exponents is the same. It 
coincides with the critical value shown in Table 1 and Fig. 2. 

real part Floquet exponents 

Fig. 6: Floquet exponents. 

5 Applied Perturbation Theory to Power Converters Regulation 

Let us rewrite system dynamics in the more suitable variables e = X I -  v,,f and s = e+ ks8, being 
thereafter t = T/E the independent variable and E = T, 

This system reads as 2 = ~f (x, t) as usual in averaging (perturbation) methods. u is defined 
as 

In this case d = D I T  = DIE E w. Taking x = (e, s )  equation (12) can be written in a compact 
form as x = &Ax+ kS&ii where 

being u defined by equation (13) or similar, depending on the pulse generation scheme (PWMC 
or PWML). The control technique selected according to equation (6) guarantees (22) = 0 and 
(ti2) = 0. 
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-0.21 4 I I I I I 
1.5 2 2.5 3 3.5 4 

bifurcation parameter 

Fig. 7: Lyapunov exponents. 

In order to average the system, let us define the change of variables y = x - &a1, where 
- u1 = k, Qdr. Since (Q) = 0, iil is also periodic. It is straightforward to obtain, 

For the next change of variables, let us note that the function Jbt A;lil can not be presumed - 1 
periodic. To solve this problem let us define 6' = w', a = ~6 6ldt as the mean of ;li = AE' and 
-2 a - - J,($ - a)dr, which is periodic. 

Now, let us define a new change of variables, namely 

Then, 

i = j. - E 2 ~ 2  

This equation is also well defined in the switching instant because ;li2 is C1. Hence 

Replacing (14) and (15) in (16) yields 

z = EAZ + ~~a + ~ ~ ~ i i ~  (I7) 

Let z* = -&AP1a be the equilibrium point of equation (17) for ii2 = 0 and w = z - z*. Then, 

- 2 
where ii = A U ~ .  The general solution for this equation is 

w ( t )  = e"Atw (0) + &3 e " ~ ( t - 4 ~ 2  i u (o) do 

0 
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A steady-state solution will be periodic; thus w ( 1 )  = w(0 ) .  Hence, 

Finally, the general solution in the original variables x of the system is 

x (t)  = &I1 (t) + E ~ I ~  ( t )  + w ( t )  - E A - ' ~  (20) 

where w(t) is given by equctions (18) and (19). 
As ti1 and iT2 only depends on the input control signal, their integrals are well known. Then, 

in order to bound x(t), we will proceed in obtaining bounds for each component of the variable 
1 

w(t), namely the state transition matrix, (I - eEA)-l and J (c) dc. 
0 

To conclude, using the estimated bound of w(t) ,  is easy to find from 

x (t) = &iil (t)  + &2Ti2 ( t)  + W (t) 

the maximum values for the error e = x l  and for the sliding surface s = 2 2 .  

All of these calculus are particularised for d = 0.9 and the parameter values k, = 4.5, v,,f = 0.8, 
E = T = 0.1767, E =40V and y = 0.35. The later corresponds to R = 20Q, C = 40pF, L =2mH 
in physicai parameters. 

Therefore det(I - eEA) 2 0.0285, lelll 1 1.0083, lelzl I 0.0393, le2ll 1 0.7726, lea21 1 1.0083, 
I l  1 0.0043, I2 5 0.0379, lrnlll 5 0.0392, lrnl2l 10.0440, lrnzll 5 0.8640 and lrn22l 1 0.0559. 

Hence 
~ ~ ( 0 )  5 0.00036 ~ ~ ( 0 )  1 0.0011 
w l ( t )  5 0.00043 w2( t )  I 0.0016 

Output error estimation As in this case a = 0 and the first component of the input vector iil 
is zero, error dynamics is defined by the first component of w(t) and E ~ T ~ ~ ,  thus 

e ( t)  = w ( t) ,  + E ~ T ~ T  
The maximum of lTiTl = ITi& 1 holds at t = 0.5 and is 0.0225, then 

max le ( t )  I I 0.0011 

This is equivalent to a maximum error value of 0.14% in steady state when the reference reaches 
0.8 value. In Figure 8 the error behavior obtained from a numerical simulation is depicted. Notice 
that real error value is lower than the estimated. However, the bound is really close. 

Sliding surface error estimation In this case the expression is adjusted to analyze the second 
component as 

s ( t )  = &Ti; + E ~ T ~ ;  + w2 ( t )  

The maximum associated to lTi;l = k,lTif1 1 holds at t = 0.45 and is 0.4050; while the maximum of 
I E ; ~  = (1  - kSy)Iaill ,  holds at t = 0.5 and is 0.0129, then 

Notice the agreement between the maximum of the piecewise sliding surface approximation and 
our result. The leading term in the later inequality, &Ti; and is 0.0716. Simulation results are 
depicted in Figure 9. 
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tiempo 

Fig. 8: Behavior of error in sampling interval for PWMC scheme 

47.1 47.2 47.3 47.4 47.5 47.6 47.7 47.8 47.9 48 48.1 
tiempo 

Fig. 9: Behavior of sliding surface in a sampling interval for PWMC scheme 
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These results were generalised to  second order systems modelled by 

where x E R2, u E R, y E R and matrix A and vectors b and c have appropriate dimensions. We 
assume y has relative degree 2, which imply a transfer function given by: 

References 

1. S. Banerjee and G.C. Veerghese, editors. Nonlinear Phenomena in Power Electronics. IEEE Press, 
Piscataway, 2001. 

2. F. Bilalovic, 0. Music, and A. Sabanovic. Buck converter regulator operating in the sliding mode. In 
Proceedings VII International PCI, pages 331-340, 1983. 

3. M. Carpita, M. Marchesoni, M. Oberti, and L. Puguisi. Power Conditioning System Using Slide Mode 
Control. In IEEE Power Electronics Specialist Conference, Kyoto (Jp), 1988, pages 623433, 1988. 

4. E. Fossas, R. Grifi6, and D. Biel. Quasi-Sliding Control Based on Pulse width Modulation, Zero Average 
and the Lg Norm. In X. Yu and J.X. Xu, editors, Advances in Variable Structure System, Analysis, 
Integration and Applications, pages 335-344. World Scientific, Singapur, 2001. 

5. Y.A. Kuznetsov. Elements of Applied Bifurcation Theory. Springer Verlag, New York, 1988. 
6. R.P. Severns and G. Bloom. Modern DC to DC Switch-mode Power Converter Circuits. Van Nostrand 

- Reinhold, New York, 1985. 
7. H. Sira-Ramirez. Sliding Motions in Bilinear Switched Networks. IEEE Trans. Circ. and Syst.-I, 

34(8):919-933, 1987. 



Some Special Features of Stability for Mechanical Systems 
Subject to Unilateral Constraints 

L. Menini and A. Tornambi: 

Dip. Informatics, Sistemi e Produzione, UniversitA di Roma Tor Vergata, Italy 

1 Introduction 

Mechanical systems subject to non-smooth impacts arising from the presence of unilateral con- 
straints have been considered in the scientific literature starting from the very early works of 
Newton and Hertz. For an extensive review of the existing results, the interested reader is referred 
to [2]. Nowadays, the renewed interest for such systems is due not only to their technological ap- 
plications (e.g., walking, hopping and juggling robots, gear or cam based mechanisms, hammering 
tasks, manipulation problems referred to artificial satellites) but particularly to the interesting 
control problems involved. As a matter of fact, many of the available control algorithms, e.g., 
those based on classical Lyapunov stability theory, require uniqueness and continuity with respect 
to the initial conditions of the solution of the dynamic system to be controlled, which can be lost 
due to the unilateral constraints, even in the simple case when both the equations of motion and 
the constraints are linear (e.g., multiple impacts or finite accumulation points of the impact times 
can cause the loss of such properties). In the last years, a lot of research has been devoted to 
the control of hybrid dynamic systems (see, e.g., [I, 8,9]), of which mechanical systems subject 
to non-smooth impacts are a subclass. However, the Hamiltonian structure of the unconstrained 
mechanical systems and the special type of discontinuities that are generated by the impacts, 
make such a subclass easier to deal with than the whole class of hybrid dynamic systems, so that 
specific can be obtained. 

We consider finite-dimensional mechanical systems which can be described by a vector q(t) E 
Rn of generalized coordinates. If the vector q(t) is constrained to belong to an admissible region: 

A := {q E &tn : f i ( 4  l o ,  i = 1, 2, ..., m), (1) 

there can be times t, at which q(t) is not differentiable, i.e., impact times. If fi(q(t)) = 0 for 
some i E (1, 2, ..., m} and for some t E R, then some parts of the mechanical system are, at such 
a time, in contact with themselves or with the external environment. An impact can occur at a 
certain time t, E R only if, at such a time, one has fi(q(tc)) = 0 for some i E (1, 2, ..., m). If 
fi(q(t)) = 0 for more than one index i E (1, 2, ..., m) and for the same time t, then there is a 
multiple contact at time t. 

By assuming that the impacts cause no instantaneous loss of energy, the method of the Valen- 
tine variables allows one to model mechanical systems subject to inequality constraints [7] by 
means of the Hamilton principle. Such a method consists in a double transformation of the in- 
equality constraints, which are, first, transformed into equality constraints and, finally, converted 
into differential constraints for convenience. 

If T(q(t), (I(t)) = qT(t) B(q(t)) 4(t) is the kinetic energy and Ut(q(t)) = ~ ( ~ ( t ) ) - ~ ~ ( t )  E u(t) 

is the total potential energy of the mechanical system (taking into account the action of the vector 
u(t) E RP of the control generalized forces), denote by L(q(t), q(t)) := T(q(t), q(t)) - U(q(t)) the 
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Lagrangian function. Then, the equations describing the motion of the system are the following 

where Ai are the derivatives (defined only in the distributional sense) of the Lagrange multipliers 
iised to take into account the differential constraints, and Ji(q) denotes the (column) Jacobian 
vector of fi(q). In order to compute the system behaviour from given initial conditions, the equa- 
tion above is integrated in the intervals between impact times, whereas, at the impact times, the 
following Erdmann-Weierstrass corner conditions need to be satisfied: 

The Erdmann-Weierstrass corner condition (3a) shows that the kinetic energies immediately before 
and immediateiy after an impact must be equai, whereas equation (3b) reiates the jump q(t$) - 
q(t;) of the generalized velocities with the jumps Xi(t$) - X,(t;) of the Lagrange multipliers. 
In the case of single impacts, equations (3a)-(3b) can be solved uniquely by requiring that the 
mechanical system does not leave the admissible region; hence, such equations allow the post- 
impact velocities to be determined as functions of the prcimpact velocities and of the system 
configuration. Therefore, the system described by (2a)-(3) is a special case of the hybrid system (50) 
in [9]; moreover, as well known, it can also be transformed into the complementarity formulation 
used for hybrid systems in [3,8]. 

In this work, we briefly report some results on stabilization of equilibrium points and trajec- 
tories for the considered class of systems, with the goal of pointing out some relevant differences 
with the traditional stability definitions and related techniques. 

2 Stabilization of equilibrium points 

For simplicity we consider the case in which the system is "fully actuated", i.e., E = I, and all 
the state variables q(t) and q(t) are measured. Consider the following "proportional-derivative" 
control law (whose efficacy for unconstrained mechanical systems is standard): 

where Kw is a positive definite matrix of dimensions p x p (which guarantees energy dissipation), 
q~ is an equilibrium point of the system and Kp is suitably chosen in order to "dominate" the 
potential forces of the system, if needed. 

By using the total energy of the system (including a term due to the proportional action in 
the control law (4)) as Lyapunov function and making use of a suitable extension of the LaSalle's 
theorem, under mild assumptions on the solutions of the system and on the shape of the constraints, 
it can be proven (see [7] for details) that the equilibrium point of the closed-loop system q = 
q ~ ,  4 = 0, Ai = A i , ~  (where Ai,R are suitable positive constants) is asymptotically stable for 
practical purposes. Actxally, such an equilibrium point has a sort of stability property limited to 
the generalized coordinates q and to the generalized velocities q,  and the classical attractivity 
property with respect to q,  4 and to the generalized reaction forces Ji (which, on the contrary, 
are necessarily excluded from the stability requirement). In particular, it can be proven that: 
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1. for each real number E > 0, there exists a real number 6 > 0 such that for every initial condition 
q(0), 4(0-), Xi(OP), yi(0) = d-fio, i = 1, 2, ..., m, satisfying q(0) E A, with Ilq(0) - q ~  1 1  < 
6, and q(0-) E Rn, with 11q(0-) 1 1  < 6, the corresponding solution q(t), q(t), Xi(t), yi(t) = 
d m  of (2) under conditions (3) is such that Ilq(t) - q~ l l  < E and Ilq(t) 1 1  < E for a11 
times t > 0; 

2. for each real number 6 > 0, with 6 being arbitrarily large, and for any initial condition 
q(0), q(O-), &(O-), yi(0) = d-fio, i = 1, 2, ..., m, satisfying q(0) E A, with Ilq(0) - q ~  1 1  < 
6, and q(0-) E Rn, with 11q(0-) 1 1  < 6, the corresponding solution q(t), q(t), Xi(t), yi(t) = 

J-fi(s(t>> of (2) under conditions (3) is such that 

By making suitable assumptions, mainly on the potential energy of the system, and, possibly, 
on the dissipation terms due to viscous friction that we have neglected here for simplicity, the 
hypotheses that the system is fully actuated can be relaxed [7]. 

3 Asymptotic tracking of trajectories 

For any real number g, let [g] denote the largest integer smaller than or equal to g, and let [g] 
denote the closest integer to g, i. e., [g] := [gj if g - Lg] 6 112, and [g] := Lg] + 1 if g - Lg] > 112. 

We assume that a desired trajectory, qd(t) is defined with the property that the only impacts 
occur at each integer value of time t,  i.e., for each t such that t = Lt] there is an impact time, 
with jumps in the velocity variables that do not converge to zero as time increases. As an example, 
in [5], the problem is studied of tracking trajectories of a body moving in a billiard. Defining the 
tracking error a t  time t as e(t) := q(t) - qd(t), the following problem can be considered. 

Problem 1 Find a piece-wise continuous control law (where q(t) is to be understood as q(t-) at 
the impact times): 

such that the following properties hold for the closed-loop system: 

(b) for each t o  E B, there exists a neighborhood BtO of [qT(to) i$(t;)lT such that the following 

relationships hold for each [qT(to) (L'(t;)lT E et0 n d: 

lim Ile(t)ll = 0, 
t-+m (84 

lim lle((k+r)-)11 =0 ,  V T E  (0, I) ,  
k-f oo 

(8b) 

lim IIe((k +r)+)ll = 0, VT E (0, I), 
k++m ( 8 ~ )  

where the limits in equations (8b) and (8c) are taken with k being integer, whereas the limit in 
equation (8a) is taken with t being real. 
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Remark 1 Mechanical systems subject to non-smooth impacts are a special subclass of the set 
of impulsive differential systems: see equations (2.9.1) in [4]. For impulsive differential systems, it 
is already pointed out in [4] that the usual notions of stability require suitable modifications; in 
particular, the notion of quasi stability is proposed in Definition 2.9.1, at page 103 of the same 
reference. This definition relaxes the usual requirements of stability and attractivity about the 
times a t  which the differential system is subject to impulses; in the same book, criteria for quasi 
stability are also given. However, these criteria cannot be used as such to prove our requirements, 
which are stronger. As a matter of fact, the class of impulsive differential systems is larger than the 
class of mechanical systems subject to inequality constraints, since the latter class allows jumps 
only in the velocity variables, and not in the position variables, whereas the former can ailow 
jumps in all the state variables. For this reason our stability definition, which is very close to the 
definition of quasi stability, is more strict than quasi stability. Indeed, our stability requirement 
(i.e., requirement (a) of Problem 1) coincides with the requirement (SIT) of quasi stability when 
restricted to  the velocity variables and with the classical stability requirement when restricted to 
the position variables. Our attractivity requirement (i.e., requirement (b) of Problem 1) is in spirit 
very similar t o  the requirement (SST) of quasi stability when restricted to the velocity variables 
and coincides with the classical attractivity requirement when restricted to the position variables. 
0 

In the example considered in [5], due to the fact that the desired trajectory was an admissible 
trajectory for the unforced system (though not an orbitally stable one), a simple PD control law 
was proven to solve Problem 1. On the other hand, in [6], where the problem was considered 
of tracking "rolling trajectories" for a rocking block, it was shown that the performance of the 
control law can be improved by switching the control off in small intervals around the desired 
impact times. 

4 Conclusions 

In this work we have reported some results on the stabilization of equilibrium points and trajec- 
tories for mechanical systems subject to non-smooth impacts. 

In both cases, the more relevant issue is that, when dealing with such a class of systems, 
it seems appropriate to redefine the concepts of stability (of the desired equilibrium or of the 
desired trajectory) in order to obtain reasonable control problems: in the case of stability of an 
equilibrium point it seems natural to exclude from the stability requirement the contact forces 
(since they necessarily become infinite at  the impact times), whereas in the case of stability of a 
trajectory it is convenient to define the stability and the attractivity requirement with special care 
for the velocity variables, if it is desired that they are subject to non vanishing jumps at  arbitrarily 
high impact times. 
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1 Introduction 

The presence of dry friction can influence the behaviour and performance of mechanical systems 
as it can induce several phenomena, such as friction-induced limit-cycling, damping of vibrations 
and stiction. Dry friction in mechanical systems is often modelled using set-valued constitutive 
models [4], such as the set-valued Coulomb's law. Set-valued friction models have the advantage to 
properly model stiction, since the friction force is allowed to be non-zero at zero relative velocity. 
The dynamics of mechanical systems with set-valued friction laws are described by differentia! 
inclusions. We limit ourselves to set-valued friction laws which lead to Filippov-type systems [3]. 
Filippov systems, describing systems with friction, can exhibit equilibrium sets, which correspond 
to the stiction behaviour of those systems. 

The overall dynamics of mechanical systems is largely affected by the stability and attractivity 
properties of the equilibrium sets. For example, the loss of stability of the equilibrium set can, in 
certain applications, cause limit-cycling. Moreover, the stability and attractivity properties of the 
equilibrium set can also seriously affect the performance of control systems. In [1,2,8], stability and 
attractivity properties of (sets of) equilibria in differential inclusions are studied. More specifically, 
in [I, 81 the attractivity of the equilibrium set of a passive, one-degree-of-freedom friction oscillator 
with one switching boundary (i.e. one dry friction element) is discussed. Moreover, in [2,8] the 
Lyapunov stability of an equilibrium point in the equilibrium set is shown. However, most papers 
are limited to either one-degree-of-freedom systems or to systems exhibiting only one switching 
boundary. 

We will provide conditions under which the equilibrium set is attractive for multi-degree- 
of-freedom mechanical systems with an arbitrary number of Coulomb friction elements using 
Lyapunov-type stability analysis and a generalisation of LaSalle's invariance principle for non- 
smooth systems. Moreover, passive as well as non-passive systems will be considered. The non- 
passive systems that will be studied are linear mechanical systems with a non-positive definite 
damping matrix with additional dry friction elements. The non-positive-definiteness of the damp- 
ing matrix of linearised systems can be caused by fluid, aeroelastic, control and gyroscopical forces, 
which can cause instabilities. It will be demonstrated in this paper that the presence of dry friction 
in such an unstable linear system can (conditionally) ensure the local attractivity of the equilib- 
rium set of the resulting system with dry friction. Moreover, an estimate of the region of attraction 
for the equilibrium set will be given. A rigid multibody approach is used for the description of me- 
chanical systems with friction, which allows for a natural physical interpretation of the conditions 
for attractivity. 

In section 2, the equations of motion for linear mechanical systems with frictional elements 
are formulated and the equilibrium set is defined. In section 3, the attractivity properties of 
the equilibrium set are studied by means of a generalisation of SaSalle's invzriance principle. In 
section 4, an example is studied in order to illustrate the theoretical results and to investigate the 
correspondence between the estimated and actual region of attraction. Finally, a discussion of the 
obtained results and concluding remarks are given in section 5. 
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2 Modelling of Mechanical Systems with Coulomb Friction 

In this section, we will formulate the equations of motion for linear mechanical systems with 
m frictional translational joints. These translational joints restrict the motion of the system to 
a manifold determined by the bilateral holonomic constraint equations imposed by these joints 
(sliders). Coulomb's friction law is assumed to hold in the tangential direction of the manifold. 

Let us formulate the equations of motions for such systems by: 

in which q is a column of independent generalised coordinates, M, C and K represent the mass- 
matrix, damping-matrix and stiffness-matrix, respectively, and AT is a column of friction forces in 
the translational joints. These friction forces obey the following set-valued force law: 

AT E -ASign(gT), with A = diag ([PI IAN, I . . . pm IAN, I ] )  . (2) 

Herein, AN% and pi, i = 1, .  . . , m, are the normal contact force and the friction coefficient in 

translational joint i. Moreover, W: = !&& is a matrix reflecting the generalised force directions 

of the friction forces. Herein, gT is a column of relative sliding velocities in the translational 
joints. Equation (1) forms, together with a set-valued friction law (2), a differential inclusion. 
Differential inclusions of this type are called Filippov systems which obey Filippov's solution 
concept ( n ! i p p ~ ~ ' ~  coiivex method). Consequent!ji the existence of so!-&his of system (I) is 
guaranteed. Moreover, due to the fact that pi 2 0, i = 1, .  . . , m, which excludes the possibility 
of repulsive sliding modes along the switching boundaries, also uniqueness of solutions in forward 
time is guaranteed [6]. 

Due to the set-valued nature of the friction law (2), the system exhibits an equilibrium set. 
Since we assume that aT = ~ $ 4 ,  4 = 0 implies gT = 0. This means that every equilibrium 
implies sticking in all contact points and obeys the equilibrium inclusion: 

The equilibrium set is therefore given by 

and is positively invariant due to the uniqueness of the solutions in forward time. 

3 Attractivity Analysis of the Equilibrium Set 

Let us now study the attractivity properties of this equilibrium set I .  Hereto, we will use LaSalle's 
principle [ 5 ] ,  but applied to Filippov systems with uniqueness of solutions in forward time [9]. 

Let us consider the stability of linear systems with friction and positive definite matrices M, 
K and a non-positive damping matrix C.  Note that this implies that the equilibrium point of 
the linear system without friction is either stable or unstable (not asymptotically stable). In the 
following theorem we state the condition under which (part of) the equilibrium set of the system 
with friction is locally attractive. 

Theorem 1 (Local attractivity of a subset of the equilibrium set). Consider system (1) 
with friction law (2). If the matrices M, K are positive definite and the matrix C i s  not positive 
definite but symmetric, then a convex subset of the equilibrium set (4) i s  locally attractive under the 
following condition: UCi E span{WT}  for i = 1,. . . , n,, where U ,  = { U C i }  is  a matrix containing 
the n, eigencolumns corresponding to the eigenvalues of C ,  which lie i n  the closed left-half complex 
plane. 
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Proof. We consider a positive definite function 

Using friction law (2) and the fact that gT = W;G, the time-derivative of V is 

where the columns p and are defined by p = {Aii), IGTI = {IsT, I ) ,  for i = 1,. . . , m. (6) 
implies that v is a continuous single-valued function (of q and q). It holds that p 2 0 and that if 
q = 0 then gT = 0. 

We now apply a spectral decomposition of C = tJiT D,U; l, where Uc is the matrix containing 
all eigencolumns and D, is the diagonal matrix containing all eigenvalues of C, which are real. 
Moreover, we introduce coordinates Q such that q = U,Q. Consequently, v satisfies 

The matrix C has n, eigenvalues in the closed left-half complex plane; all other eigenvalues lie in 
the open right-half complex plane. Consequently, v obeys the inequality 

where we assumed that the eigenvalues (and eigencolumns) of C are ordered in such a manner 
that X i ,  i = 1,.  . . , n,, correspond to the eigenvalues of C in the closed left-half complex plane. 
Assume that 3 a > 0 such that 

Herein, ei is a unit-column with a non-zero element on the i-th position. Assuming that such an 
a can be found, (8) results in 

with /? = and ii = eTrj. Let us now investigate when 3a > 0 such that (9) is satisfied. Note, 
hereto, that if 

then 3 y T  such that eT = yTw?U,. It therefore holds that IeTrjl = lyTw?~,~l  and IeTrjl 6 
l y T 1  I w?U,rjl. Choose the smallest hi such that l y T I  < &pT, where the sign < has to be under- 
stood component-wise. Then it holds that IeTrjI < hiPTl W?U,.JII Vrj, V i E [I, . . . , n,]. Note 
that a in (9) can be taken as a = Cyl!l hi. Finally, one should realise that if and only if 

or, in other words, if the i-th column UCi of Uc satisfies Uci E span {WT} (note in this respect 

that U ,  is real and symmetric), then it holds that ei t span {UTWT}. Therefore, a sufficient 

condition for the validity of (10) can be given by 

UCi E span (WT) , V i E [1, . . . , n,] . (12) 
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Now, we apply LaSalle's Invariance Principle. Let us, hereto, define a set C by 

where ( u F ' ~ ) ~  denotes the i-th element of the column u;'~. Moreover, let us define a set Z, 
such that Zp = {(q, q) I V(q, q) 6 p) and choose the constant p such that Z, c C. Moreover, we 
define a set S c Z, by S = {(q, q) E Z, : q = 0). Furthermore, the largest invariant set in S is a 
subset E" of the equilibrium set E, where E = E int(Zp*) and 

Note that v = 0 if and only if (q, q) E S and v < 0 otherwise. Application of LaSalle's invariance 
principle concludes the proof of the local attractivity of E" under condition (12). 

At this point several remarks should be made: 

1. It should be noted that the proof of Theorem 1 provides us with a conservative estimate of 
the region of attraction A of the locally attractive equilibrium set E. The estimate B can 
be formulated in terms of the generalised displacements and velocities: B = Zp*, where p* 
satisfies (14), the set C is given by (13) and V is given by (5); In [9], an explicit expression for 
p* is provided which allows to estimate the region of attraction of the equilibrium set: 

t' pi, with p. - - 
I 

2=1 ..., P * =  ?n - 2 ~ ?  llez+i~-1112' 

where S is the square root of P ( P  = s T s )  and P is given by 

2. the proof of Theorem 1 also shows that boundedness of solutions (starting in B) is ensured 
and that the equilibrium point (q, q) = (0,O) is Lyapunov stable; 

3. it can be shown that if it holds that A ~ W ; K - ~ W ~ A  < 2p*, then E c Zp*. In that case the 
entire equilibrium set E is locally attractive. 

4. an important consequence of Theorem 1 is that when the damping-matrix C is positive def- 
inite, global attractivity of the equilibrium set is assured. Note, hereto, that in the proof of 
Theorem 1, (12) is automatically satisfied and p can be taken arbitrarily large in that case. 

4 Illustrating example 

In this section, we will illustrate the results of the previous section by means of an example 
concerning a 2DOF mass-spring-damper system, see Figure 1. The equation of motion of this 
system can be written in the form (I), with qT = [xl x2] and the generalised friction forces AT 
given by the Coulomb friction law (2). Herein the matrices M, C ,  K, WT and A are given by 

with ml , m2, kl, k2 > 0 and p1, pa 0. Moreover, the tangential velocity gT in the frictional con- 
T 

tacts is given by gT = [xl x2] . Let us first compute the spectral decomposition of the damping- 
matrix, C = ~ , ~ f l ~ ~ , ~ ,  with (for non-singular C):  
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Fig. 1: 2DOF mass-spring-damper system with Coulomb friction. 

The equilibrium set I, as defined by (4), is given by 

Let us now consider two different cases for the damping parameters cl and c2: Firstly, we consider 
the case that c l  > 0 and c2 > -c1/2. Note that C > 0 if and only if el > 0 and c2 > -c1/2. 
Consequently, the global attractivity of the equilibrium set E is assured. It should be noted that 
this is also the case when one or both of the friction coefficients p l  and p2 vanish. 

Secondly, we consider the case that c l  > 0 and c2 < -c1/2. Clearly, the damping matrix is 
not positive definite in this case. As a consequence, the equilibrium point of the system without 
friction is unstable. Still the equilibrium set of the system with friction can be locally attractive. 
Therefore, Theorem 1 can be used to investigate the attractivity properties of (a subset of) the 
equilibrium set. For the friction situation depicted in Figure 1, condition (12) is satisfied if p1 > 0 
and p2 > 0. Namely, WT spans the two-dimensional space and, consequently, the eigencolumn of 

T 
the damping matrix corresponding to the unstable eigenvalue cl + 2c2, namely [-1 11 , lies in the 
space spanned by the columns of WT. 

Since the attractivity is only local, it is desirable to provide an estimate B of the region 
of attraction A of (a subset of) the equilibrium set Here, we present a comparison between the 
actual region of attraction (obtained by numerical simulation) and the estimate B for the following 
parameter set: ml  = mz = 1 kg, k1 = k2 = 1 N/m, cl = 0.5 Ns/m, c2 = -0.375Ns/m, p1 = p2 = 

0.1 and g = 10m/s2. The numerical simulations are performed using an event-driven integration 
method as described in [7]. The event-driven integration method is a hybrid integration technique 
that uses a standard ODE solver for the integration of smooth phases of the system dynamics 
and a LCP (Linear Complementarity Problem) formulation to determine the next hybrid mode 
at the switching boundaries. For these parameter settings, E c int(Zp*) and the local attractivity 
of the entire equilibrium set E is ensured. In Figure 2, we show a cross-section of A with the 
plane k1 = 0 and k2 = 0, denoted by A, which was obtained numerically. Hereto, a grid of 
initial conditions in the plane x1 = g2 = 0 was defined, for which the solutions were obtained by 
numerically integrating the system over a given time span T. Subsequently, a check was performed 
to inspect whether the state of the system at time T was in the equilibrium set I. Initial conditions 
corresponding to attractive solutions are depicted with a light colour (set A) and initial conditions 
corresponding to  non-attractive solutions are depicted with a dark grey colour (set D). Moreover, 
t? and 8 are also shown in the figure, where theA indicates that we are referring to cross-sections 
of the sets. It should be noted that c l?. As expected the set B is a conservative estimate for 
the region of attraction A. In [9], more examples are discussed in which the crucial condition for 
local attractivity (12) is not satisfied. 
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Fig. 2: Cross-section of the region of attraction A with the plane defined by &I = 0 and x z  = 0. 

5 Conclusions 

Conditions for the (local) attractivity of (subsets of) equilibrium sets of mechanical systems with 
friction are derived. The systems are allowed to have multiple degrees-of-freedom and multiple 
switching boundaries (friction elements). It  is shown that the equilibrium set E of a linear me- 
chanical system, which without friction exhibits a stable equilibrium point E, will always be 
attractive when Coulomb friction elements are added. Moreover, it has been shown that even if 
the system without friction has an unstable equilibrium point E, then (a subset of) the equilib- 
rium set E of the system with friction can under certain conditions be locally attractive and the 
equilibrium point E C E is stable. The crucial condition can be interpreted as follows: the space 
spanned by the eigendirections of the damping matrix, related to negative eigenvalues, lies in the 
space spanned by the generalised force directions of the dry friction elements. 

Lyapunov stability of the equilibrium set of non-passive systems is not addressed, however, the 
combination of the attractivity property of the equilibrium set and the boundedness of solutions 
within B can be a valuable characteristic when the equilibrium set is a desired steady state of the 
system. Moreover, an estimate of the region of attraction of the equilibrium set is provided. 
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