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Summary

This paper presents an inverse method to determine parameters in constitutive equations. The
method is especially suitable to study the mechanical behavior of inhomogeneous materials.
The method is based on: numerical analysis, strain distribution measurement and system
identification. By means of simulations it will be shown that for a solid with a varying fiber
direction it is possible to estimate stiffness parameters a well as the local fiber directions from
one single test.

Introduction

Material properties in plant and animal tissues can vary with the anatomical site. Also
technical materials may have inhomogeneous properties, ¢.g. reinforced composites with
short fiber like particles, processed by a molding operation. These composites may be
described in terms of effective mechanical behavior, i.e. composites are considered on a scale,
several times the dimensions of the constituent materials. On this scale, a certain smoothness
of the material properties is assumed. In the present paper the concept of inhomogeneity refers
to a larger scale and may, for instance, be caused by different orientations of the alignment of
the fibers in the material. Ideally, the inhomogeneity of the material meets the mechanical
demands of the object.

Mathematical modeling of inhomogeneous materials, ¢.g. by means of a finite element model,
does not lead to fundamental problems. Experimental determination of inhomogencous
properties, however, is an arduous task. A possibility to measure some of the inhomogeneous
properties by means of common mechanical tests, such as uniaxial strain tests and biaxial tests,
is to extract samples at different positions in the material. A disadvantage of this approach is
the disruption of the structure by cutting fibers in the manufacturing of the samples.
Particularly for inhomogeneous materials, an inverse approach offers better possibilities than
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the common traditdonal testing. Despite the increasing interest for inverse methods in the
realm of continuum mechanics, the identification of inhomogeneous material behavior has
hardly attracted any attention. An exception is an example presented by Nappit!! of a
geotechnical problem.

The approach used in this paper is based on the combination of three elements:1?! (i) the use of
digital image analysis for the measurement of non-homogeneous strain distributions on multi-
axially loaded objects with arbitrary geometry , (ii) finite element medeling and (iif)
application of systems identification. The third element comprises the comparison between
experimental data and the outcomes of the finite element model, followed by the
determination of the material parameters.

Recent publications describe the testing of this identification approach in practice, by means of
experiments on an orthoopic elastic membrane.2! Now the applicability of the method will
be demonstraied by means of numerical simulations for inhomogeneous materials. These are
carried out by computing a displacement distribution with a given constitutive model and
known parameters. Subsequently, these displacements are used as fictitious *measured data’
for parameter estimation. In this way the influence of observation noise and model errors can
be determined.

Identification method

In this section an outline of the identification method used is described. The reader can find
further details in Hendriks™ and Norton.! The method is based on the sequential minimum
variance approach. The observational data are assumed to consist of a set of columns with
data {y;}, k=1,...,N. The observational data of the 'experiments’ described in this paper are
displacement components of an inhomogeneous displacement field and are collected in a
single column yy. The displacements are considered to be a nonlinéar function of a set of
material parameters:

Yi=mhx)+vy 4y

where x 15 a column with unknown material parameters, &1 is a finite element model for the
measured displacements, and v; is a2 column of observation errors.
The basic estimation problem is the use of the observed displacements y; to estimate
parameter column x. The estimator can be specified from the model (Eq. 1), an uncertainty
model for v, and a priori knowledge of x. The optimal parameter column minimizes the
following quadratic expression:

$1=01 -k N TR 1 -h1(x) + -7 (Pe+01)T Go-x) @

where Xg is an initial guess for the parameter column x. In weighted least squares estimation
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the matrices R and Py are chosen on the basis of engineering judgement. Matrix Q; is a
nonnegative symmetric matrix. It is obvious that the introduction of @ makes it possible to
put less weight to the a priori estimate X (and more weight to the displacements y1). The
least squares estimaie does not make any use of the statistics of the observation errors. In
mary applications, it is not uncommon for the mean and variance of the observaiion error to
be known. Minimum variance estimates utilize this extra information, which results in
specific choices for Ry and Pg. In minimum variance estimation R | represents the covariance
matrix of the observation error vy. Matrix Py represents the covariance matrix of the
estimation error in X. Generally: the larger P, the smaller the infuence of Zg.

Solving the nonlinear inverse problem, deﬁned by Egs. (1) and (2), leads to an iterative
scheme, which results in an estimation ¥; for x and in a covariance matrix of the estimation

error Pq:
FO _ 30 | g6 ) 3)
K& = (PO 1 0y HET (R 4 gD (p® 4 gy g@IT yL @
) a —K(”DH(HD) PD L0y (I _K(i+1)H(i+1))T + K(i+1)kK(i+1)T )]

where the superscripts refer to the iteration number and where the subscripts are temporarily
dropped. In each iteration # + 1 finite element calculations are executed, where n is the
number of parameters. The » calculations are carried out to determine a matrix H{
numerically, as a linearization of k; with respect to the most recent estimation ﬁi—l)_

The sequential property of the estimator is clear when a column y, with new observational
data would become available. This can be data from another load case or from another point in
time. These data can be used together with the initial conditions X and Py resulting in an
improved estimation X, and P5. In the examples of this paper it will be shown that the data of
a single load case contained in y, is sufficient for the characterization of the material behavior:
The above estimator is implemented as an extra module in the finite element code DIANAF)

Two approaches

Ideally, the material properties of an inhomogeneous material are determined with respect to
each point of the material. In practice, however, tegions surrounding a point are considered.
Approaches for the identification of inhomogeneous materials can be distinguished by the size
of these regions and by the inhomogeneity assumed in each region. In the example, described
in the next section, two approaches are distinguished.

In the first approach a model of the entire loaded object is confronted with the experimental’
data. The inhomogeneous properties are modeled with help of a continuous function over the
finite element model. This function will be identified together with the stiffness parameters.
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The influence of the model errors, depends on the suitability of this function to describe the
true inhomogeneity.

In the second approach only a part of the loaded object is modeled and confronted with the
'measured’ displacements of that region. The propertics of this region are assumed to be
homogeneous, which leads to model errors, depending on the size of the region and the level
of inhomogeneity. The second approach has a very important conseqﬁence from finite
element viewpoint. The boundaries of the region are no longer the actual boundaries of the
loaded object. Practically, now only prescribed displacements can be used as boundary
conditions and no forces. It is obvious that, with such a model, no stiffness paramcfers can be
determined. The next section, however, will show that it is still possible to estimate the ratios
between the different stiffness parameters.

Example: curvilinear orthotropy
Curvilinear orthotropy is the term used to describe a material, in which the orientation of the
orthotropic symmetry coordinate system is different from point to point.[s}

3
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Fig. 1 Sample shape and orientation of local planes of symmetry.

Figure 1 shows a flat membrane (dimensions: 1x 3 x0.02) with curvilinear orthotropic
behavior. An orthotropic material has three mutually perpendicular planes of symmetry with
Tespect to each point of the material. In the present example, it is assumed that one plane of
symmetry coincides with the plane of the sample. The normal of one of the other planes of
symmetry is indicated in the figure with a short line. These lines may be interpreted as the
orientation of fiber like particles in a reinforced composite. The axes shown in figure 1 are
tangent to concentric circles, where (§, =3.0, §, =3.0) denotes the center. This type of
circumferential orthotropy is typical for wood, where one axis is tangent 1o the growth rings.
In each point of the sample the stiffness properties with respect to the local symmetry axes are
the same., The material parameters are chosen arbitrarily: E; =10, E5 =02, vi3 =03,
G12=0.2, where E is the stiffness in material 1-direction as indicated in figure 1, £, is the
stiffness in perpendicular direction and vyp and G; denote the Poisson’s ratio and shear
modulus respectively.
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Fig.2 Finite element model of the loaded sample. F,

Figute 2 shows the finite element model of the sample, used for the artificial generation of the
displacement data. The model consists of 4-noded plane siress elements. The membrane is
symmetrically loaded with two equat forces working in the plane of the sample. It will be clear
that the deformation is not symmetrical, which is caused by the varying fiber direction,

Fig. 3 Measured displacements for approach 1.

Two sets of measured displacements will be distinguished. The first set consists of the
displacement components of 128 material points, as shown in figure 3. The initial positions of
these points are a realization of a 2-dimensional uniform random distribution. The second set

of measured displacements is demonstrated in figure 4.

J
p

Fig. 4 Measured displacements for approach 2.
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Approach 1 |
For the fiber direction two models will be distinguished. Model 1 is given by: !

& —c
—arcran( cl ) forg, #c2
)= (6

In this equation o denotes the positive rotation of the material i-direction from the model
&,-axis. This rotation is a function of the position coordinates &, and &,. The parameters ¢,
and ¢4 in Eq. (6) can be interpreted as the coordinates of the centroid of the concentric circles.
Model 2 is given by:

a@)=bg +b15; + 528, M

This bilinear function with unknown parameters bg, b1 and b4 is used to investigate the
influence of model errors. Clearly this function cannot pinpoint the actual inhomogeneity, as
shown in figure 1, with any set of parameters b;.

Para- | Exact | Initial Estimations

meter | value | guess | nopgise | 6=0.001 | =001

E, 1.000 | 0666 | 1.000 0.993 0.931
E, |0200] 0133 | 0200 0.200 0.198
viz | 0300 | 0200 | 0300 0.301 0.305
Gz | 0200 | 0133 | 0200 0.201 0211
¢1 3000 | 2000 | 2.998 3,004 3.055
¢z 3.000 | 2000 [ 2999 3,010 3.106

Table 1: Estimation results after 10 iterations with the tangential function (6).

Table 1 shows the estimation results with Eq. (6) Here 6 parameters are estimated using the
experimental data shown in figure 3. The fourth column of the table shows the estimates of
these parameters without observation errors. The fifth and sixth column show the estimation
results when the displacement data are disturbed with a zero mean normal distribution. The
average displacement of the sample is 0.1 It can be observed that identification approach
works well, even with a noise signal rate of 10% (¢ = 0.01) Similar results are presented in
table 2, but now 7 parameters are estimated using Eq. (7) The table shows that in this case the
cbvious model errors scarcely effect the estimations for E; E, vy and Gpp. Some
discussion on the exact values is worthwhile in this case The model errors make the use of the
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Para- | Exact | Initial Estimations

meter | value | guess | Njpoise | 0=0001 | =001
Eq 1.000 | 0.666 1.031 1.022 0.944
E, 0200 | 0.133 0.199 0.199 0.200
iz 0.300 | 0.200 0.294 0.296 0.304
Gia 0.200 | 0.133 0.193 0.194 0.209
by does | -0.784 -0.755 -0.753 -0.735
by not 0.262 0.200 0.199 0.193
ba apply | -0.262 -0.274 -0.273 -0.263

Tzble 2: Estimation results afteér 10 iterations with the bilinear function (7).

term “"exact” misleading. The exact values of column 2 are no longer necessarily the optimal
parameters, in the sense that they minimize expression (2). Exact values for the parameters &;
can not be given. Nevertheless, a comparison of the fiber directions calculated with Eq. (6)
and Eq. (7) show hardly any differencel®, This is visualized in figure 5 where the bilinear
inhomogeneity is drawn based on the estimated b; parameters, whereas figure 1 shows the
actual circumferential orthotropy. Evidently, in this case, the estimation results are neither
very sensitive to this type of model errors, nor are they sensitive for the combination of model
errors and random observation errors,

L LA LA o ot P o P o et st i e e ]
LS LSS o st o o it ot i i it gt it i e e ]

LS LS o e i o i e et e e ]
L L LT A i o B B i e et e e ]
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LS LIPS s o o o o s o ]
LS LS L LS AL S S A A g e et ]
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Fig. 5 Estimated inhomogeneity using a bilinear function.

Approach 2

Now the finite element model is based on the measured displacements, shown in figure 4. The
figure shows that the material points are positioned in a square. For this square a finite element
model is derived (figure 6). The prescribed displacements of the four edges are derived from
the displacements of the outer material points. The displacements of the inner material points
are considered as measured data. It is assumed that the material properties, the material
orientation included, are homogeneous over the sample part.
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Fig. 6 Finite element model of a square part of the sample (left panel); Kinematic boundary
conditions and measured data (right panel).

It is obvious that stiffness parameters can not be identified with the model presented here. In
the present simulation we will investigate whether or not the combination of model and
measured data does contain information about the ratios between the stiffness parameters. In
the present example the following dimensionless parameters will be identified:

r_ L2

I=ELy,, G cotan (o)) (8)
El’ 12 E]_ 3

where o denotes the positive rotation of the material axes system.

Para- Exact Initial Estimations
meter vatue EUeSS | Nonoise | 0=0.001
E;
- 0.200 0.133 0.216 0221
1
Viz 0.300 0.200 0.322 0.330
G
o 0.200 0.133 0.202 0.220
1
cotan(c) | [-0.444,-0.052] | -0.100 -0.093 -0.096

Table 3: Estimation results afier 10 iterations using a homogeneous model for a part of the
sample.

Table 3 shows the estimation results for the dimensionless parameters, The true values are
given in the second column. For the cotangential value of the rotation of the material axes, a
range is given representing the true occurring values. In the case of perfect observations, it
can be observed that there is a good agreement between the estimation results and the true
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parameters, although the comparison is less favorable as in the first approach. However, also
here a discussion on the specification of "true" or "exact" values is in place. In the model it is
assumed that the sample part has homogeneous properties. This model error makes the term
"exact” misleading. The biased parameters of the fourth column may give better results in the
homogeneous model than the true parameters'?).

Returning to the results of table 3, it can be observed that the results for the cases with
disturbed data is less favorable. If the standard deviation of the noise is 1% of the average
displacement of the sample (¢ =0.001), the estimation results differ slightly from the results
in the perfeci observation case. However, if the standard deviation increases to 10% the
identification fails after two itcrations, since the thermodynamical constraints on the stiffness
parameters are violated. Apparently, this approach is more sensitive to measuring errors than
the first approach. A possible explanation is that in the second approach measurement errors
on the displacemenis enter as model errors via the specification of the kinematic boundary

conditions. Hence the originally random observation errors cause systematic errors in the
model.

Concluding remarks

For the identification of inhomogeneous materials a mixed numerical-experimental approach

is favorable. Via two approaches, but using the same identification idea, it is shown that a

nondestructive characterization is possible.

The advantages of the first approach, where the entire sample is identified, are:

« The procedure leads to a complete quantification of the entire sample.

» The identification is not sensitive to observation errors.

The advantages of the second approach are:

+ The a priori specification of a function representing the inhomogeneity can be omitted.

» The finite element models are smaller.

= In general the models contain less parameters.

» The method meets to practical problems of determining the exact geometry and boundary
conditions.

Noie that the two approaches are in fact iwo extreme cases of a whole range of possible

approaches The boundary conditions may be partly kinematic and partly dynamic. In

addition, also in the second approach an inhomogeneous model for the sample part can be

considered. Experimental investigations have to learn whether these kind of model errors will

disturb the identification process.




310

Acknowledgement

The results have been obtained in a research project under supervision of J.D. Janssen and I.J,
Kok of the Eindhoven University of Technology. Their advice is greatfully acknowledged.
The finite element calculations and the parameter estimation have been carried out using the
DIANA finite element package of TNO Building and Construction Research.

References
1. Nappi, A.: Structural identification of nonlinear systems subjected to quasistatic loading, in
"Application of system identification in engineérihg", ed. H.G. Natke, Springer Verlag,
Berlin, New York and Tokyo, (1988).

2 Hendriks, M.AN.: Identification of the mechanical behavior of solid materialg,
Ph.D.-thesis, Eindhoven university of technology, (1991).

3. Hendriks, M.A.N.; Oomens, C.W.J.; Jans, H.W.J,; Janssen, I.D.; Kok, J.J.: A numerical
expetimental approach for the mechanical characterization of composites, in "proceedings
of the 9™ international conference on experimental mechanics”, ed. V. Askegaard, Aaby
Tryk, Copenhagen, (1990) 552-561.

4. Norton, J.P.: An introduction to identification, Academic Press, New York and London,
(1986).

5.de Borst, R.; Roddeman, D.G.: Computational mechanics: recent developments in DIANA,
Heron, 36 , special issue no. 2, (1991).

6. Cowin, 8.C,; Mehrabadi, MM, Identification of the elastic symmetry of bone and other
materials, /. Biomechanics, 22 , (1989) 503-515.




