EINDHOVEN
e UNIVERSITY OF
TECHNOLOGY

Determination of quality characteristics of software products :
concepts and case study experiences

Citation for published version (APA):

Eisinga, P. J., Trienekens, J. J. M., & Zwan, van der, M. (1995). Determination of quality characteristics of
software products : concepts and case study experiences. In First world congress for software quality, June 20-
22, 1995, Fairmont Hotel, San Francisco, CA

Document status and date:
Published: 01/01/1995

Document Version:
Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

* A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOl to the publisher's website.

* The final author version and the galley proof are versions of the publication after peer review.

* The final published version features the final layout of the paper including the volume, issue and page
numbers.

Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

» Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
* You may not further distribute the material or use it for any profit-making activity or commercial gain
* You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/6b9eba7c-e88e-498e-8234-863e82fdbf2e

DETERMINATION OF QUALITY CHARACTERISTICS OF SOFTWARE PRODUCTS;
CONCEPTS AND CASE STUDY EXPERIENCES

Peter J. Eisinga,
IT Consultant
KEMA Arnhem
The Netherlands

Jos J.M. Trienekens,

Manager of IT projects, Senior Researcher
Frits Philips Institute for Quality Management
Eindhoven University of Technology
The Netherlands

Mark van der Zwan,
Graduate student
Industrial Engineering and Management Science
Eindhoven University of Technology
The Netherlands

Arnhem/Eindhoven, April 1995

Abstract

Quality of software products has been a rather intangible concept for both customers
and developers over the years. In spite of interesting results in research and practice,
software developers are hardly able to specify the quality characteristics of their
software products. As a consequence, customers do not know what realistic
requirements and expectations are with respect to software quality.

This paper aims at the determination of software quality characteristics from the
point of view of both customers and developers. After an introduction of concepts of
software product quality this paper will focus on a current research project of
KEMA, a Dutch certification body, and the Eindhoven University of Technology in
the Netherlands. The ultimate goal of this project is to arrive at a methodology to
determine, i.€. to assess and to evaluate, the quality characteristics of software
products. A well-defined basis has to provide independent evaluators with methods
and tools to objectively assess what developers (can) promise and what customers
can expect with respect to software quality.

Introduction

Many specialists in the software industry, both researchers and practitioners, have
depicted the 1990s as the quality era?. Customers of software products have pushed
quality to the forefront of their wishes. They can no longer be satisfied with software
products that ‘only’ meet the defined functional specifications, that are delivered in
time and at reasonable costs. Customers of software products ask for clear, objective
and quantifiable software quality.

The software industry has been trying to fill these needs. Three approaches of
software quality can currently be distinguished. We call them the process approach,
the resource approach, and the product approach, respectively.

Exami)les of process orientation are 1ISO9000-3'2, the SEI’s Capability Maturity
Model '°, and the SPICE project (Software Process Improvement and Capability
Determination) 8. Total Quality Management is more or less an umbrella concept for
all kinds of quality improvement activities . TQM aims in particular at raising
awareness, management commitment and teamwork. It is often called an integrated
approach. Because of its strong orientation on the human factor, we would like to
consider it as a (human) resource approach.

Both the process and the integrated approach can be considered as indirect
approaches to achieve quality improvement of software products. They focus on the
definition, the structuring and the evaluation of software processes, respectively, and
on increasing the quality awareness of software engineers, the organization of team-
work, and the creation of management commitment. Customers of software products
are hardly involved in either approach. In spite of interesting results in these
approaches there are still questions such as:

- how can quality be made explicit and concrete by developers?

-1-

- how can customers be convinced of the quality characteristics of software products
(why should they trust suppliers)?
- who can decide if software quality promises and expectations are realistic?

To answer these questions, a product approach of software quality is needed. A
product approach reflects the idea that software quality can be gained on the one
hand by identification and specification of quality characteristics of software products
and on the other hand by assessment and evaluation of quality characteristics.
Examples of quality characteristics of software products are (in accordance with
ISO 9126) reliability, usability, efficiency, maintainability. Examples of research
projects in this area are on the Dutch national level the QUINT project® and on the
international European level the development of ISO 9126-standards ? and the
current ESPRIT project SQUID (P8436). In these projects quality characteristics are
elaborated as external and internal product attributes, measures and metrics are
defined etc. Although a certain level of objectivity and quantification is reached,
neither the QUINT project nor the SQUID project addresses in a structured way the
identification and determination of the needs of the customer or the requirements of
the business situations in which a software product is or will be used.
For several years the determination of software quality characteristics has been an
important research theme at the Eindhoven University of Technology (TUE) in the
Netherlands. Concepts for determination were developed and validated in practice,
see e.g. > 2. Some of the main insights resulting from this research are:
- quality needs of customers are related to business system characteristics;
- software quality characteristics can be identified by analyzing business situations
and their requirements;
- software quality characteristics have to be assessed and evaluated by independent
software product evaluators.

These insights are currently used in a research project of KEMA, a Dutch
certification body. This research project is called the Software Product Quality (SPQ)
project. The key objective is a methodology for objective and independent
assessment and evaluation of software products. Before 1998 KEMA wants to
provide a new service to the IT-market: a fully developed assessment laboratory that
applies scientifically founded methods and tools and that is able to evaluate and
certificate software products in accordance with international standards (such as

ISO 9126). Through evaluation of software products quality has to become visible
and tangible. The ultimate goal of KEMA is to improve the quality of software
products distributed to the market and thus the improvement of an aspect of the
quality of our working life and life in general.

This paper introduces on the one hand software quality concepts and a model for
software quality assessment and evaluation and on the other hand reports the
experiences that were recently gained in two realistic case studies of KEMA.

The structure of the paper is as follows. Section 1 introduces the main concepts of
software product quality determination. Section 2 presents and discusses the
application of the concepts in two case studies. Section 3 discusses the progress that
has been made and points out further work to be done.

-2 -

1.1

Concepts for software product quality

In order to make the case studies and their results easier to read, the most important
concepts and terms will be introduced and explained in this section. We will make a
distinction between concepts of software product quality and concepts for
determining software product quality.

Software product quality concepts

This section respectively presents the concept of the quality characteristic, the
concept of the software quality profile and the concept of the software quality level.

1.1.1 Software quality characteristics

In 1977 McCall et al. 7 proposed the idea of breaking down the concept of quality
into a number of quality factors. This idea has been followed by many other authors
who have tried to capture software product quality in a collection of characteristics
and their depending sub-characteristics which in turn are connected to metrics. By
doing so, every author imposes his or her own hierarchically layered model of
software product quality. In these varying models some elementary characteristics
keep on reappearing, although their place in the hierarchy can differ.

Some writers argue that there is no justification for these implied models because
there are no universal concepts and corresponding base units to build a model of
software quality upon '* **. But despite this critique on the scientific appropriateness
of quality characteristics, the practical applicability is evident; in the growing
number of publications on software product quality there appears to be consensus on
the quality characteristics to be used.

The International Organization for Standardization (ISO) and the International

Electrotechnical Commission (IEC) have defined a set of quality characteristics. This

set reflects a first step towards consensus in the IT industry and thereby addresses

the global notion of software quality. The ISO 9126 standard defines six quality

characteristics and proposes, in an appendix to the standard, the subdivision of each

quality characteristic in a number of sub-characteristics. The characteristics and

their proposed sub-characteristics are, respectively:

- functionality, which consists of five sub-characteristics: suitability, accuracy,
interoperability, compliance and security;

- reliability, which can be defined further into the sub-characteristics maturity, fault
tolerance and recoverability;

- usability, which can be divided into the sub-characteristics understandability,
learnability and operability;

- efficiency, which can be divided into time behaviour and resource behaviour;

- maintainability, which consists of four sub-characteristics: analysability,
changeability, stability and testability;

- portability, which also consists of four sub-characteristics: adaptability,
installability, conformance and replaceability.)

-3 -

In working group six (WG6) of ISO/JTC1/SC7 ongoing research takes place to
determine metrics for each of the (sub-)characteristics 4.

However, a question that has hardly been addressed until now is how the needs for
software quality of customers can be translated into a ‘preferred’ set of well
specified software quality characteristics. Of course it will be clear that customers
should try to specify, or should be supported in specifying, their needs and wishes in
terms of software quality characteristics. And it will also be clear that developers
should try to characterize the quality of their products in terms that are clear to
customers. However, until now no systematic approach has been available that
supports or guides these activities. The value of a well structured and scientifically
based evaluation of software products now becomes clear: to give a customer
confidence in the quality of a software product and to confirm the efforts of a
developer in implementing quality in a software product.

1.1.2 Quality profiles and quality levels

The confidence that a customer, i.e. purchaser, user, operator etc., may place in a
product grows with the thoroughness of the evaluation of the software product.
Increasing effort in evaluation has as a consequence increasing time and costs.
However, it will be clear that not all (sub-)characteristics need to be evaluated in
every software product with the same amount of thoroughness. For example the
usability of a word processor needs to be evaluated more thoroughly than its
reliability, but of course this does not mean that the reliability of a word processor is
of no interest at all. And the reliability of the software in a nuclear power plant is of
more importance than its usability, and of course this does not mean that the
usability is of no interest. These rather intuitive assumptions were studied in several
international research projects, such as the ESPRIT project SCOPE (Software
CertificatiOn Programme in Europe) !. SCOPE has developed guidelines for the
determination of the amount of thoroughness of evaluation that is needed for a
certain software product in a certain business environment. Furthermore, SCOPE has
introduced four levels of evaluation, with an increasing amount of thoroughness
(from level D to level A). The levels are established by looking for instance at the
economical risks of a failure of the product or the type of interface used in the
software product.

The SCOPE guidelines are rough directions for evaluators to determine a sofiware
quality profile. In a quality profile the relevant quality (sub-)characteristics and their
accessory levels of evaluation are established. A quality profile reflects the notion of
quality for a certain software product and makes quality tangible for both developers
and customers.

The paragraphs above point out that there are some concepts for software product
quality. But until now there have been no systematic approaches, methods and tools
for software evaluators to determine the (required) quality characteristics of a
software product. The next section focuses on the development of ‘determination
concepts’ for software product quality.

-4 -

1.2

Concepts for determining software product quality

In this section we make a distinction between an upper and a lower phase for the
determination of software product quality. The first phase is the phase of the
identification and specification of software quality characteristics that are required by
a customer. In the lower phase the developer takes the software quality specifications
as a starting point to realize quality, or to ‘build quality’ into a software product.
Because this lower phase is the most elaborate one, both in theory and in practice,
we will briefly describe it first.

1.2.1 Realization of software quality

The realization process of software quality has often been described as a software
product quality loop, see e.g.”. In this loop software quality specifications are linked
to engineering measures. The execution of these measures leads to quality attributes
of a software product that can be compared with the original quality specifications.
The comparison closes the loop.

The software quality loop focuses on the implementation of software quality
specifications, i.e. the specified (sub-)characteristics. The loop does not address the
identification of software quality characteristics from the needs and the wishes of a
business environment. In contrast to the strong emphasis on the specification of
functional requirements in the upper phase of the life-cycle of software products,
hardly any attention is given, both in literature and in practice, to the specification of
software quality characteristics.

1.2.2 Identification and specification of software quality characteristics

Recently in research projects of the Eindhoven University of Technology (TUE) an

approach was developed for the identification and specification of software quality
characteristics 2. The proposed TUE approach relates wishes and needs of business
situations to software quality (sub-)characteristics. The approach is based on the so-
called' Process-Control-Information (PCI) paradigm®. The PCI paradigm states that
the requirements of an information system or software product (i.e. the need for
information) can be determined by an analysis of the business processes (i.e. the
system to be controlled) and the business control mechanisms (i.e. the controlling
system).

The TUE approach proposes that software developer and customer should
communicate about requirements and needs with respect to software quality.
Communication should be focused on the characteristics of a business situation and
subsequently on the type of software product or information system that is needed.
Whereas the software quality loop only focused on realization of quality
characteristics, and the European SCOPE project mainly took a ‘quick’ look at
business situation aspects, the TUE approach puts analysis of the business situation
in a central place. Based on an analysis of the essentials of a business situation, the
relevant software quality characteristics can be identified and specified.

-5-

1.3 From business situation characteristics to software quality profiles

In accordance with literature, e.g. ¢, we use a distinction between three types of
business situation characteristics: the business system characteristics, the software
product characteristics, and the customer characteristics.

1.3.1 The business system characteristics

The previously mentioned PCI paradigm has been used to investigate the
characteristics of business systems. The study of system science has given us several
useful concepts which have been translated into business system characteristics and
these characteristics are associated with relevant software quality characteristics as
described in two examples. The business system characteristics are:

Number of system variables and their interdependence.
The controllability and predictability of system variables.
The sensitiveness and stability of the controlied system.
The reaction pattern of the controlled system.

A first example of a relationship between these characteristics and software quality
characteristics; if the sensitiveness of a controlled system grows and the stability of
that system decreases, the need for efficiency of software products, i.e. time
behaviour, increases. Another example: the more precarious the reaction pattern of
the controlled system is, the more need there is for operability and understandability
of a software product, and the more important the quality characteristic usability of
the software product becomes.

It must be clear that the above-mentioned relationships are mainly intuitive and
hypothetical. They have to be elaborated and validated in practice. This is also the
case in the following relationships between the three dimensions of a software
product and relevant software quality characteristics.

1.3.2 The software product characteristics

Software products can be characterized for three dimensions, the dimension of the

scope of a product, the dimension of the life-cycle phases a developer is responsible

for, and the dimension of the uniqueness of a product, respectively*.

- The scope of a product: is it just the source code or are user’s guides or even the
organizational fit also under consideration?

- The phases of the life-cycle: will the developer be held responsible for his or her
work before delivery or throughout the lifetime of a product?

- The uniqueness: is a product a standard application or a one-of-a-kind custom-
made software product.

An example of the relationships between software product dimensions and quality
characteristics: a very specific custom-made product will concentrate on the usability
whereas a standard product will be focused especially on software quality |
characteristics such as maintainability and portability. Another example; if the

-6-

developer is only responsible for the life-cycle phase before delivery, then he or she
will concentrate on the functionality and reliability of the software product. If the
developer is responsible for the entire life-cycle, then the developer will put great
effort into the maintainability and portability of the software product, as well as in
the quality characteristics suitability (sub-characteristic of functionality), and
usability.

A third type of business situation characteristics is needed for identification and
determination of the relevant software quality characteristics. This is the human
aspect of the business situation: the customer of the software product.

1.3.3 The customer characteristics

A customer is directly or indirectly involved in the purchase, the use or the
management of the software product. The following classes of customers can be
distinguished:

- Purchasers: the persons or organizations that purchase a system, product, or
service from a supplier.

- Users: four types of users can be distinguished: a) those who mainly feed the
software product with data (input-orientated), b) those who mainly use the
provided information (output-orientated), c) the management of the users and d)
other users (this type depends on the software product considered).

- Operators: mainly two types of operators can be distinguished: a) those who are
responsible for the operation of the software product and b) those who are
responsible for the adaptation of the software product to changing wishes of the
users (apdatation that can be conducted by the operator without applying others
means than provided by the software product).

Those customer types can be refined by looking at three dimensions: the experience
the customers have with a similar software product or with software products in
general, the educational background of the customers and the number of customers.
An example of the customer characteristics and their relationships with software
quality characteristics: a software product intended for many unexperienced, input-
orientated users with a low level of education will need to be highly understandable
and learnable (both are sub-characteristics of the quality characteristic usability). A
product intended for a few experienced operators with a high level of education, will
need to be maintainable and portable.

1.3.4 The theoretical model

In this section a theoretical model has been proposed for the determination of quality
characteristics of software products. With this model we are trying to make the
process of determining the quality of a software product less expert-based. The main
objective is to create a repeatable process in which the stated needs of the customer
are translated into the various quality characteristics and their accessory evaluation
levels. The model is visualized in figure 1. The three relevant parties are involved;

-7 -

the product itself, people who will use the product and the business system where the

product has to fit in.

SO quali
characqterisr%::s
software

product ~

]

business
system - process

g
customer

transiation uali
- grofi?g

Figure 1 The proposed model.

In the next section the model is applied to two case studies to gain insight into the
practical applicability of the model and to be able to further develop this first idea.

2 Practical applications

3

In this section the theoretical model that was developed in the preceding section will
be applied in two pilot projects (or case studies). Those studies were started in order
to obtain more field experience in the determination of quality characteristics. The
names of the products described and the clients of KEMA involved are fictitious.

2.1 Pilot project 1: The DCD case

PROD is the producer of the product X. PROD sells X to big transporters who sell
it to several smaller distributors. The price which is paid for the product X is
directly related to the demand for X. The software product in this pilot project is
called a ‘data-collector device’ (DCD) and provides the information needed to
calculate the signal of the demand for X by the market. The payments throughout the
chain of thé producer, transporter, distributor and consumer, are based upon this
signal. PROD passes the signal on to this chain so that the market has the means to
regulate the demand for X. PROD is responsible for the correctness of the signal of

the demand for X.

2.1.1 The software product

The software product DCD is part of the system that calculates the signal of the
demand for X (the DFX system) and can be characterized as follows.

Scope of the product: The product is part of the DFX system and has no direct
contact with the business system. The only thing considered is the software product
itself (source code, test plans, test coverage etc.).

Phases of the life-cycle: Adaptive maintenance and training sessions are not relevant
in this case. The supplier of the DCD product will only be held accountable for the

life-cycle phases before delivery.

-8-

Uniqueness: The software product can be called specific because it is tailor-made for
PROD.

2.1.2 The business system

A business system consists of a system to be controlled and a controlling system. In
this case study the controlled system is designed to measure the demand for X and
provide the signal based on these measurements. The controlling system is supposed
to take care of these functions of the controlled system. The DFX system can be
seen as the controlling system and the considered software product DCD is a part of
the DFX system.

As mentioned earlier the information provided by the DFX system is also used to
indirectly regulate the demand for X. This control of the demand for X falls outside
the boundaries of the business system. However, the function of the information
provided by the DFX system stresses the importance of the data collected and
processed by the DCD software product.

Number and interdependence of system variables: There is just one kind of variable
which has to be processed (the input) and there is just one kind of variable that
forms the output of the DCD product for the DFX system.

Controllability and predictability of system variables: The variables that influence
the business situation are easy to control and predict within the system boundaries
because there is only one kind of input and output variables.

Sensitiveness and stability of the controlled system: The DFX system, and thus the
DCD product, has to be sensitive and although the business situation is very stable if
the signal is available, the environment of the business system will become
uncontrollable and unstable if the software product fails.

Reaction pattern of the controlled system: The reaction pattern of the market may
be precarious but this lies outside the boundaries of the business situation. The
reaction pattern of the controlled system itself is very straightforward.

2.1.3 The Customer

There are no direct users, only people who are indirectly affected by the output of
the software product DCD and the operators of the DFX system. These operators are
experienced technicians who know what the product does, how it works and what the
importance of the output is.

The indirect customers of the product depend on the signal which the software
product helps to compose. Their interests are already covered by the characterization
of the business system.

2.1.4 Relevant quality characteristics
From the characterization of the product, business situation and customer (completed

with the expertise of a quality consultant or information analyst), it could be
concluded that the following ISO 9126 quality characteristics are the most relevant.

-9-

Functionality (accuracy, security)
Because of the specificity of the DCD product and because of the importance of
the actions that are based upon the provided information.

Reliability
Because of the uncontrollable and unstable situation that will occur if the product
fails.

Efficiency
Because of the need for control by the environment of the business situation, the
DFX system is a real-time system.

2.1.5 Determining the quality profile

The relevant quality characteristics are now known, so the next step is to determine
the evaluation levels to complete the quality profile for the software product
considered. This is done with the criteria proposed by SCOPE. The description of
customer, product and business system is thereby complemented and the following
levels are set. Per level the most important complementary reasons are mentioned.

Functionality: level C s
Because of the economic loss which will result from failing of the product (because
of the importance of the information provided) and the security level needed
(defined by ITSEC ™).

Reliability: level A
Because of the desired availability (24 hours a day) due to the importance of the
signal.

Efficiency: level A
Because the product is a real-time system.

2.1.6 Some remarks

2.2

In this first case study we have applied a model to guide the determination of a
quality profile. The product, the business system and the customer are characterized
in order to determine the relevant ISO quality characteristics. Then the evaluation
levels are established by applying the SCOPE guidelines.

The model had to be supported by the expertise of a software product quality
consultant. The expert had to set the business system boundaries and translate the
intuitive relationships to this specific situation. In section 3 we will return to the
conclusions of the different case studies. First we will present the second pilot
project, the NetPlanner case.

Pilot project 2: The NetPlanner case

NetPlanner is a software product which is developed to aid the planning, design and
control of distribution networks. The product aims not only at specialists but also at
generalists. It can be seen as a product which has been adapted to the present way of
knowledge transfer; everybody has access to all kind of knowledge at different levels
of detail.

-10 -

2.2.1 The software product

The software product is a DOS application with a graphical user-interface. The
source code is made in PASCAL. NetPlanner can carry out three kinds of network-
calculations. Customers of NetPlanner who are registered users of the program are
provided with updates of the program. The software product can be characterized as
follows:

Scope of the product:In this case not only the software is considered but also the
users’ guides, the service provided by the supplier of the product and the ‘fit’ in the
business situation. Although NetPlanner is a tool, it looks a bit like an information
system.

Phases of the life-cycle: The whole life-cycle of the product is considered.

Uniqueness: The product is not very unique, because substitutes are available;
however, those programs are not as advanced as NetPlanner.

2.2.2 The business system

The product is intended for energy distribution companies, energy production
companies, industry, engineers and for educational purposes. The product is not the
only product that provides decision-makers with the information needed. It is a tool
and not a complete information system. Failing of the tool can, however, cause
significant economical damage to the company which uses the product. The business
system can be characterized as follows:

Number and interdependence of system variables: The number of variables that are
relevant to the business system (and the program processes) can be scaled from small
to medium. The variables are interdependent; if one variable is altered, the others
will change too.

Controllability and predictability of the system variables: Not every variable that
influences the business system which the product needs to support can be controlled
or predicted easily. The business system is affected by so-called irregular variables.
Sensitiveness and stability of the controlled system: The planning, design and
control of electricity distribution networks is not a sensitive or unstable activity.

The reaction-pattern of the controlled system: As can be concluded from the
remarks made on the other dimensions, the controlled system is not precarious.

2.2.3 The customer
The customers of the product are companies in the energy distribution and
production industry. The users and operators are trained engineers (except of course
those users who use the program as a training facility) who are orientated on the
output of the software product.

2.2.4 Relevant quality characteristics

By characterization of the product, business system and customer and with the
expertise of a consultant, the following ISO quality characteristics could be marked

- 11 -

as the most relevant.

Functionality (suitability, interoperability and compliance)
Because of the number and interdependence of the relevant variables and the need
to fit into the specific business situation of electricity networks.

Usability
Because the product looks like an information system with just less
‘responsibility’.

Maintainability
Because of the lifetime responsibility of the developer for the software product.

2.2.5 Determining the quality profile
Which level of evaluation could be assigned to the relevant quality characteristics?

The same approach has been used as in the first pilot study. The most important
complementary reasons are described.

Functionality: level C s
Because of the risk of significant economical loss if the product gives incorrect
information.

Usability: level C
Because the product looks like an information system and because of its graphical
interface. And because the users are experts or trained people.

Maintainability: level C
Because of the lifetime (8 - 15 years) and the responsibility of the developer for
the product.

2.2.6 Some remarks

The same approach is applied in this case as in the first DCD case. The use of the
model was more straightforward than in the first case. However, the expertise of an
software consultant was indispensable.

The reason why the model was of more help in this NetPlanner case than it was in
the first DCD case, is to be found in the literature on which the model is based.
Most literature published on software product quality concentrates on information
systems. Although NetPlanner cannot be called an information system, it certainly
looks more like one than the software product in the DCD case. If embedded
software and information system software are the two ends of a continuum, the DCD
product must be placed on the ‘embedded’ side and NetPlanner on the ‘information
system’ side.

As in the first case the two steps (first determining the relevant quality characteristics
and then the evaluation levels) show some overlap and it looks as if the later step
makes the first one unnecessary. In the following section the results will be
discussed.

12 -

3

Discussion on results of pilot projects

In the two cases the model was a helpful guideline for the software consultant in
determining the quality profile. It helped the consultant to think in the characteristics
of the product, the situation the product will work in and the people who will use the
product. The model combines different insights described in literature on the subject
of software product quality and proposes a translation process that partly formalizes
the determination of the quality characteristics. However, the present model cannot
provide the information which is needed by a non-experienced consultant. In its
present form the model does not add to the knowledge of the consultant.

The proposed model focuses on products resembling information systems. The
determining dimensions sometimes become almost irrelevant if the product
concerned does not look like an information system at all. The dimensions in general
do not all have the same power of distinction and not every dimension is applicable

to every sort of software product, business system or customer.

A third remark that must be made concerns the application of evaluation levels. The
strict line between the two steps —is a quality characteristic relevant and what
evaluation level should be applied— leads to confusion. The first step is taken on the
basis of more general terms and the second step is taken on the basis of norms and
limits. Although this seems very logical, the practical application of the concrete last
step makes the first step look unnecessary. The general terms in the first step are
however essential for the determination of quality characteristics because the guide-
lines used in the second step will never be complete enough for application to all
software products. On the other hand, there is a need for variations in the
thoroughness with which the quality characteristics are evaluated.

Further work to be done

From the remarks made we can conclude that 2 model with more expertise is
needed. It must be abie to characterize a software product by the use of dimensions
with great distinguishing power. This model must also be able to appoint the right
level of thoroughness to the different quality characteristics of the software product.
A logical next step in the development of the model seems to be an integration of the
level concept and the use of determining dimensions. Thus the relevant level of
thoroughness is implicitly determined by the detailed characterization of the sort of
product, customer and environment.

The dimensions upon which the characterization has been based until now must be
taken in careful and detailed consideration. The model must be applicable to all
kinds of software products, for all kinds of customers in all kinds of business
systems. Further confrontations with the field are necessary to enhance the
applicability of the proposed model and to make it more than a guideline, to make it
a real tool in the determination of quality characteristics of software products.

-13 -

References

10.
11.

12.

13.

14.

15.

16.

17.

18.
19.

20.

21.

22.

23.

24.

Bache R. and G. Bazzana, Sofiware metrics for product assessmens. McGraw-Hill, London, 1994.

Basili V.R., J.D. Musa, The future engineering of software: a management perspective, IEEE Computer,
Vol. 24, Nr. 9, 1991. o

Bemelmans T.M.A., Bedrijfskundig Ontwerpen van Bestuurlijke Informatiesystemen, in: P.A. Cornelis,
J.M. van Oorschot (eds.), Automatisering met een menselijk gezicht (in Dutch), Kluwer, 1986.

Berg van den R.J., J.J.M. Trienekens, Setring Priorities in Sofiware Product Quality; towards a CASE
based instrument, in: Proceedings of the Sixth workshop on CASE: Software Improvement with Case,
Singapore, Singapore, 1993.

Boehm B.W. et al, Characteristics of Software Quality, TRW Series of Software Technology, Vol. 1,
North Holland Publishing Company, 1978.

Davis G.B., M.H. Olsen, Managemen: Information Systems, McGraw-Hill, London, 1984.

Delen G.P.A.J., D.B.B. Rijsenbrij, The Specification, Engineering and Measurement of Information
Systems Quality, in: Journal System Software. Vol. 17, 1992.

Dorling A., SPICE: Software Process Improvement.and Capability dEtermination, in: Software Quality
Journal, Vol. 2, 1993.

Heemstra F.J., R.J. Kusters, J.J.M. Trienekens, Defining Systems Quality: involving end-users, in:
Proceedings of the European Function Point User Group Conference, Bristol, England, 1993.>

Humphrey W.S., Managing the Software Process, Addison-Wesley, 1989.

Information Technology Security Evaluation Criteria ATSEC), Provisional harmonised criteria, version
1.2. Commission of the EC, 1991.

1SO 9000-3, Quality management and quality assurance standards, Part 3: Guidelines for the application
of ISO 9001 to the development, supply and maintenance of software, International Organization of
Standardization, 1991.

ISO/IEC 9126, Information Technology - Sofrware product evaluation - Quality characateristics and
guidelines for their use. International Organization of Standardization, 1991.

ISg(g?/IEC JTC1/SC7 N1201, Working Draf:; Information Technology: Indicators and Measures, ISO/IEC,
1994. :

Jarke M., K. Pohl, Information Systems Quality and Quality Information Systems, Kendall, Lyytinen,
DeGross (eds.), in: Proceedings of the IFIP 8.2 Working Conference on The Impact of Computer
Supported Technologies on Information Systems Development, Minnesota, USA, 1992.

Kaposi A. and M. Myers, Systems, models and measures, Springer-Verlag, London, 1994

McCall, J.A., P.X. Richards and G.F. Walters, Factors in Sofriware Quality, RADC-TR-77-363 Rome Air

Development Center, Griffis Air Force, Rome, NY, 1977.
Mellor P., Critique of ISO/IEC 9126. Centre for Software Reliability, City University, London, 1992.

Oakland J.S., Toral Quality Management, in: Proceedings of the Second International Conference ont
Total Quality Management, Cotswold Press Ltd., 1989.

SERC-Quint, The specification of softiware quality, a practical guide (in Dutch), Kluwer
Bedrijfswetenschappen, 1992. fware quaity. @ p

Trienekens J.J.M., Time for Quality, working towards berter information systems (in Dutch), Thesis
Publishers, Amsterdam, 1994.

Trienekens J.J.M., Quality Management in Software Production, A Customer Oriented Approach, in:
Proceedings of the IFIP 5.7 Working Conference on Integration in Production Management, H.J. Pels and
J.C. Wortmann (eds.), The Netherlands, North-Holland, 1992.

Trienekens J.J.M., P. Thoma, Production Characteristics as a Basis for Effective Quality Systems,
learning form industrial manufacturing, in: Proceedings of the Second International Conference on
Softwair: Quality Management (SQM’94), Computational Mechanics Publications, UK, Edinburgh,
Scotland, 1994.

Vliet J.C. van, Software engineering, Principles and Practice, Johm Wiley & Sons, 1993.

