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N. G. DE BruijN and T. A. SPRINGER On the zeros of a polynomial and of
its derivative II

{Communicated at the meeting of April 26, 1947;)

1. In a previous paper 1) (referred to as I}, the following theorem was
proved for some special classes of polynomials:

- Theorem 1. Let the polynomial f(z) of degree n>>1, have the zeros
&4, «v-, En, and let 9y, ..., Mu_1 be those of f'(z). Then we have

— Z’ [Imy,| < Z’ Imé& |, . . . . . . (D)
the sign of equality holding if and only if no two zeros of f(z) are
separated by the real axis.

Here we shall prove the theorem in the general case, namely for poly-
nomials with arbitrary real or complex coefficients. In our proof we
introduce an auxiliary function f*(z) obtained from f(z) by replacing the
zeros of f(z) in the lower half-plane by their complex conjugates.

Theorem 1 can be generalized in several ways. In the first place we may
ask for the class C of real continuous functions w(z) of the complex
variable z, such that

1 ! 1 =n e
__IZw(m)<—2 (E,) B V)

n ny =

holds for any polynomial f(z). We have not been able to characterize this
class C; it is, however, likely, that C consists of all convex functions y(z) 2).
Anyhow, all functions of the class C are convex.

It is possible to derive from thecrem 1, by superp051t10n, a large sub-
class C* of functions v (z) belonging to C. Important items are y(z) = |z |?
and y(z) = |Imz|?P (p=1). This will be shown in section 3. :

A second generalisation of theorem 1 is to rational functions with positive
residues (section 4). .

Other generalisations, concerning the zeros of “composition-polynomials”,
will be given in a next paper. .

1) N. G. DE BRUIN, On the zeros of a polynomial and of its derivative, Proc. Kon.
Ned, Akad. v. Wetensch,, Amsterdam, 49, 1037—1044 (1946). In that paper, our
theorem 1 was proved in the following two cases:

a) if all coefficients of f{z) are real, and

b) if all zeros of #{z) are purely imaginary.

2) 4 (z) is called convex, if v (A z1 Ay 20} =S4y @ (2)) + Aaw (zp) for all values of
21,2, M, A5, satisfying 41, = 01 L, =0 4 + A =1.
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2. Proof of theorem 1. .

We remark, in the first place, that the theorem is trivial when all zeros
- of f(z) liein Im z > 0. For then, by the well-known Gausz-Lucas theorem,
the same holds for the zeros of f/(z), so that the imaginary parts of
&1, ..., £n, M1, oo a1 all have the same sign. The theorem then follows
from the relation

H n—1 1 n 3
B—lvévlny——;yévlgv. . . . . . s e ()

This shows that in (1) the sign of equality holds in this case.
The general case is reduced to this one by means of the following

Lemma. Let f(z) = a Iljf (z———&) ﬁ (z—&) (0=k=n), where

/ r=1 y=k+1
Imé& =0 (v\: 1,2,...k), Im&, <0 (v =k -+ 1,...,n).
Putting , ~

n

(—&) O (z—&). « « . . . 4

1 r=k+1

=

[ le)=a

v

il

 we have , )
FEISIF@ o O

' for all real values of x. .
Theré is equality for all real x if and only if no two zeros of f(z) are
separated by the real axis. ’

Proof. Woriting
ko1 | n1
2 =P+ Qi X

y=1 X—& v=k+lx_"§v

=R+Si (x,P,QR.S rea)

we have

Flx) . Cfx) (O
o =P+R+i@Q+S). pry=FP+R+i@Q S)-

Now it follows from
Im&>=0p=1,....k Im&<0 (=k+1....n)
that Q =0, S < 0. We obtain |Q + S| =|Q—S|, which gives

EE | <)
o sFel
) =1 1.
£ < 1

There is equality (for all real x) only if either Q = 0 or S= 0, that is to
say, if all zeros of f(z) lie either in Imz<<QorinImz=0.
, 5 L

For real x we have

and hence
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With this lemma the proof of theorem 1 is quite simple. Since all zeros
of f*(z) lie in Imz = 0, it follows from our remark above that

1 n—1I . lnI .
n_lvé‘ll mn,I-—;vgllm&i. S ()]

where 57, ..., 1;—1 denote the zeros of f*/(z). Further, by the lemma,

A A .
floglf’(x)ldx<floglf*’(x)ldx A>0. .. @
—A —A .

or

A A -
n—1 n—1
‘—21 log |x—n,|dx < %flog[x«—ﬂtldx B ()]
y A

—A

It is easily seen that

A
flogIx-—aldx:2(AylogA—A)—l—n]Ima]—l—O (—%) . 9
~A ' ’ . .

Substituting this into (8), and making A — c we find
n—1 n—1
_ZIIImmISé‘l[Imn:I S AP ¢ (1)}

Combining this inequality with (6) we obtain (1).

There is equality in (10) if and only if there is equality in (7), that is,
if [f/(x) | = | f*(x)]| for all real values of x, and then, by the lemma, all
zeros of f(z) lie either in Imz=0 or in Imz = 0.

Thus theorem 1 is completely proved.

3. Theorem 1 means, geometrically, that the zeros of f’(z) lie, in the
mean, closer to the real axis, than the zeros of f(z). The same can be said
about any line, that is to say, theorem 1 remains true, when we replace
|Imz| by |Im(az + B)|, « and g being complex numbers. (This is easily

proved by applying theorem 1 to f E_;—}_? . Hence the functions |Im(az + f)|
belong to the class C, defined in section 1. Furthermore, it follows from
(3) that the functions Im (az + f) also belong to C. We can obtain new
functions of C by superposition of these special ones. We thus obtain a
sub-class C* of C, which consists of all real continuous functions y(z) of
the complex variable z, which are sums of functions of the types
[Im(az + B)|, Im (az + B) with positive weights. For instance, C* contains
all convex functions of Imz. We have, namely

Theorem 2. Let &,,...,&n be the zeros of f(z), 9y, ..., qa_1 those of
4
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f(z). and let Im £ =<Iméy<..=Imé&. If w(x) is a convex real function
of x in the interval Im & = x = Im &a, and if

1 = 1 n—t
D (y, f):~n—;§ v(Imé&) ——— E,’ v (Im r],)
then
» D, f)=0. . . . . .. . . (1}
D(vy, f) = 0 holds only if y(x) is linear for Imé; =x=Iméa (which
implies the case Imé&; = ... = Im&a).
Theorem 2 can be proved in the same way as theorem 7 in I. A special
case is w(x) = [x|? (p = 1), giving
Theorem 3. With the notations of theorem 1, we have, if p =1
1 -t i n )
Slmyp<— 3 |Im&p . . . . . (12)
n—1 y—=1 n »=t

There is equality in the following two cases only: a) if p = 1 and all zeros
of f(z) lie in the same half-plane Imz =0 or Imz =0, and b) if p=1
and Imé&y = ... = Imé&a.

Obviously this theorem remains true when |Im(az + )| is substituted
for | Im z|. This remark is used for the proof of

Theorem 4. With the assumptions of theorem 1, we have, if p =1
;l_—‘__ %1 !ﬂvlp< E lfol B T (13)

There is equality in the following two cases only: a) if p =1 and all zeros
of f(z) lie on the same half-line with endpoint 0, and b) if & = ... = &a.

Proof. The distance of the point z in' the complex plane to the line
through the point 0 making an angle ¢ with the positive real axis, is
|cosp .- Imz—sing - Rez].
By theorem 3 we have
n—1
—1 2 |cos @ - Im n,—sing - Re m]"< Z’ !coszp -Imé&—sing- Re &, [P,
By integrating this inequality we obtain

2n

n-1
n-—l—l 2' |cos @ - Im 1, —sing+ Re , [P dp <
0 A
2x . )
l n
~;1- §f|cos<p-lm ¢ —sing- Re &, |Pdy
ot

n—1 p< 1 n E »
.2 " \,”n"fll 7.

5
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The cases of equality are easily deduced from those of theorem 3.

A direct consequence of theorem 4 is
Theorem 5. With the assumptions of theorem I and p >0, we have

1

n——

k g’ &P, if k is an integer>% .. (14

n—1i

51 PHLES

This may be proved by application of theorem 4 to f(z*). (Cf. L
theorem 3). ‘
It is probable, that, more generally, the inequality

Zle" PO<p<l: . . . (1)

holds. We have, however, not been able to prove thls Anyhow, if g is a
fixed number (o > p) an 1nequahty

Poo<<p<y . . . . (i6)

Z I7]v

cannot be true for arbitrary f(z). This is easily seen by considering
f(z) = z"-1(z—1) for large integers n.

4. Rational functions of the type

(@a==0, t,,>o, n>=0 . (17)

ple)=—az+b+ >

y=1Z—Q

have properties analogous to that expressed in theorem 1 (Cft.1, theorem 2).
In the first place, we obtain

Theorem 5. If n>1,

. n N
pl)=2 ——. . (18)
and if B4, ..., fa—1 are the zeros of ¢(z), then we have 3)
énv tyilm avi‘
Z' [Im g, | << Z IIma,,|———_——n—— N 1)
2t
r=1

Proof. This may be proved by the same method as theorem 1, but it is
also possible to deduce (19) directly from theorem 1. For, by applying (1)

3) The case f{ = ... = ¢, = 1 is embodied in theorem 1.

6
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n . .
to the polynomial II (z— a»)* (where the k, are natural numbers) we

=1

obtain
n
n—t n —1 + gr‘lkv n
S m b+ 2 (oY) [ Ima| < ———— - I ks |Imal,
r=1 =1 ‘ r=1
, 2 kv X .
y=1

k,

n . ’
where By, ..., fa_1 are the zeros of . Hence (19) follows for rational

. r=1 X0y
¢y, and the general case follows by an argument of continuity.

Since (1) holds for all functions y(z) of the class C, the same argument
shows ' '

Theoretm 6. Under the assumptions of theorem 5, we have

n-1 n yél Ly (a,)

SyP)< Zyl@)——F—» - - - - (20)

r=1 vy=1 2 ty )
v=1

fd_r any function y(z) of the class C.

To obtain a corresponding inequality for the function

n o
plz2)=b-+ g’lz_tfa (b#0, £>0,n>0 . . . (21)
we applyvtheoren‘z 6 to -
. ) T _
(pq‘(Z)-_! Z+Z+ v§1 Z"“av.
b

From lim ¢, (z) = ¢(z) it follows, that
T>+® : .
n . n 1 -
B < Sv@+(2e) tm Sv(—T)
r=1 r=1 ry=1 T—)+co‘T b

(B1, --.» Bn denoting the zeros of/go(z)) if y(z) belongs to class C and the
limit exists. This will occur, for example, if (z) is homogeneous (ie.
w(dz) = Jy(z) for all 2 = 0 and all complex z). We then have

n n ) 1 n
Ivw<Evarte(-5) () - @
The most irﬁportant applications are w(z) = |Imz| and y(z) = |z].

For the function

ol)=—aztbt 32

y»=1 2 Ay
7.

(a>0, >0, n=0) . (23)°
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whose zeros be denoted by f, ..., fzy1, we have ¢{z) = Tlim oy (2),
>+

where

T2 T2 5, 12 b
| Pr@) = ot t —pT—q T 2—a (P_ ~’q‘»_—)'

Application of theorem 6 to @r(2) yields

n+1 n T2+ ‘gn‘t'
SyB)< Tyt lim —=— - {y T+ q) +v(—pT+q).
r=1 r=1 T>+w 2T2+ Ztr

) r=1

This proves

Theorem 7. If B, ..., fny1 are the zeros of (23) (a>0, £, >0, n = 0),
and y(z) is a convex function of Imz (CEf. Theorem 2), then we have

4 a

—

ZversEe@re(Y). L

Mathematisch Instituut der Technische
Hogeschool, Delft.

April 1947.






