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PREFACE 

This report describes our work. on a project called "the storm", which we carried out within the 
compass of the modelling colloquium of the postgraduate training "Mathematics for Industry" at 
the Teclmical University of Eindhoven. We would like to thank Stef van Eijndhoven and Nico 
Linssen for their help and advise concerning this project. 

This account consists of three parts. In the first part we give an introduction to the problem and 
the main conclusions. In the second part there is a description of the mathematics which lead to 

these conclusions. The third part consist of two appendices, which contain the numerical results 
and some more detailed information about the mathematical method we used: fiducial inference. 
References to the bibliography are indicated by square brackets. 
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o. INTRODUCTION 

Offshore structures like drilling platforms have to be strong enough to ride out heavy storms. 
Both the behaviour of the sea during a storm and hence the response of the platform will have a 
random character. However, even if the distribution of the sea is known, the response of the plat­
form is too complicated to determine its distribution analytically. Therefore the behaviour of 
severe storms, and in particular the effect they have on a platform is simulated on a computer 
using realistic models. We want to use those simulations to estimate the distribution of the maxi­
mal response. With this estimate we calculate with what probability the maximal response of the 
platform will be greater than a certain critical value. Another purpose is to diminish the computa­
tion time. hence we want to examine how many observations are needed for a good estimate. 
More specifically, we want to estimate for a 3-hour storm, using only the observations from an 
L-hour simulation, with L.s 3. 
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1. MAIN CONCLUSIONS 

For a given simulation of a I-hour stom we can estimate the a~percentage Y IX corresponding to 

the maximal response of a drilling platfom during a 3~hour stom. Further, we can give 
confidence intervals for the Y IX' What does this all mean? 

Suppose that we have a critical value for the maximal response of the drilling platform. Now we 
can find what a corresponds to this value, or in other words, what percentage a of 3~hour stoms 
yield a maximal response of the platfom that remains smaller than the critical value. Moreover 
we can say something about the reliability of this statement by means of the confidence intervals 
for Ya' (See also the figures from Appendix A.8, A.IS and A.22.) 
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2. PROBLEM DEFINITION 

In this section we will give some definitions and state the problem in a mathematical way. We 
denote stochastic variables by underlined symbols, while fiducial variables can be recognized by 
a dashed superscript. Further, probability densities (distributions) will be denoted by small (capi­

tal) p'St whereas fiducial densities (distributions) will be represented by small (capital) Is. 
Finally. all following notations will be equivalent. 

P(x) =p!(x)=P~s. x)=P~s. x ;9) =p!(x ;9)=P(x ;9) 

F(9) = Fe(9) = Fe(9 ; x) = F(O ;x) . 

Here 9 is a parameter. and we shall use the simplest notations as possible. 

The behaviour of the sea and the response of the platfonn are stochastic processes. Let r(t) 
represent the stochastic response of the drilling platfonn at time t. TIlen we define the maximal 
response! T over a time period with length T as 

x T = max r(t). 
- OStST-

Since we can assume that r(t) has the same distribution at any time t during the stonn, we can 
take the starting time anywhere we want to, as long as the interval [OtT] lies entirely within the 
stonn period. 

Define the probability distribution of !T by 

pT(x) :=Prob~T <x). 

Now the problem can be fonnulated as follows. Estimate the distribution P 3 (x) of the 3-hour 
maximum !3, using only the observations of an L-hour simulation. The value of L S. 3 should be 

chosen small but effective. 
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3. ASSUMPTIONS AND MODELUNG 

Let the L-hour period be subdivided into n non-overlapping periods of length 1 = LIn. We assume 
that!,1 is the maximum of a large number of independent observations. This means that the sto­
chastic process r(t) peaks a sufficiently large number of times in a period of length I and that the 
peak values are independent. This is called the stability assumption. 

Further we assume that the individual observations ret 1). r(f2) • ••• ,r(tm) (with 
to < t} < t2 < ... < tm < to + 1) all arise from a distribution for which all moments exists. This 
choice does not seem to be too restricJive. 

If x' = max ret}). then the limiting distribution 
- lS.jSm-

lim pl(X)=G'(X) E exp(-exp [_..!.:l!.]) (-00 < x < 00) 
m-+- a 

(3.1) 

is called the Gumbel distribution with location parameter ~ and scale parameter a, both depend­
ing on 1 (cf. [1] and [3]). In our case we can assume m to be large enough to state that 
pl(x) = GI(x). that is, we have enough observations. 

Furthennore we assume that the observations for the different non-overlapping time periods are 
independent so that 

(3.2) 

This means that if we estimate the Gumbel parameters ~ and a from (3.1), we have found an esti­
mate for the distribution P 3 (x) by (3.2). 

Note that we have n observations to estimate ~ and a from , namely the n maxima over the sub­
periods of length I. This means that we would like to take n as large as possible, in order to 
enhance the accuracy of the estimates. However, a larger value of n means a smaller value of I. 
which will in the long run lead to a contradiction with the stability assumption. So we have to be 
careful in choosing the value of n. 
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4. SOLUTION METHOD 

We are interested in the distribution p3(x), and more specifically, in its a-percentage Ya, defined 
by 

i.e .• the maximal response during a 3-hour storm will be less than or equal to Ya with a probabil­
ity ex. We can solve Ya from this definition using equations (3.1) and (3.2). This yields 

{
Ya=JI.+ca. a 
ca =-In(-1I3*lna). (4.1) 

We will calculate these percentage points with fiducial inference. With this method we can not 
only obtain estimates Ya for Ya' but also a q-confidence interval (La,U a] which contains the real 
value ofYa with probability q. 

The method of fiducial inference is described in more detail in Appendix B. In broad outline we 
can say that the probability of an observation x given a parameter e, is transformed into a fiducial 
density f(9 ;x). denoting the fiducial probability of a parameter e given an observation x. For 
more observations or parameters analogous descriptions hold. 

Let Xi for i = 1 ... n be realizations of !,' obtained from a simulation of n consecutive time 
periods of length I. 

With the technique described in Appendix B we can calculate the jOint fiducial density t;.;;{J.t,a) 

for the parameters JI. and a from the Gum~l distribJtiOn. This yields 
_ 1 /I JI.-Xj 

{

t;.(7{J.t,a):: _+1 exp(l:. -- ) 
o i=1 a 

q,(t) = -t _ e-t . (4.2) 

The symbol:: means "is proportional to". i.e. (4.2) determines the fiducial density t;.;; {J1. a) up to 

a constant 13. This constant 13 can be calculated from the requirement that the total fiducial proba­
bility, obtained by integratingl;,;;{J.t.a) overJl. and a, has to be equal to 1. 

Since we are interested in the fiducial density ofYa = ~+ ca " a, we transforml;,;{J.t.a) to 

/;.+c.;:~ ij.L+caa, a) = h.,; (yo. a) . 

If we denote this transformation by 



then the Jacobian matrix J is given by 

ail ail --
J= _ ex a~ aCi [Ie] 

ai2 ai2 - 0 I 

a~ aCi 

and hence det(J) = 1. 

nus leads to the following relation. 
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f' .. ;(Ya. a) = det(J) * f;:;(Ya.a) =J;.;(ya. a) . 

Integration of h .. ; (Ya.a) with respect to a yields the marginal fiducial density f,. (ya)· 

00 

fy• (ya) = I f, .. ~ (ya. a)da. 
o 

(4.3) 

Fmally. in order to get an estimate Ya and to obtain the lower- and upperbound La and U a of the 
q-confidence inteIVal for Ya' we have to solve the following integral equations. 

Y. 
I h.(s)ds =0.5 

-00 

L. 

J fr (s)ds =.!.=!I. J. 2 
-00 

(4.4) 

u. 
I h.(s)ds=l- I;q . 

-GO 

Let us summarize the required calculations. Combining (4.2). (4.3) and (4.4) gives us the follow­
ing set of equations to be solved for p. Y II' La and U a' 

- Y. { []} III IJ.-X· IJ.-X· J I --'!:r* exp L --' +Ca -exp --' +Ca dlldcr=O.S 
o - .. d" i .. l a a. 

(4.5) 
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00 L. { []} " Il-x· Il-X' t J J +,* exp ~ --' +ca-exp --' +cu dllda=T 
o -00 a" ;.1 a a 

_ u. { []} " Il-X' IJ.-x· t J J +,*exp~ --' +ca-exp --' +cu dlJ.da=t-T· 
o -OCt a" i=1 a a 

In the next section the equations (4.5) will be solved numerically. Moreover, the influence of the 
ancillary statistics will be investigated. 

In Appendix B ancillary statistics are defined as stochastic variables whose probability distribu· 
tion does not depend on the parameters. In our case we have n observations Xl •••• ' Xn to esti· 
mate the parameters IJ. and a. However, in general the observations have to be sufficiently 
reduced. So every anCillary statistic is a function of the minimal sufficient statistic. In this case, 
the observations themselves are minimal sufficient. Therefore we have n - 2 ancillary statistics. It 
is interesting to know in what way the values of these ancillary statistics influence the calculated 
values :Ju. La and U a' 
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5. NUMERICAL ANALYSIS 

This section is devoted to the numerical computation of the integrals given in (4.5). 

We shall first give a general method for computing two-dimensional integrals. Before applying 
this method we will rewrite the integrals. Thus we get much better results. 
Let us, for sake of clarity. write down once more the integrals to be calculated. In our calculations 
we will take L = 1 and n = 4. i.e., we will use one hour of simulation and the computations are 
based on four samples. The choice of the value of n is based on experience in order to make a 
trade-off between the stability assumptions and the accuracy of the estimate as described in Sec­
tion 3. The integrals become 

- - 4 [J..l-X' [ J..l-x·ll J J G-s exp {l: __ I - exp __ I } dJlda 
0-- ;",1 (S G 

and 

-vb ,,[ [ll .. Jl-X' Jl-X' I J G-
S exp {l: --' + c(a) - exp --' + c(a) } dJlda 

0-00 ;=1 G G 

where 

c(a) =-10 1o(lIaiJ3 

and ub (upperbound) is equal to Yo, , La or U a. 

Furthennore, the integral in (S.2) will be denoted by 

J(ub, a;xl.x2.x3,x4). 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

We will now describe the method by which we compute the integrals in (S.1) and (S.2). Suppose 
that the functionfis "smooth enough", then 

It It 

1= I J f(x,y)dxdy=l" (S.5) 
-It-lt 

where 

h2 
I, ="3 [8/(0,0)+ f(h.*) + I(h. -h) + fe-h. h) + f(-h, -h)]. (S.6) 

Without proofwe state (cf. [S]) 

/-1 = -8h
6 [.!.{ a4

/(0.0) + ()4 I(O,O)} + 2 a4 
1(0,0) 1 + O(h8) (h ~ 0)(5.7) 

It 72 S ax" ()y4 ax2 ()y2 

When applied to a rectangle which is subdivided into squares of length 2h. this method leads to 
an integration scheme as depicted in Figure S.l. In this figure we denoted the number of times 
that the function value in that knot occurs in the integration formula. 
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.! 
• .. "---.-. 1 

• 

., .1 

1 
if &f ..... 

ev ·s 
J 1 2. 

Figure 5.1. Integration over a rectangle 

We now want to apply this method to the integrals as given in (5.1) and (5.2). Because the 
numerical calculations of the integrals in (S.l) and (S.2) are similar we will first look only at the 
integral in (5.1). 

As we shall see later on. the values of the variables xl • ...• x4 are in the interval [SOO, 1000]. 
Also the integrand decreases very slowly in the a-direction. Because of these facts. application of 
(5.6) to (5.1) takes a long computing time and does not give very satisfactory results. One way to 
overcome these problems is the following; suppose x 1 S x2S x3S x4 and x 1 < x4. The number 
k is defined by 

k =x4-xl. 

The variablesy l.y2,y3.y4. J,l.' and yare now defined by 

a yl=O 

b y2 = (x2-x 1)1 k 
c y3=(x3-xl)/k 

d y4=1 

e J.l.'=(J,l.-xl)lk 

f y=kla. 

(S.8) 

(S.9) 

Note that yO = 0 S Y 2 S Y 3 S 1 = y4, and that y 2 and Y 3 are ancillary statistics. Using (S.9) the 
integral in (5.1) transfonns into (where the prime ofJ,l.' is omitted) 

.. .. 4 

-\- I r dy I exp[:£ "f{j.t-yi)-exp {){J.l.-yi)}]dJ,l.. 
k 0 -- i=1 

(5.10) 

Because the integral has infinite integration intervals we have to find a rectangle in the (J,l., y)-plane 
such that the contribution of the integral over the complement of this rectangle is very small (see 
Figure 5.2). 
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I 
1Cl. 

Figure 5.2. Numerical integration area. 

In order to get an impression of the values of III ,112 and 'Yl we can make the following estimates 
for the regions I, II and m. For region I we obtain the integral 

GO -11. 

-\- I of d'Y J exp [t "r</J.-yi) - exp {"r</J.-yi) }] d 11 . 
k 0 _GO i=1 

To estimate this integral we first look at the graph of the function get), which is defined by 

get) = t - et 
-oo < t < - • 

(see Figure S.3). 

/ 
/ , 

/ , 
, '" / 

I' 
/ 

/ 

/ 

/ 
I' 

, 
/ 

/ t. 

Figure 5.3. Graph of the function get). 

For t < 0 almost linear increase and 
for t > 0 almost exponential decrease. 

From Figure S.3 we obtain the inequality 

(S.l1) 

(S.12) 
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.... -1'1 

-\- J r dy J exp[i ')(p.-yi)-exp {(')(p.-yi»)]dJ.1$ 
k 0 -eo i=1 

00 

$ * J exp[4{-ro-exp(-m»)]dro. 
k a 0 

(5.13) 

From expression (5.13) it follows that this integral is small if J.11 takes approximately the value 
100. ForJ.1z and Yl we can make similar estimates and we find J.1z = 100 and Yl = 80 (k = 50). 
As may be expected, the region over which the integral (5.10) must be integrated numerically to 
get a good approximation, is still smaller than the rectangle we indicated above. It turns out that 
the integration region has the fonn as drawn in Figure 5.4. 

Figure 5.4. Integration area such that 
numerical integration gives good results. 

Without going into details we mention that similar transfonnations and estimates can be made for 
the integral (5.2). 

In the next section we will look at numerical results obtained by using the above method for com­
puting the integral. 
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6. NUMERICAL RESULTS 

In this section we will give some numerical results on 

i) estimates and confidence intervals for Yo. 0.1 S as 0.75. 

ii) the influence of the ancillary statistic. 

In order to obtain these numerical results we need the values of the response maxima, i.e., the 
numbers x I, x 2. x 3 and x 4. In Table 6.1 5-minutes maxima are given for a period of length 3 
hours. These numbers were obtained by simulation. 

first hour second hour third hour 

674.0 634.7 700.7 
653.2 649.6 756.9 ... 
830.9 ... 687.4 ... 673.7 

712.8 ... 655.0 716.8 ... 
608.2 661.0 691.9 
669.1 696.9 ... 715.4 

622.3 703.6 ... 702.9 

787.6 ... 654.4 639.4 
641.3 665.1 704.2 ... 

638.4 622.8 696.3 
716.6 • 673.5 691.1 

676.1 706.2 ... 723.4 ... 

Figure 6.1. 5-minutes maxima for a time period 

of 3 hours. The IS-minutes maxima are indicated. 

The values of a for which Yo and the corresponding confidence intervals will be calculated are 
a = 0.1.0.25,0.40.0.50,060 and 0.75. 
For given~, i = 1, .••• 4. and given a the integral in (5.2) depends only on the parameter p. The 
bound Ya,1S is then defined as follows 

J~, a;x1 • .%2,x3.x4) =p. (6.1) 

Using this notation we have the following 

{
Yo =Ya,o.s 

80% confideDceinterval rorio (Ya,O.l, Ya,O.9)· 
(6.2) 

The results for Yo the COIresponding confidence intervals are given in Appendix A (for the three 

consecutive hours). The curves in all the figures are obtained by spline interpolation. The figures 
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of the fiducial distributions have on the x-axis the bound Ya.P (of the integral (5.2» and on the y­
axis the corresponding p times 100. As we can see from (4.1) Ya increases with increasing a.. This 

feature also follows from the pictures. 

The figures of the 80% confidence intervals have on the x-axis the bound Ya.P and on the y-axis 

the corresponding a.. These figures are easily obtained using the figures of the fiducial distribu­

tions. 

Next we will look at the influence of the ancillary statistics. Because all 4-tuples (x 1 •...• x4) 

are scaled to (0.y2.y3.1) in the computer program (OS y2S y3S 1) we will choose 

(xl •...• x4) only in such a way that O=xIS x2S x3S x4 = 1. We calculated the 80% 

confidence intervals in the following cases: 

xl x2 x3 x4 

0 0 0 1 
0 0 ~ 1 
0 0 1 1 
0 Ih 1I.z 1 

0 ~ 1 1 
0 1 1 1 

The graphs of these calculations are given in Appendix A. From these figures we can clearly see 

the inftuence of the ancillary statistics (the ancillary statistics depend on the numbers 

xl •. .. , x4, see also Appendix B). To what extent the ancillary statistics influence the Ya and the 

confidence intervals can be calculated as follows. As a reference state we choose 

(x 1, x2. x 3. x4) = (0, t, t. 1) and a. = 0.5. LoOking at the bounds of the 80% confidence interval 

in this case we find (0.9, 2.9). Next we calculate the integral in (5.2) but with the lower and upper 

bound of the second integral replaced by 0.9 and 2.9 resp. The value of this integral is the 

confidence level of the interval (0.9.2.9) corresponding to given (xl, •. .• x4). The results of 

these calculations can be seen in Table 6.2. 
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xl 042 043 044 confidence level 

0 0 0 1 53% 

0 0.25 0.25 1 67% 

0 0 0.5 1 73% 

0 0.5 0.5 1 81 % 
0 1 1 1 72% 

Table 6.2. Confidence levels of the interval (0.9,2.9) 
for different ancillary statistics 

From Table 6.2 it is clear that the values of the ancillary statistics certainly influence the esti­
mates and corresponding confidence intervals for the number Ya. 'Ibis result also implies that the 
influence of the ancillary statistics on the conditional confidence level is substantial. 



7. CONCLUSIONS 

We have seen that it is possible to calculate the a-percentage point Ya for the 3-hour stonn 
response maximum using just four samples from one hour of simulation. Furthennore we also 
can compute confidence intervals for YII' It turns out that for a approaching 100% it becomes 
more and more difficult to detennine YII. LII and U a numerically. 
lbis can be explained from the fact that we use only four samples to get infonnation on a% of 
the 3-hour slonns. If nevertheless we would like to obtain Ya • La and U a for large a, we can do 
the following. First, we could split up the hour of simulation into more than four intervals. How­
ever, this may violate the stability assumption. Second. we could use more than one hour of 
simulation. 

Finally we showed that the ancillary statistics do influence the numerical results. Hence the 
method of fiducial inference proves its usefulness, since most other methods, like, e.g., ML­

estimations. neglect this infonnation. 



APPENDIX A: FIGURES 

Results for first hour simulation 

Fiducial distribution of Y(lO %) .. .. .. Y(25 %) 

" " tt Y(40 %) 
9' ,. tt Y(50 %) 
•• ., tt Y(60 %) 
tt .. .. Y(75 %) .. ., .. Y(80 %) 

Distribution of tempest maximum 

and 80 %-confidence intervals 

Results for second hour simulation 

Fiducial distribution of Y(10 %) 
tt .. tt Y(25 %) 
tt •• .. Y(40 %) 
•• .. .. Y(50 %) 
•• •• .. Y(60 %) .. " .. Y(75 %) 

Distribution of tempest maximum 

and 80 %-confidence intervals 

Results for third hour simulation 

Fiducial distribution of Y(10 %) 
•• " .. Y(25 %) .. .. .. Y(40 %) 

" •• .. Y(50 %) .. .. .. Y(60 %) .. 9' tt Y(75 %) 

Distribution of tempest maximum 

and 80 %-confidence intervals 
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Influence of the ancillary statistic 

Distribution of tempest maxima 

80 %·confidence intervals 

Xl,X2,X3,X4 =0,0,0,1 

Xl,x2,X3.X4 = 0,0, Yl,I 
Xl,x2,X3,X4 = 0,0, 1,1 

Xl,X2,X3,X4 = 0, Yl, Yl, 1 
Xl,X2,X3,X4 = 0, Yl, 1, 1 
Xl,X2,X3,X4 = 0, 1, 1.1 
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Distribution of tempest maximum 
and 80%-confidence intervals: 1 
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Fiducial distribution of Y(10%) 
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Fiducial distribution of Y(2S%) 
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Fiducial distribution of Y(40%) 
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Fiducial distribution of Y(S0%) 

100 

90 

80 

70 

60 

S0 

40 

30 

20 

10 

o 

· 

· 

· 

· 
· 

I 

I 
I 
I 

V 

v--~ 
/' 

V 
J 

/ 
/ 
I 

700 720 740 760 780 800 820 840 



Fiducial distribution of Y(60%) 
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Fiducial distribution of Y(7S%) 
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Distribution of tempest maximum 
and 80%-confidence intervals: 2 
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Fiducial distribution of Y(10%) 
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Fiducial distribution of Y(25%) 
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Fiducial distribution of Y(40%) 
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Fiducial distribution of Y(50%) 
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Fiducial distribution of Y(60%) 
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Fiducial distribution of Y(7S%) 
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Distribution of tempest maximum 
and 80%-confidence intervals: 3 
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Distribution of tempest maximum 
80%-confidence intervals 0001 
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Distribution of tempest maximum 
80%-confidence intervals 00~1 
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Distribution of tempest maximum 
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Distribution of tempest maximum 
80%-confidence intervals 0~%1 
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APPENDIX B: FIDUCIAL INFERENCE 

In this appendix we will give some background information on fiducial inference. It serves as a . 
useful means for a fuller understanding of the worle. described in this report. For more details we 
refer to [2] and [4]. 

Probability distributions do not only depend on the stochastic variable, but also on one or more 
parameters. In statistics, we are often interested in the parameters. With the help of observations 
we can for instance try to calculate estimates or confidence intervals for the parameters. Fiducial 
inference transforms the probability density into a fiducial density for the parameters, given some 
observations. 

Suppose that the equation P(x ; 9) = q defines a one-to-one correspondence between x and e for 
every 0 < q < 1. Further, we will assume that with fixed 9, P(x ; 9) is strictly increasing in x, and 
with fixed x, P(x; 9) is strictly increasing or decreasing in 9. 

Now the fiducial density 1(9 ;x) is defined as follows (cf. [2]). 

1(9;x) = 1 ap~; 9) I. 

The fiducial distribution is calculated analogous to the probability distribution as 

e 
F(9;x)= I I(IP;x)dq,. 

-00 

(B.I) 

(B.2) 

Before we will consider fiducial inference for two parameters, we will formulate three important 
principles of fiducial inference. 

The first principle is the SUfficiency Principle, that says that in calculating fiducial densities one 
should use the minimal sufficient observations. We can represent a minimal sufficient sample 
(x 1 ~ ••• , x,,) from a probability distribution depending on a parameter 9 as 

(%1.' •• ,x,.) E (x,a) with x E R and a e R,,-1 . (B.3) 

The vector a is called an ancillary statistic, that is, a stochastic variable whose probability density 
does not depend on 9. The representation (B.3) has to be invertible. 

The second principle is the Conditioning Principle. According to this principle statistical infer­
ence has to be based on p(x to ;8) and moreover, if a = (a 10 02) and p(x I a; 9) =p(x I al ; 9), 
then a2 is irrelevant and must therefore not be used in the calculations. 

The third principle is the Non-coherence Principle, that says that we cannot use the fiducial den-- -sit}' of 9 to calculate the fiducial density of g(9) if the function gee) is not invertible. In this case 
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the fiducial density of g(9) has to be calculated from the relevant part of the observations. The - -
fiducial distributions for 9 and g(9) are then called non-coherent (cf. [4]). 

If we want to perfonn fiducial inference for two parameters a and p, we have to go through the 

following steps. It is assumed that sufficient reduction has taken place. 

(1) Transfonn the sample (x 1> •••• XII) to (y bY 2, z) where Y I, Y 2 e .IR and where z e .IR 11-2 is 

an ancillary statistic. From now on, all densities will be conditional on z. 

(2) The (conditional) probability density PYI (YI ; Ii) of ~l has to depend only on Ii. By fiducial 
- -

inversion (cf. (B.1» we find the fiducial density of /ji(~;y 1) of p. 

(3) Now we take the probability density P(Y2 I Yl ;a..~) ofY2 I Yl and with Ii fixed, we obtain -- -(again by (B. I» the fiducial density hljl(a. I P;y It yz) of a. I p. 

(4) The joint fiducial density 1(a.,Ii) = 1(a.,P ;YltYz) is defined by 

1(a..P) = I(Ii) * I(a. I P) . 

(5) The marginal fiducial density for a. can be detennined by 

I(a.) = J .Ta.~(a.,4» d4> = J .Taljl(a. I 41) /ji(cjl) dcjl. 
~ jl 

If in step (3) the conditional density of a. depends on a non-invertible function g({3) of Ii, then the 

marginal density of a. must be constructed by taking expectation with respect to the fiducial den­

sity for g(P): 

I(a.) = f .Talg@)(al g(4))) * Ig@)(g(cjl»d4> 
~ 

(cf. Non-coherence principle). 
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