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Introduction 

This paper deals with the constitutive equation for the stress tensor as proposed by Larson. 

This equation is based on the notion of partial extending strands in a polymer melt. In the 

limit cases, the model contains the Upper-convected Maxwell model and the differential 

approximation of the Doi-Edwards model. First, an expression for the stress tensor In 

terms o€ gllobd moleculair quantities is: derived. The constitutive equation is then obtained 

in the same way as Larson did, although with a different result. This equation is partially 

formulated in terms moleculair quantities. Approximations are formulated that contain 

only averaged variables. Next, alternative deriviations are given, one based on a formalism 

as proposed by Peters, the others on energy considerations, both yielding the same results 

as with the first derivation. All deriviations are restricted to a steplike deformation. 

Incorporation of the relaxation terms is straight forward but left out for convenience. 

The stress tensor 

The free elastic energy is given by: 

Ws orginates from the internal energy of structural elements and Wc orginates from the 

combinatorial entropy of the elements. The structural elements are considered as linear 

springs: 

- + +  
f(R) = a& 

The free energy in one chain is: 

u( 161 )chain = i6.k 
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The free energy W, in a unit volume is therefore: 

; 
where Y is the -aumber of chains per -xiit volrnme. The rate ?%Ts, ushg the expession foor R 

= L - 5  - ((&D)R in a steplike deformation, Is: 

; +  ++ + + + +  
W, = va<R-R> = va<D:&& - J(nn:D)R-R> = va(l-()<RR>:D 

For 

is obtained. 

= O, the motion of the structural dement is affine, fos = 1 the Doi/Edwards limit 

The proces of a steplike deformation is, in this case, a reversible proces. The stress tensor 

as can therefore be defined from: 

+ +  + +  
W, = u,:D = va(l-()<RR>:D 3 as = ua(l-()<RR> 

For a entropic spring a = 2kTP2: 

as = ZvkT/?2(1-<)<66> 

For the rate W, it holds in general: 

W, = vkT tr(<A> - D)) 
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In case of a steplike deformation, and incompressible material, i.e. tr(D) = O this becomes: 

W, = vkT tr(<A(D -f CO)>) = vkT I<(<&:D)I = 3vkT <<nn>:D 

This, again, is a reversi3le proces. The stress temor cc cm therefore be de5ned from: 

The macroscopic stress is the sum of the two contributions as and a,: 

The constitutive equation for a steplike de formation 

The deriviation given is restricted to a steplike deformation. Incorporation of the relaxation 

terms is straight forward but left out for convenience. 

The configuration continuity equation reads: 

The equation for the rate of the structural element end-to-end vector for a steplike 

deformation is postulated as: 

+-t + R = L-R - t(m:D) R; n = & / I & \  
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where is the slip parameter. Combining both expressions : 

!!I! + &=($L-h - $Jt(nn:D) h) = O 
at aR 

+-i -i+ 

Multipiy with (ARR + Bm), wheie A ad B ä,re comtmfis, and integrate cver the 

configuration space fl: 

+ +  a -i+ a 1 [A&& @ + ARR y - ( $ L - & )  - ARR -;--($((n&D) &) + 
$2 a t  dR ûR 

The first term: 

int ermezzo 

Consider a function f(6) in the configuration space, for example f(R) = ARA, and a 

function $(&,t). Then: 

+ 

qf$) = df 7 )  + f 9; 
at at at 

af - = o  
at 

from which it follows: 
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8 a 
at at 

Notice that - = O but - <f> # O. 

The second term. Integration by parts: 

<AR&> < A G >  -LC 

int e mezzo 

In the foregoing use is made of: 

a +  a +  + a  -II-(aA) = (T-a)A + a=(--rA) 
aR aR dR 

+ a  + + + + + a  
b) a - 4 6 6 )  = a-IR + RR ( a m T )  

aR 8R 
-++ + +  a + 

= aR + RR (--a) 
ak 

+-+ -++ 
= aR + Ra 

c) The first integral on the right side equals zero because $ goes to zero at large 161. 
The third term: 
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The fourth term: 

The fifth term: 

-l-b -l-t -+ -1 -+-+ 

- <BL-nn + Bnn-LC - 2B(n-D-n)nn> 

intermezzo 

In the foregoing use is made of 

a +-1 -++ a9 T-(Bnn) a = B=r(nn) 
aR dR 

-1+ a - +  a 1 
ant aR R 

b) = =r(&/IkI) = AI-nn)  

-b + +  -1 

c) n-L-n = n0D-n 
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The sixth term: 

+ a  -+ B ++ + +B ++ + 
<[(nn:D)R-&Bnn)> = <f(M:D)(R-AI - nn)n + n& - nn)-R)> = 

aR R R 

Putting things together: 

1 4 2 2 

3 a 5 a 

The numbers idicate the contribution of the different terms, Notice that an extra term, 

indicated with an ,aJ, is added to the contribution of the third term and subtracted at the 

end. 

Using the definition of the upper convected derivative: 

v ++ +-+ ++ <Akg + Bnn> + 2<((i&D)(Akk + Bin)> + 2B(l-€)<(nn:D)nn> = O 
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This result differs from the equation as found by Larson (Larson 1984, (32)). The extra 

term as found here is underlined. 

The stress is given by (Larson 1984): 

Using the approximations: 

+-+ ++ ++ ++ 
<(nn:D)nn> = <nn:D><nn> 

it follows, for a steplike deformation: 

V -b+ 

o + 2 6 < s > : D  CT + 6G[(l-t)<ÏkD><nn> = O 

V 
Notice that for t = O the classical equation o = O for rubber elasticity is obtained. For t = 

1 the Doi/Edwards differential approximation is found. 

Using the definition: 

1 +-+ 
Kq uc <nn> = 
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this equation can be rewritten as: 

2 1- V 
o + &aC:D) a + iGtE)(ac:D) ac = O 

With the eiefidio~: 

this can also be written as two coupled equations: 

a) v 2  ac + &oc:”) ac = O 

b) Q 2  as + &ac:D) os = O 

Larson used the following approximation: 

2( 1-<)@2iiR +> < 2(1-[)@2RR 4- 3E;G> z 
++ 

<nn> = < 
2( l-()p& - R 2(1-c)p2Rm R + 3 t  

<2(1-[)p2RR + 3 < G >  - a 
< 2(1-@ - R + 35> -qq 

Using this approximation, the original equation can be written as: 
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This result differs from the equation derived by Larson who found: 

V 
u + s ( t x D )  tr Q a=O 

'Niith a s i d a r  approximation as used befme, the system a€ t m  ceupled equa+,lons c m  he 

decoupled, giving a two mode version of Larsons constitutive equation: 

Using this gives the appproximated decoupled set: 

v s  a) uc + &QC:D) QC = 0 

Again, with the approximation for ac, with: 

and the approximat ion: 

o= A<&&> + B < Z >  = A<RR> + B < T  1 RR> + - +  N (A + B ) <RR> = 
IR1 <IR15 



12 

these two equations can be replaced by the one equation in terms of o only as derived 

before. 

An alternative derivation of the Larson model 

The deriviation given is restricted to a steglike deformation. Incorporation of the relaxation 

terms is straight forward but left out for convenience. 

++ 
The time derivative of the stress tensor cr = A d $ >  + B<nn> is: 

-4 

where n = - . With: 
IR1 

the expression for the time derivative k can be rewritten as: 

O = L - Q  + o=Lc - 2(<(GD)(ARR + Bi;)> - 2B(1- t)<(Gn:D)Z> 

Using the definition for the upper convected derivative, this becomes: 

Q 
o+ 2t<(n&D)(A$R + BGG)> + 2B(1- [)<(A;:D)ni> = O 



The term <(in:D)(A<6&> + B<i;>)> is approximated as: 

<(Z:D)(ARR + Bin)> w (<Z>:D)(A<RR> + B < Z > ) >  = ( < Z > : D )  o 

By definition: 

1 -b-b 

<nn> = B oc 

Using this gives: 

v 
U +  S$(cc:D) o + 2p( oc:D) oc = O 

With B = 3tG the same expression is obtained as derived before. 

An alternative derivation of the Larson model based on energy considerations 

A constituve equation for 6 is postulated in terms of a slip tensor A which is only a 

function of averaged values and given by: 

A = f(o)(oc:D)I 

The rate of the internal free elastic energy for the case of linear springs is: 

Ws = 2vkTB2 <R.&> = 2vkTbZ (D:<RR> - f(o)(oc:D)R-&) 



For a steplike deformation it holds: 

1 f(a) = <RR> : D kl <k6> : D =- 
3G<k-&><nn:D> 3G<&-& ni:D> 3G 

Using this result for the derivation of the constitutive equation for ast the original equation 

for steplike deformations is obtained: 

The rate of the combinatorial free elastic energy is: 

Wc = ukT tr(A) 

With A = f( O-)( ac:D)I 

W, = 3vkT f( a)(cc:D) 

For a steplike deformation it holds: 
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Combining both expressions: 

1 3 ~ k T  f(a) = 1 4 f(a) = 5iJ 

which is in agreement with the result obtained for the internal free elastic energy. Using 

this res& for the derivation of the constitutive equation for cCs the original equation for 

steplike deformations is obtained: 

n 
2 V 

uc + &ac:D) aC = O 

In order to attain one constitutive equation, instead of the two coupled equations, a 

constituve equation for k is postulated in terms of a slip tensor A which is only a function 

of (r. 

The rates of the free elastic energies for the case of linear springs is: 

W, = 2vkTp2 <R-k> = 2vkTB2 (D:<RR> -f(u)(cD)R*&) 

Wc = 3vkT f(u)(cD) 

For a steplike deformation it holds, using G= vkT: 

+ +  
TV = CD = Ws f Wc = 2GBz D:<&k> - 2Gpz f(u)(a:D)R-R + 3G f(u)(olD) 



From this it follows: 

ED -2Gp2 D:<&&> 
mD(3G - 2G/32<&-&>) 

f(a) = 

Using tr(as) = tr(a) - 3fG and the approximation €or as in terms of a, the function I(a> 

can be rewritten as: 

Using this result for the derivation of the constitutive equation for a, suprisingly the 

constitutive equation for steplike deformations is obtained as found by Larson. 

Reference: 

- Larson, R.G., A Constitutive Equation for Polymer Melts Based on Partially Extending 

Strand Convection, Journal of Rheology, 28(5), 545-571 (1984). 
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