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summary 

In order to be able to deal with the equalization of nonlinear digital 

communication systems, one has to know something about the theory of 

nonlinear discrete-time systems. 

As an introduction some important aspects of linear continuous systems, 

linear discrete-time systems and nonlinear continuous systems are 

repeated. Then the Volterra series description of nonlinear discrete-

time systems is introduced. After the derivation of the conditions for 

stability, the higherdimensional z-transform representation and the 

analytical properties of the system functions are discussed. To facilitate 

the back transformation of the higherdimensional z-transform, the 

association of variables is introduced. Cascade-connection and inversion 

of nonlinear discrete systems is then treated, followed by a method for 

the measurement of the Volterra kernels. Finally, some attention is paid 

to the synthesis problem. 

The contemplated equalization of a nonlinear digital communication 

channel is reduced to an inversion problem. For the implementation of the 

equalizer the synthesis of nonlinear discrete-time systems is invoked. As 

an example the Volterra kernels of a nonlinear system have been measured 

and an equalizer for that system has been designed and realized. From the 

measured eye-pattern of the equalized system it follows that the method, 

as developed in this report, satisfies very well for this kind of problems. 
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I. Introduction 

A nonlinear digital communication system can be considered as a nonlinear 

discrete-time system. Speaking of systems I we consider a "black box", the 

contents of which is of no concern. It is assumed that the "black box" 

has one input and one output terminal. System theory describes, in a 

general way, the relation between the input and the output signal. In 

this approach the system itself is characterized by a system function (for 

a linear system) or a set of system functions (for nonlinear systems). 

This report starts with the system theory of nonlinear time invariant 

discrete-time systems, as far as it is of concern for the communication 

system in question. Most of this material can be found in other papers, 

however, as far as the knowledge of the author goes, not in such a compre-

hensive way as in the underlying work. As an introduction some important 

aspects of linear continuous systems, linear discrete-time systems and 

nonlinear continuous systems are repeated. For the sake of brevity we 

speak in the sequel of discrete systems if we mean discrete-time systems. 

II. Linear continuous systems 

In relating input and output signals of continuous linear time-invariant 

systems, Fourier and Laplace transforms appear to be elegant tools [IJ. The 

input signal is represented by the function x(t), whereas the corresponding 

output signal is denoted by y(t). Let the impulse response of the system be 

given by h(t), then the output signal y(t) is written as the convolution of 

the input signal x(t) and the system function hit) as follows (see also 

Figure 1) 

y(tJ 

Figure 1 

"" f h!1:)x(t-TJdT 

X(I)----tl 
X(p) _ 

h(l) 

H(p) 

t-___ ,y(t) 

yIp) 

"Black box" representation of a linear continuous system. 

(1) 
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If the impulse response has the physical limitation of being causal, the 

inte9ration (1) extends from zero to plus infinity. The rather complicated 

operation of convolution can be avoided by using Laplace or Fourier trans-

form:;. Define the transforms of the signals ,z:(t) and yet) by respectively 

X(p) and yep). The system function H(p) consists of the transform of the 

impulse response h(t). Now the transform of the output signal is found to 

be 

yep) = H(p)X(p) , (2 ) 

which means an important simplification with respect to the convolution (1). 

This reduction originates from the fact that the function ePtis an eigen-

function of a linear time-invariant continuous system [11. 

III. Linear discrete systems 

For linear discrete systems the input time sequence is given by {x(m)} , the 

set of input signal values at the characteristic instants t = mT, m integer. 

The corresponding output sequence is denoted by {y(m)}. In this case the 

discrete impulse response sequence {hem)} characterizes the system. For these 

systems the input output relation reads [2] 

y(m) = L h(k)x(m-k). (3) 
k 

·1 
{x(m») {hIm») • {y(m») 

X(z) H(z) Ylz) 

Fi9'll%e 2 "Black box" representation of a linear discrete system. 

This discrete convolution is now simplified using the z-transform [2] 

Hz) = H(z)X(z) , (4) 

where Y(z), H(z) and X(z) are the "'-transforms of {y(m)}, {h(m)} and {x(mJ} 
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respectively. Simplification (4) is related to the fact that the sequence 

{z-m} is an eigenfunction of linear time-invariant discrete systems. 

Figure 2 gives a pictorial representation of a linear discrete system. 

IV. Nonlinear continuous systems 

A well-known method for the description of nonlinear continuous time-invariant 

systems is given by means of the so-called Volterra series [3,4]. The output 

y(t) is related to the input X(t) as 

00 00 00 

y(t) = f h1 (T)X(t-T)dT + f f h2(T1,T2)x(t-T1)x(t-T2)dT1dT2 + .,. 

+ 

-00 -00 -00 

00 00 

J .. ./ 
-00 -00 

n 
II 

i=l 
X(t-T .)dT. + ... , 

'I.. 'I.. 
(5) 

"here h/t) is the impulse response of the linear term as given by (1) and 

hn (t1,t2, ••. ,tnJ is called the nth order impulse response. Here multidimensional 

Laplace transform is helpful to evaluate (5) in a more elegant way. The n-

00 00 

f. .. f 
-00 -00 

For the inverse transform it is found that 

-p.t. 
e 'I.. '1..dt. 

'I.. 
(6 ) 

(7 ) 

where (Jl~' . . .Jern are within the region of convergence of Hn(P 1, .• o"PnJ. By 

means of (6) and (7) the signal transformation x(tJ ~ y(tJ is calculated in 

four steps [4]. 

1) Calculate the Laplace transform X(pJ of x(t). 

2) Construct the set of functions 

n 
H (P1'''' ,p J II X(p.J 

n n i=l 'I.. 
(8) 
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for all n relevant to the system in question. 

3) From (8) we calculate, by means of the inverse Laplace transform, 

y (t1·····t ). 
11. n 

4) Find y(t) by setting 

y(t) = L Yn(t ••••• t) . 
n 

(9) 

Step 3) of this procedure is often rather difficult. Evaluating Equation (7) 

is not easy and tables of transforms for any order are not particularly 

practical. Moreover, step 3) results in y (t1 ••••• t ), whereas one mostly 
n n 

is only interested in y (t •..•• t). This suggests that the procedure as 
n 

outlined above is more complicated than necessary. Indeed, a better procedure 

called 'association of variables' is suggested by George [3] and in its most 

general form derived by Reddy and Jagan [5]. This method breaks down an 

n-dimensional Laplace transform Y (Pl •...• P ) to an one-dimensional Laplace n n 

trans,form y (p). The general formula for this process is 
n 

1 = -';0--. 
(2rrj )n-l 

rJ +joo rJ +joo 
2 n 
f··· f Y (p-u1-u2-···-u 1.u1. u2.···. u 1)' . . n n- n-

rJ -Joo rJ -J"" 
2 n 

( 10) 

A repeated application of Cauchy's residue theorem makes the evaluation of 

this integral rather easy. 

V. ~rra series representation of nonlinear discrete systems 

To gain insight into the description of nonlinear discrete systems the 

situation as depicted in Figure 3 should be considered. 

·1 
I.mll@ {q(m)} . I 1 

{x(m)}. {a(m)} {b(m)} • {y(m)} 

Figurl3 3 Example of a second order nonlinear discrete system. 



- 5 -

A sequence {x(m)} is supplied to a linear discrete system with an impulse 

response sequence {a(m)}. The output of this subsystem is described by {p(m)}. 

Squaring the latter sequence yields the sequence {q(m)} which, in its turn, 

is supplied to a second linear discrete system, described by its impulse 

response sequence {b(m)}. As output {y(m)} of the system considered, we take 

the output of this latter linear discrete system. So the overall system, being 

spoken of here, consists of a cascade connection of two linear systems with a 

squaring device in between. The sequence {p(m)} is given by 

p(m) = L a(k)x(m-k) , 
k 

whereas the output of the squaring device is readily seen to be 

{:, 2 2 q(m) = p (m) - [L akx(rn-k) 1 = 
k 

= L a(k)x(m-k) L a(l)x(m-l) = 
k l 

= I I a(k)a(l)x(rn-k)x(m-l) 
k l-

(11 ) 

(12 ) 

Output {y(m)} is found by applying the discrete convolution (3) to {q(m)} 

and {b(m)}. This yields 

Y2(m) = I b(r)q(m-r) = 
r 

= I b(r) I I a(k)a(l)x(rn-r-k)x(m-r-l). 
r k l 

Introducing the new variables i=r+k and j=r+Z, Equation (13) is written 

as 

I b(p) I I a(i-r)a(j-r)x(m-i)x(m-j) 
r i j 

(13) 

(14 ) 
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and by changing the order of summation 

L L L b(r)a(i-r)a(j-r)x(m-i)x(m-j). 
i j r 

As second order impulse response of the given system we define 

L b(r)a(i-r)a(j-r). 
r 

Subs,tituting (16) into (15) yields 

L L h2(i,j)x(m-i)x(m-j). 
i j 

(15) 

(16) 

( 17) 

Comparing this equation with (5) we see that y 2 (m) of (17) represents the 

second order term of the discrete Volterra series. Because of the absence 

of ., linear term we call the system of Figure 3, a second order power system. 

In t,he general case we speak of a polynomial system. 

Let us noW consider the system as depicted in Figure 4, where the connection 

bet.'een the two linear systems, given by their impulse response sequences 

{a(nl)} and {b(m)}, consists of two parallel signal paths: a direct connection 

and a squarer. 

lx(ml}-...j la(ml} 

Figu.re 4 Second order system with two signal paths, i.e. a second order 

polynomial system. 

The two signals are added before supplying them to the linear system {b(m)}. 

It is obvious that the sequence {p(m)} is identical to that resulting from 

Figure 3. The sequence {q(m)} now reads 
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= L a(k)x(m-k) + L L a(k)a(l)x(m-k)x(m-l) . ( 18) 
k k l 

From this equation the output sequence becomes 

y(m) = I b(r)q(m-r) = I b(r) L a(k)x(m-r-k) + 
r r k 

+ I b(r) L L a(k)a(l)x(m-r-k)x(m-r-l) 
r k l 

(19) 

where Yl(m) stands for the linear (first order) term and Y2(m) for the second 

order term. As can readily be seen the second order term equals Equation (13), 

which resulted after some Simple manipulations in Equation (17). Tbe first 

order term is reduced likewise 

= 

where 

I b(r) L a(i-r)x(m-i) = 
r i 

L L b(r)a(i-r)x(m-i) 
i r 

= ~ h1(i)x(m-i), 
1-

(20) 

(21 ) 

By means of (19), (20) and (17), the output sequence of a second order non-

linear discrete system is described as a functional of the input sequence and 

the first and second order impulse response sequences. 

Resuming we have for a second second order polynomial system 



y(m) = 1: h1 (i)z(m-i) + 
i 
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L L h2(i,j)z(m-i)z(m-j) • 
i j 

(22) 

From a generalization of this result to higher order systems, it follows 

that 

y(m) = L h/i)z(m-i) + 
i 

... h (i 1, •.• ,i )z(m-i
1

) ••• z(m-i ) + ••• n n n 

.... 

(23) 

This relation is the discrete version of Equation (5) and is called the 

discrete Volterra series. In many papers, for instance [6] and [7], this 

series has been derived from the continuous one by considering sampled-data 

nonlinear continuous systems. Apparently, the problem arose for the first 

time in that kind of systems. Considering complete discrete systems from 

the very beginning of the investigations, as is done in this paper, does 

not yield any difference in the results. 

From (16) it follows that h2(i,j) is a symmetrical function of i and 

J .. We wonder whether it always can be assumed that the higher order impulse 

responses are symmetrical, because we know from literature [4] that such is 

the case for the higher order impulse responses of nonlinear continuous 

systems. This question will, under some weak conditions, be answered 

affirmatively as is shown below. Let us separate an arbitrary second order 

impulse response sequence in a symmetrical and an anti-symmetrical part 

(24) 

where 

(25) 

and 

(26) 
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Substitute the anti-symmetrical part into (17). This yields 

Y2(mJ = ~ ~ ~ {h2(i.jJ - h2(j,iJ}x(m-i)x(m-j) 
~ J 

(27) 

Assume that all input values x(mJ are bcunded, i.e. Ix(mJI ~ C for all m; 

C an arbitrary finite real value. Then for the first term of (27) we have 

~ ~ 4 Ih2(i.j)x(m-iJx(m-jJI 
~ J 

~ ~ c2 ~ 4 Ih2(i.jJI 
~ J 

(28) 

Moreover, if the series 4 4 h
2
(i.j) converges absolutely, the summations 

~ J 
over i and j in the first term of (27), are allowed to be interchanged. Then 

Equation (27) reads 

= ~ I I h2 I i.jJx(m-iJx(m-j ) + 
j i 

- ~ I I h2(j.iJx(m-iJx(m-jJ. 
i j 

(29) 

Our next step is to substitute i for j and vice versa into the first term 

of (29). It is then readily verified that the right-hand member of (29) 

vanishes. The requirement of absolute convergence of 4 4 h2(i,jJ is a 
~ J 

condition for stable systems, as will be shown in the next section. Thus, 

for stable systems with bcunded input, a possible anti-symmetrical part of 

the second order impulse response has no influence on the output. Without 

loss of generality it can be assumed that h
2
(i.jJ is symmetrical. This 

result also appears to be valid for higher order impulse response sequences, 

as is shown by a similar reasoning as above for second order systems. 

VI. Conditions for stability 

A system is stable if any bcunded input signal causes an output signal that 

is also bcunded. This means that for input signals, which satisfy Ix(m)1 ~ C, 

for all m and for C an arbitrary finite value, the corresponding output 
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satisfies \y(mJ\ ~ D, for all m and with D an arbitrary but finite value. 

In the case of linear systems this means 

\y(mJ \ = \ I h(kJx(m-kJ \ 
k 

Stability follows if 

I \h(kJ\ < '" 
k 

~ cI \hO:J\ 
k 

(30) 

(31 ) 

In a similar way as in [1) it is shown that (31) is not only a sUfficient. 

but also a necessary condition for the stability of linear systems. To find 

stability conditions for nonlinear systems we take a look at Equations (19) 

and (22). Then it follows that if both Yl(mJ and Y2(mJ are bounded. we have 

a sufficient condition for stability. This requirement for Yl(m) leads, via 

the preceding argumentation directly to the conclusion 

(32) 

For the second order term We have 

\Y2(mJ \ = \ I I h2(i,jJx(m-iJx(m-jJ\ ~ 

i j 

~ I I \hii,jJ\ . \x(m-iJ \ . \x(m-j)\ ~ 

i J 

~ c2 I I \h2(i,jJ\ 
i j 

(33) 

Stability is guaranteed if 

~ ~ \h2(i,jJ\ < '" • (34) 
1~ J 

A sl!cond order nonlinear system is stable if the conditions (32) and (34) 

are satisfied simultaneously. We emphasize that these conditions are sufficient 

but not necessary. 
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In general a higher order system is stable if all impulse responses 

h (i1 ••••• i J. necessary to describe the system under consideration, are n n 
absolutely summable. 

As an example, consider the system as depicted in Figure 5. All switches are 

synchronously closed at the instants mT (m integer) • 

Figure 5 A second order sampled-data nonlinear continuous system. 

The continuous subsystems art) and b(t) are given by 

art) = e-at 

C1,S>O. (35) 

b(t) = e-St 

Supposing T = 1, the related discrete subsystems are given by means of 

arm) = e--am 

~ 0 • (36) 

b(m) = e-Sm 

From this the overall system impulse responses are found, using (16) and (21) 

i 
I -Sr -Q. (i-r ) e e 

r=O 

min(i.j)" ( . J ' ( . J - " -pr -Q. 1--r -Q. J--r - Lee e (37) 

r=O 

If we want to answer the question of stability, as far as the first order term 

goes, we have to look at the series 
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'" i 
{e(Cl-!3)}1"1 

00 

-io. 1 i(o.-B) 
1: 

-io. 
1: 1: 

e e = e e = 
0. 

i·=O 1"=0 i=O 1 - e 

00 00 

1 
1: Ie 

-io. -ifl 
I ~ 

1 { I = - e 
o.-fll o.-fl 1 - e i=O 11 - e i=O 

00 

-ia. \' 
e + L 

i=O 
a t a • (38) 

By m,aans of d' Alembert' s ratio test [8] it is easy to see that both series 

of (.38) converge and thus the first order impulse response is absolutely 

summ,~ble. Let us now consider the second order term 

''0 00 min(i,j) D (.) (.) I I e-p l"e-a ~-1" e-a J-l" I = 
1"=0 

00 00 

I -io. -jo. 1 -
e e = I I 

i=O j=O 

00 00 

le-(i+j)o. _ e-(i+jb.+ min(i,j)(20.-B) I ~ I I 
i=O j=O 

00 00 

-(i+j )0. e + 
00 00 

-(i+j)o. + min(i,j)20. -min(i,j)B} e e L L L L 
i=O j=O i=O j=O 

00 00 00 00 

e-min(i,j)B} 
$ 

1 { L I -(i+j)o. I I 
e 20.- fl l 

e + • 
11 - i=O j=O i=O j=O 

a;t~ 
2 

(39) 

The general term of both series of (39) tends to zero if i and j go to 

infinity. This is Stolz's necessary and sufficient condition for the 

convergence of double series [8]. Now it is concluded that the system as 

given in Figure 5 is stable because it is shown that both conditions (31) 

and (34) are satisfied. 

VII. Higher dimensional i-transform description of nonlinear discrete systems 

Define the two-dimensional z-transform as 

(40) 

then. the inverse transform is given by [2] 
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(41 ) 

where C1 and C2 are contours within the region of convergence of Xlz 1'Z2)' 

Recalling (3) and (4) an artificial variable is introduced in (15) such 

that this equation is rewritten as [61 

= ~ 4 L blp)ali-p)alj-p)xlm1-i)xlm2-j) = 
1- J P 

= L b(p) L ali-p)xlm1-i) I al j -p)xlm2-j) . 
p i j 

Taking the two-dimensional z-transform of (42) yields 

-m 
L b(p) I ali-p)x(m1-i)zl 1. 

m
2 

p i 

-m 
L a(j-p)x(m2-j)z2 2 
j 

substituting into this equation the new variables 

- p 

- p , 

gives 

Introduce the variables 

n1 
t;. 
- m1 

- p 

n
2 
~ m

2 
- p . 

This changes (45) as follows 

(42) 

(43) 

(44) 

(45) 

(46) 
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-n -1' 
Y;:(z1,z2) = L b(1') L L a(p)x(n

1
-p)z1 1 

l' n1 p 

-n -1' 
L L a(q)x(n2-q)z2 2 = 
n2 q 

= L b(1')(Z1Z2)-1' L L a(p)x(n1-p) z1 -n1 • 
l' n

1 
p 

(47) 

We ha.ve now developed an input output relation in the two-dimensional z-domain, 

of a second order power system. This relation is in its general form written 

as 

(48) 

In the given example of Figure 5 the second order system function reads 

(49) 

The first order system function of this example is readily found by applying 

(4) to (37). This yields 

H1(z) = A(z)B(z) . (50) 

For A(z) and B(z) we have 

~ 

A{z) = L -am -m = 13 e 13 
-a m=O 13 - e 

(51 ) 
~ 

B(z) = L -13m -m 13 e g = 
m=O 13 - e B 
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Substituting these expressions into (49) and (50) gives 

Z2 
H 1 (z) = ---"--""6-

(z-e-")(z-e- ) 

(52) 

For arbitrary higher order systems we define the n-dimensional z-transform 

(see [6}, [7] and [9]) 

X (z1""'z ) ~ L n n m
1 

with the inverse transform 

1 
X (m

1
, ••• ,m ) = -"'--

n n (2'rrj)n 

--m n z n 
(53) 

(54) 

with C1, •.. ,Cn contours within the region of convergence of X(zz, .•. ,znJ. 

An nth order system is defined by a set of system functions 

{H1(Z),H2(zl,z2), •.• ,Hn (zl, •.• ,zn)}' From the definitions it will be clear 

that the higher order system functions H.(zl""'z.) are the i-dimensional 
1- 1-

z-transforms of the higher order impulse responses h.(m1, ..• ,m.) and the 
1- 1-

other way around, i.e. 

H.(2 1,···,Z.) 
1- '& 

• •• Z. 
1-

(55) 

and 

. .. dz i 

(56) 

Finding the output {y(m)} of such a system at a given input {x(m)} goes, 

along a similar four step procedure as given in Section IV, as follows 
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1) Calculate the z-transform X(z) of the input sequence {x(m)}; 

2) Construct the set of n functions 

Y .(zl'" •• z.) 
'/" '/" 

of the nth order system. 

i 
II 

j=l 
X(z .) 

J 
i = 1 ... •• n 

3) Calculate the inverse transforms {y.(m
1 
••••• m.)} of (57). 

'/" '/" 

4) The output {y(m)} is found by means of 

n 
y(m) = L 

i=l 
y.(m •.•.• m). 

1-

(57) 

(58) 

Here we meet the same difficulty as in the continuous case, namely the need 

for extensive tables for multi-dimensional z-transforms as needed in step 3) 

of the procedure. But again, since we are only interested in yi(m1 ••.•• mi ) = 

= yi(m •••.• m). the association of variables is possible, as will be shown in 

Section IX,and thus the difficulty mentioned above can be avoided. 

VIII. Properties of the system functions 

In Section VI it has been shown that a sufficient condition for the stability 

of a system is that the impulse response function of any order is absolutely 

summable. Moreover, it has been shown, that it is always allowed to assume 

that the impulse responses are symmetrical in all variables. From (55) it 

follows that the system functions H.(zl •••.• z.) have the same property. If a 
'/" '/" 

system function is not symmetrical it can always be written in a symmetrical 

form as follows 

[H .(zl'" •• z.J] '/" '/" symm 
(59) 

where the summation over j extends over all possible permutations of the 

i variables zl ••.•• zi. For the case i=J this means 
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+ H3(83,31,82) + H3(82,81,83) + 83(3
1
·3

3
·3

2
1J 

(60) 

The impulse response functions can be symmetrized in the same way. For the 

sake of simpler notation the unsymmetrical form is often preferred. 

Assuming that the sufficient conditions for stability are satisfied, we 

shall derive analytic properties of the system functions. Let us consider a 

second order system, then we have 

(61) 

Because of (34), and if causality is assumed, the system function H2(z1.z2) 

is analytic outside and on the unit circles, i.e. 

(62) 

Of course this property is also valid for higher dimensions, so that in (56) 

the unit circle can serve as contour for all integrations. 

IX. Associ~tion of variables 

As indicated in Section VII the use of tables of multidimensional z-transforms 

is avoided by a technique named 'association of variables' [3], [5], [7] and 

[9]. This technique reduces the multidimensional z-transform to a one-dimen-

sional z-transform, which is transformed back to the time domain by means of 

a one-dimensional a-transform table or the integral (54) with n=1. Back 

transforming the n-dimensional a-transform Y (a
1 
••••• 3 ) results in a function 

n n 

yn(m1 ••••• mn) of n variables in the time domain. For time-invariant systems 

one is only interested in the function of one time v~riable y (m •••• m). 
n 
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whel,e m
1 

= m
2 

= ... = mn = m. Consider the two-dimensional transform given 

by (41), evaluated for m1 = m
2 

= m 

Let 

-1 
z1 = zu 

z2 = u 

dz] dZ 2 = u-1dudz 

substituting (64) into (63) yields 

(63) 

(64) 

= 

1 
= 2rrj 

-1 -1 m-1 
Y2(zU .u)u dU]z dz (65 ) 

The integral between the brackets reduces the two-dimensional z-transform 

to a one-dimensional z-transform, whereas the contour integral along C
1 

represents in fact the one-dimensional inverse transformation of the z-

transform in the brackets. It is the operation between the brackets that is 

call,ed the • association of variables' and reads for the two-dimensional case 

(66) 

wher •• r2[Y2(z1.z2)] is the formal notation of the operation which reduces 

the 1:wo-dimensional z-transform to a one-dimensional z-transform.For systems 

sati,;fying the sufficient conditions for stability and excited by bounded 

and c=ausal input sequences, the function Y2(z1'Z2) has no singularities 

outside C1 (see Section VIII). Suppose that 

z1 = a. then lal < 1. Consider the function 

Y2(Z1.Z2) has a Singularity at 

-1 
Y

2
(zu .u) and let us have a look 
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at the point zu-1 = a. Because lal < 1 it follows that lui> Izl, which 

-1 
means that the function Y(zu ,11.) has no singularities inside C2 due to 

-1 
singularities inside C

1 
arising from the term zu [7). 

In the n-dimensional case the operations (63)-(65) are performed 

successively n-1 times. This yields the general association formula 

([7) and [9)) 

r
n

[Y
n

{z1, ... ,zn)) A -""1'-.--,;"1 ~ ... ~ Y
n

{zu1-
1 

{211J·)n- C Cn_1 2 
.. , 

(67) 

At integration along C. it should be kept in mind that there are no 
1. 

singularities within C. arising from singularities inside C. l' In (67) 
1. 1.-

the association is being given in a certain order, but the association can 

be performed in any arbitrary order. The (n-2)-fold integral (67) is 

readily evaluated by repeated application of the residue theorem. 

TO illustrate the method, given in this section, we consider the system 

as depicted in Figure 5 and ask for the second order impulse response 

sequence, the z-transform of which is given by (52). From (52) we find 

-1 -1 z zu 11. 
H 2 ( 1311. , u) = -"-"'8 -';';-""1'--" --::c;: 

and 

z-e zu -e u-e 

= --'Z'-::-8 Res. {z 1 u -1) = 
-<:J. - 1 - ex -ex z-e u:::e zu -e u-e 

2 z = ---::::"'--.".-
(z-e -$ )(z-e -2a.) 

(68) 

(69) 
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By means of the inverse one-dimensional z-transform integral, this 

expression is back transformed to the time domain. This gives 

1 
2 

m-l 
h

2
(m) ~ 

z = z dz = -8 -2a 2rrj C1 
(z-e ) (z-e ) 

m+1 z } Res. -8 { -8 -2a + 
z=e (z-e ) (z-e ) 

m+l -2= -8m 
Res. { z } = e e 

+ 
8) (z-e -2a) 2a-8 + 2a+8 

z=e-2a (z-e 1-e 1-e 
(70) 

An import.ant rule connected with the association of variables, is given 

by 

(71 ) 

whi.ch is easy to verify by means of (67). 

x. Cas.cading and inversion of nonlinear systems 

Describing the overall system function of a cascade connection of linear 

systems is very easy. Linear system theory learns that one only needs to 

multiply the system functions of the constituting subsystems. For nonlinear 

systems matters are more complicated because of the interaction between the 

system functions of different order of the subsystems, as will be seen in 

the sequel. We shall calculate the first, second and third order terms, 

which are the most important ones for practical applications; of course, 

terms of higher order are derived in a similar way_ Consider the cascade 

con:nection of Figure 6. 

·1 
p 

·1 
x K G I Y 

, or- J 

H 
Fig1Jre 6 The cascade connection of two nonlinear systems. 
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The input output relation for the subsystem K is denoted in the z-domain 

as follows 

(72) 

whereas this relation for the subsystem G is given by 

(73) 

Substituting (72) into (73) gives us the input output relation of the 

cascade system H 

(74) 

where r
2

[ •.• ] means that the one-dimensional z-transform, resulting from 
zl 

the reduction by means of the association of variables, has to be evaluated 

at z=zl; r 2[ ••• ]z2 means evaluating at Z=Z2. From (74) it can directly be 

seen that 

(75) 
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Colle,cting the second order terms yields 

(76) 

In this latter equality use is made of rule (71) and it follows 

(77) 

To find the third order term H
3

(Zl'Z2'Z3) we collect the third order terms 

of (74) 

(78) 

Applying (71) to the first term of this expression yields f3[G1(ZlZ2Z;3) • 

• K;/'ll'Z2'Z3)X(Zl)X(Z2)X(Z3)]. Using the symmetry properties as discussed 

in Section VIII, the second and third term are shown to be equal. After 

addition of these terms it follows 2f2 [Giz l'Z2)K/z1 )X(Zl)f 2[KiZl'Z2) 

.X(Zl)X(Z2)]Z}. This functional consists of two operators that reduce a 

two-dimensional a-transform to a one-dimensional z-transform. By means of 

the d .. finition integral (67) for the association of variables it is shown 
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for the system H the third order system function becomes 

It can be seen that the first order term of the cascaded system depends only 

on the first order terms of the constituting subsystems. The second order 

term of the overall system depends on the first and second order terms of 

the subsystems and the third order term of H results from the first, second 

and third order terms of G and K. ,It appears to be a general rule that an 

nth order term of the cascade connection contains only terms of order nand 

lower of the constituting subsystems [10]. As an interesting exercise it is 

left to the reader to derive the system functions of the second order system 

of Figure 5 from the constituting first order systems and the squarer. 

Once the formulae for cascading are derived, the inversion can be treated 

as a special case thereof. If the action of a system is, in a symbolic way, 

denoted by K and the action of a cascade connection by (see Figure 6) 

H = GK, (80) 

then the inverse of a system K is denoted by K-1 
and defined as 

(81) 

So the formulae for inversion are found by taking (75) equal to unity and 

(77) and (79) equal to zero and by solving the resulting equations for G. 

-1 
This leads to the inverse operators G=K as follows 

, 
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-K3(3l,32,33)Kl(3l33) + 2K2(31,33)K2(3133,32) 

K1(3 1)K1 (3 2)Kl (33)Kl (3l33)Kl(z13233) 
(82) 

We want to emphasize that none of these inverse system functions exists if 

the linear term Kl (3) equals zero. It has been shown [10] and it is readily 

verified that the pre-inverses of a system are identical to the post-

inverses. 

XI. Measurement of the Volterra Kernels 

In thE! preceding sections it was assumed that the multidimensional impulse 

response functions, or Volterra kernels, {h .(m
l

, • :., m.J) were known. One 
1- 1-

can iD~gine situations where these functions are unknown. In these cases one 

would like to have a measuring procedure to find the kernels. Eykhoff [11] 

and Alper [12] gave a method based on excitation of the system by a stochastic 

proce"s and the kernels follow from correlation measurements. 

Becau"e of the theoretical and practical difficulties of this procedure we 

shall discuss here a method based on the direct measurement of responses at 

deterministic input signals. The method is developed by Schetzen [13] for 

nonlinear continuous systems, but can, in a complete similar way, be applied 

to nonlinear discrete systems as is shown in the sequel. 

The. response of a system at an excitation by an input sequence {x(mJ} is 

denotE!d by {y(m) }. Let us consider a power system of the second order. 
X 

Suppes,e that the system is excited by the sum of two input sequences {Xl (m)} 

and {~'im)}. Then it follows from (17) 

= L L h2(i,j)xl (m-i)x1(m-j) + 
1- J 

n: 
i j 

+ 2 ~ 4 h
2
(i,j)x

1
(m-i)x

2
(m-j) , 

1- J 
(83) 
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where in the last term use has been made of the fact that h
2
(i.j) is 

symmetric in i and j. Equation (83) is rewritten as 

where 

(84) 

(85) 

For {Xl 1m)} and {x
2

(m)} We take respectively the unit impulse sequences 

0mO and 0mn' where Cmn is the Kronecker delta function 

for m = n 
(86) 

for m :I n 

From (85) it follows 

(87) 

Substituting (87) into (84) yields 

(88) 

Now the measuring procedure is clear and proceeds into the following steps. 

1) Excite the system by the sequence 0 0+0 and measure the response. m mn 

2) Excite the system by the sequence 0mO and measure the response. 

3) Calculate from the result of step 2) the response at the excitation by 

o . Because the system is assumed to be time-invariant this is only a mn 

shift over an n units delay. 

4) Subtract the responses of steps 2) and 3) from the response of step 1). 

5) The second order kernel h2(m. m-n) is found after dividing the result of 

step 4) by two. 

Of course the procedure has to be repeated for all relevant values of n to 
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detenaine the second order kernel over the whole range of integers i and j. 

The m"thod as given, results into h
2

(m, m-n), Le. the values of h
2
(i,j) 

that are on the straight line j=i-n in the {i,j}-plane. For the full 

dimensioning of the kernel it suffices to determine the values on the 

diagonal and the upper left or lower right half of the {i,j}-plane. This 

becau!le of the symmetry of h/i,j) 

L-1 

FiguI'e 7 The range of h(i.j) in / 
/ 

/ 
the {i,j}-plane and the 

points on the line j=i-n. / 
o V 

o n L-1 -- i 

In Fi~rure 7 the range of i and j of a system with finite duration of the 

two-dimensional impulae response of length L is depicted, together with the 

points on the line j=i-n. 

If we are dealing with a second order polynomial system, the procedure 

as described above will still result into the second order kernel h
2
(i,j). 

This "an readily be seen, since from (20) it follows 

(89) 

The first order kernel of a second order polynomial system is obtained by 

establ.ishing the impulse response of such a system being hl(m) + h
2

(m,m); 

once h
2
(i,j) is known, hl(i) is found by subtracting h

2
(m,m) from the 

impulse response. 

The, given method is also valid for higher order systems. To obtain 

y (m) (' 
n xl 

x ) use is made of the identity 
n 
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The first term of this expression consists of the sum of all x's raised to 

the power n. In the second term, each term is the sum of (n-1) different 

x's raised to the power n. There are (n~l) terms of this type. Each term in 

the third term of (90) is the sum of (n-2) different x's raised to the power 

n. There are ( n
2

) such terms, etc. for all terms in (90). In such a way n-

the function h (i
1 
••••• i ) is found, since the contribution of kernels of order 

n n 

less than n is zero., This follows from (23) and 

for i = 1 •••• • n-1 . (91) 

The validity of (91) is not shown here, but is found in [13]. A system of 

order n is fully determined by starting with the measurement of 

h (i 1 •...• i ). Then the measurement can proceed for h l(i 1•• ••• i 1) by n n ~ ~ 

subtracting the contribution due to hn• etc. In this way all kernels are 

successively measured, starting with the kernel of the highest order. 

XII Synthesis 

The synthesis of circuits is a problem that is more difficult to solve 

than the analysis. This statement holds especially for the most general 

case. From the analysis it is most times possible to derive synthesis 

methods for specific cases. In this section we shall deal with two such 

cases. The methods will be outlined for second order power systems and 

since the generalization to higher order is quite straightforward, this is 

being left to the reader. 

For the first case we repeat Equation (49) here 
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(92) 

From J"igure 5 it follows that a system with this kind of transfer function 

can b" represented as two linear systems, separated by a squaring device as 

depic10ed in Figure 8. 

Figur,. 8 

A(z) B(z) 

Synthesis of a second order system, whose system function is 

decomposed as B(Zl Z2)A(Zl)A(Z2)' 

From this it follows that a second order function that can be decomposed 

like (92), is synthesized as given by Figure 8, namely a linear system A(z) 

follo' .. ed by a squarer and this followed by a second linear system B( z). 

x(m-1) .--_-, x(m-2) .--_-.., x(m-3) 
x(m) ___ ·_ ...... ot 

~(O,1) 

~------~+.~----~~ 

x(m-1) 

h,(1,1) 

~------~.+~----~.+~----

x(m-2) 

~----~+.~----~+~---

.Figure 9 Synthesis of a second order kernel. 
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The second method is more general;its only limitation being that it 

leads to realizations with a finite impulse response (FIR). To show the 

method, Equation (17) is repeated here 

= ? ~ h2 (i.j)x(m-i)x(m-j) 
-Z- J 

(93) 

It is easy to verify that the circuit of Figure 9 realizes this function. 

-1 
The boxes with the label'z ' represent delay devices, which give one 

unit delay. 

The scheme is further simplified by using the symmetry property of h
2
(i.j). 

The lower left or upper right part of the weighting coefficients and 

multipliers is then omitted. The diagonal elements remain unchanged, but 

the other weighting coefficients get twice the value of the scheme of 

X In- xm- x -(m 31 

Z-1 Z-1 Z-1 --

IT 
~,Ol 
-.. 

2hlo,11 

y · .. 
2hlo,21 

'T 
~ .. 

£:\ 
2~O,31 

I f---
t 

-,.. 

hl1,11 

TI · .. 
2hl1,21 
• 

'f .. 
2hl1,31 

'"' · 
t --.. 

Figure 10 The simplified realization scheme of a second order kernel. 
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Figu:ce 8. In fact, one delay line suffices, because the information of the 

second delay line is also present in the first one .. We then get the scheme 

of Figure 10. 

The limitation of finite impulse response is rather theoretical than 

practical. 

In S'3ction VI it was shown that for stable systems 

lim h(i.j) = 0 
(.j-+oo 

(94) 

So in practical situations the system is approximated by a FIR system of 

a sa1oisfactory length. 

XIII. ~qualization of a,nonlinear digital communication channel 

An important application of the theory given in this report is the 

equal.ization of nonlinear digital communication channels. Such channels 

can t)e considered as discrete-time (sampled data) systems. We implemented 

a system as given in Fig. 11. 

Figul:e 11: The simulated communication channel. 

The i.nput of this system is driven by a binary random sequence of 

rectangular pulses of duration 80 usec at a rate of 12.5 kb/s. and the 

output is synchronously sampled. Because the linear transfer functions 

H1(w) and H2(w) are not well defined the time-discrete transfer functions 

of the overall system are measured by means of the method given in 
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Section XI. The results are 

a -1 -2 -3 -4 -5 
G

1
(z) = O.z + 0.168z + 0.12z + 0.048z + 0.018z + 0.008z , 

-4 -3 -5 -4 -1 -2 
+ 0.0018z1 z2 + 0.000831 Z2 + 0.01563 1 32 

-2 -3 -3 -4 -4 -5 
+ 0.005831 z2 + 0.001831 3 2 + 0.000831 3 2 (95) 

Due to the dispersion of the system the several information carrying pulses 

overlap at the output of the system. This phenomenon is called intersymbol 

interference. Removing this disturbance is called equalization and is 

reached by cascading the system with another system such that the cascade 

connection has a transfer function equal to unity. In fact this means that 

we have to look for the inverse system as has been treated in Section X. 

For the system functions given by (95) the inverses K1(3), K2(3 1,3
2

) and 

K3 (3 1,32,3
3

) according to (82) are calculated. The inverse system has been 

realized by means of a four stage shift register, a set of "and"-gates 

forming the multipliers and a resistor matrix, forming the weighting 

coefficients. This network is used as a pre-inverse system. The quality 

of the equalization is sho'''' in Figure 12, where the eye pattern [14] of 

the equalized system is given together with the unequalized one. As an 

intermediate result the eye pattern of the system with the linear 

equalization is also shown. 

It is seen that the nonlinear functions K2(3 1,z2) and K
3

(3
1
,3

2
,3

3
) give 

a substantial contribution to the equalization. For a detailed description 

of the system and the equalization we refer to [15]. 
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Figure 12 

a - The eye pattern of 

the unequalized 

system. 

b - The eye pattern in 

the case of linear 

equalization. 

c - The eye pattern of 

the equalized system. 
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XIV. Concluding remarkS 

It has been shown that many aspects of nonlinear continuous systems can 

be treated in a similar way for nonlinear discrete-time systems. Not all 

questions have been answered and the treatment is by no means complete; 

for instance, neither the problems of stochastic input signals have been 

dealt with nor has the question of the convergence of the Volterra 

series been considered. 

The purpose of this report is to gather the introductory material on 

nonlinear discrete-time systems as far as it is indispensable for the 

equalization of nonlinear digital communication channels. In [16) an 

extensive bibliography is found, which can serve as a guideline for 

further reading. 

From the reported experiments it follows that the theory as treated 

in this report is sufficiently and serves quite well to be able to 

equalize a nonlinear communication channel. 
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