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A novel approach to the solution of
indirect measurement problems with
mimimal error propagation

M. K. Smit

Delft University of Technology, Dept of Electrical Engineering, Microwave Laboratory,

Delft, The Netherlands

A general solution method for indirect-measurement problems is developed, and
implemented in a FORTRAN-{V program. A comparison with the conventional
approach shows that the accuracy improvements gained can be very substantial. Use

of the method for testing the validity of measurement set-ups, and for improving
them is discussed, Attention is also paid to the theoretical implications of the approach.
An analysis of conventional sclution techniques is given which illustrates the basic
weakness associated with these methods. A comparison is made with the theory of
stochastic estimation and with the formal theory of measurement, and a fundamental

problem in the formulation of the latter is presented.

List of symbols

b(y)  binary function describing the Y-space uncertainty

R region
F operator transforming x into y values
Fix ith component of fx
G analytical operator transforming y-values into x-
R values )
Gy ith component of Gy .
L linear approximation of NF
m number of X-space dimensions
M measurement operation
n number of ¥Y-space dimensions
N Y-space normalisation operator
N, ‘number of measured parameters
YV,  number of unknown parameters
Own measurement transformation
{p) set of primary qualities
Rg empirical relation
Ry numerical relation
{s) set of secondary qualities
v Jowyay
Y
x point in the X-space
X value of x corresponding to ¥
AX set of maximum errors in the components of X
(X,AX) X-space uncertainty region
Y set of meter readings
AY set of maximum errors in the components of ¥
(Y,AY) Y-space uncertainty region
o standard deviation of ¥;
Z, covariance matrix of ¥

Symbols used in the examples

A area of the triangle B, —B,~P
B, radar beacon at (—¢,0)

B, radar beacon at {¢,0)

¢ half distance between B; and B,
h height of the radar beacons
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m mass

P ship position

I distance P—B;

12 distarice P-B,

vV volume

Xy position co-ordinate
X position co-ordinate
a ﬂngle B1 —P—B;

p mass-density

1 Introduction

General approaches to the solution of indirect measure-
ment problems, including the propagation of measurement
errors, are not yet available. Only solutions of particular
cases are known.

Basic works in the field of measurement theory, such as
Krantz et o (1971) and Ellis (1966), are concerned mainly
with direct measurement. An extension of the formal
theory, as it is developed by these authors, to the case of
indirect measurement, is given by Finkelstein (1975, 1976)
and Leaning and Finkelstein (1979).

A practical problem in applying the formal theory to
indirect measurement problems is that the formula
expressing the unknown parameters in terms of the measured
ones is taken for granted. In measurement practice, such a
formula is not always at hand, and it will be shown that
finding a good formula may be very troublesome.

A second problem arises from the treatment of measure-
ment errors. These errors can basically upset the funda-
mental relations on which the formal theory is based. The
problem has been recognised by many authors (Krantz ef
af, 1971, Finkelstein, 1975; Leaning and Finkelstein,
1979; Destouches, 1975; Gonella, 1975, 1979). A proba-
bilistic extension of the formal theory to the treatment of
measurement errors has been given by Leaning and Finkel-
stein (1979).

In this paper we will follow an approach which avoids
the above problems but differs fundamentally from the
formal theory.
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The principles of the new approach are outlined in
Section 2. The section concludes with the formulation of a
general optimal solution to the problem of computing the
unknown parameters from the measured ones,ie, a solution
with minimal propagation of the measurement ervors. In
Section 4 this solution is discussed in more detail. Section
3 comprises an analysis of the conventional solution
methods, in terms of the theory of Section 2, which shows
that these methods are principally sub-optimal. Section 4
reverts to the analysis of Section 3.

Sections 2—4 contain the information necessary for
applying the approach in computing the unknown para-
meters from the measured ones. The new method may also
be applied for testing measurement set-ups or improving
them. These applications are discussed briefly in Section
4.4.

Sections 5 and 6 can be omitted by readers who are
interested only in the practical use of the method. In
Section 5 it is shown that the present approach, although
not statistical, is closely related to the theory of stochastic
gstimation. In Section 6 a comparison is made with the
formal theory of measurement, which turns out to be
inconsistent with the present approach. These sections
require some prior knowledge of the theories discussed.

The present theory has developed from problems in the
field of dielectric measurement, where it has been shown to
vield considerable accuracy improvement, In this article we
will use & more transparent problem to illustrate the terms
and concepts which are 1o be introduced.

Let P be the position (x;, x,) of a ship, and B, and
B, radar beacons, located at (—e¢, Q) and (¢, Q) respectively.
We choose the co-ordinate system as shown in Fig 1. On
the ship we measure the distances #; and 7, to By and B,
respectively, and the angle 0 under which both beacons are
seen. Using these measurements we want to determine the
co-ordinates x; and x, of the ship.

An obvious approach to solve such a problem is to derive
two equations which express x; and x, in terms of r(, 75
and 8. The following pair offers such a solution: *

2 2
ry —ry
X, = ¢!
1 ” (1)
FiFy sin 8
Xq SMALE R . (2)
2¢

In the following sections it will be shown that such an

approach is not optimal. Initially we consider the principles
of indirect measurement.

2 Theory of indirect measurement
2.1 Concepts and terminology

Measurement will be conceived of as assigning numerical
entities to qualities of the real world. These qualities will
be denoted as empirical qualities (‘empirical’ is used here as
the counterpart of ‘numerical’). The theory will be de-
veloped for measuring a set of qualities, measuring only
one quality being a special case of the general approach.

Most measurements are direct measurements, that is,
they are based upon a measurement operation which
directly assigns numerical entities to the empirical qualities

* The first formuia is found by calculating the x, co-ordinate of
P using Pythagoras: x2 =r? — (x, +¢)? =r; — {x, — c)*. The latter
identity yietds Eqn 1, Eqn 2 is found by considering the area of
the triangle: A =x® « ¢ =%r r, sin 8.
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Figl Geometry of the measurement configuration

which are to be measured. When there is no suitable direct
measurement operation, we have to apply another pro-
cedure. This can be done when the measurement object has,
in addition to the qualities in which we are interested, some
other qualities which are uniquely related to them, and
which can be measured directly.

Fig 2 gives a diagrammatic representation of indirect
measurement. The left-hand part of the picture indicates
the domain of empirical qualities, The qualities of interest
are denoted as {p), where p stands for primary. In our
example these are the co-ordinates of the ship. The circle
in the picture denotes the domain of all possible mani-
fsstations of (p). The qualities that we use to obtain
information about (p) are denoted as (s}, where s stands
for secondary. For the position determination the distances
r. and r, and the angle 8 are the secondary empirical
qualities {s). They are geometrically related to (p ). We
will denote this relation as the empirical relation Rg
(ie, a relation in the empirical domain).

Now we assume that for the primary, as well as for the
secondary entities, there exists a scale. Because (p) and
() may represent several qualities, this scale may be multi-
dimensional, each dimension representing a scale for one

t
EMPIRICAL '] NUMERICAL
‘ (Y, av)
<5> M
3 >
I Y
i
|
RE : RN ON
|
I (X, 56X}
|
{
| X

Fig 2 Diagrammatic representation of indirect measure-
ment
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single quality. The scale for the primary qualities will be
called the X-space, and for the secondary ones the ¥-space.
These are indicated in the right-hand part of the figure.
Now we will confine ourselves to real-valued spaces. This
means that qualities which are usually represented by one
complex number will now have to be represented by two
real ones (real and imaginary part, or modulus and argu-
ment),

2.2 The measurement operation

_ The measurement operation (in Fig 2: the operation
M) will be conceived of as an operation which assigns a
region of numerical values to a manifestation of {s), so as
to account for the measurement inaccuracy. In the figure
this region is symbolically denoted as (¥,AY), which indi-
cates that it describes the meter reading ¥ as well as the
maximal measurement error AY. It will be called the Y-
space uncertainty region, and defined as follows:

Definition 1: A Y-space uncertainty region is a region in
the Y-space containing the valuesy of all manifestations
of (s) which could have caused the actual meter reading
Y, given the measurement inaccuracy AY.

To describe this region numerically, we introduce the
following function:

b(y)=1 ir Y, —y; 1< AY; foralli=1,2,...,n
=0 otherwise .3

in which Y, y; and AY; are the ith components of ¥, y,
and AY, respectively, and n is the number of dimensions of
the Y-space. The uncertainty region can now be described
as the unit-value region of the function b(y). Fig 3 gives a
picture of such a region in a three-dimensional Y-space.

It is noted that this definition deviates from the formal
definition of measurement as assigning numbers to quali-
ties of the real world (Finkelstein, 1975). It is more in line
with suggestions made by Destouches (1975) and Gonella
(1975, 1979) to conceive of measurement as assigning
intervals instead of numbers.

Y3
ZAV* ‘ -
- [ 24,
Y.
i
R S N
//l
7y |
| ! [
Loy, by
O
(. oy
| ! !
{ ! ! 1 2
; 7
Lo, 1///
______ Lo Ay
N e
_________ Vo ___

Fig 3 Uncertainty region in a three-dimensional Y-space
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2.3 The measurement transformation

When the measurement result is obtained, the next
problem is how to derive information about the possible
values of x, based on the measured Y-space uncertainty
region. To solve this problem we define an X-space un-
certainty region (X, AX) similar to the Y-space uncertainty
region:

Definition 2: An X-space uncertainty region is a region in
the X-space containing the values x of all manifestations
of {(p) which could have caused the actual meter reading
¥, given the measurement inaccuracy AY.

QOur problem can now be formulated as how to trans-
form a measured Y-space uncertainty region into an X-space
uncertainty region. A transformation of this type will be
called a measurement transformation. It can be written
as follows:

(X, AX)=O0y(Y,AY) (4

in which éN is a nuinerical operator.

In the example of Section 1, Eqns (1) and (2) can be
used to construct such an operator. They must be com-
pleted with an operator transforming the maximum
measurement error AY into a maximum error AX, Such an
operator can be easily inferred from relations like Eqns (1)
and (2), as will be shown in Section 3.

2.4 The optimal measurement transformation

In the following it will be shown that there exist a
number of possible transformations Oy, each with its own
error-propagation properties. This means that one trans-
formation will produce a greater uncertainty region than
another. This leads to the question: What is the best trans-
formation, ie, which transformation yields the smallest X-
space uncertainty region?

To answer this question we will have to look more
closely to Definition 2. This definition excludes the possi-
bility that there are manifestations of {p) which could have
been responsible for theactual meter reading, for which the
values x are not contained within (X, AX). But it includes
the possibility that (X, AX) contains values x of (p),
which could never have caused the actual meter reading, If
this is the case, our uncertainty region is greater than is
strictly necessary, When we exclude this possibility we have
the smallest uncertainty region which is possible with the
given accuracy AY. We will call it the optimal uncertainty
region. It can be defined as follows:

Definition 3. An optimal X-space uncertainty region is a
region in the X-space containing the values x of all and
only those manifestations of {p> which could have
caused the actual meter reading Y, given the measure-
ment inaccuracy AY.

Using this definition, we introduce the optimal trans-
formation as the transformation which yields the optimal
X-space uncertainty region. Because this uncertainty region
is unique, afl optimal tansformations are equivalent with
respect to their error-propagation properties. This is not
true for sub-optimal transformations.

In order to find a mathematical formulation for the opti-
mal measurement transformation, we have to pay some
attention to the empirical relation Ry of Fig 2. (In our
example it is the refation between the measured angle and
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distances as the position co-ordinates.) It has a numerical
counterpart Ry which can be written as follows:

y=f7x : .5

in which Fi is a numerical operator. The measurement trans-
formation Op can be conceived of as a particular inversion
of F.

We emphasise that the relation y = = Fox is more funda-
mental than inversions of #, such as in Eans (1) and (2).
In many measurement configurations, the dependence of
the secondary on the primary empirical qualities will have
the form of a relatively simple set of equations. Their
inversion, however, may be quite complicated, eg, when
we measure field patterns in order to determine some
underlying parameters, etc. Furthermore, the relation
y =Fx is unique, which does not hold for its inversions,
as will be shown in Section 3.

In our example it is easily verified that Ry has the
following form:

1=Vt R .- (6)
¥ =V(xy — o) +y? (D
¢ —X1 c+xq
y3 =arcian + arctan

Xo Xz e (8)

in which y,, y, and y; stand for ry, 7, and 6, respec-
tively.

With the use of Eqn (5), Definition 3 can be formulated
mathematically as:

(X, AX)op; = {x ER™ [Fx E(Y,AY)} .. (9)

or, in other words, the optimal X-space uncertainty region
is the region (of an m-dimensional space of real numbers)
containing all points x whose transformations y = Fx fall
within the Y-space uncertainty region.

With the use of Eqn (3), Eqn (9) can be written as:

(X, AX)opt = {x ER™ b (Fx) = 1) ...(10)

Thus the optimal X-space uncertainty region coincides with
the unit-value region of the function b (¥x).

This is a very important result. It gives us a criterion
with which to determine whether a point x belongs to the
optimal uncertainty region or not. When we have such a
criterion the problem has been solved, in principle, The
solution can now be traced with conventional multi-
dimensional scanning algorithms. A discussion of some
algorithms is given in Smit and van Viiet (1983),

Before proceeding to a more detailed discussion of the
properties of the optimal measurement transformation, we
will analyse the properties of the classical solution of in-
direct measurement problems.

3 The classical inversion approach
3.1 Mathematical formulation

The most common way to determine x, once y is
measured, is by inverting the formula y = Fx. The inversion
formula can generally be written as:

x=Gy LD

in which G is the inversion operator. It is clear that Eqns
(1) and (2) offer a solution of this type. In general, all
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solutions which express x as an analytical function of y are
of this type, which we have here termed the classical
inversion formula,

Formula (11) does not constitute a valid measurement
transformation, because it does not transform a region but
a point. This problem can be solved in theory by trans-
forming all points within the Y-space uncertainty region.
The X-space region is then found as the set of all trans-
formed points. When G behaves reasonably linearly within
(Y, AY), the size of this region can be approximated by:

n

AX;= Y

=1

oé,
T Ay, i=1,2,...,m ..(12)
ay}‘

in which G; ;y is the ith component of éy and m the num-
ber of dimensions of the X-space. If no explicit expressions
for the x; can be found, G,y has to be replaced by x;. This
formisknownin the 11terature as the total error differential.

Other approaches are also possible. When combined
with such an error evaluation, Eqns (1) and (2) constitute
a valid measurement transformation. It must be stressed
that Eqn (12) or an equivalent is an essential part of the
solution procedure. Measurement values without accuracy
indication have only meaning if the user knows something
about the accuracy in advance.

3.2 Error propagation properties

Now we will prove that Eqns (1) and (2), together with
Eqn (12), form a sub-optimal measurement transformation.
We assume that the ship of our example is at a position
with co-ordinates xy = 1000 and x, =1000. In our nota-
tion, x = (1000, 1000)7, in which T denotes transposition.
With ¢ =100, we should measure for ry, ry, and 6 1487,
1345 and 6 respectively,* Therefore, in our notation,
y =(1487,1345, 6)7. We will assume that the distances can
be measured with an accuracy of = 10 m, and the angle with
an accuracy of £2 degrees,ie, AY (10, 10, 2)T. With these
data, Eqn (12) gives us:

Axy =+ 140 m
and
AXQ =+ 360 m

Substitution of the above y-value in Eqns (1) and (2) yields
x; =1005, x, =1045. The corresponding JX-space un-
certainty region is indicated in Fig 4 by the dashed line.

It is easily shown that this X-space uncertainty region is
far from optimal. When we take, for example, a point from
the upper right-hand corner, such as (1140, 1400) and
compute the distances and angle corresponding to these
values using Eqns (6) to (8), we find the following value
for y: (1870, 1744,5)7. As canbe easily verified, this point
falls far outmde the uncertainty region, so that this position
of the ship could never have caused the actual measurement
result. This means that the X-space uncertainty region is
sub-optimal {see Def 3). Consequently the same holds for
the classical inversion method and, considering the large
discrepancy between the y computed above and the un-
certainty region, we question the efficiency of the method.

The cause of this trouble can be seen as follows. We
start from the basic refationy = #x. Once we have measured

*r, and r, are expressed in metres, & in degrees All entities are
rounded off to whole numbers,

Measurement Vol 1 No 4, Oct—Dec 1983
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Y-space uncertainty region with:
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optimal X-space uncertainty region without a
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i optimal X-space uncertainty region with X, =
1000 and AX, =20

the three components of ¥ we can substitute their values in
this relation. This gives us three equations with two un-
knowns (x; and x,). Consequently the set is overdeter-
mined, and there are two possibilities: either the set is
dependent or it is inconsistent.

In the absence of measurement errors, the set will be
dependent, but when there are measurement errors, it will
most probably be inconsistent. This means that there is no
exact solution. There are several ways to find an approxi-
mate solution. One way is to select that value of x for
which the Euclidian djstance between its transform and the
measured vatue (ie, | Fx — Y|} is minimal. This is known as
the least-squares approximation (see Section 5).

Another way to circumvent the inconsistency is to
remove one of the three equations, and to solve x; and x,

. 3
from the other two. It is easily seen that this yields (2)

possibilities (assuming that each sub-set of two equations
is independent). By manipulating the original set of relations,

Measurement Vol 1 No 4, Oct—Dec 1983
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Y3
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Fig 5 Crosssection of a two-dimensional curved sub-
space With a three-dimensional uncertainty region (the
cross-section has been shaded)

this number can be increased. This is the way in which we
arrive at the formulae (1) and (2). Obviously, they are
merely one possibility out of many.

The consequences of the latter procedure for the error-
propagation are far from negligible. For the subject prob-
lem, in which the Y-space is three-dimensional and the
X-space two-dimensional, the relation y = Fx describes a
curved plane in the three-dimensional Y-space. Fig 5 shows
what such a plane might look like. All points within the
plane are ‘possibie’ points: they can really occur. For these
points ¥ =Fx, conceived of as a set of equations with x as
unknown, is consistent. For all points outside the plane it
is inconsistent. These points are geometrically ‘impossible’;
without measurement errors they can never be measured,

With this knowledge we can restrict our Y-space un-
certainty region; by rejecting all ‘impossible’ values within
this region, we can reduce it to its crosssection with the
plane of physical values (the shaded region in Fig 5). To
find the X-space uncertainty region, we only have to trans-
form this part of the Y-space to the X-space. The reason
for the sub-optimality of the classical approach is that it
determines the X-space uncertainty region over the trans-
form x =Gy of both ‘possible’ and ‘impossible’ points. It
is the transformation of just these ‘impossible’ points which
leads to the sub-optimality of the classical method.

3.3 Potential improvements

An important question is whether the deficiency
described above can be avoided. To eliminate it fully we
will have to discriminate between ‘possible’ and “impossible’
values of y. This possibility we have lost, however, id the
classical approach, through the removal of one of the three
equations. Taking this equation into account so as to in-
crease the accuracy will also drastically change the classical
inversion method that it will no longer be an inversion
method. The reasons for this will be discussed in more
depth in Section 6.

This does not mean, however, that nothing can be done
within the framework of the classical approach, We men-
tioned already that the applied formula is only one of a
multitude of possible formulae. For ‘possible’ points all
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these formulae will yield equal results, because of the con-
sistency of the set y = Fx for these points. For impossible’
points, however, they will differ because of the inconsistency
of the complete set. An investigation into the properties
of the applied formula as well as some of the other possible
formulae is thus justified.

In our example we may substitute for Eqn (2) the
following equation:*

x2 = [{(r +r2)2 —4e*} {4¢* — (ry _},2)2} ] 2 J4c

...(13)

Together with Eqns (1) and (12), this yields the dotted
region in Fig 4 as X-space uncertainty region corresponding
to the Y-space uncertainty region described in the previous
paragraph. This set turns out to be better than the previous
one. Analysis of the error-propagation properties in the
vicinity of the origin will point out, however, that in this
region the previous set is better. There is no single set of
equations with optimal properties throughout the whole
region.

An alternative way to improve the accuracy can be
applied when (s) depends on, in addition to {p?, some
other parameters, which can be freely chosen. In our
example, the height /4 of the radar beacons is such a para-
meter. It can easily be accounted for in Eqns (6) to (8).
This yields three equations with three unknowns, from
which x(, x, and & can be solved analytically. Another
possibility is to measure & and substitute its value in the
Eqn y = Fx (substituting & =0 will yield Eqns (6) to (8).
We can now analyse the error propagation properties of the
formulae for x; and x, for different values of %, and choose
h such that these properties are optimal. In our case this
dependence is weak as long as A <ry, ry, the optimum
lyingat2=0.

Obviously, our example is less suitable for demon-
strating the importance of parameters like 4 in optimising
measurement accuracy. [t is important, however, to realise
that parameters like these, whose influence is obscured
because they do not occur in the inversion formulae for the
relevant parameters, may greatly affect the accuracy with
which these parameters can be determined.

4 The optimal measurement transformation
4.1 General character

In Section 2.4 we concluded that the problem of opti-
mally solving an indirect measurement problem can be
reduced to the problem of tracing a region in an m-
dimensional space with the function 5(Fx) as discriminant.

Solution method. In the absence of an analytical solution
(see Section 6), we have been reduced to dependence on
numerical solution procedures. An advantage of the present
approach is that the solution can be formulated most gene-
rally. Scanning algorithms can be programnied for a variable
number of dimensions of the X-space, as well as the func-
tion b, so that the only problem-specific entity remaining
is the operator F. If Fis given in the form of a user-supplied
sub-routine computing y on x as input, the solution can be
programmed to a high level of generality. Such a program
has been developed in the FORTRAN-IV language and is
described in Smit and van Viiet (1983).

* This formula is found by solving x, from Eqns (6) and (7).
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X1

Fig6 A threedimensional X-space uncertainty region,
showing the effecr of a priori knowledge about x3 on the
size of the projection on the X1 —X, co-ordinate plane

Representation of the solution. A problem which is inde-
pendent of the way in which the uncertainty region is
detected is its representation. For one-dimensional regions,
this region is fully described by its minimum and maximum
values (assuming the region is singly connected). For multi-
dimensional regions, we can follow the same approach and
describe it by the extreme values of each parameter within
the uncertainty region.

A disadvantage of this approach may be that we obtain
no information about the shape of the uncertainty region.
In a two-dimensional X-space this disadvantage can be met
by making a plot of all regions. For more-than-two-dimen-
sional regions we can use projections on the different co-
ordinate planes. Such a projection represents the region of
possible values of the two parameters of the plane inde-
pendent of the others.

Utilisation of additional information. An important feature
of the optimal measurement transformation is that it has
the potential to increase the accuracy for a parameter by
utilising additional information about other parameters.

This potential is illustrated in Fig. 4. The solid line indi-
cates the optimal X-space uncertainty region based on the
same data that were used to compute the broken line and
the dotted line region.t Suppose now that there is a dike
paralle] to the x, -axis, that we know its position, and that
we can measure the distance to this dike with an accuracy
of +20m, so that we know our x, co-ordinate within
£20m. This means that we can reduce the above un-
certainty region to the hatched region in Fig. 4. In fact,
we cut out a slice of the total region. The effect of this on
the accuracy with which the other parameter can be deter-
mined may be considerable, as is demonstrated in the
figure. Fig 6 shows the same effect in a three-dimensional
Xspace, If we choose /2 as third dimension, the uncertainty
region will be a near-vertical cylinder because of the weak
dependence of ry, 7, and 6 on 4, so that the projection of
the slice comes close to the projection of the total region.
The larger the dependence, however, the larger the effect
will be.

11t follows from Definition 3 that each valid uncertainty region
should fully contain the optimal region, Obviously this is not the
case for the dotted region in Fig 4. This is due to the non-linearity
of Eqn (12), which causes the linear approximation of Eqn {12) to
be slightly erroneous.
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Mathematical formulation of the problem. The distinction
between X and Y parameters, which is prerequisite to the
formulation of the operator F, is not always evident.

Suppose, for example, that we measure the mass m and
the volume V of an object and that we want to determine
the mass density p. Superficial analysis yields two y-para-
meters (m and V) and one x-parameter (p). But then F
should have two components, and we have only one equa-
tion, namely m = p¥ {(or V' =m/p).

This problem disappears if we conceive of z (the dimen-
sion of the Y-space) not as the number of measured para-
meters,but as the number of independent equations, relating
the measured and unknown parameters to each other.

If we have W,, measured parameters, /N, unknown
parameters and n equations interrelating them, we have the
following possibilities:

e [f NV, <n,the measurement problem cannot be solved.

e If N, =n, the x- and y-parameters fall together with the
unknown and the measured parameters.

o If N, >n, we select n of the N, parameters as y-para-
meters and treat the resulting N,, —n parameters as
x-parameters, thus making the X-space (N, +N,, —n)
dimensional. The measured x-parameters are treated as
indicated in the paragraph on ‘utilisation of additional
information’. Which of the measured parameters are
selected as x- or y-parameters is arbitrary from a mathe-
matical point of view.

The latter case is illustrated in Fig 7 for the mass-
density measurement. The mass m is conceived of as the
y-parameter, while p and V are taken as x-parameters. Ry
then becomes m = pV. The two hyperbolas represent the
curves oV =mpyy, and pV =Muyay, #min and My, being
the extrema of the (one-dimensional) Y-space uncertainty
region. The area between these curves is the X-space un-
certainty region, unbounded because m <n. It becomes
bounded when we restrict the possible values of ¥ based on
a measurement of ¥, as illustrated in the figure. The results,
however, are equivalent to those obtained with the classical
approach. '

My

—

AV

N

N - 0
Ap ;

Fig 7 Uncertainty region with n =1 and m = 2
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Applicability. Based on the foregoing and on previous ex-
perience with the present approach in the field of dielectric
measurement (Smit and van Vlet, 1983), the following
conclusions seem valid:

e If the number of unknown parameters A, equals the
number of equations 71, the classical inversion method
is near-optimal. In Fig 4 this can be seen by comparing
the size (not the area) of the optimal-uncertainty region
with the dotted-line region (N, =2, n = 2).

e [f the number of unknown parameters is less than the
number of equations », the classical inversion method
is sub-optimal. The sub-optimality grows with increasing
difference between the number of unknown parameters
and the number of equations. This can be seen by com-
paring the solid-line region with the broken-line region
(M, =2,n=3) and the hatched region with the broken-
line region (N, =1, n=3).%*

4.2 Possible causes of inaccuracy

Although the outlined approach inherently accounts for
measurement inaccuracy, there are two types of inaccuracy
forwhich the measurement transformation does not account.

The first type results if the formula y = Fx contains
constants which are known with finite accuracy. If we
account in Egns (6) to (8) for the height of the radar
beacons, this height is such a parameter. In physical
measurements there are often several entities which affect
the measurement result, and which are supposed to be
constant. Their values appear as constants in £, but these
constants usually have only finite accuracy.

This type of inaccuracy can be removed, if necessary,
by conceiving of these constants as measured x-parameters,
and treating them as indicated in Section 4.1.

The second type of inaccuracy occurs when the idealised
description y = Fx differs structurally from the empirical
relation Rg. In our example the omission of s causes such a
structural deficiency, although it will be a small one, which
can, moreover, be eliminated by incorporating A~ in Eqns
(6) to (8). Inn physical measurements a manageable formuta
y = Fx canoften be obtained only by making some idealising
assumptions.

Inaccuracies of the latter type are very difficult to over-
come, because the quantitative description of their origins
is very complicated, if not impossible. This fact also makes
it very difficult to estimate the size of the errors which they
introduce. Yet the latter type of inaccuracy may ultimately
become the bottle-neck when the potential of the optimal
measurcment transformation to increase measurement
accuracy by increasing the difference (1, —N,) is fully
utilised, as indicated in the following section. We note that
underestimation of the measurement error AY may affect
the size of (X, AX) considerably out of proportion. The
reasons for this are discussed in Section 4.3.1.

4.3 Other applications

in addition to solving indirect measurement probiems,
the optimal transformation may be applied for some other
purposes. Two of them will be discussed.

* The latter comparison seems to be unfair because the inversion
method does not make use of the information in x,. There is no
means, however, to make this information effective within the
frame of the applied formula (Eqn 1), although better inversion
formulae are certainly feasible,
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4.3.1 Testing indirect measurement set-ups

In those cases in which m < n, the optimal.measurement
transformation offers a possibility to test whether the
operator F exhibits structural inadequacy, as described in
Section 4.2. In Section 3.2 it was shown that the equation
y =Fx defines a sub-space in the Y-space (see Fig 5).
Because a structural difference between the actual relation
Ry and its idealised numerical description y = Fx will cause
the actual sub-space to differ from the idealised one, it will
become possible for the Y-space uncertainty region to have
no intersection with the sub-space, thus yielding an empty
X-space uncertainty region. The chance of finding such an
empty sub-space increases with increasing departure from
the ideal, and with increasing difference between n and m.*

A drawback of the above property is that it cannot prove
adequacy, but only inadequacy. Application of the optimal
measurement transformation on a number of measurements
on the same object may give us an indication of the validity
of the description y = Fx, however. Experience in the field
of dielectric measurement indicates that structural in-
adequacy may ultimately become a bottle-neck when an
optimal transformation is used.

4,3.2 Improving indirect measurement set-ups

The optimal transformation makes it possible to increase
the measurement accuracy by increasing the number of
measurement probes. Although this will not be possible in
each case, it applies to all measurements, in which a certain
pattern is measured to determine the underlying parameters
(e g, a diffraction pattern or a standing-wave pattern), When
an inversion method is used, such an approach will most
probably increase our measurement inaccuracy. The reason
for this is that, when we find an inversion formula con-
taining the new measurement variable(s), the number of
terms in Bqn (12) will increase, whereas there is no reason
to believe that the partial differentials will become smaller.

It would thus appear that a good approach for opti-
mising measurement accuracy, when using an inversion
method, is to minimise the number of measured parameters
in the inverse equations and to search for the optimal equa-
tions as indicated in Section 3.3.

When an optimal method is used, each new measurement
variable places new restrictions on the region of possible
outcomes, so that the final result can only become more
accurate. This is in accordance with our intuitive expectation.

5 The relation to the theory of stochastic
estimation

In the previous sections we have used a binary descrip-
tion for the uncertainty region (Eqn (3)), ie, a description
which discriminates between member and non-member
points, but assigns no probabilities to the member points.

One may alternatively consider the X-space uncertainty
region in a statistical way as in the following.

What we are interested in is the distribution of x given
the measurement result ¥, ie, the pdf (probability density
function) p(x/¥). This pdf can be considered to be the
statistical analogue of the X-space uncertainty region.

* Finding an empty sub-space may also be due to a too optimistic
estimation of AY. We will assume that the latter possibility is pre-
cluded.
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According to Bayes’ formula, this pdf can be calculated
from:
p(Y/x) px)
p(x/¥)= ——————— ...(14)
| p(¥1%) pGyax

X

in which dx is an infinitesimal volume element, and the inte-
gration is over the whole X-space. In this formula p(¥/x)
can be obtained from p(¥/y),T which is the statistical
analogue of the Y-space uncertainty region, by substituting
v =Fx. The pdf p(x) embodies a priori knowledge about x.

When there is no a priori information, it is usual to
assume p{x) to be uniformly distributed throughout the
X-space, which will cause p (x) to vanish from Eqn (14).

For the multi-dimensional problems we have a repre-
sentation problem, similar to the one we encountered for
uncertainty regions exceeding two dimensions. This problem
can be solved by computing the one-dimensional marginal
distribution function:

Y/x)p(x;
p(xi/Y)= Px) o) .15
[ 2T G ax,

X
in which p(¥/x;) p(x;) can be found by integrating p (¥/x)
p(x) over the sub-space x; = x;. This distribution function
is the statistical analogue of the one-dimensional projection.

The computational labour involved in applying the
statistical approach can be reduced by applying the tech-
nique of stochastic estimation. Stochastic estimation is
conceived of as the process of extracting information about
a parameter or a signal function from noise-corrupted
observations (Nahi, 1969). These observations are not
required to be direct observations of the parameter itself,
so that a link between stochastic estimation and indirect
measurement solution procedures is evident.

Using this technique, we can derive an optimal estimate®
for the value of x which has to be assigned to Y. Although
several approaches are possible, we will confine ourselves
to the LSE (Least Squares Estimation) approach. It can
be proved (Nahi, 1969) that the expected value x of x
given Y:

X = fxp(x/Y)dx ... (16)
X
minimises the expected value of the square FBuclidian

distance |x —xq |2, making it a very attractive estimator
for our problem.

TIf we assign equal probability to all points within the Y-space
uncertainty region, we obtain the uniform distribution, using
Eqn (3}:

plYiyl =V 1h(Y)

in which V is the integral of b{y) over the whole Y-space. If we
choose a normal error description we obtain:

pYly) = oxp [~ %(Y =y} T T (v =]

(2m)/2| E, 17
in which Ey is the covariance matrix of the measurement error
(Ymeas — Yreal)s

¥ An optimal (or Bayes) estimator is defined as an estimator which
minimises the expected value C of a cost function which is defined
an the difference X — Xxggt, in wWhich Xgqt is the estimated value of x:

é= JC(x—xw) * pix)dx
X
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The integration required in Eqn (16) can be eliminated
if p(¥/y) can be described by a normal distribution, and if
F can be linearised in the region of non-neglectable values
of p(Y/y). If these conditions are fulfilled, ¥ coincides
with the minimum of the exponent in the distribution
function:

(Y —Fx)TZ;H (Y — Fx).

By normalising the Y-space such that NTE},'1 =] (IV being
the normalisation operator, and J the identity matrix), the
exponent will take the form:

(Y - Lx)T(Y'— Lx)

in which Y'=NY, and L is the linear approximation of
NF. This form is the square Euclidean distance between ¥
and Fx in the normalised Y-space.

Furthermore it can be proved (Gelb et al, 1974) that the
minimum Xeq of (¥'—Lx)T (¥'=Lx) can be computed
from:

Xet =(LTL)HLTY .(17)
which is a solution of the equation ¥'=Lx in the least-
squares sense. When we denote the matrix IANARD AL
(which is called the pseudo inverse of L) as L¥, the co-
variance matrix of x.; follows from:
%, =LFLHT ...(18)

Eqns (17) and (18) are the statistical analogue of an
optimal transformation. From Eqn (14) it can be seen that
the X-space uncertainty region coincides with the region of
non-neglectable values of p(x/Y). Therefore, Eqns (17) and
(18), being the centre and the covariance matrix of this
distribution, will be comparable to an optimal transforma-
tion with respect to their error-propagation properties.

We may alternatively compute X, by applying a con-
ventional optimalisation procedure to find the value of x
for which [N (Y —Fx)}? is minimal. If the measurement
errors in the different components of ¥ are uncorrelated,
the normalised distance reduces to:

. \ n (Y, - Fx\?
=i = 5 (HE)

i=1

L (19)

0y

in which o; is the spread in Y; due to the measurement
error. We note that searching for the minimum distance in
the non-normalised Y-space will yield sub-optimal results.
The optimisation procedure has the advantage that it
can easily be adapted to account for a priori knowledge
about some components of x by restricting the region to
be searched to the region of possible values. Using Eqns
(17) and (18), we must account for a non-constant pdf
p{x), which complicates the evaluation of these expressions.

Note: Anattractive way to obtain informationabout p (x/Y),
at variance with the foregoing one, would :appear to be
the optimal transformation of some Y-space uncertainty
regions, with different confidence levels, e g, the 80, 90,
95 and 98% confidence regions. A problem with this
approach, however, is that for n=m the optimal trans-
formation fails to obey the law of ‘conservation of
probability’, i ¢, the confidence levels of a Y-space region
and its corresponding X-space region will not, in general,
be equal. The reasons underlying this lack of conserva-
tion are discussed in Section 6.
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6 The relation to the formal theory of
measurement

The theory of indirect measurement, as it is developed
in the preceding sections, is not without consequence for
the formal concept of indirect measurement. To show this
we will apply the formalism developed by Finkelstein
(1975, 1976), and Leaning and Finkelstein (1979), to our
concept (Section 2.1).*

In the formal approach it is assumed that the secondary
empirical qualities {s), are logically independent, and that
to each element {s) there corresponds one {(p» (Finkelstein,
1976, Section 2.5). Next it is assumed that for (s) there
exists a scale ¥ with elements Y, that there exists a mapping
G of Y in X, and that the set of all manifestations X =
G (Y) constitutes a scale for (p). .

In this formalism, the mapping G is essentially an in-
version operator; it is equivalent to Eqn (11). As a conse-
quence, each solution procedure which obeys this formalism
is a sub-optimal procedure (presupposed that 7 < n).

The crucial links in this formalism are the assumptions
that the secondary qualities are logically independent, and
that to each manifestation of them there corresponds one
manifestation of (p). If N, < n, the set of possible values
is a sub-set of the Y-space, as explained in Section 3. As a
consequence, the components of {(s) cannot be logically
independent,

To demonstrate the consequences of the second assump-
tion, consider the case of Fig 8, which shows the mapping
vy = Fx of a one-dimensional X-space in a two-dimensional
Y-space. Let us consider two slightly different Y-space
uncertainty regions as indicated in the figure. The optimal
X-space uncertainty regions corresponding with them are
the transforms of the crogs-sections of these Y-space
regions with the sub-set y = Fix into the X-space. As can be
seen, these transforms will be disjunct. Nevertheless, the
Y-space regions have a part of the Y-space in common (the
hatched region). Consequently, when we want to conceive
of the optimal transformation as a mapping, this part has
to be mapped into one part of the X-space one time, and
in another part the other time, which makes clear that an
optimal transformation differs fundamentally from a
mapping. This means that, if ¥, <, an optimal measure-
ment transformation is principally non-analytical; or
otherwise, that each analytical solution (Eqn (11)) is
principally sub-optimal. It is this character of the optimal
transformation which explains the lack of ‘conservation
of probability’ that we mentioned in Section §; this con-
servation is restricted to analytical transformations.

The foregoing discussion illustrated that, in fact, regions
and not numbers are transformed. As a consequence, the
formal theory of measurement, which is based on the
concept of measurement as assigning numbers to empirical
qualities, is incapable of accounting for the properties of

* We extend the formalism to the case of a multi-dimensional scale
for the primary qualities. The terminologies are related as follows:

Prssent papsr Finkelstein {1976}

(p> Ty
{s) qg=4gq,,....9pn?
n
Y-space X z;
i=1
X-space z,
Y Mig)
X Z,
G @
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(Y, AY)

(_Y_z, _A_YZ)

Fig & Two overlapping Y-space uncertainty regions with
disfunct corresponding X-space uncertainty regions

optimal transformations, including optimal estimators as,
for example, the LSE,

In arder to avoid this deficiency, the concept of measure-
ment as assigning numbers has to be replaced by that of
assigning intervals or regions.

The above deficiency is restricted to cases for which
N, < n, and consequently, will not occur in direct measure-
ment, We wonder, however, if the formal concept of
measurement should not aiso be abandoned in the direct
measurement field in favour of the above concept, two
different concepts covering the entire field of measurement
being most unsatisfactory.

7 Conclusions

An analysis of the conventional methods for solving in-
direct measurement problems has pointed out that these
methods make insufficient use of the available information.

A new method, making optimal use of this information,
has been developed. It can be formulated at a high level of
generality, which makes it suitable for implementation in a
computer program that is applicable to a broad class of
indirect measurement problems, The methed also has a
potential for testing the validity of measurement set-ups
and improving theni. The error-propagation properties of
the new method were shown to be comparable with those
of optimal estimators.

Comparison with the formal theory of measurement has
pointed out that the formal concept of measurement is not
adequate to account for the properties of the present
approach, and those of optimal estimators. This deficiency

may also have consequences in the field of direct measure-
ment. To avoid it, the concept of measurement as assigning
numbers will have to be abandoned in favour of the concept
of measurement as assigning regions or intervals.
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