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Abstract
The development of an H∞-controller for a mono-cycle is outlined.
The controller design is based on an accurate model of a mono-cycle,
derived in the paper, and it considers both performance and robust-
ness specifications. To easily attain the specifications a two degree-
of-freedom control scheme is investigated. The results are compared
with those for a single degree-of-freedom H∞ design and for a state-
feedback controller based on pole placement techniques. The two H∞
designs are shown to be a moderate improvement upon the state-
feedback design. The differences between the one and two degree-of-
freedom H∞ design depend on the set of measured variables.

1. Introduction
The mono-cycle, a wheel and a frame with an actuated joint in between,
is a motivating example for applications of modern control techniques.
It is nonlinear, so control designs based on linearized models are
not guaranteed to work well in practice, and its up-right position is
unstable, so a controller is mandatory.

The longitudinal dynamics of a mono-cycle is comparable with that
of the ubiquitous cart-pendulum system. The main difference between
the systems is in the way they are actuated. A mono-cycle is slightly
more involved, because here the torque that drives the wheel also
directly influences the torque on the frame, even when the wheel is not
moving, while for the inverted pendulum the force on the cart does not
directly influence the pendulum, only the movement of the cart does.

The control of a mono-cycle has been studied previously, see [1–3].
The first paper considers a single-input/single-output (SISO) LQ(G)
design for two control loops, the pitch and yaw loop, of a complete
mono-cycle. For the yaw loop a nonlinear friction compensation term
was added. Simulation and (limited) experimental results are provided.
The other papers discuss a model that includes the human cyclist. They
employ a human mimicking actuation setup (one could call this a
robot driven mono-cycle) and show some simulation and experimental
results. Another reference is [4]. Their approach is to use a sequential
SISO loop shaping design, so multivariable H∞ techniques are not
employed. Also, although they claim to use a two degree-of-freedom
control scheme, their implementation seems to use a single degree-of-
freedom one, see [4, Fig. 3].

Controller design with an H∞-norm criterion is well known, see,
e.g., [5,6], and can be expressed in terms of Riccati equations [7]. The
H∞ approach can be used, as we will do, to express frequency domain
specifications on several closed loop transfer functions.

The main goal of the paper, now, is to improve on the results in [4]
and to present a worked example of an H∞ controller design for a
nonlinear mechanical system. The paper also provides an accurate
model of a mono-cycle, gives detailed guidelines for its controller
design, and discusses practical problems and solutions in the design of
H∞ controllers.

Section 2 presents a description and model of the mono-cycle. Sec-
tion 3 details the control system specifications and the controller de-
sign. The evaluation of the controllers, in Section 4, and the ensuing
discussion of the results, in Section 5, guides us in drawing conclusions
and recommendations, related to the fulfillment of the main goal of the
paper, in Section 6.

2. System description
The system considered is a mono-cycle, see Fig. 1. It consists of a
wheel, a frame, and a motor with transmission. Additional guidance
wheels, not shown in the figure, fix the position of the mono-cycle
in the direction (the lateral direction) perpendicular to the direction
of motion (the longitudinal direction). Eventually, these wheels may
be replaced by a controlled reaction wheel. The control system, to be
designed in this paper, only aims at stabilizing the frame in the up-right
position in the plane of motion and at tracking a desired wheel axle
position in the horizontal direction. The model of the system should at
least describe the dynamic phenomena related to these tasks.
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Figure 1: Mono-cycle
The equations of motion for mechanical systems can be derived with

the Lagrange formalism, as is done in [4]. However, the equations in
that paper are not correct. This forces us to give some details of our
derivation and to justify our deviation from the model in [4].

Several formulations of Lagrange’s equations are possible. In this
paper the one is used where only the kinetic energy E(q̇, q) appears in
the left hand side of the equation, as follows

d
dt

∂E
∂q̇j

− ∂E
∂qj

= Qj, j = 1, : : : , n. (1)

Here, n is the number of degree-of-freedom’s or generalized coordi-
nates q and Qj, j = 1, : : : , n, are the generalized forces. They can be
derived by the principle of virtual work.

Using as generalized coordinates q the horizontal displacement x of
the center of the wheel and the angular rotation ϕ of the COM (center-
of-mass) of the frame and motor (relative to the vertical and positive in
clockwise direction), the kinetic energy of the wheel (with mass Mw,
central moment of inertia Jw, and wheel radius R) is expressed as

Ew =
1
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while the kinetic energy for the frame and motor rotor are
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where Mf is the mass of the frame and the motor, Jf is the central
moment of inertia around COM of the frame and the motor, except
for the central moment of inertia Jm of the motor rotor, and h is the
distance of the wheel axis to COM. Furthermore, i is the transmission
ratio, such that iϕm = x/R − ϕ, where ϕm is the rotation of the rotor
with respect to its housing, i.e., to the frame.

The virtual work δA for virtual changes of x and ϕ is

δA =
n

−
� ν

i2
+ µ

��
ẋ
R

− ϕ̇
�

+
τ
i

o�δx
R

− δϕ
�

+ Mf gh sin ϕ δϕ.

Here, τ is the motor torque, ν and µ are the coefficients of viscous
damping in the bearings of the motor axis, respectively of the frame
on the wheel axis, and g is the acceleration of gravity. Assuming the
motor to be perfect, with no internal resistance nor back-EMF, we can
write for the generated motor torque

τ = au

with a the motor torque constant and u the control voltage. Now the
generalized forces can be extracted from

δA = δqT Q = δxQ1 + δϕQ2.

Using (1) with E = Ew + Ef + Em one gets equations of the form

M(q)q̈ + C(q̇, q)q̇ + G(q̇, q) = H(q)u (2)

with
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There are several differences with the equations of motion given
in [4]. The first is in the right hand side of (2) where they have H2 = 0
instead of H2 = −a/i, the second is the term −Mf ϕ̇2h sin ϕ in the first
equation while they have a Coriolis term containing ẋϕ̇ in the second
equation, the third is in the way the viscous friction terms are handled.
The last difference is due to the incorporation of the motor rotor inertia
Jm and the introduction of the transmission ratio i. Another model,
with a larger number of degree-of-freedom’s, is presented in [1]. In
addition to the longitudinal dynamics of [1], our model includes the
inertia and viscous friction of the motor and the viscous friction for the
relative motion of wheel and frame. Furthermore, in their model only
the nonlinear terms in which yaw rate or yaw acceleration appear are
considered, the other terms are linearized. This means that the term
with ϕ̇2 in the first equation of (2) is neglected, also the goniometric
terms are linearized, so for the frame angle the sin-terms are replaced
by the angle and the cos-terms are replaced by 1. Finally, their model
only includes the wheel rotational speed as component of the state and
output, while we use the wheel position, because we will consider a
tracking problem for the position of the mono-cycle. We conclude that
our longitudinal dynamics model improves on the two other models
considered and is suitable for tracking control.

Linearizing (2) around ϕ = 0 with the parameters in Table 1 gives

ż =

2
64

0 0 1 0
0 0 0 1
0 −3.6169 −22.7377 4.5475
0 20.9311 58.2953 −11.6591

3
75 z +

2
64

0
0

5.6089
−14.3802

3
75 u

where the state z is defined by

z =
�
q1 q2 q̇1 q̇2

�T
=
�
x ϕ ẋ ϕ̇

�T
.

To get results comparable to the results in [4] the parameters Jm and i
are given values such that they have no influence on the dynamics.
The system is unstable, as could be expected. This is also clear from
inspecting the system matrix: at least one pole is in the RHP (right-
half-plane) and one pole is at the origin.

Table 1: Model parameters. The first set is taken from [4]

Parameter Description Value Unit

Mw wheel mass 1.5 kg
Mf frame and motor mass 6.0 kg

Jw wheel inertia 0.2 kg m2

Jf frame inertia 0.608 kg m2

R wheel radius 0.2 m
h distance COM to wheel axis 0.36 m
ν motor rotor friction 6.33 Nms/rad
µ wheel bearing friction 2.12 mNms/rad
a motor torque constant 7.81 Nm/V

Jm motor rotor inertia 0. kg m2

i transmission ratio 1. -
g acceleration of gravity 9.81 m/s2

The transfer function matrix corresponding with the state space
model, using u as input and

�
x
ϕ
�

as output, is

Pn =

2
64

5.6089s2 − 65.3886
s4 + 34.3967s3 − 20.9311s2 − 265.0760s

−14.3802s2

s4 + 34.3967s3 − 20.9311s2 − 265.0760s

3
75 .

It is easy to see that with ϕ alone the system will not be observable
since a pole and zero at the origin will cancel in Pn. The output x
will be sufficient for observability. The transfer function from u to x
is nonminimum phase, a property that should be carried over to the
closed loop system, and from u to ϕ there are zeros at the origin. The
corresponding transfer function derived in [4] is equal to (after some
corrections to the data used there)

Po =

2
64

0.247
s(1 + .079s)

−10.15
s2 + .43 ⋅ 10−3s − 15.29

3
75

with each individual transfer function of lower order than in Pn due
to additional (ad-hoc) simplifications. The difference between the two
models is illustrated in Figs. 2–3 presenting the transfer function am-
plitudes.

3. Controller design
Three controllers were designed: two H∞ controllers, respectively for
a control system with one and two degree-of-freedom, and one state-
feedback controller

An analysis of the system matrix of the linearized model shows
that the system is unstable, with one pole in the RHP and one on
the imaginary axis. The state-feedback controller was designed with
pole placement techniques by reflecting the unstable pole to the left-
half-plane and then shifting all four poles by −1. This resulted in the
state-feedback controller

u = −Ksfz

with

Ksf =
�
−7.7461 −27.2204 −16.1393 −6.9847

�
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that realized the following closed loop poles

−1.0000 −3.5760 −3.9587 −35.7794.

This control law is suitable for regulation, but not for tracking. The
controller was therefore modified to

u =
�
Ksf

1 −Ksf
� hr

z

i
where r is the desired value for the position x and Ksf

1 is the first
component of Ksf. With this tracking control law all state-feedback
results are obtained.

The design of the H∞ controllers is based mainly on the same
criteria as used in [4], but with a completely different design procedure.
The design in [4] is sequential with two nested SISO designs. The
design procedure and specifications we use circumvent the problem
mentioned in [4] that their controller was only stabilizing but could
not track a reference signal for x without additional modifications. Our
design results in a controller that does not only stabilize the system,
but is also able to track a reference signal for x, within the restrictions
placed by the physics of the system and by the fact that the design
is based on the linearized model. The physical restrictions imply that
the closed loop system should show an initial inverse response for a

required step-wise change in x, and the use of the linearized model
implies that the results are only valid locally.

The strategy used is to translate the specifications on the controlled
system to a mixed sensitivity criterion, where the H∞-norm based
design is used to approximately shape several sensitivity and comple-
mentary sensitivity functions of the closed loop plant, because those
transfer functions are closely related to the specifications.

For the specification some additional input signals are introduced,
namely the disturbances dx and dϕ and the reference position r, leading
to the disturbed outputs xd = x + dx, ϕd = ϕ + dϕ and the tracking error
e = r − xd. The disturbances account for model errors. The additional
inputs are incorporated in an extended plant Pe, together with some
performance related outputs, see Fig. 4.
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Figure 4: Extended plant
The desired bound for the complementary sensitivity function Txdr,

from the reference r to the disturbed position xd , is a double integrator,
see [4], and is related to robustness for high-frequency unmodeled
dynamics, so it aims at getting Txdr small for high frequencies. For low
frequencies there are no direct demands on Txdr, but there are on Ser,
see later, so indirectly on Txdr because Txdr +Ser = 1. The corresponding
weight is a double differentiator, so we require

|Txdrρs2|∞ < 1

with ρ a tuning parameter. If one composes the weight and plant
model Pn using state space models, this poses a problem because ρs2

is not realizable in this form. This can be solved by using a state
tapping technique [8]. For this an additional output of the plant is
defined, namely the acceleration ẍ. This signal can be used to achieve
the design goal for Txdr by requiring

|Tẍrρ|∞ < 1.

The sensitivity function Sϕddϕ , for the transfer of the output distur-
bance dϕ to the disturbed angle ϕd , should be small for low frequencies
to attenuate the effects of disturbances and to guarantee robustness for
certain types of model errors. The inverse of its desired bound is spec-
ified in [4] by the biproper weight

(0.14s + 1)2

(0.24s)2
.

However, for our model the transfer function Sϕddϕ is “fixed” or “in-
variant”, in the sense that its low frequency amplitude is equal to 1,
irrespective of the controller used. A system theoretic interpretation of
the origin of the restriction is in terms of interpolation constraints on
(complementary) sensitivity functions if the plant has poles or zeros
in the closed RHP. Here the transfer function from u to ϕ has zeros
on the imaginary axis. The constraint implies that the previous weight
makes no sense, it forces |Sϕddϕ | to 0 for low frequencies and this is
not feasible. To solve this conflict we choose a constant weight for the
sensitivity function that does not violate the restriction.

Besides the two previous goals, an additional one is the tracking
performance for the reference position r. For this the sensitivity func-
tion Ser between r and the tracking error e should be shaped. Ideally
this would be small for all frequencies, but this is not possible due to
the Txdr specification. Therefore the following considerations are used.
A steady state error of the order of 10−3r [m] and sensitivity smaller
than 1 for frequencies up to ≈1 [rad/s] are desired. This leads to the
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αs + 1

s + 0.001

���
∞

< 1, α � 1.

The value for α should not be taken too small for reasons mentioned
below. It should also not be too large, like ρ, to make the bounds on
Txdr and Ser compatible.

A last goal is a limited torque exerted by the motor. Because the
transfer function Txdr implicitly limits the input u and not to make the
design unduly involved, no additional weight was introduced for u.

To assure the adequacy of the controllers, to test their robustness,
and to aid in the selection of design parameters α , ρ, and V , the
evaluation of the performance will be established with a simulation
using the full nonlinear model (2). So, we do not restrict ourselves to
an evaluation of the design with the linear model. In the time domain
evaluation we strive for the following objectives: a rise time of ≈4 [s],
preferably no overshoot, and limited excursion of the angle ϕ, all for
the responses on a step change in r. The angle ϕ should be limited to
avoid large differences between the linear and nonlinear model, and
so to keep the model errors small. The maximal input voltage to the
motor is assumed to be 10 [V]. Because the system should function
well in a time domain setting, the time domain specifications have
preference above the frequency domain ones. This implies that the
tuning of the frequency domain bounds and weights is guided by time
domain evaluation results.

To facilitate the design, use is made of the MHC (Multivariable H∞
Design) toolbox, see [9]. The setup of the design should therefore be
brought in the standard form of Fig. 5, with G the generalized plant and
K the controller. Ideally, what we would like the controller to achieve
is the three specification simultaneously and nothing more than that.
This can be achieved only approximately if using the standard setup.
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G
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-
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v w

Figure 5: Standard design setup
To form the generalized plant G, the three weighting functions dis-

cussed above are all placed at the appropriate outputs of the extended
plant, namely e, ẍ, and ϕd , and are combined in a single diagonal trans-
fer function matrix W. In addition, a constant diagonal input weighting
matrix V is introduced that scales the three inputs, namely r, dx, and dϕ ,
relevant for the specifications. The extended plant Pe and the weights
V and W are combined to get the generalized plant G, see Fig. 6, where
only the performance variables are detailed, but not the controller input
y and output u.
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Figure 6: Generalized plant
Now the H∞ design is performed by trying to arrive at a stabilizing

controller K(s) that achieves the following objective

kFl(G(s), K(s))k∞ < 1

with Fl(⋅) the lower fractional transformation, for the largest possible ρ
and for suitable choices for the scaling parameters in V , where Fl(G, K)
is the transfer function matrix of the generalized closed loop plant from
v to w. This setup ensures that the specifications are met (if such a K(s)
exists), but is hindered by the fact that also other transfer functions,
for which no targets are set, are shaped. It is possible that those other
transfer functions, e.g., from v1 to w3, will contribute heavily to theH∞-
norm. This has to be checked and may eventually lead to an adaptation
of the weight functions, possibly leading to non-diagonal weights.

For the H∞ controller we use two schemes, resulting in a one and a
two degree-of-freedom controller. This is illustrated in Fig. 7. Remark
that for both controller schemes additional signals are needed to form
the correct y. This only leads to a trivial modification of the extended
plant, that we do not detail here.

Cϕ

Cx

Cr

f��

r

xd

ϕd

u y

Cϕ

Cef��

ϕd

u fe

r

xd
−

y

K2 K1

�

�

�
6

?

6
�

�

?�

Figure 7: Control schemes. Left: two, right: one degree-of-freedom
The actual computation of the controllers with MHC and the soft-

ware described in [10], was relatively straightforward and posed no
interesting problems that are worth a further elaboration. We only
make some remarks that are related to the existence conditions for the
algorithm employed for theH∞ design. First, it was necessary to regu-
larize the plant model to shift the poles away from the imaginary axis.
This was achieved by giving the (3,1) entry of the system matrix the
value 10−3 instead of 0, shifting all poles by less than 10−3. Secondly,
the constant scaling in V for the disturbance dx can be chosen 0 for
the one degree-of-freedom design, but should be nonzero for the two
degree-of-freedom design, to satisfy the rank condition for the block
partition G21 of the generalized plant at infinity. This partition relates
v to y. In both designs the scaling was set at the same value, so not to
let the specifications depend on the control scheme.

The tuning of the remaining parameters in the weights V and W,
necessary to arrive at an acceptable time domain performance, is a bit
cumbersome, but using trial and error with an interactive tool like MHC
it is not too time consuming when time is not spent by just fiddling
with the weighting function parameters, but with a well thought out
approach using incremental weight changes and based on inspection
of the frequency and time domain performance measure details.

As stated before, the value for α should not be taken too small, for
then the controller may contain a very fast pole at −1/α (this depends
on the design, e.g., the choice of weighting functions). This makes the
controller difficult to discretize with reasonable sampling times (this
is only relevant for a discrete time implementation of the controller
which we do not consider here) and increases the simulation time. A
suitable compromise is α = 0.05. Another factor that determines the
poles of the controller is the distance of the achieved H∞-norm to the
exact optimum. By slightly backing of the design, the faster controller
pole does not move quite so far to the left in the complex plane as
would happen nearer to the optimum.

For the final choice of parameters and weight functions we ended
up with the following scalings V and weight functions W

V =

2
64

2
3 0 0

0 1
100 0

0 0 2
100

3
75 W =

2
64

.05s + 1
s + .001

0 0

0 ρ 0

0 0 1
4

3
75 .

For the one degree-of-freedom design we could achieve a value for
ρ of 0.6, and for the two degree-of-freedom a ρ of 0.6 also, giving an
H∞-norm slightly larger than 1, namely 1.03. Contrary to what could
be expected, the additional design freedom makes it hardly possible
to improve the robustness specifications of the system. This could
be inferred from the transfer function matrix of the two degree-of-
freedom controller, in which the transfer function amplitudes from
r to u and from xd to u are often almost indistinguishable. When
using only a single measurement, namely xd , there is a significant
difference between controllers using e only, or using both r and xd.
The two degree-of-freedom scheme uses the additional design freedom
effectively with the restricted measurements, and performs much better



than the one degree-of-freedom one. So for this case a two degree-of-
freedom scheme is better. We remark also that, although the closed
loop was stable, both H∞ controllers were unstable. This is not always
desirable in practice.

4. Results
The evaluation of the frequency domain design objectives is done with
the linearized model, but the time domain evaluation of the design, for
robustness and usability, uses the nonlinear model.

First, we present the results with the state-feedback controller, and
use this to compare results with the linearized and the nonlinear model.
Step responses for both outputs and both models are in Figs. 8–9.
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Remark that only with large step amplitudes for r the differences
between linearized and nonlinear model are significant. The value
we used, r = 5 [m], is already quite extreme and unlikely to occur
in practice. Nevertheless, the differences are moderate. If still larger
steps are asked for, e.g., r = 10 [m], the closed loop nonlinear model
leaves the domain of attraction of the upright equilibrium point. For
some values of r in between the ones mentioned above, it is possible
for the controller to position the wheel, but the frame may complete
a full turn before it stabilizes in the up-right position. This is possible
in the simulation, but not in practice. For a step of 5 [m] the input u is
slightly larger than its bound.

Secondly, we evaluate the H∞ controllers in the frequency domain.
Figures 10–11 show the main transfer functions of the closed loop

system, excluding the weights V and W, in comparison with the bounds.
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It is apparent that the design goals are not completely achieved.
Although the H∞-norm of the generalized closed loop plant was very
close to 1, namely 1.03, the scaling of v1, thus r, by 2/3 shows that the
objective for Ser is achieved modulo this factor only. It is possible to set
the scaling for v1 to 1 and reduce the factor ρ, and by that achieve the
goal for Ser, but then the rise time was faster then required and the max-
imum frame angle ϕ was significantly larger during a step response.
This indicated a situation with a smaller region of stable operation of
the closed loop, that was not deemed acceptable, motivating the choice
for a scaling by 2/3.

Finally, the performance of the H∞ controllers in the time domain
is evaluated. Figures 12–13 show time responses for a desired step
change in the position x, again of 5 [m]. For all three controllers the
nonlinear model is used.

It is clear from these results that the controllers are able to achieve the
tracking goal, but the two H∞ controllers provide for a better tracking
behavior: the desired wheel axle position, r, is reached slightly faster,
without increasing the maximum frame angle, ϕ. In general, the H∞
controllers were able to stabilize the system for larger excursions from
the equilibrium position. For both H∞ controllers the input u was
within its bound of 10 [V] for steps smaller than 5 [m]. For larger steps
the bound may be violated. Remark that the responses for the two H∞
controllers are almost indistinguishable from each other and that they
exhibit a slight overshoot.
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5. Discussion
All three designs perform acceptable. The state-feedback controller ex-
cels in having no overshoot, but is more sluggish and gives larger values
for the frame angle ϕ. We did not try to optimize the pole locations
of the closed loop, so a better state-feedback controller is imaginable.
The H∞ designs perform slightly better for both the tracking error,
with a smaller rise time, and the frame angle, with a smaller maximum
value, but have some overshoot. Furthermore, they only need position
and frame angle measurements, but are dynamic controllers and un-
stable. The state-feedback controller needs measurements of all states,
that will be difficult or expensive in practice, but is a static controller
and therefore its stability is not an issue. The controlled systems were
also quite robust, for differences between the nonlinear and linearized
model, and able to withstand significant deviations from the up-right
position. Especially the H∞ controllers did well with respect to this
point.

It may be possible for other control structures to be better suited for
mono-cycle control. A first option is to improve the mixed sensitivity
design by using a µ-synthesis approach, with two blocks, one related
to r and one to dϕ , instead of a straight H∞ design. With two blocks it
is possible to reduce some conservatism in the design. One may also
think of nonlinear controllers, e.g., nonlinear H∞ controllers, with a

larger stability region or better tracking performance, or of adaptive
controllers that would not require accurate model parameters to func-
tion well. Examples of nonlinearH∞ controllers, in this case applied to
a 2-DOF robot and a cart-pendulum model, respectively, are provided
in [11,12]. The first reference discusses a nonlinearH∞ design directly
targeted at the specific class of models for robotic systems. The second
reference shows that a nonlinear H∞ controller is able to cope with
larger disturbances before leaving the area of the state space for which
the equilibrium point is attractive, compared with its linearH∞ control
equivalent. The feasibility of these and other control schemes for the
mono-cycle should be verified.

6. Conclusions and Recommendation
In this paper an enhanced model for a mono-cycle has been derived.
Based on a linearized model three controllers are designed to stabi-
lize the system and to allow tracking of a desired position. The design
set-up was quite flexible with ample provisions for tuning, but with ap-
propriate interactive tools like MHC this was not too time consuming.
All controllers performed acceptable and did not show the problems
with tracking a desired wheel axis position as reported previously.
The controllers are also quite robust, i.e., they performed well with
the nonlinear model for a large range of the state variables, not only
close to the nominal equilibrium point. For the set of measurements
employed, the two degree-of-freedom scheme showed no advantages.
With limited instrumentation, only measuring the position x, the one
degree-of-freedom scheme showed some weaknesses.

It appears possible to use the mono-cycle for a design project. Car-
rying out this project enables an experimental evaluation of the control
schemes. The practical feasibility of the current and other control
schemes can then be verified.
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