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Abstract 

A suitable approximation concept can be effectively used to interface structural analysis 
software and mathematical programming algorithm. In a certain part of the design spaces 
approximations of objective function and constraints are built. Then, the approximate op- 
timization problem is solved by the mathematical programming algorithm. Often, a local 
approximation concept is introduced. A local approximation of objective function or con- 
straint is based on function value and derivatives calculated by the structural analysis and 
design sensitivity analysis at  a single design point of the design space. Since such an approx- 
imation is only locally valid, a sequence of approximate optimization cycles, called design 
cycles, has to be performed to reach an optimum design. 

Local approximation concepts do not use the data of previous design cycles. Only few 
multi-point or mid-range approximation concepts have been published which t ry  to  improve 
the approximations with analysis data of more than one design point. Mid-range concepts 
are called single-point-path if during every design cycle only one design point is analyzed, 
otherwise the term multiple-point-path is used. 

In this report a single-point-path mid-range concept is studied that takes into account all 
design sites at which both the analysis and the design sensitivity analysis has been performed. 
An approximation of objective function or constraint is composed of a basic model function 
and a second model part. The second model part exactly fits the residual function values 
and derivatives of the basic model. In this second model, a function has been inserted to 
charge the correlation between different design points. A design point is less correlated with 
a remote design point than with a point lying much closer. 

Two different basic model function are considered. Firstly, the basic model has been 
taken equal to the linear approximation in the design site of the current optimization cycle. 
With this type of basic model function, the aim is to develop an approximation concept 
with an improved convergence behaviour compared with the linear concept. However, the 
second model part is not able to introduce a correct curvature into the approximation for a 
number of design cycles smaller than the number of design variables. Therefore, the mid-range 
concept with linear basic model does not generally improve the sequential linear approximate 
op timizat ion pro cess. 

Secondly, a constant basic model is considered. Suppose a constraint is to  be approximated 
and the constant value of the basic model is taken more positive than the critical constraint 
value. Then, an approximation with a variable conservativeness can be generated by the 
mid-range concept. The conservativeness depends on the degree of correlation. In the case 
of the optimization of a cantilever beam, a better convergence has been achieved compared 
with sequential linear programming. Therefore, it is recommended to further investigate the 
approximation concept with constant basic model and to compare it with the method of 
moving asymptotes. 
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Chapter 1 

Introduction 

1.1 Background and scope of the report 
To interface a non-linear programming algorithm with a structural analysis program a suitable 
approximation concept should be introduced. The basic principle is to  generate approxima- 
tions of the objective function and constraints in a certain part of the design space, and 
to solve the optimum point for this approximate optimization problem. Since approximate 
objective function and constraints are explicitly known, the approximate problem formula- 
tion can be easily solved by a (non-) linear programming algorithm. Barthelemy and Haftka 
(1993) review the basic and more recently developed approximation concepts in structural 
optimization. They distinguish local, global and mid-range approximations. 

Most often a local single point approximation concept is introduced. A local approxi- 
mation of objective function or constraint is based on the function value and the derivative 
values with respect to the design variables in a single point of the design space. Using this 
type of approximation a sequential approximate optimization process results. 

Vanderplaats (1993) describes the basic program structure for sequential approximate 
optimization. It starts with the structural analysis of the initially proposed design. Then, all 
constraint functions are evaluated and only the critical and potentially critical are retained 
for further consideration. Gradients of the objective function and the retained constraints are 
computed by a sensitivity analysis. These derivatives together with the function values are 
used to generate an approximate optimization problem. Since the approximations of objective 
function and constraints are only locally valid, movelimits are imposed on the design variables. 
A newly proposed design results from the solution of the approximate problem formulation, 
at which a new design cycle of creating and solving an approximate optimization problem can 
be started. The objective function and constraint values computed by the structural analysis 
of the new design can be compared with the approximated values, thus giving an indication of 
the quality and reliability of the approximations. This process is repeated until an acceptable 
optimum is reached. 

The most simplest local approximation concept is the linear approximation based on the 
Taylor series. In many cases an approximation of a higher quality can be obtained by the 
introduction of suitable intermediate variables and responses. Insight in the mathematical 
behaviour is used to get the best approximation to a particular response. 

However, local approximation concepts do not use structural analysis results at design 
sites of former optimization cycles. Only few extended local or mid-range concepts have been 
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developed to improve the local approximation by using more than one design point. Haftka, 
Nachlas, Watson, Rizzo and Desai (1987), Fade1 and Cimtalay (1993), and Belegundu, Rajan 
and Rajgopal (1993) worked on two or three point approximation concepts. Rasmussen (1990) 
tried to improve the approximation with function values of former design cycles by Lagrangian 
interpolation. Free, Parkinson, Bryce and Balling (1987), and Toropov, Filatov and Polynkin 
(1993) build response-surface approximation models in a certain part of the design space for 
every design cycle based on the structural analysis results of several design points according 
to some experimental design. 

In this report some basic ideas about a single-point-path (SPP) mid-range concept are con- 
sidered to  construct an approximation near the present design point, based on both structural 
and sensitivity analysis results of all evaluated designs. For every design cycle an optimum 
solution of the approximate optimization problem is computed at which a new structural 
and sensitivity analysis is done. These results are added to the total set of design informa- 
tion gathered during the optimization. So, every cycle adds one point to  the optimization 
path, and therefore the mid-range concept is called single-point-path. This in contrary to 
mid-range concepts that analyze several design sites during one optimization cycle. They are 
called multiple-point-path. 

1.2 Sequential approximate optimization 

The general optimization problem is formulated as: find the set of n design variables x , that 
will minimize the objective function: 

Fobj (x) (1.1) 
subject to the constraints: 

and side-constraints: 

gh(x) 5 c h  

x k  I 5 x k  5 2; 

h = 1, ..., m 

k = 1, ..., n 

The scalar sk is the k t h  element of the design vector x. The side-constraints define the 
design space, i.e. the region in which is searched for an optimum. 

Generally, objective function value and constraint values at a certain design point have to 
be computed from an expensive structural analysis, e.g. a finite element analysis. Therefore, 
in every design cycle approximation models of objective function and critical or potentially 
critical constraints are introduced to generate an explicitly known optimization problem. For 
the p th  design cycle the problem is now to find the vector x?) that minimizes the approximate 
objective function: 

@;(IC) (1.4) 
bounded by the approximate constraints: 

in a limited part of the design space: 
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The movelimits a; and at determine the region around the present design x ( P )  in which the 
approximations are supposed to be valid. Measures of the quality of the generated approxi- 
mations of objective function and constraints are the differences between the approximated 
values and the corresponding values following from the structural analysis. Therefore we 
define: 

These measures should give an indication whether the movelimits should be enlarged or 
tightened in the next design cycle. If one is satisfied with the quality of the proposed design 
xi’), it can be chosen as starting design of the new cycle, otherwise for example x(P) can be 
selected again. 

1 3  Availability of design sensitivity analysis results 

At a certain design cycle, approximation models of objective function and all critical or 
potentially critical constraints not explicitly known have to be introduced. In the case of 
a multi-point approximation concept, some remarks have to be made about the availability 
of design sensitivity analysis data of objective function and all considered constraints. The 
simplest case is that for every constraint and objective function to be approximated, function 
values and derivatives are available in all evaluated design sites stored in some database. This 
will usually be the case if the (semi-analytical) direct method or the finite difference method 
is used to  calculate the gradient information. Consider for example the static finite element 
case; 

where K is the stiffness matrix, u the nodal displacement vector and f a  load vector. To 
compute derivatives of stress or displacement constraints with a forward finite difference 
method, equation (1.9) has to be solved n extra times for the perturbed designs, which 
results in gradient information for all constraints. When using a(.) (semi-)analytical method 
the constraint derivative with respect to a design variable x is written as: 

K u = f  (1.9) 

- _ -  dg - + qT& 
dx ûx dx 

where q is a dummy load vector with components: 

qi = - &l 
dui 

The direct method solves 2 from 

U K - = - - -  d u  df d K  
dx dx dx 

(1.10) 

(1.11) 

(1.12) 

for every design variable x, so n times. As a result for all constraints derivative information 
is available. 

4 



However, if the adjoint method is applied, equation (1.10) is written as: 

x = 2 + ( q T -  ds X T K ) x +  du X T ( ~ - x u )  df dK (1.13) 

Then, for every constraint the adjoint vector X has to  be solved from: 

K A  = q  (1.14) 

So it is possible to calculate only the gradient information of critical and potentially critical 
constraints. Often, this approach is computationally more attractive, especially in the multi- 
load case. However, this means that during the approximate optimization process derivative 
constraint information at a certain evaluated design site is not available for all constraints. 
Constraint derivatives are only available at those design sites for which during the correspond- 
ing design cycle the constraint was found to be critical or potentially critical. 

To apply a multi-point concept, somewhat more administration in the database is required. 
To construct an approximation of a certain constraint only those N design points of the total 
number of design sites are considered for which sensitivity data of that constraint are available. 
If the adjoint method is used to  compute derivatives, these points may be different for every 
const raint. 

Finally, it is remarked that design sensitivities calculated by the semi-analytical method 
can be somewhat inaccurate. In this report the sensitivities are exactly predicted which may 
give rise to convergence problems near the optimum for certain values of inaccuracy. It has 
not yet been investigated how inaccuracy in design sensitivity data can be taken into account. 
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Chapter 2 

Basic principles of the mid-range 
concept 

2.1 Introduction 

The basic principles of the proposed mid-range SPP approximation concept are considered. 
Starting point is that all available data is used to build the approximations. Every approxi- 
mation of objective function and constraint consists of a basic model part and a part exactly 
fitting the residual function values and derivatives. Given the basic model and the non-linear 
parameters in the residual model, the remaining linear parameters in the second model can be 
computed. The basic model and the non-linear parameter values influence the approximation. 
In chapter 3 the basic model is chosen equal to the linear approximation in the design site of 
the current optimization cycle, around which an approximation is desired. Chapter 4 deals 
with a constant basic model. 

2.2 Approximation model 

Suppose at  the p t h  design cycle for a certain objective function or constraint to  be ap- 
proximated, structural and design sensitivity results are available at N design points. The 
evaluated design sites are gathered in the design set S: 

s = {Si, S I ,  * * - ,  S N }  (2.1) 

The computed function values and derivatives belonging to this set S are written in a form: 

The j t h  element of a column si is denoted as (sj)i . 
For the objective function or constraint the following approximation is introduced: 
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1.5, 1 I I 
~ 

- ....... ............ <...<....._...... .. ..... ............... 'y - 0.5 

O '  I 
I I 

O 2 4 6 
Design variable 

Figure 2.1: One point approximation for 0 
values of 0.1, 0.5 and 1. 

O 1  
O 2 4 6 

Design variable 

Figure 2.2: Two point approximation for 8 
values of 0.1, 0.5 and 1. 

with an extended design variable column z and a parameter column a; defined by: 

z =  [ 1 .'IT 
a =  [ a0 al . 

n 
and a correlation function: 

.. a, 1' 
(2.5) 

k = i  

Approximation model (2.4) consists of a basic model and a summation of linear models 
belonging to  every design site si multiplied by corresponding correlation functions. The 
basic model and the parameter 8k in (2.7) are chosen beforehand, while the remaining linear 
parameters ai (i = 1, .., N )  for every design si are computed such that function value and 
derivatives in si are exactly predicted. The correlation function provides that function values 
and derivatives at  a design point far away from x are less influential on the prediction than 
computational results more near by. 

The behaviour of the model severely depends on parameters 81, (k = 1, .., n). Consider for 
example a one dimensional optimization problem (n  = 1) with one constraint g(z) 5 1 to be 
approximated. Suppose at the initial design 2 = 2.5 structurd and design sensitivity analysis 
have been performed, resulting in a constraint function value 0.5 and derivative value 0.25. 
The basic model is taken constant 1.15. In figure 2.1 it is clearly visible that the parameter 
8 value is directly connected with the region in which the approximation is supposed to  be 
valid. Far away from the design site, the real constraint value is unknown and therefore the 
approximation tends to the basic model. 

Now a new design is added at 2 = 3.5, so we have at  two distinct design points two 
constraint values and two constraint derivative values. For a certain B value and a basic line 
of 1.25 the unknown parameters (ao )~  , ( q ) l  , ( u o ) ~  and (a1)2 can be directly computed. 
Since the approximate model 2.4 has to predict the function and derivative values exactly, 
a set of four linear equations is found which can be easily solved. In figure 2.2 for some 8 
values the approximation model of the constraint is plotted. Again the influence of B is clearly 
visible. 
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2.3 Estimation of the linear parameters 

Suppose that for a certain constraint or objective function an approximation near the present 
design point based on model (2.4) has to  be constructed and that structural and design 
sensitivity analysis results are available a t  N design points, collected in a form like (2.2) 
and (2.3). Starting from a given basic model and certain parameter ek values, the unknown 
parameters a; (i = 1, ..., N )  in model (2.4) should be determined such that the function values 
and derivatives w i l  be exactly predicted. Frour ecpatioil(2.4) it ca: be deîived that foï eveïy 
design site 5j (j = 1, ..., N )  we have: 

(2.9) 
j = 1, ..., N 
k = 1, ..., n 

with the extended design vector t j  given by: 

(2.10) 

Exact prediction of the data means: 

f(sj) = y(sj) j = 1, ..., N 

OY 
-(Sj) 

af -(Sj) = j = 1, ..., N 
d x k  a s k  

The transformed function values and derivatives are defined by: 

d W  dY a f b  

axk axk ax  k 
- (Si )  = -(Sj) - -(Sj) j = 1, ..., N 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

and put in a design data column u: 

T 
u =  [ W(s1) &(si) e.. & ( S I )  w(sN) &(SN)  -.. &(SN) ] (2.15) 

which has length N ( n  i- 1) . When also a column of unknown parameters b is formulated: 

b =  [ a: a; ... a$ I T  (2.16) 

then the following set of linear equations results: 

Tb = U (2.17) 

Matrix T directly follows from equation 2.8 and 2.9 and can be written as: 

(2.18) 
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where the n + 1 by n 4- 1 submatrix Tji given by: 

(2.19) i = 1, ..., N 
Tj; = 2 q s i  - Sj)t' 

with the n by n diagonal matrix O defined by: 

(2.20) 

Matrix I is an n by n identity matrix. 
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Chapter 

C O  Linear 

3 

approximation as basic 
model 

3.1 Introduction 

In the preceding chapter an approximation concept has been introduced that consists of a 
basic model and a sum of linear models multiplied by correlation functions. Now, the basic 
model is set equal to  the linear approximation in the design site of the present design cycle, 
as proposed in (Etman, 1992): 

Then, the multi-point concept should improve the convergence behaviour of the sequential 
linear approximate optimization process. 

fb(x) = wz ( 3 4  

Vector a0 can be found from: 

with s, the current cycle design. Remains a correct choice for parameters 0 k  to be made. 
For the sake of simplicity, suppose that all design variables have been scaled such that the 
behaviour of functions to be approximated is almost the same in every design variable direc- 
tion. This means that 8 k  can be chosen equal for all k and that an absolute movelimit a can 
be introduced for all design variables. 

3.2 Influence of 8 

As already has been remarked, parameter 8 is of direct influence on the size of the region 
in which the linear model is adapted by the second part of the approximation (2.4). This 
region size is related with the range of the region in which the approximation is supposed to 
be valid. Therefore, it is proposed to relate parameter 0 with movelimit a. 

The movelimits of all design variables build together an n-dimensional hypercube search 
subregion. The largest distance within this cube is from center m to corner c,  being m. 
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If we define d to be the correlation function value between center and corner: 

d = R(m, c) (3.4) 

and if we relate 8 with this correlation value, then 8 can be computed from: 

Remark that these considerations suggest to  use a hyperglobe instead of a cube as search 
subregion, thus making the largest possible step independent of the dimension of the design 
space. This suggestion has not been investigated yet. 

Now the problem is converted into the choice of a correct movelimit and a reasonable 
value of parameter d. The movelimit is determined by the smoothness of the response to  be 
approximated. For a strong nonlinear behaviour smaller steps have to  be made to  keep the 
approximation valuable. The parameter d value - lying between zero and one - is less trivial. 
In any case d should be large enough that function value and derivatives of designs nearby 
do have influence and (hopefully) improve the linear approximation given in the basic model. 
Here it is assumed that steps made from cycle to  cycle are not too large, i.e. the error e?’ is 
not too large. 

For growing value of d a more stiff behaviour of the approximation between different design 
sites will result and the basic model will be adapted in alarger region in the design space. This 
also causes the extrapolative behaviour to become less predictable, like polynomials exactly 
predicting function values and derivatives. 

Take for example the one dimensional situation of figure 3.1 in which function values 
and derivatives are known at two distinct design sites. Around the second point a new 
approximation is generated with the movelimit being the distance between the two points. 
The function value of the first point is slightly enlarged and reduced. For these three situations 
approximation models are generated with d = 0.3 (figure 3.1) and d = 0.9 (figure 3.2). At 
the same time, in figure 3.3 the corresponding polynomial approximation is given. 

The two point approximation for d values near one (and therefor 8 near zero) becomes 
a third order polynomial in a Taylor series expansion. This means that for d values near 
one the approximation around the present design site can show a rather wild extrapolative 
behaviour if function values and derivatives of the different designs are difficult to predict for 
the polynomial like model. This behaviour may be kept under control by not making too 
large steps from cycle to cycle. For d values near one the basic model has much less influence 
than for smaller values. 

3.3 Test example 

Consider the cantilever beam problem described by Svanberg (1987). The cantilever beam is 
plotted in figure 3.4. The design variables are the heights xj of the different beam elements 
while the thicknesses are held fixed. Svanberg (1987) formulated the problem analytically as: 
minimize the weight: 

subject to  the displacement constraint of the tip: 
F o b j  = 0.0624(21+ 2 2  + 2 3  5 4  2.5) (3.6) 

61 37 19 7 1 
g = 3 + 3 f - + - + - < c  

21 x2 x; xi 25 (3.7) 
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with c = 1, in the design space: 

x j  > O j = 1, ..., 5 

The optimal solution is given by $1 = 6.016 , 52 = 5.309 , 23 = 4.494 , 2 4  = 3.502, and 
2 5  = 2.153 with corresponding weight of 1.340. 

Starting from initial design zj = 5.0 ( j  = i ,  ..., 5) it is tried to  solve the problem with 
sequential linear approximate optimization keeping the movelimit constant 0.5. Although 
the errors made during the optimization remain within 10 $4 the process will not converge 
without the reduction of the movelimit (see table 3.1), because there is only one constraint. 
This means that the approximate optimum is always found on the boundary of the search 
subregion. Starting from cycle 8, with consequently reducing the movelimit, about five or s ix  
extra cycles are needed to get the infeasibility within 0.001 and the weight within 0.1 % of 
the known true optimal value. 

Now, the cantilever beam problem is solved by the mid-range concept with the linear 
approximation of the last design cycle as basic model. The movelimit is set t o  0.5. From 
the sequential linear approximate optimization process it can be concluded that for this value 
the steps made are not too large, since the errors stay within 10 %. The movelimit is kept 
constant and is not reduced such that the mid-range concept has to take care for convergence 
itself. The simulations are performed for d values of 0.001,0.01,0.1,0.3,0.5,0.7 and 0.9. The 
results are summarized in table 3.1. 

Bad convergence for small d values is the first conclusion that can be drawn from this 
table. Around the optimum, relatively many computations are made before the true optimum 
is found. This is caused by the fact that the linear approximation is insufficiently adapted in 
the search subregion. In the major part of this region, the approximation is still almost linear 
such that, like the linear concept, the approximate solution is found on the boundary of the 
search subregion. For larger d values, better convergence is achieved, because the behaviour 
of the approximation is influenced in the complete subregion. A better reconstruction of the 
constraint results, making that the optimum is catched faster within the movelimits. However, 
remark that the convergence improves for values of d getting more near one. For these values 
the condition of matrix T becomes rather bad for growing number of designs, while the basic 
model has less influence, thus making our prior considerations about an improved linear 
approximation out of context. This is illustrated by taking the basic model constant c and 
repeating the optimization with d = 0.9. About the same convergence is found (see table 
3.2). 

Secondly, one can question the usefulness of taking into account the structural analysis and 
design sensitivity analysis results of all design sites, if one compares the first six cycle results 
of the linear concept with the results of the mid-range concept given in table 3.1. During 
the first design cycles the multi-point concept has hardly improved the optimization process 
compared with the linear concept. Only in the convergence stage a significant improvement 
has been achieved. The influence of the first cycle designs on the performance of the mid- 
range concept is investigated by taking the design of the 4, 5 and 6 t h  cycle of the linear 
concept as initial design of the mid-range concept with d = 0.9. Table 3.3 shows that for 
these three cases convergence occurs in six extra mid-range cycles. So in spite of the near 
optimal start design still six additional cycles are required. Therefore, a direct conclusion is 
that the automatic convergence for larger d-values seems to  be dependent on the number of 
design variables. This, because of the six extra cycles for the five dimensional cantilever beam 
problem. 
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3.4 Discussion 

A cantilever beam optimization problem of five design variables and one non-linear constraint 
has been used to  illustrate the performance of the SPP mid-range concept. This cantilever 
beam problem is an underconstrained optimization problem, which means that the number 
of constraints that determine the optimum is smaller than the number of design variables. 
Therefore, the optimum is determined by the curvature of the displacement constraint. That 
is 
the search subregion. 

For an underconstrained optimum, curvature in the approximate objective function and 
constraints is essential. In the case of a constrained optimum, curvature in the approximations 
may not be necessary. A linear approximation concept can perform quite well since the 
optimum lies in the vertex of the constraints. However, non-linearity of the constraints may 
give rise to a lot of linear approximate optimization cycles. Addition of curvature to  the linear 
approximations can improve the convergence rate. 

In this chapter, the basic model of the SPP mid-range approximation (2.4) has been chosen 
equal to the linear approximation in the design site of the present design cycle, to  develop 
a concept that improves the linear concept. This improvement should be established by the 
second part of model (2.4) which adds curvature to the linear basic model. For the cantilever 
beam example, the convergence of the sequential approximate optimization process has been 
improved, compared with the linear concept. It has been noticed that the best improvements 
occur for highly correlated design points, i.e. for d values near one, and that a near optimum 
start design still requires six additional design cycles to  reach the optimum solution. 

High correlations give rise to unpredictable polynomial like approximations. This is caused 
by the exact prediction of function values and derivatives. To try to  avoid this behaviour, the 
errors e?) have been kept within ten to fifteen percent for every p th  design cycle. However, 
this sensitive extrapolative behaviour remains undesirable. 

The second observation of the six additional design cycles suggests a dependence between 
convergence and number of design variables. Starting from a near optimum design, six cycles 
were necessary to generate an approximation of the constraint with a correct curvature. A 
linear approximation of equation (2.4) for 8 near zero (d  near one) is given by: 

seT#.m+:" LL,,,,d h e a r  programming does not aUtomaticdy couverge W i t D u U t  shïirihge of 

N N 

This polynomial model consists of the terms z p ,  z;, xi, x p x q  and x p x i  with p ,  q = 1, ..., n 
and a total of terms of n(n + 1). These terms are not necessarily independent, depending 
on N .  For every design cycle one function value and n derivatives are calculated. Therefore, 
to independently estimate the parameters of all terms at least n cycles are necessary. Then, 
the number of cycles required for convergence is linearly dependent on the number of design 
variables. In the case of the cantilever beam at least 5 cycles are required. 

Summarizing, the general conclusion is that the introduction of curvature in the approxi- 
mations by a mid-range SPP concept with basic linear model as proposed in this chapter can 
not generally improve the sequential linear approximate optimization process. Only in lower 
dimensional optimization problems a better convergence may occur. 
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Figure 3.1: Two point approximation with 
d = 0.3. 
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Figure 3.5: Design variable behaviour of the 
linear concept. 
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Figure 3.2: Two point approximation with 
d = 0.9. 
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Figure 3.6: Design variable behaviour of the 
mid-range concept with linear basic model 
and d = 0.9. 
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Table 3.1: Optimization history of the cantilever beam problem using a linear and a SI 
mid-range concept with a linear basic model and a constant movelimit 0.5. The upper ent 
of each pair is the weight and the second is the infeasibility. Index * means: movelimit 
active . 
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cycle 

Table 3.3: Optimization history of the cantilever beam problem using a mid-range SPP 
concept with a linear basic model, d = 0.9 and a constant movelimit 0.5. The start design is 
equal to  the 4,5 or 6 th  cycle design of the linear concept. The upper entry of each pair is 
the weight and the second is the infeasibility. Index * means: movelimit is active. 

O 1 2 3 4 5 6 7 8 
1.56 1.469 1.413 1.378 1.365 1.343 1.334 1.34 1.34 
O 0.0582* 0.0561* 0.0442* 0.0018* 0.0079* 0.0275' 0.0012 3 lo-' 
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Chapter 4 

A constant basic model 

4.1 Introduction 

Instead of a linear approximation, now a constant basic model is introduced: 

It is supposed that only constraints have to be approximated and that the optimum design 
is determined by the constraints. Then, if we take /3 larger than ch in equation (1.2) for all 
constraints (h  = 1, .., m), a more or less conservative approximation concept results depending 
on the values of & ( I C  = 1, ..., n). In accordance with the preceding chapter, it is again assumed 
that e k  can be chosen equal for all I C ,  i.e. the behaviour of the constraints is about the same 
in every design variable direction. 

4.2 Influence of 8 

In chapter two it has already been noted that for design sites with correlation function values 
near zero, an approximation results which tends to the basic model. Near design sites at 
which function values and derivatives are present, the approximation is adapted to predict 
this data exactly. A linear approximation as basic model proved to be not useful. However, in 
the case of a constant basic model, for certain values of and 0 a complete different behaviour 
is found. 

Consider figure 2.1. Here, a constant basic model, lying above the critical constraint value, 
has been chosen. Far away from the computed function value and derivative, the correlation 
function value is near zero, and therefore the approximation almost equals the basic line. Since 
the basic line lies above the critical constraint value, a conservative approximation results. 
The conservativeness can be adjusted by the width of the correlation function (i.e. the value 
of 6 ) and indirectly also by the position of the basic line (i.e. the value of /3 ). In this report 
p is kept constant, while 0 can be used to change the curvature of the approximation. 

As a consequence of the conservativeness, the optimum can be approached from the feasible 
region, when starting from a feasible initial design. During the optimization, it is tried to 
choose a parameter 6 value such that the approximation is more conservative than the true 
functional behaviour. For large design variable changes the conservative approximations of 
the constraints may be inaccurate, but they always try to  avoid you from making too large 
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steps. This means that movelimits are not necessary anymore. The approximate constraints 
create their own search subregion. 

Near the optimum, the design variable steps automatically become smaller without chang- 
ing O. If the approximations are conservative enough, no oscillations will occur. This step 
refinement leads to a more accurate approximation of the constraints. For smaller steps, 
neighbouring analysed design sites are situated more closely to  each other. Then, the approx- 
imation is locally adapted by the mid-range SPP algorithm, which tries t o  exactly predict 
aJl available function values and derivatives of former design cycles. For near optimum de- 
signs lying closely to  each other, the function values and derivatives do not change very much 
from one to  another, and therefore it is expected that the approximation model will predict 
this data without difficulty. Although this data of former designs can not provide all second 
order information, it can influence the conservativeness of the approximation, and therefore 
improve the convergence behaviour. At the start of the approximate optimization process 
larger design variable steps will be made, and the influence of former design cycle results will 
be less than during the convergence stage. 

4.3 Test example 

Consider the cantilever beam example of section 3.3. The basic model is fixed at 1 . 1 5 ~ .  In the 
present configuration, the initial design should be feasible or nearly feasible, but in any case 
be smaller than 1 . 1 5 ~  to  get an appropriate conservative approximation. For the cantilever 
beam this is satisfied. 

Movelimits are not necessary, because of the conservative nature of the constraint approx- 
imation. However, to have an opportunity to compare the results with the preceding chapter, 
we do introduce a movelimit, and set it to a constant value of 0.5. Also the same relation 
between O and d as given in 3.7 is assumed. So a d value near zero will result in a very 
conservative approximation. 

Calculations are performed for d values of 0.01, 0.1, 0.3, 0.5, 0.7 and 0.9. Again the 
optimization is defined to be converged for an infeasibility within 0.001 and the weight within 
0.1 % of the known true optimal value. The results are summarized in table 4.1. 

For d = 0.01 the optimization process slowly approaches the optimum solution from the 
feasible design space. Too high a conservativeness has been introduced. The maximum 
absolute design variable step made is about 0.27, and never a movelimit has become active. 
Increasing d results in a less conservative behaviour of the approximate constraint, and larger 
design variable changes can be made. For a parameter d value that is equal to or larger than 
0.3, movelimits have (unnecessarily) bounded the design variable changes during some design 
cycles. It is clearly visible that the best convergence occurs for d = 0.3. All calculated designs 
are feasible, and convergence is reached within 7 cycles. Higher d values give rise to a too less 
conservative approximation, and therefore infeasible designs occur. Again, d = 0.9 leads to 
an optimization process which is comparable with the results of the last column of table 3.1. 

Illustrative is the comparison of the design variable optimization history of the single 
point linear approximation concept, the mid-range SPP concept with linear approximation as 
basic model and d = 0.9, and the mid-range SPP concept with constant basic model p = 1 . 1 5 ~  
and d = 0.3 (see figures 3.5, 3.6 and 4.1). It is clearly visible that the latter concept smoothly 
converges to the optimum design variable values, in contrary to the other concepts. 

Starting from a near optimum design, the optimum design will be found within one or 
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two extra design cycles for a correct conservativeness of the approximate constraint, since the 
optimum is determined by the curvature of the constraint. No oscillations will occur. 

O 2 4 6 8 

Design cycle 
Figure 4.1: Design variable behaviour of the 
mid-range concept with constant basic model 
1 . 1 5 ~  and d = 0.3 . 

O 2 4 6 8 
Design cycle 

Figure 4.2: Design variable behaviour of the 
single point version of the mid-range concept 
with constant basic model 1.15~ and d = 0.5. 

4.4 Discussion 

A better convergence behaviour of the mid-range concept is found, if a constant basic model is 
used instead of a linear approximation. Then, the correlations between different design sites 
determine the conservativeness of the approximation. However, just because of these lower 
correlation values, one can question the effect of previous design cycle data on the quality of 
the approximation. 

To investigate the additional value of the data of previous design cycles, the cantilever 
beam problem has been solved by the same 'mid-range' concept, except that computational 
results are only known at the present design site. So the special single-point case of the 
mid-range concept is considered. The results are summarized in table 4.2. 

For small d value the approximation of the constraint is too conservative, and a very slow 
convergence is noticed. The approximation is almost linear for a d value near one and therefore 
the same convergence behaviour with oscillations occurs. Near d is 0.5 the best convergence 
is found. All analyzed designs have been feasible. By comparison of table 4.1 and 4.2 can 
be concluded that the conservativeness of the approximation is influenced by analysis data 
of former design cycles. The approximation is made less conservative for d = 0.3 such that 
convergence is reached within 7 instead of 9 design cycles. However, if parameter d can be 
correctly valued during the optimization, the effect of the multi-point concept as proposed in 
this report may appear to be marginal. 
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I 5  
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10 

11 

12 

- 
d=0 .01  d = 0 . 1  d = 0 . 3  d = 0 . 5  d = 0 . 7  d = 0 . 9  

1.56 1.56 1.56 1.56 1.56 1.56 
O O O O O O 

1.55 1.541 1.526 1.506 1.487 1.474 
-0.0217 -0.0359 -0.0526 -0.0553* -0.0085* 0.0368* 
1.517 1.489 1.451 1.426 1.43 1.418 

1.489 1.453 1.419 1.403 1.391 1.38 

1.462 1.418 1.38 1.364 1.367 1.366 

1.436 1.388 1.36 1.348 1.345 1.344 

1.414 1.365 1.341 1.339 1.339 1.336 

1.394 1.348 1.34 1.34 1.34 1.339 
-0.0092 -0.0049 -4 5 7 lov6 0.0018 
1.376 1.341 1.34 

1.361 1.34 

1.349 
-0.0040 
1.342 

-0.0018 
1.34 

-0.0003 

-0.0215 -0.0226 -0.0091* 0.0162* 0.0043' 0.0442* 

-0.0156 -0.0188 -0.0241 -0.0232* 0.0043* 0.0350' 

-0.0145 -0.0175 -0.0091* 0.0061* -0.0034* -0.0003* 

-0.0124 -0.0118 -0.0127 -0.0059* 0.0027' 0.0041* 

-0.0103 -0.0095 -0.0011* 0.0026 0.0038 0.0257* 

-0.0075 -0.0012 i 10-5 

-0.0058 -3 

concept 
!ach pair 
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10 

11 

single point 'midrange' concept 
d=0.01 d=O. ì  d = 0 . 3  d = 0 . 5  d = 0 . 7  d = 0 . 9  

1.56 1.36 1.56 1.56 i .56 1.56 
O O O O O O 

1.55 1.541 1.526 1.506 1.487 1.474 
-0.0217 -0.0359 -0.0526 -0.0553* -0.0085* 0.0368* 
1.533 1.511 1.48 1.449 1.435 1.421 

1.515 1.483 1.439 1.405 1.394 1.381 

1.498 1.457 1.406 1.374 1.369 1.357 

1.483 1.435 1.38 1.352 1.347 1.338 

1.468 1.415 1.36 1.34 1.336 1.315 
-0.0180 -0.0207 -0.0151 -0.0010 0.0118* 0.064* 
1.455 1.398 1.348 1.34 1.336 1.327 

1.443 1.384 1.342 1.336 1.318 
-0.0148 -0.0145 -0.0024 0.0162* 0.0589* 
1.431 1.372 1.34 1.332 1.326 

-0.0135 -0.0118 -0.0004 0.0285* 0.0690* 
1.421 1.362 1.336 1.318 

-0.0122 -0.0092 0.0175* 0.0587' 
1.411 1.354 1.332 1.326 

-0.0247 -0.0374 -0.0492 -0.0428' -0.010* 0.0369* 

-0.0237 -0.0333 -0.0397 -0.0277* -0.0058* 0.0430' 

-0.0218 -0.0286 -0.0306 -0.0197* -0.0065' 0.0241* 

-0.0198 -0.0244 -0.0227 -0.0142* -0.0019" 0.0493* 

-0.0163 -0.0174 -0.0078 -2 0.0186 0.0672" 

12 
-0.0111 -0.0067 0.0290* 0.0690" 
1.402 1.348 1.336 1.318 

I I -0.0082 -0.0015 0.0180* 0.0587* I 
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Table 4.2: Optimization history of the cantilever beam problem using the single point version 
of the mid-range concept with constant basic model 1 . 1 5 ~  and a constant movelimit 0.5. The 
upper entry of each pair is the weight and the second is the infeasibility. Index * means: 
movelimit is active. 

-0.101 -0.0046 0.0179* 0.0587* 
1.394 1.344 1.332 1.326 
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-0.0091 -0.0028 0.0291* 0.0690* 
1.386 1.342 1.336 1.318 



Chapter 5 

Conclusions and recommendations 

A single-point-path mid-range approximation concept has been studied. The concept gener- 
ates an approximation of objective function or constraint that consists of a basic model part 
and a part exactly fitting the residual function values and derivatives. Two different basic 
models have been investigated: a constant model and a model which is equal to  the linear 
approximation in the design site of the current optimization cycle. The mid-range model with 
linear basic model does not generally improve the sequential linear approximate optimization 
process. In the case of a constant basic model a better convergence of the optimization of a 
cantilever beam has been achieved. However, it is not exactly clear what the additional value 
is of the analyses and design sensitivity analyses of the previous design cycles. 

It is recommended to  further investigate the approximation concept with constant basic 
model starting from the single point version. A strategy has to be developed which determines 
the conservativeness of the approximation in every design variable direction at the current 
design cycle. Further, it has to be studied if analysis results of more than one design point 
can be effectively used to improve the approximation, and how intermediate design variables 
and responses can be implemented. Instead of using equation (2.4) one can think for example 
of 

Model fa(x,x0) is a local approximation around xo that can be based on intermediate (re- 
sponse) variables and analysis results of previous design cycles. This data might also be used 
to determine the conservativeness (i.e. the unknown parameters of the correlation function 
R) of the approximation. In any case, a comparison should be made with the method of 
moving asymptotes which is an alternative concept to  generate conservative approximations. 

S(X) = P + fa(x, xo)R(x, XO) ( 5 4  
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