

Two applications of a class of convolutional codes with
reduced decoder complexity
Citation for published version (APA):
Vinck, A. J., Oerlemans, A. C. M., & Martens, T. G. J. A. (1980). Two applications of a class of convolutional
codes with reduced decoder complexity. (EUT report. E, Fac. of Electrical Engineering; Vol. 80-E-115).
Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1980

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/d386830d-4448-43e3-8dbb-19675997d59d

Two applications of a class of convolutional

codes with reduced decoder complexity

by

A.J. Vinck, A.C.M. Oerlemans and

T. G. J. A. Martens

. , , ,
"

E I N D H 0 V E NUN I V E R SIT Y 0 F TEe H N 0 LOG Y

Department of Electrical Engineering

Eindhoven The Netherlands

TWO APPLICATIONS OF A CLASS OF

CONVOLUTIONAL CODES WITH REDUCED

DECODER COMPLEXITY

by

A.J. Vinck

A.C.M.Oerlemans

T.G.J.A. Martens

TH-Report 80-E-115

ISBN 90-6144-115-3

Eindhoven

November 1980

-ii-

Contents

Abstract

I. Introduction

II.

III.

IV.

Fano decoding

Simulation for the Fano decoding algorithm

Restricted Viterbi decoding

Conclusions

Acknowledgements

References

iii

15

24

42

63

64

65

-iii-

Abstract

In this report we first discuss the implementation of a Fano decoder

using the tree structure of the class L2 0' of convolutional
,V,N

codes. Simulation results indicate that considerable reduction of

the computational complexity can be obtained.

Secondly, we give a software as well as a hardware implementation

for a restricted Viterbi decoder. This decoder has a complexity

proportional to the number of estimates, m, stored in the decoder.

For a representative value of the Binary Symmetric Channel (BSC)

transition probability PBSC of 0.045, the decoding bit error pro-

bability P
B

decreases negative exponential with log(m). Hence,

PB~C.2-l0g(m). Simulations indicate that low error probabilities

can be obtained for small values of m, and utilization of the class

L2 . ,v,R.,

Vinck, A.J., A.C.M. Oerlemans and T.G.J.A. Martens

TWO APPLICATIONS OF A CLASS OF CONVOLUTIONAL CODES WITH REDUCED
DECODER COMPLEXITY.
Department of Electrical Engineering, Eindhoven University of
Technology, 1980.
TH-Report 80-E-115

Correspondence address:

Dr.ir. A.J. Vinck,
Group Information Theory,
Department of Electrical Engineering,
Eindhoven University of Technology,
P.O. Box 513,
5600 MB EINDHOVEN,
The Netherlands

I. Introduction

In communication systems, channel coding can be used to protect

information against transmission errors. One of the major problems

is to develop· codes with low undetected error rates at a moderate

complexity of the decoder. It is the aim of this report to introduce

a class of codes that can be used to reduce decoder complexity.

In channel coding literature, one distinguishes between block

and convolutional codes. A rate kin block code can be generated with

a combinatorial network. The n-output digits of this network at time

t, only depend on the k-input digits at the same time instant. A

convolutional code is generated with a sequential network. The n-out-

put digits at time t depend on the k-input digits at time t, and on

the input digits at time t-l,t-2, ...• In the remainder of this re-

port we assume that binary digits are to be transmitted over a bina-

ry symmetric channel (BSC) with a transition probability PBSC and

a rate 1/2 convolutional code. Fig. 1 gives a specific example of a

< C1 >

v
<

L
'->

Fig. 1. A rate 1/2 convolutional encoder

-2-

binary rate 1/2 convolutional encoder. Formally, using the delay

operator notation [1], the input/output relations can be written as

C
1

(D) = I (D) gl (D)

I(D)g2(D) (1)

2
where for the example of Fig. 1, gl (D) = l+D+D and g2(D) = l+D,

respectively. The number of memory elements, v, of an encoder of

the type as given in Fig. 1, is called the constraint length of the

code. It indicates the maximum number of output pairs influenced by

the memory of the encoder. From the shift register viewpoint, a

convolutional code is the collection of all possib~e output streams

of a particular encoder. A way of representing the encoder output

as a function of its input and memory contents is by means of a

tree. The tree associated with the encoder of Fig. 1, is given in

Fig. 2.

o

,
•

Fig. 2.

00

, ,

1 1

Tree representation for the encoder of Fig. 1.

-3-

Each node in the tree is labeled with the information sequence

leading to a particular node, or as the encoder has memory length,

the last V digits suffice as a label. Going from a node to a particu-

lar successor, the encoder outputs are placed along the branches, see

Fig. 2. Note that the output of the encoder at a certain depth in the

tree only depends on the node label and the present input. Hence, two

nodes at a certain depth, with the same last v digits of the respec-

tive labels, have the same encoded sequences following either node.

Viterbi used this fact to develop a Maximum Likelihood (ML) decoder

[2]. Note also, that the tree has 2%%t nodes at depth t. Hence, deco-

ders that make use of the tree structure of convolutional codes are

forced to do this in a clever way, in order to avoid exponential

complexity growth. Fano [3], gave a solution to this problem for

the class of random tree codes.

Let a binary information source generate independent digits

with Pr(O) = Pr(l) = 1/2. The information is to be encoded with a

rate 1/2 tree code. The binary code digits along the branches of

the tree are also independently generated with Pr(O) = Pr(l) = 1/2.

The probability that the encoder follows a path from the origin to

some specific node at depth j is thus equal to 2%%(-j). Then, given

a received sequence X of length 2j, define as a quality measure for

the encoded path £ to the node at level j

~
Lf(~) logpr(~/¥)

logPr(y/c).Pr(c)
Pr(y)

logPr(y/c)-+ logPr(~)
Pr(l)

(2)

-4-

Since our channel is memoryless, and the code is random, we have

2j-1
-j

Lf (£) I [lOgpr(yi/ci)] + log 2
i=O

Pr (Y.)
1

2j-1
[lOgpr(yi/ci) + 1/2] I (3)

i=O

Massey [4], who ten years after Fano introduced this metric, shows that

(3) is optimal. Thus, if we extend the node with greatest metric,

and continue this process until we reach the end of the tree, we

can be reasonable sure that we will have found the same path that

an ML decoder would have found. Although the tree generated by a

convolutional encoder is not random, it is random enough to use (3).

Note that the metric as derived in (3) is additive. For example, when

PBSC = 0.02, one finds from (3), that

logPr(y./c.) + 1/2 = log(1.-0.02) + 1/2
1 1

when y. = c whereas
~ i'

logPr(y./c.) + 1/2
1 1

'" = 0.47 - 0.5

log(0.02) + 1/2

-5.14 ~ -5.

when y. F c .. In practice, one scales the metries so that all metric
1 1

values can be closely approximated by integers. In this case, we

scale with a factor of two. Note that if only paths of equal length

are considered, the constant term 1/2, can be omitted. To illustrate

the above described decoding strategy, consider the example of Fig.3.

-5-

The encoder connection polynomials are 1+D+D
2

and 1+0
2

, respective-

ly. The encoder output and corresponding Fana metrics are indicated

along the branches. The increments in the Fano metric are easily

calculated from the distance between a received pair and the branch

transition pair. We have scaled the values of the respective Fano

metrics to integer values.

Into

transmIt ted 11

receIved Ql

00
~/

B

a

10

1 0

F
-18
/.-

11/ D
/

/

00 -18

E

00

11

a a

10 11

10 11

-36
Ot.-- ---L
-"

-31.
10 -'1. _Illl- N

-12

o

a -25

K

Fig. 3. Example of the operations of a tree decoder.

We now describe a class of· convolutional codes with a special

tree structure. This tree structure can be shown [5,6] to reduce

the computational complexity of sequential decoding procedures. Let

gl (D) and g2(D) represent the connection polynomials of a rate 1/2

convolutional encoder. This encoder is said to generate a code in

the class L of convolutional codes, iff
2,',),R.

1). the constraint length of the encoder is equal to v, and

-6-

2). the connection polynomials are pairwise equal for the first ~

terms and unequal for the 2+1 th term. To end up with non delayed

versions of other codes, both connection polynomials must have a

constant term. As an example, the encoder of Fig. 1 generates a

code in the class L2 2 2- More concisely, a code is an element of , ,
L , iff
2,v,i

" (4a)

delay (4b)

gcd 1 (4c)

Condition (4c) means that both connection polynomials have no COmmon

divisor unequal to 1, or that the code is non catastrophic. That is,

infinite degree nonzero information sequences cannot produce finite

degree code sequences. Furthermore, if (4c) is fulfilled, an in-

stantaneous inverse to the code sequence can be derived, using

Euclid's [1] algorithm. The ~ sign means mod-2 addition of the

polynomials.

At this moment we restrict ourselves to describe how the above

defined class of codes influences the tree structure of the gene-

ral class of binary rate 1/2 convolutional codes.

Following Massey [7], the information and corresponding code

vector sequence from time u up to time V, are given as

-7-

i
[u,v) = (i i 1 ' ••• , i 1) I and

U , u+ v-

c - [u,v)

respectively. For example, for the tree in Fig. 2 the information

input sequence i[O,2) = (1,1), gives rise to a corresponding code

vector sequence £[0,2) = ((11), (00». Furthermore, we can split

up the information sequence i[) into a concatenation of substrings, u,v

as i = i xi[). The same can be done for the code vector
[O,v) [o,u) U,v

sequence 9 [.). We are now ready to describe some important proper
o,v

ties of the class L2 n of convolutional codes as given in (4).
,v,x.

Suppose we fully developed a code tree up to depth v. Then,

this code tree can be divided into subtrees, by taking together all

paths with the same path history up to time (v-t), O<t~v. In the

following lemma we proof that given an information and a corres-

ponding code vector sequence from a particular subtree, we can find

back or derive the whole subtree again.

Lemma 1: Given an information s~quence, and hence the corresponding

code vector sequence, up to time V, then 2t_l other code vector se-

quences can be derived from the given one.

Proof: Let

i 1 ,
[O,jH)

i[O,j) ;, i[j,jH)' and

i ;, i 1
[O,j) [j,j+l)

-8-

be two information sequences diverging at depth j in the tree. The

two corresponding code vector sequences are

~[O,jH) ~[o,j)" ~(j,jH)' and

~1 [O,j+~) ~[O,j)" ~1 [j,jH)'

respectively. As il[O,j) = i[')' the code vector substrings
0, J

1
~ [O,j) and ~[O,j) must also be equal. Hence, the two code vector

sequences ~[O,j+~) and ~1[O,j+~) only differ in the last ~ stages.

As the first ~ coefficients of gl (D) and

are equal, the differences, c [' , , , I)'
- J+~,J+l.+

of {(00),(1l)} for.all i, O~i';~-l.

g2.(D) of a code in L2,,,,~

.--",,_.-- .. - _',.

~ c [j , j , I)' are elements - +~, +1.+

Property 1: Due to the structure of the class L , we can find an
2,v,R,

information sequence i~[O,j+~)' that leads to a code vector sequen-

ce ~~[O,j+~) with the property that

(0 0) i f j,O"i':jH-I

~

~ [i,i+1)
=

(1 1) i j

.f!, 'th t ,~ The first nonzero component of 1 [O,j+~) ~s e componen ~ [j,j+l)'

FOr the tree of Fig. 2, i~[= i~[
O,j+~) 0,j+2) = !il[O,j) ,., (1,1),

where !il[O,j) is the all zero sequence up to time j.

Let i[O,j+R,) be some information sequence representing a path

up to depth (j+R,) in the tree. From Lemma 1 we saw that we can derive

-9-

£
2 -1 other information sequences and code vector sequences from this

path. Pick the special path
,1 , ~
1 [O,j+l) = 1[O,j+l) e i [O,j+£), and

compare the respective code vector sequences. According to proper-

1 ,
ty 1, ~[O,j+£) and~. [O,j+l) only d1ffer at depth j, with

a component equal to (1 1). The remaining components of the respec-

tive code vector sequences are equal. Thus, if according to Lemma 1,

£
i represents a class of 2 paths, then, this class can be

[0, j+l)
1-1

split up into two subclasses of 2 paths. One subclass can be re-

presented by the path i[O,j+£)' whereas the other may be represen-

,1 , i~
ted by a path 1 [O,j+l) = 1[O,j+£) e [O,j+£)' Note that if the

information

class, then

estimate i[O,j+l) is the best estimate within its sub

i
1

[O,j+l) is also the best estimate within its subclass.

If we define the metric Lf[~[O,j+£)l to equal the Fano metric corres

ponding with an information sequence estimate i[O,j+I)' then the

F ,[1 1 d" h h ' ,1 ano metr1c Lf ~ [O,j+£) correspon 1ng W1t t e est1mate 1 [O,j+l)

= i[O,j+l) e i~[O,j+l) follows easily from the metric Lf[~[O,j+l)l.
To wit

where

d[(1 1)

2log (l-p) /p

!!o[j,j+1)1 = -2log(l-p)/p

a

if
!!.j:j,j+1)

(0 0)

if = (1 1)
!!o[j, j+1) (5)

otherwise

This is an important property for the decoding algorithms to be des-

cribed. We will now show how the above can be used in a decoding

algorithm that uses the Fane metric.

-10-

£-1
Let i[O,j+l) be the common part of a subclass of 2 sequen-

ces represented by the best, or one of the best, estimate i[O,j+t)

We extend the representative sequence i[O,j+£) to i[O,j+£+I) =

i[O,j+t) ;0 i[j+t,j+t+I) such that !!.[j+t,j+t+I) = £[j+t,j+t+I) Ql

Ql £[j+£, j+HI) £ «0 0), (1 0)). As both connection pclynomials have

a constant term, this is always possible. Because of (4b), all other

possible extensions of sequences of this particular subclass give

rise to a difference of (00), or (I I) with !!.[j+t,j+£+I). Hence, if

£-1
i[O,j+t) is the best estimate within the subclass of 2 paths, the

£
extension i[O,j+~+l) is the best estimate within a class of 2 paths.

Fig. 4 gives a flowchart of the above method.

Fig. 4.

I
take the best path i[o,i+!)

f rom a class of 21
~

form two representat ives

~f 1-1 f or two classes 0 2 ,
r ecalcu la te the metrics

of the representat iv es
~

extend ea:h representative

In the best wav ,
£ Flowchart of the extension of a class of 2 paths.

\I

2

4

6

11

12

15

16

22

31

-11-

One of the important things about coding is the undetected

decoding error rate. For convolutional codes, the minimum Hamming

distance between any two code vector sequences to a large extent

determines the undetected error rate. This minimum Hamming distance

is called the free distance, or d
f

• Table I shows some values of
ree

d for several codes in the class L2 1- This class of codes
free , \I , v-

can be seen as a mirrored version of the QLI [8] codes, that permit

easy data recovery from the received data stream. This is also possi-

ble for codes in L 2,\),\1-1-

Table I

List of d
f

for some codes in L ree 2,\/,v-1-

.Type
-1

91 92 9 1

L
2,2,1

5 7 3

L
2,4,3

31 .33 10

L
2,6,5

113 153 75

L
2,11,10

4253 6253 2264

L
2,12,11

14253 10253 7415

L
2,15,14 104253 144253 66166

L
2,16,15

204253 304253 127333

L
2,22,21

23604253 33604253 16556734

L 2,31,30 32642356253 22642356253 16274741142

-1
92

2

17

52

3403

4272

45701

144554

13535153

11520660725

d
free

5

7

9

12

13

14

14

19

23

-12-

The code generators g1 and g2 are given in octal notation. In sequen-

tial decoding, the most important parameter is the column distance

function [9]. It is defined as

d (r) ~
c

. min
d~J +

o

r-l

L o s=O

where d
ij

denotes the Hamming distance between the s branches of
s

two encoder output vector sequences. A large value of d (r) for
c

values between a and 15 garantees a good distribution in the number

of computations for a decoding job to be performed. Johannesson [9]

shows that rapid column distance growth minimizes the decoding effort,

and therefore the probability of decoding failure. For the v=31 code

30 in Table I, the column distance grows as 2 ,3,4,5,5,6,7,7,8,8,9,9,

10,10,11,11. Johannesson [9] also gives codes with a rapid column

distance growth. For instance for the code with encoder polynomials

gl =103745, and g2=164133 the column distance grows as 2,3,3,4,4,5,5,

6,6,6,7,7, •••• This distance growth is much different from that of

the codes in Table I, and hence, it is somewhat surprising that they

yield such good performance in conjunction with sequential decoding

algorithms. This is the subject of the next chapters.

The last part of this introduction is to show how a decoder can

make use of the received data vector sequence in order to give an

estimate of the encoded information sequence. If we omit the delay

cperator notation, the input/output relation of the encoder can be

written as

-13-

IG

After transmission over a sse the code vector sequence c is received

as

r= (r 1 ,r2) =£fB,!!.,

As gl and 9
2

have no common factor, we can find a matrix G
-1

=

-1 -1
such that

-1
(j) g2

-1
1. Then, the inverse to the (gl , g2) gl gl g2 =

received data vector sequence is defined as

I (j) e

We define the syndrome sequence z as

z = E.(g2 ;9"1)
T

n
1

g
2

(j) n
2

g
1

The task of the convolutional decoder is to find an error vector

sequence .!!., according to some metric criterion, that may be a possi-

ble cause of the syndrome sequence z. The inverse to this estimate

is defined as

-14-

and must be added to (I ~ e), to give an estimate of the information

sequence. Another possibility is to compare a possible code sequence

IG, with the received data stream r. As

(,
(e,z)

1\
one could also compare a possible code vector sequence eG with the

-1 -1 1\
vector sequence z(g2 ,gl), in order to find the sequence e that

1\
leads to the information sequence I directly.

For an additive white Gaussian noise channel (AWGN) with hard

quantization at the matched filter output, the previously mentioned

encoding and syndrome forming circuits, together with the invertor

'" .
Itil e

dec 0 din 9 de la y r--.::-..... H-:JI---

c ,
2,

n 2 ' G -1 (0)
G(o)

BSC 92
z ~

dec oder

9,

HTm)
T

H-1 (OJ

Fig. 5. Schematic use of a convolutional code/decoder

-15-

II. Fano decoding

In this chapter we first shortly explain the operations of the

Fano decoding algorithm. Then, we investigate the influence of the

class L2 n of convolutional codes on the decoder complexity.
,V'N

Fano decoding is a"method to decode convolutional codes sequen-

tially. That is, a search along a possible path through the code

tree is done one branch at a time. If we connect the Fano metric

with each node in the tree, the decoder may move forward from a

particular node to a successor node, iff the Fana metric T for the

successor node exceeds or equals a certain threshold TO' If the

decoder cannot move forward without violating the threshold TO' it

has to return to a preceding node, in order to try an alternate path.

If the backward move is also impossible, the decoder lowers the

threshold TO with a fixed value T. If the threshold is lowered, then

the decoder tries to move forward again. The threshold TO is forced

to move upward in discrete steps of size T to be as close to T as

possible, iff a node is visited for the first time. This is to

avoid looping of the algorithm. The decoder continues in the above

way until the end of the tree is reached. The case where the tree

has both a starting and an end point is referred to as frame deco-

ding. In frame decoding the last encoded information digit is follo-

wed by vall zero digits, thus resetting the encoder in the all

zero state. As the Fano decoder can give a decision before sear-

ching through all possible paths, the algorithm is suboptimal with

respect to the decoding error probability of an ML decoder. Howeve~

-16-

the loss is very small. The main advantage of the Fana decoder is

the small memory necessity of the decoder, while the number of in-

vestigated paths is small compared to the number of paths an ML

decoder investigates.

The description of the Fano decoding algorithm is given in

comprehensive form in Jelinek [10]. We only give the flowchart,

see Fig. 6, where the value of T[i[O,j)] is defined as

and the values of the label c~ and the inverse labelling function
]

:t
s(c,) can be found in Tables II and III, respectively.

)

T(i[O,j)

T (i 10, j)

T(i [a. jJ

T(i [0, jJ

TABLE II

Values for c~.
J

i [j. j

• 0) ~ T{i[O,j) • 1)

• 0)

• 0)

• 0)

< T{i(O,j) • 1)

TABLE III

Values for s(c·).
J

~T(i[O,j) • 1)

< T{i[O.j) • 1)

+ 1)
: 0

i [j. j + 1)

0 1

1 0

• : 0 • : ! c c
J)

0 1

1 0

: 1

-17-

I START I

Co:=o It

° j :=1 C, =
J

+ F< It
< 2 yes

c,
J

no !It yes
T(i[O,j)- s(c,));> T

J 0

no ? >- yes i[O,j+l)=i[O,j) j';'l

It
lts(c;)

yes no

~ T(i[O,j_l)) ~ T
0

ALREADY r no
TESTED ?

yes

IC~_I=C~_I+11 T =T - T
0 0

T := IT(i[O,j+l))/ T j-T 0

I j=j-l I

j=j+l I

no
?

yes
!It READY

Ci:=o

I STOP I

Fig. 6. Flowchart of the Fano decoding algorithm.

-18-

2
Encoder G = [1+D+D • +D2]

Information 1 0 1 o o

Transmitted 11 10 00 10 11

Received 01

a ,

, , ,
1 0,

,
,

I

I'C~=O

,

10

d

,.[1]] ,
11/

,

.. " C *::;: 1
, 2·

...... c * =1
, 2

1 0 "

f

01 10

01 _-.[Jl]
C ". 't*= 1

4

c""'o
=0

1 0 ,--"-1

,
..... c~ = 1

o '1~"

Fig. 7. Fano metrics for a specific received sequence.

11

Table IV traces the steps of the Fano decoder in decoding a

specific data vector sequence. The example is taken from [11]. In

Fig. 7 we represent the various values of the Fano metrics in a

tree, and we indicated along the branches the value of the estima-

ted noise, followed by the branch labels, respectively. A dashed

line indicates that a path leading to a specific node is extended

-19-

with an information digit equal to zero.

TABLE IV

Decoder actions for tree of Fig. 7.

violate violate j
;,

location action action action
T c, arrow

T T
0 J

0 0

root look YES decrement -4 1 0 B

at a T
0

root look YES decrement -8 1 0 B

at a T
0

root look NO go to -8 2 0 0

at a a

a look NO go to -8 3 0 C

at b b

b look YES look NO go to -8 1 1 A

at c at a a

a look YES look NO go to -8 2 1 A

at d at root root

root look NO

~ ~
go to -8 2 0 c

at e e

e look YES look NO go to -8 1 2 A

at f at root root
;,

2 ~ ~ decrement -12 1 0 B root c
1

=
T

0

root look NO go to -12 2 0 0

at a a I

a look NO go to -12 3 0 0

at b b
,

b look NO go to -12 4
o I

0

at c c

look look -12 3 c YES NO go to 1 A

at g at b b

b look NO go to -12 4 0 C

at h h

h look NO go to -12 5 0 C

at i i

i look NO go to -8 6 0 C

at j j

-20-

As was explained before, given a received vector sequence ¥...,

the Fana decoding algorithm is a search along a possible path

through the code tree, one branch at a time. If we use the tree

structure of the class L2 ~, then, from each node in the tree ,v,¥..

we can derive a class of 2**~ possible paths. Now, let us repre-

sent each node in the tree by the node that follows from the best

possible path within its class. Then, this tree can be seen as a

contraction of the original tree. The extension of a node can be

summarized as follows.

and

i [jH, jH+1)

• - ___________ 0---------. i [0, jH+1)

----------- !:. [] H , j H+ 1) d (00) , (01)}'

.f, .
l[O'J·+')~ 1[.•.• 1) ,. J+", J+"+

I .1
• 1

~nl [O,j+t+l)

- [jH,j+H1) d (00), (01)},

n = (00)

(6a)

n = (01)

Lf [£[0,j+t+l)J+210g (1-P)/P if ~[j,j+l)=(OO)

(6b)

otherwise

-21-

In Table V and Fig.Bwe trace the actions of the Fano decoder

for the example of Fig. 7 for the modified Fano decoder.

TABLE V

Decoder actions corresponding to Fig. 8.

location action violate act-ion violate action T • • J c

T T
0 J

0 0

root look YES decrement -4 1 0
at a ~

0

coot look YES dectement -8 1 0
at a ~

0

root look NO go to -B 2 0
at a a

a look NO go to -B J a
at b b

b look YES look at NO go -8 , 1

at c a to a

a look YES lock at NO go to -B 1 1

at d root toct

::::oot l=k YES decrement -\:2 \ ()

at e ~
0

root look NO go to -l~ 2 'J

at a a

a look NO go to -I: J U

at b b

b look NO go to -12 4 l'

at c c

c lock NO go to -! 2 S
"

at f f

f look NO go to _.,
b "

at 9 g

-I-----

b (10,0) -12 (00,01 I {OO,DJ 9 - ~ r:="--<ol.::..W==-.j - 1 0 I-'-=~-.I- B
(10) (DOl (10) (00)

(00,0)

• _ 7

101>
(10.0)~

(10,11

to()) ",

(00,0)
, .
"tIT!

(11)

Fig. 8. Path followed by the modified Fano decoder

for the example of Fig. 7.

-22-

We have indicated the last two digits leading to the respective

nodes. Between parentheses are the estimated noise digits, followed

by " c .•
]

According to (6b), a negative contribution is added to the Fane

metric of a representative path, if n
1

[.. 1)=(11). This#howeve~ is
],]+

done 2 time units later than the estimated noise occurs. This pheno-

menon might cause additional decoding errors. For, there could be

a path with higher overall threshold function, see Fig. 9.

T,
A ..

/

metric progress of
incorrect path in
modified Fano
decoder.

C

B correct pa th - - - .;:Y

,

o

E

Tc .: .- .-
G

0_ .- ._ _ real metric _ progress
of the incorrect path

T -'-'-'-'-
2 F

~------------------------------J

Fig. 9. Metric progress for incorrect path BCD, and BFD

in the classical and the modified Fano decoder,

respectively.

-23-

No additional errors are made if the incorrect path remains

unmerged with the correct one, like for pure tree codes. As convo

lutional codes are linear trellis codes, paths can merge. The in

fluence on the decoding error probability will be discussed in

Chapter III.

-24-

III. Simulations for the Fano decoding algorithm

Simulations were carried out for the Fana decoder using the

class L2 0' and for QDP codes without using symmetries. For QDP
,V'N

codes the first (v+l) terms of the column distance function are

best. vIe divided the information into frames of 256 digits followed

by vall zero digits. These (256+v) digits were encoded and trans-

mitted over a BSC with transition probability of 0.033, 0.045 and

0.057, respectively. A particular simulation run consists of

25.000 frames each. The decoding delay was set equal to the frame

length, unless stated otherwise. In Table VI, we give the contri-

butions for the Fano metric for various noise pair estimates and

Table VI. Mstric contributions.

~ ~[j ,j+l)
0.033 0.045 0.057

0
1

0 2 1

0
-4 1 -7 -3

1
0

-4 -7 -3

1
1 -9 -16 -7

channel transition probabilities. The values of the threshold step

size T are given in the figures.

-25-

In Fig. 10 we plot the distribution of the normalized number

of forward backward and nonsteps, numbered as 2,3,4, respectively.

The total number of steps is numbered 1. As can be seen, the non

steps are of minor importance for th~ complexity of the decoder.

Therefore, we define a computation to be a forward or a backward

move of the decoder.

The ODP [9] is an important parameter in sequential decoding.

Hence, our initial simulation runs apply to OOP codes. The results

are given in Figs. 10 through 16. Observe that the distribution of

the number of computations does not change appreciable if we increase

v beyond the value v=lS. The dependance of the results for smaller

values of v is a result of the trellis structure of convolutional

codes. If we neglect the influence on the computational distribution,

then the advantage that accrues from using long constaint length

codes is an improvement in the undetected error rate. In the same

figures one can also note the influence of the decoding length.

The influence of the threshold step size T, see Fig. 15, is given

for one specific v=15 ODP code. Figs. 17,18 and 19 summarize the

results for the class L2 n' using the tree structure discussed
,V'N

previously. For these codes, we optimized the column distance

function. At PBSC=O.045, we compare some L2 ,v,v-1 codes with the

v=23 ODP code, see Fig. 20. In order to see the influence of the

tree structure of the class L2 l' we simulated a code from
,v,v-

L2 1 with optimized column distance function, see Fig. 21,
,v,v-

under various circumstances. Line 1 gives the performance when

these codes are used without using the tree structure. Line 2 are

the simulation results when only classes with equal Metrics are

X
AO
~ -z

~26-

rt
101~------~~~~~-------------t--------~

1 0- 2 ~------~~---l--------~~--''-Ij----------::t

dec length = 256

friimr Il'ngfh = 255

T = 4

v = 10 ODP_code

\
\

\
\

\
\
\
\

• \
• \ • \

\
\
\
\
\
I

\

I

10'1L---~~~~~U1UO~--~~~~~71~OO~~~~~

X

Fig. 10. Total-, forward-, backward- and non-step
computational distribution for v=10 ODP code.

r
x
Al

-~ z
~

a.

-27-

10'~-----------\~~-------------t---------i

1 0-
2 ~------------~----\--~-\-~~~----:J

p : 0045
Bse

dec Length:: 2S6

trarnt length = 2S6

r = ,

ODP-codes

1 0-
3 I----------I-------~r____tt-~~--l~

16'L---~~~~~wJ ____ ~~~~~~ __ ~~~~
1 10 100

X

Fig. 11 Various ODP codes for decoding length 256.

-28-

1

-c
0.._1
10 ~----------~~~------------r---------j

dec. length: 128

kame ll!ngth: 256

"'.::4

-4 10 L-____ L-~~~~.~~ ________ ~~~~I~I~~--~~~~~

10 10 0
X

Fig. 12 Various ODP codes for decoding length 128.

f
X
AI

~

Cl.

~29-

101~----------~~~~------------1-----------j

I;

p: = 0.045
sse

dec.te ngth : 64

fr~me length: 256

ODP-codes

1 O·' I----------------i--------------'I[----Hr---"\----j

104L-__ ~~~~~~ww~ __ ~ __ ~~~~~~~--~~
1 0 100

Y

Fig. 13 Various ODP codes for decoding length 64.

r
X
AI
~

~

z
-.::
(L

-30-

10'~------\r--__ --+-----------____ ~--------~

1 0-21--------\i~.._-----_+----_____:j
p :: 0.033

SSC

dec. length = 256

'r~me lengtl'l = 256

J' ,3

ODp-codes

10'~--------------+_----_~~~~~--------~

10-' L_-I..---I---I-.L..~.J...J..JL._...I-...J.. ~u...UJ.._..l_~ ~
1 10 100

X •

Pig. 14 Various ODP codes for PSSC ~ 0.033.

r
X
~I

-~ z
1::
£L

,-31-

101~------------~~--~~~~~~~----~

10- 21--------------1-----1I;-------t---\---=1
p :: 0·057
sse

dec.l~ngth ::. 256

fr~me length = 256

t = 2

oop- codes

1031-----------1------~-t-_;--~

104L-__ ~~~~~~ __ ~ __ ~~~~~~~~~
100 10

X •

Fig. 15 Various ODP codes for P
BSC

= 0.057.

1
x ..

.J -Z

~

lL

-32-

1 0-' ~------\-~~~~-----+-----:I

p
esc

:; O,O1,5

dec.l ength ::: 256

Ir.,me length::: 156

OoP- codes 1
v ::: 6

lO)~---------------+--------~~~--~----------j

10 100
X

Fig. 16 Two ODP codes for some values of T.

•

r
x

"
z
~

0..

-33-

10-1~----\----------+----------------+---------~j

1 0- 2~ ________ --\--'r-__ ---+ ________________ +-________ -::1
P =0.033
esc

dec:. length = 2S6

- 3
10 ~------------~+\--------------~----------j

_Fig. 17

1 0 100

X

Various L codes for P
BSC 2,\),\)-1 0.033.

r
x
Al

~

n..

-34-

10-1~--------~~----}-----------------+------------i

102~ ______________ ~~~~ ____________ +-__________ -i
p = 0.04S

sse

dec. length: 256

L _codes
2,V,-'>-1

10-4L-__ ~ __ ~~~~~ ____ ~~~~~~~~~--~~~
1 1 0

Fig. 18 Various L2 ,v,v-l codes for PBse

1 00
X

= 0.045.

•

,.35-

r
x

z

-\
10 ~ ________ ~~~~~----------+---------~

10 -21-_______ --\ __ -\:---\--_~+_----_::I
P

BSC
::0.057

dec. t!!ngth;:: 256

fr.me length;:: 256

T = 2

L -codes
2 ,v ;,)-1

1 0 -3 ~------------_i-_\:------\--\-+-\-----.:____::.:I

10 100
X

Fig. 19 Various L2 ,v,v-1 codes for PBSC = 0.057.

•

1 \
\

\

X
\ ,

AI \
~ ,

z~ ,
-;:: ,
(L

,
-,

10

, ,

"

-36-

,
" , , , , , ,

" "
" " " " 102~---------------\-+--~--------------t"~,,----------j

p :; O_OLS
BSC

dec.Le ngth = 256

fr .. me length = 256

L
2,6,S

,
" " "

ODP- code

, , , ,
" ,

10'L---~~~~~~~--~--~~~~~~~--~~

1 10 100
X _

Fig. 20 Comparison between some L codes 2,v,v-1
and a V= 23 ODP code.

x
AI -z

-:37-

-\

10 r-------~----~--~~------~~------~

-2
10 r-------------1-~----------~~------_1

P sse = 0.0,(,5

dec. length: 256

frame length = 256

:r '4

-3

10 r-------------~--------_\~~--------~

10 100
X

Fig. 21 L
2

,15,14 code under different circumstances.

-38-

considered. Lines 3 and 4 are the optimal results for the v=15 ODP

code and the v=15 code from L
2

,15,14' respectively.

In Tables VII and VIII, we compare several L2 0 codes with
,\l,N

ODP codes. We define an erasure to be the event where NIL> 500.

Furthermore, a frame is in error if it contains decoding errors.

Observe a slight increased frame error probability for the codes

in L2 1° If we decode these codes according to "metric equiva-
, V ,v-

lence ll classes, then this error probability decreases at the cost

of an increased erasure probability. However, for long codes, with

a large d
f

' the measurements were error free. From Tables VII
ree

and VIII, one can conclude that there is a reduction in erasure

probability with a factor Qf 10, and a factor of about 2.5 in the

average number of computations when for instance the v=23 ODP and

the v=31, L2 ,31,30 code are compared.

Table VII

Comparison of several ODP and L 1 codes for P BSC 2,v,v-
0.033

0.033 dec.length 256 T = 3

." type d erased frames bit errors
free

frames in error

6 ODP 10 a 564 3839

10 ODP 14 a 22 160

15 ODP 18 2 0 0

23 ODP 25 2 0 0

6 L 2,6,5 9 0 1051 5489

16 L
2,16,15

14 0 69 597

22 L
2,22,21

19 0 2 31

31 L
2,31,30

23 0 0 0

NIL

2.2

2.5

2.6

2.6

1.7

1.9

1.9

2.0

-39-

Table VIII

Comparison of several ODP and L2 ,v,V-l codes for PBSC
0.045

0.045 dec. length 256

d erased frames
bit-errors \I type free T

frames in error

6 ODP 10 4 0 2468 20817

10

I
2 58 121 1411

10 ODP 14 4 19 159 2023

10 6 17 167 2324

15 ODP 18 4 53 2 100

23 ODP 25 4 75 0 0
- - -- - -- - ---- - -- _.- -_. - _._- - - - ~

6

16

16

16

22

31

L
2,6,5

9 4 0 3732 24132

2 0 - 368 4749

L
2,16,15

14 4 0 411 5279

6 0 451 5829

L
2,22,21

19 4 4 15 323

L
2,31,30

23 4 8 0 0

In Table IX, we compare the number of additional computations

in order to decode a frame with the indicated noise vector sequence

starting from position 128. Both codes are v=6 codes with an opti-

mized distance profile, and a free distance of 9 for the L
2

,6,5

code and a d
f

of 10 for the QDP code. The code generators are
ree

gl=113, g2=153 and gl=135, g2=163, for the L
2

,6,5 and the ODP code,

respectively. In Table X, the instances are given where the decoder

gives decoding errors. Accidentally, both codes give the same

Table. In Table XI, we compare two v=15 codes. Again, one is an

NIL

4.1

10.7

7.1

6.1

8.1

8.3
--

2.6

4.8

3.1

2.6

3.4

3.5

ODP code, whereas the other is a code from L2 ,15,14" Both codes were

error free. For the ODP code gl=103745, and g2=164133. Fbr the

L2 ,15,14 code, gl=104253 and g2=144253.

-

-40-

Table IX

Comparison between, two v = 6 codes in decoding a

specific noise vector sequence, for an GOP, and an L
2

,6,5 code.

~ 000 001 010 011 100 101 110 111

n
2

000 0 8 4 32 8 26 22 80

001 8 384 32 662 26 520 80 1124

010 4 32 324 782 22 80 892 1200

011 32 662 782 2740 80 1140 1192 4438

100 8 26 22 80 384 498 1038 1580

101 26 520 80 1116 498 4678 1476 3148

110 22 80 892 1180 1038 1552 2074 3854

111 80 1116 1180 4438 1572 3148 3854 2698

000 0 8 4 28 8 22 20 76

001 8 32 28 84 22 66 76 120

010 4 28 42 84 20 86 64 118

011 28 84 84 174 78 120 118 428

100 8 22 20 74 32 98 116 284

101 22 66 74 120 98 248 258 298

110 20 74 64 118 116 264 222 370

111 74 120 118 428 290 298 370 274

Table X

Decoding errors for the patterns of Table IX

~
000 001 010 011 100 ' 101 110 111

n 2 '

000 0 0 0 0 0 0 0 0

001 0 0 0 0 0 0 0 0

010 0 0 0 0 0 0 0 0

011 0 0 0 4 0 0 0 3

100 0 0 0 0 0 0 0 0

101 0 0 0 0 0 4 0 3

110 0 0 0 0 0 0 4 3

111 0 0 0 3 0 3 3 3

-41-

Table XI

Comparison between v = 15 codes in decoding a specific noise

sequence for ODP and L2 ,15,14 code.

~ 000 001 010 011 100 101 110

n
2

000 0 8 4 44 8 24 24

001 8 122 46 182 24 176 160

010 4 44 92 776 34 108 244

011 46 196 966 1656 134 972 1014

100 8 24 24 220 122 472 1210

101 24 178 158 522 266 2532 4576

110 34 102 260 1002 1316 2678 2388

111 112 1038 1096 25418 2522 29729 15090

000 a 8 4 28 8 22 20

001 8 42 28 50 22 42 74

010 4 28 32 82 20 74 68

011 28 50 82 300 74 66 132

100 8 22 20 74 42 42 58

101 22 42 74 66 42 202 132

110 20 74 68 132 58 132 364

111 74 66 132 1032 132 1130 1168

111

222

468

906

6012

9444

29482

24548

29729

74

66

132

1032

132

1130

1168

1294

-42-

IV. Restricted Viterbi Decoding

The application of the Viterbi decoding algorithm [2] for

convolutional codes is limited to short constraint length codes.

The reason for this is the exponentional growth in the number of

different path- and metric memory registers connected with encoder

states. In this Chapter we give a decoding scheme with reduced

memory necessitYI and hence, in this respect, decoder complexity.

We are able to use the memory in such a way that also the computing

complexity can be kept low.

Every decoding step, the Viterbi decoder for a memory length

v encoder extends 2**v paths, or information sequence estimates.

These estimates differ at least in the last V stages. The metrics

of the extended paths depend on the Hamming distance between a re

ceived vector sequence and an estimated code vector sequence. For

rate 1/2 codes, there are 2~~(v+1) successors, from which the best,

i.e. lowest metric, of each two estimates ending in the same encoder

state are retained. For short constraint lengths v<8, the implemen

tation is feasible4 For longer constraint lengths the obtainable

free distance increases, and thus, th2 undetected error rate Can

be decreased. Hence, one would like to implement decoders for

v>7. One solution is found in sequential decoding algorithms like

Fana or Stack decoding. However, the disadvantages of these decoding

algorithms are the variable amount of the number of computations,

and the need for a feedback link. Another solution can be found if

we sacrifice the optimality of the Viterbi decoding algorithm.

-43-

Suppose, we make the following restrictions on the Viterbi

decoding algorithm. 1). Extend a maximum of m<2~~v paths. After

each extension procedure, retain the m best, i.e. with lowest metric.

This restriction directly influences the decoding complexity, and

a few remarks must be made. As the information sequence may take

on every value with equal probability, all encoder states have the

same probability of occurance. This forces the last v digits of the

extended sequences not to be fixed. For, if they were, for values

of m<2*~v, certain encoder states can never be reached, resulting in

a useless decoder. Now, we need a sorting algorithm that selects

the best m paths from a list of 2zm candidates. This sorting algo

rithm strongly influences the decoding complexity, and might be of

a complexity proportional to m~*2. Hence, only practical for very

small values of m. However, the metric values of the paths are

known to be positive, and take on values close to zero. We might

therefore be able to profit from this knowledge, as will be shown

later. 2). The second restriction is that only those paths are

extended that differ from the minimum metric path in the last v-po

sitions. This restriction could lead to paths ending in the same

state to be present in the decoder. Upon extension, these paths

again give rise to paths ending in the same state. This effects

the maximum number of different paths that can be extended, and

hence, could increase the undetected error rate. However, by lea

ving out the requirement that all paths must be different in the

last v stages, we greatly influence the computational complexity

of the decoder. 3). The last restriction is that we only extend

paths for which the metric is smaller than some fixed value, say

20 or 25. Again this may increase the undetected error rate.

-44-

For, a path with a temporarily high metric could be the path to be

decoded later on. As we are dealing with codes with a free distance

of about 20, the influence is kept small.

We will see that there is an implementation for the restricted

Viterbi decoder for which the complexity is proportional to m. One

of the interesting questions arises how the undetected error rate

behaves as a function of m. We now give a description of the res-

tricted algorithm, for a software as well as for a hardware reali-

zation. In the decoding algorithm we use two memories. One of them

is the transmitting memory, whereas the other plays the role of a

receiving meomory. The estimates present at one memory on a certain

time instant are extended and transferred to the receiving memory.

The locations where the successors are stored are calculated in

such a way that the computational complexity can be kept proportio-

nal to m. The following time instant, the process goes in the oPPO-

site direction.

Suppose we have the availability of two addressable memories

M
O

and Me, respectively, with a certain word length. This word length

can be taken equal to the decoding length. Each memory can be divided

000 e e e
into buckets B

O
,B

1
,B

2
, ... , and B

O
,B

1
,B

2
, .•. , of variable size.

o
On odd time instants bucket B

j
contains the estimates with a metric

value equal to j. The same can be said for bucket B~ on even time
J

instants. The bucket which contains the estimate with a metric

value equal to the minimum value is called B
min

, whereas the estima-

tes with maximum metric are stored in B On odd time instants,
max

~45-

the successors of an estimate from B~ are stored in memory Me in a
J

bucket corresponding with the metric value of the successor. Ear

even time instants, the operations go the other way around. For

binary 1/2 codes, there are two possible successors for each esti-

mate, see Figs. 1 and 2. The metric value of the successors is

equal to the old metric plus the Hamming distance between a received

pair of digits and the code pair estimate corresponding with the

respective transitions. It is easily verified that for a code with

generators g1 and 9
2

that have a constant term, these distances are

equal to 0 and 2, or both equal to 1. Hence, an estimate from MO in

bucket B~ can give rise to a successor in buckets B~ and Be or
J J j+2'

two successors in bucket B~ 1" If we subtract the minimum metric
J+

1 f f · f 0 h . va ue, min, 0 the Metrics 0 the estlmates 0 M, t en an estlmate

o e e
of B

j
can give rise to a successor to be stored in B

j
_min , Bj+2-min'

e
or B. 1 .' Note that the minimum metric is found easily by sear

J+ -mln

ching for the first non empty bucket. Based on the above considera-

tions, we can calculate the starting addresses pO and p~ of the
j J

e e
buckets of the receiving memory. For, the pointer P. of bucket B.

J J

must be greater or equal to pointer p~ 1 plus the maximum number of
J-

e
successors that can be stored in bucket B. 1 Hence,

]-

(7)

for the odd time instants. The indexes e and 0 interchange for the

even time instants. In (7) IB~I denotes the initial number of esti-

o 0
mates stored in bucket B .. Note that if m paths are stored in M ,

J

the maximum size of memory Me that can be declared using the above

-46-

pointer technique is equal to 4xm. In Fig. 22 we give a flowchart

of the decoding algorithm using the memory organization from above.

1,0 I B.H
Qin B~
mln-,."O

I 1·01 + 1 I Isel pOlnlers of r-,n
~leanB,l. 1-0,"'"

I J'= 0 I

no
" Jlmllx

! yes
I i- 0 J I j= i+l I

I i i+l I f< i ~ ajl " no
/

no last V di9itS>ls
of palh , *",n
metric p.;ath

I .. terd palh i I ,
tore successors with

rl!.~tric kand n in
. Bk- min SOn_milL

incr..-renl Is!
. . .1

I = k-mm n-mn

yes I:'IB·~m A 1"'0 I

find fi"t bu::ke! s. t.
18':.,;nl t 0

decode least recent
jigi! of pdthof s:nin ,
in !ercha~e 0 and e
in flowchart

Fig_ 22 Flowchart of the restricted decoding algorithm_

.-47-

In Fig. 23 we give the value of the relevant pointers and the

number of paths stored ~n each bucket, for the example of Fig.3.

We have taken m=3. If there are more than 3 estimates available in

the memory, we correct the number of paths available in the buckets

to equal m.

01 10 01 10 11 received

(0) (1) (2) (3) (4) (3) _ metric

00 " • 00
'-....

10 11 - state
~

"- (1)
"-

(2) ./ (3)
/'

~ 01 11 ,< ·10

(3) (5) ~ (1) (2)

"- 10 " • 00

"- "-
(3) "- (2)

" "-
11 01

01 00

(3) / (3)

00 L --01

(2) (2)

10 '" • 00
"-(4) "- (4)

"-
11 "01

e IBel po IB~I
e IB~I p~ IB~I p~ IB;I p~ IB~I bucket p, p,

J J J J J J J J

0 1 0 0 0 1 0 0 0 2 0 1 0

1 2 2 2 1 3 3 2-1 2 3 ... 2 1

3 0 6 1 a 5 1-0 9 a 7 2

4 0 8 0 10 0 12 11 3

12 12 4

Fig. 23 Example of the operations of the decoder.

-48-

We have also implemented ,the restricted decoding algorithm

using the structure of the class L . As in the restricted deco-
2,v,1

der all paths have equal length, we have to recalculate (5). We

therefore define M[~[O,j+~)] to equal the Hamming distance between

a code sequence £[O,j+R.) and a received sequence £[o,j+i)' The metric

M[C'[. 0)] corresponding
- o,J+JV

e i~[. 0) follows easily
0, J+JV

with the

from the

estimate i' [o,j+~) = i[O,j+£l

metric M[C[. 0)]. To wit
- 0, J+JV

M[~' [o,jH)] M [c [j 0)] + d [(11) - 0, +x. H
(8)

where

+2 if
!:'[j. j+l)

(00)

d
H

[(11) E.[j,j+l)]= -2 if !:'[j ,j+l)
(11)

0 otherwise

The extension of an estimate "to two successors is done in the same

way as described in Chapter I. From the representative of a class

of 2~2R, paths, two representatives for two classes of 2*%(1-1) are

derived. The metric of the altered representative must be calcula-

ted according to (8). Again, as in Chapter I, we extend each repre-

sentative with a noise estimate that is an element from {(00),(01)}.

If the noise estimate corresponding with a transition to a successor

of a respective representative equals (00), then the noise estimate

following from the extension of the other representative equals

(01). The reason for this is the complementarity of the (~+l)th

connections of the generator polynomials. As the component i~[.. 1)
J,J+

is unequal to zero, the transitions resulting from both representa-

tives must differ by a component equal to (01). Using (8), we can

calculate the overall metric increments for a particular successor.

These increments are equal to a and 3, a and 1, or 1 and 2, respec-

tively. Using these values, the pointers for the receiving memory

are set according to

e= e 10 I 1 0 I 1 0 I 1 0 I Pj Pj - 1 + Bj-l+min + Bj-2+min + Bj-3+min + Bj-4+min (9)

Again, the size of the declared memory is equal to 4*m.

Before presenting simulation results for the decoding algorithm,

we compare a v=15 ODP code with a code from L2 ,15,14. In Table IX

we give the Hamming weight distribution of paths diverging from the

Table IX. Weight distribution over the unmerged code word span,

V = 15, ODP code.

length 1 2 3 4 5 6 7 8 9 10 11 12 13 14

distance

2 1

3 2 1

4 2 3 2

5 1 3 3 6 3

6 1 6 6 9 11 6 1

7 1 4 8 13 18 18 21 12 5

8 8 15 18 35 36 42 36 29 12

9 1 2 13 30 42 58 73 84 83 80

10 2 7 28 50 90 116 147 164 171

total

1

3

7

16

40

100

231

466

775

length

distance

2

3

4

5

6

7

8

9

10

-50-

all zero path in the code tree of an ODP code as a function of the

length. In Table X we give the same distribution for a code in

L wi th an optimized distance profile. F,or the last code, we
2,15,14

used the tree structure of L2 0" Hate that not only the distance
,'V/~

profiles are quite different, but also the total number of paths

or representatives at a certain Hamming distance over the unmerged

span with the all zero sequence. This latter property makes the

class L2 0' attractable to implement in the restricted decoding
,V,N

algorithm, as this algorithm only keeps a small number of paths

in consideration.

Table X. Weight distribution over the unmerged code word span,

v = 15, L2 ,15,14

1 2 3 4 5 6 7 8 9 10 11 12 13 14 otal

0

1 1

1 1

1 2 1 4

1 1 1 3

2 4 3 1 10

1 3 3 5 4 3 2 21

1 4 8 8 4 5 2 32

3 5 9 10 11 9 8 6 1 62

In Figs. 24 and 25 we compare several codes from L ,
2,\),v-1

with some ODP codes. We have plotted the bit error probability as

a function of m, for both the BSC transition probabilities 0.045

and 0.033. In Fig. 26 we give the performance of a code from L
2,16,15

for several values of m.

-51-

\ ~.L.!..' Ll' ::::j=

I

I
I ,
! , .

.r

" ,
ID~~--------------------+------------,--~----+------r..,

f
--m

. ~

Fig. 24. Bit error probability as a function of m,

for P
BSC

~ 0.045.

,
i:
I . .f
I

ti
I
I
I ,

-52-

~-'

i ,

.,. .1 , ,
. ,

i
j

i -I 1- 1 T
,

. I -1 I ,
1 I I

1 I f ,
, 1 I , ! _I.
;-! .I ·i··!· I ,

j :!
L , !

1
I I
I -t" t ,
I , . , ;

I I

-.
nG 1·1 I i: !.,

;\ \

i
, ~ , , ,\ \.

. I I • \' .. \
I ,\

\
\' \

10'\

\

\

raSe. ~ 0.033

\

,

\
\ ,

\ ,

\

"
\

,- , l'ukpc- .. I' t
~. ·h,'·,.L-+rr 1 . 23,1 I

Q;; [151 ' . ",-
'\--t-...-+---i I ~ , ,

I
t

\
'-" ", ---~

,o'~ f-----------t---1r-':-------+---,-.....: ,
.1

• \l "
, (

m-

Fig. 25. Bit error probability as a function of m,

for P
BSC

= 0,033.

I .1

, -

-53-

,0::: . . rr" ., b4

[T4! l-II
iT

- f+- - i - n 1--- , . , :
- E. _,

E
, I··

~.

~ ':

==
= t- 1·:-., --

J
i- t-

E.
a.-

f~ 1--

~ ,. to-
- 1=' - I-

I-
I -

,0 .,
- 1-·' i·-
-. --
- I- .. -, .. -- f-

- '0'
- i-

f-.

- 1--- C'.

- ~ I-

- ~ 1 - .. f-

-< - , ; ,
,0

= l- t- !--. I t- I -;::- t - I- t- I· i-- ~ ,
- I-

I·

- fo' I f-

t r 1--·
~. :-..

--~ Fe ;

(01 \2 .03 0 Li)~,15 1

- -- P8SC

Fig. 26. Bit error probability as a function of PBSC'

~54-

In the last part of this chapter we partly describe an imple-

mentation of a restricted Viterbi decoder employing a code from

L2,7,60 The value of m is taken equal to B. The core parts in the

hardware decoder are the sorting- and extension modules, which we

first shortly describe.

As in the software implementation, we want to avoid complica-

ted storing and sorting routines. Therefore, we store the paths,

generated by the extension module (EXTD), on an address determined

by the metric value of this path and the number # of paths already

stored with the same metric value. More specifically:

write address 8 x M + # + 1,

where we suppose that the memory has been split up into M domains

of size 8. As we want to read out or write in different paths every

time instant the decoder needs to, we have to update the number

after each read or write cycle. Using this strategy, sorting speed

depends on the time we need to find a specific metric domain and

the appropiate value of ~

From simulation results, it followed that M=10 was sufficient

for the specific code to be implemented. So, if we define M to
c

equal the current value of the metric, and # M the current number
c

of stored paths with metric M , then the read and write addresses
c

are calculated as

-55-

write address 8xM+#M+1
c c

(9)
read address 8xM +#M.

c c

For every value of M , we have a memory that contains # M . In prac-
c c

tice, every write instruction of a path with metric M , # M increa-
c c

ses by one. For each reading operation Ai M is decreased. For speed
c

reasons, the required search for a path of lowest current metric

should be done asynchronously. The I'address available" moment,

however,is controlled by the decoder. We now give an explanation

for the address calculating module as given in Fig. 27.

i). The write cycle. The extension module generates a path with

corresponding met~ic. The write address is generated as follows.

1. The metric value is switched on the BCD/DEC

decoder which enables the corresponding

counter / 3-state-latch doublet.

2. U/D high; EC pulsed:

#M : = #M + 1
c c

3. EI pulsed:

4lM is read into the latch and available
c

at its output.

Meanwhile the metric value has been multiplied

by 8 (shifted 3 positions to the left, hard

wired) and passed to the adder.

4. The address is read from the output.

-56-

ii). The read cycle. The decoding computer asks for the address

of a path having the smallest metric. This is easily found.

Suppose at the current time, no paths with metrical value of zero

are stored:"# M = O.
o

The carry output of counter 0 = O. Suppose we have stored a number

of paths with metric 1 so '* Ml F O. Therefore, the carry output of

counter 1 = 1. The carry outputs of all other counters are don't

cares to the priority encoder that thus generates a binary one at

its output. This value is the wanted smallest metric. The value is

also fed to the BCD/DEC decoder which enables the corresponding

counter/3-state-latch doublet.

In time order:

O. U/O is low.

1. The switch is set in top position.

2. EI is pulsed:

The latch is set to the # Ml value which is

available on the bus line.

3. EC is pulsed: the counter is decremented by one.

4. If this leads to I;t Ml = 0; the priority

encoder output changes to the smallest non zero

counter.

2a. Meanwhile the metric value has been fed to

the multiplier and adder.

3a. The read address and the metric of a path of

smallest metric value are available.

~57-

;

#MO i r-
I J I :
#MJ

I : t---

I J I
II

,
#M2 I : r--
I I I

#MJ /--+-
I ,

J I I
IIII :j:j:M4

! f--
I

I -:
#M5

I
ID-FF ,3-5 t--""-

I r T
n:
w #M6 II

t--""-
0
0
u

#~ Jr z f--w

>- I II Wi f-- r--0:: #"'8 I C> - 1 n: I CL
:j:j:Mg /--+-

I fJs lr' 'ec LeT
me tric

B~
L.,. X8 + I--

~ddress

Fig. 27. Address computation.

'-58-

In the EXTD module, we calculate the successors to a representative

and the corresponding metrics, see Fig. 28.

,Q.,

msb,oo

F

Fig. 28. Extension module (EXTD)

The extensions are done according to noise estimates from

Vl
OJ
>

o
~

C
OJ
Vl

~

{(OO),(Ol)}. If an extension with a digit equal to zero is invalid

according to this criterion, then the zero is inverted to be a one.

The determination of ~[j,j+l) according to (8) can be done easily

by using a delayed version of r
1

ffir
2

, and the properties of

L
2

,7,6' see Fig. 28. The sorting- and extension modules are the

core parts in a hardware decoder that is to be described. The use

of a code from L
2

,7,6 is sufficient to demonstrate decoding feasi

bility. However, without changing the structure of the decoder, a

-59-

more powerful code could be used. To decrease decoding time, we

employ "pipe-lining" of the respective data-streams. From Fig. 29

the circuit and the dataflow will be explained.

-+-r-;;;-r-
;--

D
-+-L-- '--

r-- r- ~

= + ~ D MEM. EXTD
L-- addross data

.-- r-
Sx • --
'-- new metric _ 6merric c....:Ro

.-

jL

~-"tt-· ~
r- r- r*.---_

l+ -OMET t, == D 1= '= D 1= 11 #-OMET
L-- '-- '-- -

;; H #

--I-

Fig. 29. Block diagram of the decoder.

-60-

One sub-cycle from a collection of eight consists of:

1. Locate the stored representative of

current lowest metric:

Proceeding according to the above the

-OMET module emits both the number 17

and the current lowest metric OMET.

From these the read address is computed.

2. Read a representative from the memory.

-61-

3. The EXTD module extends one representative

into two, Both have to be stored.

4. A store address is found from

~ METRIC (from EXTD module)
=?- NMET

METRIC (from 6 module)

NMET is fed to the right # -OMET module to

find the adjusted number t7 of stored represen

tatives with a metric equal to NMET.

NMET

==? store address

-62-

5. The representative is stored.

If eight representatives have been read from the memory, extended

and stored, the decoder input changes. At this time also the~ -OMET

modules interchange roles. By means of "pipe-lining", parallel pro

cessing according to Fig. 30 takes place.

1 2 345

1 2 345

1 234 5

1 2 345

Fig. 30. . npipe-liningll.

By this scheme, bus conflicts and double use of modules are avoided.

To avoid the parallelogram like structure of Fig.30 which is nuis

sanee to the control signal generation, we reset the ~-oMET module,

used to find the store addresses, to zero just before the first

address of a cycle is to be found.

-63-

Conclusions

In this report we give two decoder implementations for convolutio-

nal codes, for which the class L2 1 gives a significant gain ,v,v-

in computational complexity. Both applications can be extended to

the case of soft decisions. It is shown that for P
BSC

= 0.045 the

hit error probability PB~c.2-1og(m). These results are in agreement

with theoretical results as given in [11]. For small values of

P
BSC

' a very low decoder complexity can be obtained.

-64-

Acknowledgements.

The authors wish to thank the group of Prof. Schalkwijk for

assistance and valuable discussions. The hardware implementation

was carried out at the Philips Video pre-development group of

Dr. U.Krause.

-65-

References

[1) Forney, Jr., G.D.
CONVOLUTIONAL CODES I: Algebraic structure.
IEEE Trans. Inf. Theory, Vol. IT-16(1970), p. 720-738.

[2) Viterbi, A.J.
CONVOLUTIONAL CODES AND THEIR PERFORMANCE IN COMMUNICATION
SYSTEMS. IEEE Trans. Comrnun. Technol., Vol. COM-19(1971),
p. 751-772.

[3) Fano, R.M.
A HEURISTIC DISCUSSION OF PROBABILISTIC DECODING.
IEEE Trans. Inf. Theory, Vol. IT-9(1963), p. 64-74.

[4) Massey, J.L.
VARIABLE-LENGTH CODES AND THE FANO METRIC.
IEEE Trans. Inf. Theory, Vol. IT-18(1972), p. 196-198.

[5) Vinck, A.J.
SYNDROME DECODING OF BINARY CONVOLUTIONAL CODES.
Ph.D. Thesis, Eindhoven University of Technology, 1980.

[6) Vinck, A.J., A.J.P. de Paepe and J.P.M. Schalkwijk
A CLASS OF BINARY RATE ONE HALF CONVOLUTIONAL CODES THAT
ALLOWS AN IMPROVED STACK DECODER.
IEEE Trans. Inf. Theory, Vol. IT-26(1980), p. 389-392.

[7) Massey, J.L.
LECTURE NOTES. Lehrgang Carl Cranz Gesellschaft (Germany),
June 1975.

[8) Massey, J.L. and D.J. Costello, Jr.
NONSYSTEMATIC CONVOLUTIONAL CODES FOR SEQUENTIAL DECODING
IN SPACE APPLICATIONS.
IEEE Trans. Comrnun. Technol., Vol. COM-19(1971), p. 806-813.

[9) Johannesson, R.
ROBUSTLY OPTIMAL RATE ONE-HALF BINARY CONVOLUTIONAL CODES.
IEEE Trans. Inf. Theory, Vol. IT-21(1975), p. 464-468.

[10) Jelinek, F.
PROBABILISTIC INFORMATION THEORY. New York: McGraw-Hill, 1968.
McGraw-Hill Series in System Sciences.

[11) Viterbi, A.J. and J.K. Omura
PRINCIPLES OF DIGITAL COMMUNICATION AND CODING.
New York: McGraw-Hill, 1979.
McGraw-Hill Series in Electrical Engineering.

EliNDiJOVEN UNIVERSITY OF TECHNOLOGY
THE NETHERLANDS
DEPARTMENT OF ELECTRICAL ENGINEERING

Reports:

93) Duin, C.A. van
DIPOLE SCATTERING OF ELECTROMAGNETIC WAVES PROPAGATION THROUGH A RAIN
MEDIUM. TH-Report 79-E-93. 1979. ISBN 90-6144-093-9

94) Kuijper, A.H. de and L.K.J. Vandamme
CHARTS OF SPATIAL NOISE DISTRIBUTION IN PLANAR RESISTORS WITH FINITE
CONTACTS. TH-Report 79-E-94. 1979. ISBN 90-6144-094-7

95) Hajdasinski, A.K. and A.A.H. Damen
REALIZATION OF THE MARKOV PARAMETER SEQUENCES USING THE SINGULAR VALUE
DECOMPOSITION OF THE HANKEL MATRIX. TH-Report 79-E-95. 1979.
ISBN 90-6144-095-5

96) Stefanov, B.
ELECTRON MOMENTUM TRANSFER CROSS-SECTION IN CESIUM AND RELATED CALCULATIONS
OF THE LOCAL PARAMETERS OF Cs + Ar MHD PLASMAS. TH-Report 79-E-96. 1979.
ISBN 90-6144-096-3

97) Worm, S.C.J.
RADIATION PATTERNS OF CIRCULAR APERTURES WITH PRESCRIBED SIDELOBE LEVELS.
TH-Report 79-E-97. 1979. ISBN 90-6144-097-1

98) Kroezen, P.H.C.
A SERIES REPRESENTATION METHOD FOR THE FAR FIELD OF AN OFFSET REFLECTOR
ANTENNA. TH-Report 79-E-98. 1979. ISBN 90-6144-098-X

99) Koonen, A.M.J.
ERROR PROBABILITY IN DIGITAL FIBER OPTIC COMMUNICATION SYSTEMS.
TH-Report 79-E-99. 1979. ISBN 90-6144-099-8

100) Naidu, M.S.
STUDIES ON THE DECAY OF SURFACE CHARGES ON DIELECTRICS.
TH-Report 79-E-l00. 1979. ISBN 90-6144-100-5

101) Verstappen, H.L.
A SHAPED CYLINDRICAL DOUBLE-REFLECTOR SYSTEM FOR A BROADCAST-SATELLITE
ANTENNA. TH-Report 79-E-101. 1979. ISBN 90-6144-101-3

102) Etten, w.e. van
THE THEORY OF NONLINEAR DISCRETE-TIME SYSTEMS AND ITS APPLICATION TO
THE EQUALIZATION OF NONLINEAR DIGITAL COMMUNICATION CHANNELS.
TH-Report 79-E-l02. 1979. ISBN 90-6144-102-1

103) Roer, Th.G. van de
ANALYTICAL THEORY OF PUNCH-THROUGH DIODES.
TH-Report 79-E-l03. 1979. ISBN 90-6144-103-x

104) Herben, M.H.A.J.
DESIGNING A CONTOURED BEAM ANTENNA.
TH-Report 79-E-104. 1979. ISBN 90-6144-104-8

EINDHOVEN UNIVERSITY OF TECHNOLOGY
THE NETHERLANDS
DEPARTMENT OF ELECTRICAL ENGINEERING

Reports:

105) Videc, M.F.
STRALINGSVERSCHIJNSELEN IN PLASMA'S EN BEWEGENDE MEDIA: Een geometrisch
optische en een golfzonebenadering.
TH-Report 80-E-105. 1980. ISBN 90-6144-105-6

106) Hajdasifiski, A.K.
LINEAR MULTIVARIABLE SYSTEMS: Preliminary problems in mathematical
description, modelling and identification.
TH-Report 80-E-106. 1980. ISBN 90-6144-106-4

107) Heuvel, W.M.C. van den
CURRENT CHOPPING IN SF6.
TH-Report 80-E-l07. 1980. ISBN 90-6144-107-2

108) Etten, W.C. van and T.M. Lammers
TRANSMISSION OF FM-MODULATED AUDIOSIGNALS IN THE 87.5 - 108 MHz
BROADCAST BAND OVER A FIBER OPTIC SYSTEM.
TH-Report 80-E-l08. 1980. ISBN 90-6144-108-0

109) Krause, J.C.
SHORT-CURRENT LIMITERS: Literature survey 1973-1979.
TH-Report 80-E-l09. 1980. ISBN 90-6144-109-9

110) Matacz, J.S.
UNTERSUCHUNGEN AN GYRATORFILTERSCHALTUNGEN.
TH-Report 80-E-ll0. 1980. ISBN 90-6144-110-2

111) Otten, H.H.J.M.
STRUCTURED LAYOUT DESIGN.
TH-Report 80-E-111. 1980.]SBN 90-6144-111-0 (in preparation)

112) Worm, S.C.J.
OPTIMIZATION OF SOME APERTURE ANTENNA PERFORMANCE INDICES WITH AND
WITHOUT PATTERN CONSTRAINFS.
'rH-Report 80-E-112. 1980. ISBN 90-6144-112-9

113) Theeuwen, J.F.M. en J.A.G. Jess
EEN INTERACTIEF FUNCTIONEEL ONTWERPSYSTEEM VOOR ELEKTRONISCHE
SCHAKELINGEN.
TH-Report 80-E-113. 1980. ISBN 90-6144-113-7

114) Lammers, T.M. en J.L. Manders
EEN DIGITAAL AUDIO-DISTRIBUTIESYSTEEM VOOR 31 STEREOKANALEN VIA
GLASVEZEL.
TH-Report 80-E-114. 1980. ISBN 90-6144-114-5

	Contents
	Abstract
	I. Introduction
	II. Fano decoding
	III. Simulations for the Fano decoding algorithm
	IV. Restricted Viterbi Decoding
	Conclusions
	Acknowledgements
	References

