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Abstract 

In this report we first discuss the implementation of a Fano decoder 

using the tree structure of the class L2 0' of convolutional 
,V,N 

codes. Simulation results indicate that considerable reduction of 

the computational complexity can be obtained. 

Secondly, we give a software as well as a hardware implementation 

for a restricted Viterbi decoder. This decoder has a complexity 

proportional to the number of estimates, m, stored in the decoder. 

For a representative value of the Binary Symmetric Channel (BSC) 

transition probability PBSC of 0.045, the decoding bit error pro-

bability P
B 

decreases negative exponential with log(m). Hence, 

PB~C.2-l0g(m). Simulations indicate that low error probabilities 

can be obtained for small values of m, and utilization of the class 
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I. Introduction 

In communication systems, channel coding can be used to protect 

information against transmission errors. One of the major problems 

is to develop· codes with low undetected error rates at a moderate 

complexity of the decoder. It is the aim of this report to introduce 

a class of codes that can be used to reduce decoder complexity. 

In channel coding literature, one distinguishes between block 

and convolutional codes. A rate kin block code can be generated with 

a combinatorial network. The n-output digits of this network at time 

t, only depend on the k-input digits at the same time instant. A 

convolutional code is generated with a sequential network. The n-out-

put digits at time t depend on the k-input digits at time t, and on 

the input digits at time t-l,t-2, ...• In the remainder of this re-

port we assume that binary digits are to be transmitted over a bina-

ry symmetric channel (BSC) with a transition probability PBSC and 

a rate 1/2 convolutional code. Fig. 1 gives a specific example of a 

< C1 > 

v 
< 

L 
'-> 

Fig. 1. A rate 1/2 convolutional encoder 
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binary rate 1/2 convolutional encoder. Formally, using the delay 

operator notation [1], the input/output relations can be written as 

C
1 

(D) = I (D) gl (D) 

I(D)g2(D) (1) 

2 
where for the example of Fig. 1, gl (D) = l+D+D and g2(D) = l+D, 

respectively. The number of memory elements, v, of an encoder of 

the type as given in Fig. 1, is called the constraint length of the 

code. It indicates the maximum number of output pairs influenced by 

the memory of the encoder. From the shift register viewpoint, a 

convolutional code is the collection of all possib~e output streams 

of a particular encoder. A way of representing the encoder output 

as a function of its input and memory contents is by means of a 

tree. The tree associated with the encoder of Fig. 1, is given in 

Fig. 2. 

o 

, 
• 

Fig. 2. 

00 

, , 

1 1 

Tree representation for the encoder of Fig. 1. 
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Each node in the tree is labeled with the information sequence 

leading to a particular node, or as the encoder has memory length, 

the last V digits suffice as a label. Going from a node to a particu-

lar successor, the encoder outputs are placed along the branches, see 

Fig. 2. Note that the output of the encoder at a certain depth in the 

tree only depends on the node label and the present input. Hence, two 

nodes at a certain depth, with the same last v digits of the respec-

tive labels, have the same encoded sequences following either node. 

Viterbi used this fact to develop a Maximum Likelihood (ML) decoder 

[2]. Note also, that the tree has 2%%t nodes at depth t. Hence, deco-

ders that make use of the tree structure of convolutional codes are 

forced to do this in a clever way, in order to avoid exponential 

complexity growth. Fano [3], gave a solution to this problem for 

the class of random tree codes. 

Let a binary information source generate independent digits 

with Pr(O) = Pr(l) = 1/2. The information is to be encoded with a 

rate 1/2 tree code. The binary code digits along the branches of 

the tree are also independently generated with Pr(O) = Pr(l) = 1/2. 

The probability that the encoder follows a path from the origin to 

some specific node at depth j is thus equal to 2%%(-j). Then, given 

a received sequence X of length 2j, define as a quality measure for 

the encoded path £ to the node at level j 

~ 
Lf(~) logpr(~/¥) 

logPr(y/c).Pr(c) 
Pr(y) 

logPr(y/c)-+ logPr(~) 
Pr(l) 

(2) 
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Since our channel is memoryless, and the code is random, we have 

2j-1 
-j 

Lf (£) I [lOgpr(yi/ci ) ] + log 2 
i=O 

Pr (Y. ) 
1 

2j-1 
[lOgpr(yi/ci ) + 1/2] I (3) 

i=O 

Massey [4], who ten years after Fano introduced this metric, shows that 

(3) is optimal. Thus, if we extend the node with greatest metric, 

and continue this process until we reach the end of the tree, we 

can be reasonable sure that we will have found the same path that 

an ML decoder would have found. Although the tree generated by a 

convolutional encoder is not random, it is random enough to use (3). 

Note that the metric as derived in (3) is additive. For example, when 

PBSC = 0.02, one finds from (3), that 

logPr(y./c.) + 1/2 = log(1.-0.02) + 1/2 
1 1 

when y. = c whereas 
~ i' 

logPr(y./c.) + 1/2 
1 1 

'" = 0.47 - 0.5 

log(0.02) + 1/2 

-5.14 ~ -5. 

when y. F c .. In practice, one scales the metries so that all metric 
1 1 

values can be closely approximated by integers. In this case, we 

scale with a factor of two. Note that if only paths of equal length 

are considered, the constant term 1/2, can be omitted. To illustrate 

the above described decoding strategy, consider the example of Fig.3. 
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The encoder connection polynomials are 1+D+D
2 

and 1+0
2

, respective-

ly. The encoder output and corresponding Fana metrics are indicated 

along the branches. The increments in the Fano metric are easily 

calculated from the distance between a received pair and the branch 

transition pair. We have scaled the values of the respective Fano 

metrics to integer values. 

Into 

transmIt ted 11 

receIved Ql 

00 
~/ 

B 

a 

10 

1 0 

F 
-18 
/.-

11/ D 
/ 

/ 

00 -18 

E 

00 

11 

a a 

10 11 

10 11 

-36 
Ot.-- ---L 
-" 

-31. 
10 -'1. _Illl- N 

-12 

o 

a -25 

K 

Fig. 3. Example of the operations of a tree decoder. 

We now describe a class of· convolutional codes with a special 

tree structure. This tree structure can be shown [5,6] to reduce 

the computational complexity of sequential decoding procedures. Let 

gl (D) and g2(D) represent the connection polynomials of a rate 1/2 

convolutional encoder. This encoder is said to generate a code in 

the class L of convolutional codes, iff 
2,',),R. 

1). the constraint length of the encoder is equal to v, and 
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2). the connection polynomials are pairwise equal for the first ~ 

terms and unequal for the 2+1 th term. To end up with non delayed 

versions of other codes, both connection polynomials must have a 

constant term. As an example, the encoder of Fig. 1 generates a 

code in the class L2 2 2- More concisely, a code is an element of , , 
L , iff 
2,v,i 

" (4a) 

delay (4b) 

gcd 1 (4c) 

Condition (4c) means that both connection polynomials have no COmmon 

divisor unequal to 1, or that the code is non catastrophic. That is, 

infinite degree nonzero information sequences cannot produce finite 

degree code sequences. Furthermore, if (4c) is fulfilled, an in-

stantaneous inverse to the code sequence can be derived, using 

Euclid's [1] algorithm. The ~ sign means mod-2 addition of the 

polynomials. 

At this moment we restrict ourselves to describe how the above 

defined class of codes influences the tree structure of the gene-

ral class of binary rate 1/2 convolutional codes. 

Following Massey [7], the information and corresponding code 

vector sequence from time u up to time V, are given as 
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i 
[u,v) = (i i 1 ' ••• , i 1) I and 

U , u+ v-

c - [u,v) 

respectively. For example, for the tree in Fig. 2 the information 

input sequence i[O,2) = (1,1), gives rise to a corresponding code 

vector sequence £[0,2) = ((11), (00». Furthermore, we can split 

up the information sequence i[ ) into a concatenation of substrings, u,v 

as i = i xi[). The same can be done for the code vector 
[O,v) [o,u) U,v 

sequence 9 [ .). We are now ready to describe some important proper
o,v 

ties of the class L2 n of convolutional codes as given in (4). 
,v,x. 

Suppose we fully developed a code tree up to depth v. Then, 

this code tree can be divided into subtrees, by taking together all 

paths with the same path history up to time (v-t), O<t~v. In the 

following lemma we proof that given an information and a corres-

ponding code vector sequence from a particular subtree, we can find 

back or derive the whole subtree again. 

Lemma 1: Given an information s~quence, and hence the corresponding 

code vector sequence, up to time V, then 2t_l other code vector se-

quences can be derived from the given one. 

Proof: Let 

i 1 , 
[O,jH) 

i[O,j) ;, i[j,jH)' and 

i ;, i 1 
[O,j) [j,j+l) 
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be two information sequences diverging at depth j in the tree. The 

two corresponding code vector sequences are 

~[O,jH) ~[o,j)" ~(j,jH)' and 

~1 [O,j+~) ~[O,j)" ~1 [j,jH)' 

respectively. As il[O,j) = i[ ')' the code vector substrings 
0, J 

1 
~ [O,j) and ~[O,j) must also be equal. Hence, the two code vector 

sequences ~[O,j+~) and ~1[O,j+~) only differ in the last ~ stages. 

As the first ~ coefficients of gl (D) and 

are equal, the differences, c [' , , , I)' 
- J+~,J+l.+ 

of {(00),(1l)} for.all i, O~i';~-l. 

g2.(D) of a code in L2,,,,~ 

.--",,_.-- .. - ..... _',. 

~ c [j , j , I)' are elements - +~, +1.+ 

Property 1: Due to the structure of the class L , we can find an 
2,v,R, 

information sequence i~[O,j+~)' that leads to a code vector sequen-

ce ~~[O,j+~) with the property that 

(0 0) i f j,O"i':jH-I 

~ 

~ [i,i+1) 
= 

(1 1 ) i j 

.f!, 'th t ,~ The first nonzero component of 1 [O,j+~) ~s e componen ~ [j,j+l)' 

FOr the tree of Fig. 2, i~[ = i~[ 
O,j+~) 0,j+2) = !il[O,j) ,., (1,1), 

where !il[O,j) is the all zero sequence up to time j. 

Let i[O,j+R,) be some information sequence representing a path 

up to depth (j+R,) in the tree. From Lemma 1 we saw that we can derive 
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£ 
2 -1 other information sequences and code vector sequences from this 

path. Pick the special path 
,1 , ~ 
1 [O,j+l) = 1[O,j+l) e i [O,j+£), and 

compare the respective code vector sequences. According to proper-

1 , 
ty 1, ~[O,j+£) and~. [O,j+l) only d1ffer at depth j, with 

a component equal to (1 1). The remaining components of the respec-

tive code vector sequences are equal. Thus, if according to Lemma 1, 

£ 
i represents a class of 2 paths, then, this class can be 

[0, j+l) 
1-1 

split up into two subclasses of 2 paths. One subclass can be re-

presented by the path i[O,j+£)' whereas the other may be represen-

,1 , i~ 
ted by a path 1 [O,j+l) = 1[O,j+£) e [O,j+£)' Note that if the 

information 

class, then 

estimate i[O,j+l) is the best estimate within its sub

i
1

[O,j+l) is also the best estimate within its subclass. 

If we define the metric Lf[~[O,j+£)l to equal the Fano metric corres

ponding with an information sequence estimate i[O,j+I)' then the 

F ,[ 1 1 d" h h ' ,1 ano metr1c Lf ~ [O,j+£) correspon 1ng W1t t e est1mate 1 [O,j+l) 

= i[O,j+l) e i~[O,j+l) follows easily from the metric Lf[~[O,j+l)l. 
To wit 

where 

d[ (1 1) 

2log (l-p) /p 

!!o[j,j+1)1 = -2log(l-p)/p 

a 

if 
!!.j:j,j+1) 

(0 0) 

if = (1 1) 
!!o[j, j+1) (5) 

otherwise 

This is an important property for the decoding algorithms to be des-

cribed. We will now show how the above can be used in a decoding 

algorithm that uses the Fane metric. 
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£-1 
Let i[O,j+l) be the common part of a subclass of 2 sequen-

ces represented by the best, or one of the best, estimate i[O,j+t)

We extend the representative sequence i[O,j+£) to i[O,j+£+I) = 

i[O,j+t) ;0 i[j+t,j+t+I) such that !!.[j+t,j+t+I) = £[j+t,j+t+I) Ql 

Ql £[j+£, j+HI) £ «0 0), (1 0)). As both connection pclynomials have 

a constant term, this is always possible. Because of (4b), all other 

possible extensions of sequences of this particular subclass give 

rise to a difference of (00), or (I I) with !!.[j+t,j+£+I). Hence, if 

£-1 
i[O,j+t) is the best estimate within the subclass of 2 paths, the 

£ 
extension i[O,j+~+l) is the best estimate within a class of 2 paths. 

Fig. 4 gives a flowchart of the above method. 

Fig. 4. 

I 
take the best path i[o,i+!) 

f rom a class of 21 
~ 

form two representat ives 

~f 1-1 f or two classes 0 2 , 
r ecalcu la te the metrics 

of the representat iv es 
~ 

extend ea:h representative 

In the best wav , 
£ Flowchart of the extension of a class of 2 paths. 
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One of the important things about coding is the undetected 

decoding error rate. For convolutional codes, the minimum Hamming 

distance between any two code vector sequences to a large extent 

determines the undetected error rate. This minimum Hamming distance 

is called the free distance, or d
f 

• Table I shows some values of 
ree 

d for several codes in the class L2 1- This class of codes 
free , \I , v-

can be seen as a mirrored version of the QLI [8] codes, that permit 

easy data recovery from the received data stream. This is also possi-

ble for codes in L 2,\),\1-1-

Table I 

List of d
f 

for some codes in L ree 2,\/,v-1-

.Type 
-1 

91 92 9 1 

L 
2,2,1 

5 7 3 

L 
2,4,3 

31 .33 10 

L 
2,6,5 

113 153 75 

L 
2,11,10 

4253 6253 2264 

L 
2,12,11 

14253 10253 7415 

L 
2,15,14 104253 144253 66166 

L 
2,16,15 

204253 304253 127333 

L 
2,22,21 

23604253 33604253 16556734 

L 2,31,30 32642356253 22642356253 16274741142 

-1 
92 

2 

17 

52 

3403 

4272 

45701 

144554 

13535153 

11520660725 

d 
free 

5 

7 

9 

12 

13 

14 

14 

19 

23 
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The code generators g1 and g2 are given in octal notation. In sequen-

tial decoding, the most important parameter is the column distance 

function [9]. It is defined as 

d (r) ~ 
c 

. min 
d~J + 

o 

r-l 

L o s=O 

where d
ij 

denotes the Hamming distance between the s branches of 
s 

two encoder output vector sequences. A large value of d (r) for 
c 

values between a and 15 garantees a good distribution in the number 

of computations for a decoding job to be performed. Johannesson [9] 

shows that rapid column distance growth minimizes the decoding effort, 

and therefore the probability of decoding failure. For the v=31 code 

30 in Table I, the column distance grows as 2 ,3,4,5,5,6,7,7,8,8,9,9, 

10,10,11,11. Johannesson [9] also gives codes with a rapid column 

distance growth. For instance for the code with encoder polynomials 

gl =103745, and g2=164133 the column distance grows as 2,3,3,4,4,5,5, 

6,6,6,7,7, •••• This distance growth is much different from that of 

the codes in Table I, and hence, it is somewhat surprising that they 

yield such good performance in conjunction with sequential decoding 

algorithms. This is the subject of the next chapters. 

The last part of this introduction is to show how a decoder can 

make use of the received data vector sequence in order to give an 

estimate of the encoded information sequence. If we omit the delay 

cperator notation, the input/output relation of the encoder can be 

written as 
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IG 

After transmission over a sse the code vector sequence c is received 

as 

r= (r 1 ,r2 ) =£fB,!!., 

As gl and 9
2 

have no common factor, we can find a matrix G 
-1 

= 

-1 -1 
such that 

-1 
(j) g2 

-1 
1. Then, the inverse to the (gl , g2 ) gl gl g2 = 

received data vector sequence is defined as 

I (j) e 

We define the syndrome sequence z as 

z = E.(g2 ;9"1) 
T 

n
1

g
2 

(j) n
2

g
1 

The task of the convolutional decoder is to find an error vector 

sequence .!!., according to some metric criterion, that may be a possi-

ble cause of the syndrome sequence z. The inverse to this estimate 

is defined as 
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and must be added to (I ~ e), to give an estimate of the information 

sequence. Another possibility is to compare a possible code sequence 

IG, with the received data stream r. As 

(, 
(e,z) 

1\ 
one could also compare a possible code vector sequence eG with the 

-1 -1 1\ 
vector sequence z(g2 ,gl ), in order to find the sequence e that 

1\ 
leads to the information sequence I directly. 

For an additive white Gaussian noise channel (AWGN) with hard 

quantization at the matched filter output, the previously mentioned 

encoding and syndrome forming circuits, together with the invertor 

'" . 
Itil e 

dec 0 din 9 de la y r--.::-..... H-:JI---

c , 
2, 

n 2 ' G -1 (0) 
G(o) 

BSC 92 
z ~ 

dec oder 

9, 

HTm) 
T 

H-1 (OJ 

Fig. 5. Schematic use of a convolutional code/decoder 
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II. Fano decoding 

In this chapter we first shortly explain the operations of the 

Fano decoding algorithm. Then, we investigate the influence of the 

class L2 n of convolutional codes on the decoder complexity. 
,V'N 

Fano decoding is a"method to decode convolutional codes sequen-

tially. That is, a search along a possible path through the code 

tree is done one branch at a time. If we connect the Fano metric 

with each node in the tree, the decoder may move forward from a 

particular node to a successor node, iff the Fana metric T for the 

successor node exceeds or equals a certain threshold TO' If the 

decoder cannot move forward without violating the threshold TO' it 

has to return to a preceding node, in order to try an alternate path. 

If the backward move is also impossible, the decoder lowers the 

threshold TO with a fixed value T. If the threshold is lowered, then 

the decoder tries to move forward again. The threshold TO is forced 

to move upward in discrete steps of size T to be as close to T as 

possible, iff a node is visited for the first time. This is to 

avoid looping of the algorithm. The decoder continues in the above 

way until the end of the tree is reached. The case where the tree 

has both a starting and an end point is referred to as frame deco-

ding. In frame decoding the last encoded information digit is follo-

wed by vall zero digits, thus resetting the encoder in the all 

zero state. As the Fano decoder can give a decision before sear-

ching through all possible paths, the algorithm is suboptimal with 

respect to the decoding error probability of an ML decoder. Howeve~ 
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the loss is very small. The main advantage of the Fana decoder is 

the small memory necessity of the decoder, while the number of in-

vestigated paths is small compared to the number of paths an ML 

decoder investigates. 

The description of the Fano decoding algorithm is given in 

comprehensive form in Jelinek [10]. We only give the flowchart, 

see Fig. 6, where the value of T[i[O,j)] is defined as 

and the values of the label c~ and the inverse labelling function 
] 

:t 
s(c,) can be found in Tables II and III, respectively. 

) 

T(i[O,j) 

T (i 10, j) 

T(i [a. jJ 

T(i [0, jJ 

TABLE II 

Values for c~. 
J 

i [j. j 

• 0) ~ T{i[O,j) • 1) 

• 0) 

• 0) 

• 0) 

< T{i(O,j) • 1) 

TABLE III 

Values for s(c·). 
J 

~T(i[O,j) • 1) 

< T{i[O.j) • 1) 

+ 1) 
: 0 

i [j. j + 1) 

0 1 

1 0 

• : 0 • : ! c c 
J ) 

0 1 

1 0 

: 1 
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I START I 

Co:=o It 

° j :=1 C, = 
J 

+ F< It 
< 2 yes 

c, 
J 

no !It yes 
T(i[O,j)- s(c,));> T 

J 0 

no ? >- yes i[O,j+l)=i[O,j) j';'l 

It 
lts(c;) 

yes no 

~ T(i[O,j_l)) ~ T 
0 

ALREADY r no 
TESTED ? 

yes 

IC~_I=C~_I+11 T =T - T 
0 0 

T := IT(i[O,j+l))/ T j-T 0 

I j=j-l I 

j=j+l I 

no 
? 

yes 
!It READY 

Ci:=o 

I STOP I 

Fig. 6. Flowchart of the Fano decoding algorithm. 
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2 
Encoder G = [1+D+D • +D2] 

Information 1 0 1 o o 

Transmitted 11 10 00 10 11 

Received 01 

a , 

, , , 
1 0, 

, 
, 

I 

I'C~=O 

, 

10 

d 

,.[1]] , 
11/ 

, 

.. " C *::;: 1 
, 2· 

...... c * =1 
, 2 

1 0 " 

f 

01 10 

01 _-.[Jl] 
C ". 't*= 1 

4 

c""'o 
=0 

1 0 ,--"-1 

, 
..... c~ = 1 

o '1~" 

Fig. 7. Fano metrics for a specific received sequence. 

11 

Table IV traces the steps of the Fano decoder in decoding a 

specific data vector sequence. The example is taken from [11]. In 

Fig. 7 we represent the various values of the Fano metrics in a 

tree, and we indicated along the branches the value of the estima-

ted noise, followed by the branch labels, respectively. A dashed 

line indicates that a path leading to a specific node is extended 
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with an information digit equal to zero. 

TABLE IV 

Decoder actions for tree of Fig. 7. 

violate violate j 
;, 

location action action action 
T c, arrow 

T T 
0 J 

0 0 

root look YES decrement -4 1 0 B 

at a T 
0 

root look YES decrement -8 1 0 B 

at a T 
0 

root look NO go to -8 2 0 0 

at a a 

a look NO go to -8 3 0 C 

at b b 

b look YES look NO go to -8 1 1 A 

at c at a a 

a look YES look NO go to -8 2 1 A 

at d at root root 

root look NO 

~ ~ 
go to -8 2 0 c 

at e e 

e look YES look NO go to -8 1 2 A 

at f at root root 
;, 

2 ~ ~ decrement -12 1 0 B root c
1 

= 
T 

0 

root look NO go to -12 2 0 0 

at a a I 

a look NO go to -12 3 0 0 

at b b 
, 

b look NO go to -12 4 
o I 

0 

at c c 

look look -12 3 c YES NO go to 1 A 

at g at b b 

b look NO go to -12 4 0 C 

at h h 

h look NO go to -12 5 0 C 

at i i 

i look NO go to -8 6 0 C 

at j j 
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As was explained before, given a received vector sequence ¥..., 

the Fana decoding algorithm is a search along a possible path 

through the code tree, one branch at a time. If we use the tree 

structure of the class L2 ~, then, from each node in the tree ,v,¥.. 

we can derive a class of 2**~ possible paths. Now, let us repre-

sent each node in the tree by the node that follows from the best 

possible path within its class. Then, this tree can be seen as a 

contraction of the original tree. The extension of a node can be 

summarized as follows. 

and 

i [jH, jH+1) 

• - ___________ 0---------. i [0, jH+1) 

----------- !:. [] H , j H+ 1) d (00) , (01)}' 

.f, . 
l[O'J·+')~ 1[ .•.• 1) ,. J+", J+"+ 

I .1 
• 1 

~nl [O,j+t+l) 

- [jH,j+H1) d (00), (01)}, 

n = (00) 

(6a) 

n = (01) 

Lf [£[0,j+t+l)J+210g (1-P )/P if ~[j,j+l)=(OO) 

(6b) 

otherwise 
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In Table V and Fig.Bwe trace the actions of the Fano decoder 

for the example of Fig. 7 for the modified Fano decoder. 

TABLE V 

Decoder actions corresponding to Fig. 8. 

location action violate act-ion violate action T • • J c 

T T 
0 J 

0 0 

root look YES decrement -4 1 0 
at a ~ 

0 

coot look YES dectement -8 1 0 
at a ~ 

0 

root look NO go to -B 2 0 
at a a 

a look NO go to -B J a 
at b b 

b look YES look at NO go -8 , 1 

at c a to a 

a look YES lock at NO go to -B 1 1 

at d root toct 

::::oot l=k YES decrement -\:2 \ () 

at e ~ 
0 

root look NO go to -l~ 2 'J 

at a a 

a look NO go to -I: J U 

at b b 

b look NO go to -12 4 l' 

at c c 

c lock NO go to -! 2 S 
" 

at f f 

f look NO go to _., 
b " 

at 9 g 

-I-----

b (10,0) -12 (00,01 I {OO,DJ 9 - ~ r:="--<ol.::..W==-.j - 1 0 I-'-=~-.I- B 
(10) (DOl (10) (00) 

( 00,0) 

• _ 7 

101> 
(10.0)~ 

(10,11 

to()) ", 

(00,0) 
, . 
"tIT! 

(11) 

Fig. 8. Path followed by the modified Fano decoder 

for the example of Fig. 7. 
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We have indicated the last two digits leading to the respective 

nodes. Between parentheses are the estimated noise digits, followed 

by " c .• 
] 

According to (6b), a negative contribution is added to the Fane 

metric of a representative path, if n
1

[ .. 1)=(11). This#howeve~ is 
],]+ 

done 2 time units later than the estimated noise occurs. This pheno-

menon might cause additional decoding errors. For, there could be 

a path with higher overall threshold function, see Fig. 9. 

T, 
A .. 

/ 

metric progress of 
incorrect path in 
modified Fano 
decoder. 

C 

B correct pa th - - - .;:Y 

, 

o 

E 

Tc .: .- .-
G 

0_ .- ._ ..... _ real metric _ progress 
of the incorrect path 

T -'-'-'-'-
2 F 

~------------------------------J 

Fig. 9. Metric progress for incorrect path BCD, and BFD 

in the classical and the modified Fano decoder, 

respectively. 
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No additional errors are made if the incorrect path remains 

unmerged with the correct one, like for pure tree codes. As convo

lutional codes are linear trellis codes, paths can merge. The in

fluence on the decoding error probability will be discussed in 

Chapter III. 



-24-

III. Simulations for the Fano decoding algorithm 

Simulations were carried out for the Fana decoder using the 

class L2 0' and for QDP codes without using symmetries. For QDP 
,V'N 

codes the first (v+l) terms of the column distance function are 

best. vIe divided the information into frames of 256 digits followed 

by vall zero digits. These (256+v) digits were encoded and trans-

mitted over a BSC with transition probability of 0.033, 0.045 and 

0.057, respectively. A particular simulation run consists of 

25.000 frames each. The decoding delay was set equal to the frame 

length, unless stated otherwise. In Table VI, we give the contri-

butions for the Fano metric for various noise pair estimates and 

Table VI. Mstric contributions. 

~ ~[j ,j+l) 
0.033 0.045 0.057 

0 
1 

0 2 1 

0 
-4 1 -7 -3 

1 
0 

-4 -7 -3 

1 
1 -9 -16 -7 

channel transition probabilities. The values of the threshold step 

size T are given in the figures. 
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In Fig. 10 we plot the distribution of the normalized number 

of forward backward and nonsteps, numbered as 2,3,4, respectively. 

The total number of steps is numbered 1. As can be seen, the non 

steps are of minor importance for th~ complexity of the decoder. 

Therefore, we define a computation to be a forward or a backward 

move of the decoder. 

The ODP [9] is an important parameter in sequential decoding. 

Hence, our initial simulation runs apply to OOP codes. The results 

are given in Figs. 10 through 16. Observe that the distribution of 

the number of computations does not change appreciable if we increase 

v beyond the value v=lS. The dependance of the results for smaller 

values of v is a result of the trellis structure of convolutional 

codes. If we neglect the influence on the computational distribution, 

then the advantage that accrues from using long constaint length 

codes is an improvement in the undetected error rate. In the same 

figures one can also note the influence of the decoding length. 

The influence of the threshold step size T, see Fig. 15, is given 

for one specific v=15 ODP code. Figs. 17,18 and 19 summarize the 

results for the class L2 n' using the tree structure discussed 
,V'N 

previously. For these codes, we optimized the column distance 

function. At PBSC=O.045, we compare some L2 ,v,v-1 codes with the 

v=23 ODP code, see Fig. 20. In order to see the influence of the 

tree structure of the class L2 l' we simulated a code from 
,v,v-

L2 1 with optimized column distance function, see Fig. 21, 
,v,v-

under various circumstances. Line 1 gives the performance when 

these codes are used without using the tree structure. Line 2 are 

the simulation results when only classes with equal Metrics are 
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101~------~~~~~-------------t--------~ 

1 0- 2 ~------~~---l--------~~--''-Ij----------::t 

dec length = 256 

friimr Il'ngfh = 255 

T = 4 

v = 10 ODP_code 

\ 
\ 

\ 
\ 

\ 
\ 
\ 
\ 

• \ 
• \ • \ 

\ 
\ 
\ 
\ 
\ 
I 

\ 

I 

10'1L---~~~~~U1UO~--~~~~~71~OO~~~~~ 

X 

Fig. 10. Total-, forward-, backward- and non-step 
computational distribution for v=10 ODP code. 
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10'~-----------\~~-------------t---------i 

1 0-
2 ~------------~----\--~-\-~~~----:J 

p : 0045 
Bse 

dec Length:: 2S6 

trarnt length = 2S6 

r = , 

ODP-codes 

1 0-
3 I----------I-------~r____tt-~~--l~ 

16'L---~~~~~wJ ____ ~~~~~~ __ ~~~~ 
1 10 100 

X 

Fig. 11 Various ODP codes for decoding length 256. 
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1 

-c 
0.._1 
10 ~----------~~~------------r---------j 

dec. length: 128 

kame ll!ngth: 256 

"'.::4 

-4 10 L-____ L-~~~~.~~ ________ ~~~~I~I~~--~~~~~ 

10 10 0 
X 

Fig. 12 Various ODP codes for decoding length 128. 
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101~----------~~~~------------1-----------j 

I; 

p: = 0.045 
sse 

dec.te ngth : 64 

fr~me length: 256 

ODP-codes 

1 O·' I----------------i--------------'I[----Hr---"\----j 

104L-__ ~~~~~~ww~ __ ~ __ ~~~~~~~--~~ 
1 0 100 

Y 

Fig. 13 Various ODP codes for decoding length 64. 
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10'~------\r--__ --+-----------____ ~--------~ 

1 0-21--------\i~.._-----_+----_____:j 
p :: 0.033 

SSC 

dec. length = 256 

'r~me lengtl'l = 256 

J' ,3 

ODp-codes 

10'~--------------+_----\_~~~~~--------~ 

10-' L_-I..---I---I-.L..~.J...J..JL._...I-...J.. ..... ~u...UJ.._..l_~ ..... ~ 
1 10 100 

X • 

Pig. 14 Various ODP codes for PSSC ~ 0.033. 
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101~------------~~--~~~~~~~----~ 

10- 21--------------1-----1I;-------t---\---=1 
p :: 0·057 
sse 

dec.l~ngth ::. 256 

fr~me length = 256 

t = 2 

oop- codes 

1031-----------1------~-t-_;--~ 

104L-__ ~~~~~~ __ ~ __ ~~~~~~~~~ 
100 10 

X • 

Fig. 15 Various ODP codes for P
BSC 

= 0.057. 
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1 0-' ~------\-~~~~-----+-----:I 

p 
esc 

:; O,O1,5 

dec.l ength ::: 256 

Ir.,me length::: 156 

OoP- codes 1 
v ::: 6 

lO)~---------------+--------~~~--~----------j 

10 100 
X 

Fig. 16 Two ODP codes for some values of T. 

• 
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10-1~----\----------+----------------+---------~j 

1 0- 2~ ________ --\--'r-__ ---+ ________________ +-________ -::1 
P =0.033 
esc 

dec:. length = 2S6 

- 3 
10 ~------------~+\--------------~----------j 

_Fig. 17 

1 0 100 

X 

Various L codes for P
BSC 2,\),\)-1 0.033. 
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10-1~--------~~----}-----------------+------------i 

102~ ______________ ~~~~ ____________ +-__________ -i 
p = 0.04S 

sse 

dec. length: 256 

L _codes 
2,V,-'>-1 

10-4L-__ ~ __ ~~~~~ ____ ~~~~~~~~~--~~~ 
1 1 0 

Fig. 18 Various L2 ,v,v-l codes for PBse 

1 00 
X 

= 0.045. 

• 
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r 
x 

z 

-\ 
10 ~ ________ ~~~~~----------+---------~ 

10 -21-_______ --\ __ -\:---\--\_~+_----_::I 
P

BSC 
::0.057 

dec. t!!ngth;:: 256 

fr.me length;:: 256 

T = 2 

L -codes 
2 ,v ;,)-1 

1 0 -3 ~------------_i-_\:------\--\-+-\-----.:\____::.:I 

10 100 
X 

Fig. 19 Various L2 ,v,v-1 codes for PBSC = 0.057. 

• 
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, 
" , , , , , , 

" " 
" " " " 102~---------------\-+--~--------------t"~,,----------j 

p :; O_OLS 
BSC 

dec.Le ngth = 256 

fr .. me length = 256 

L 
2,6,S 

, 
" " " 

ODP- code 

, , , , 
" , 

10'L---~~~~~~~--~--~~~~~~~--~~ 

1 10 100 
X _ 

Fig. 20 Comparison between some L codes 2,v,v-1 
and a V= 23 ODP code. 
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10 r-------~----~--~~------~~------~ 

-2 
10 r-------------1-~----------~~------_1 

P sse = 0.0,(,5 

dec. length: 256 

frame length = 256 

:r '4 

-3 

10 r-------------~--------_\~~--------~ 

10 100 
X 

Fig. 21 L
2

,15,14 code under different circumstances. 
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considered. Lines 3 and 4 are the optimal results for the v=15 ODP 

code and the v=15 code from L
2

,15,14' respectively. 

In Tables VII and VIII, we compare several L2 0 codes with 
,\l,N 

ODP codes. We define an erasure to be the event where NIL> 500. 

Furthermore, a frame is in error if it contains decoding errors. 

Observe a slight increased frame error probability for the codes 

in L2 1° If we decode these codes according to "metric equiva-
, V ,v-

lence ll classes, then this error probability decreases at the cost 

of an increased erasure probability. However, for long codes, with 

a large d
f 

' the measurements were error free. From Tables VII 
ree 

and VIII, one can conclude that there is a reduction in erasure 

probability with a factor Qf 10, and a factor of about 2.5 in the 

average number of computations when for instance the v=23 ODP and 

the v=31, L2 ,31,30 code are compared. 

Table VII 

Comparison of several ODP and L 1 codes for P BSC 2,v,v-
0.033 

0.033 dec.length 256 T = 3 

." type d erased frames bit errors 
free 

frames in error 

6 ODP 10 a 564 3839 

10 ODP 14 a 22 160 

15 ODP 18 2 0 0 

23 ODP 25 2 0 0 

6 L 2,6,5 9 0 1051 5489 

16 L 
2,16,15 

14 0 69 597 

22 L 
2,22,21 

19 0 2 31 

31 L 
2,31,30 

23 0 0 0 

NIL 

2.2 

2.5 

2.6 

2.6 

1.7 

1.9 

1.9 

2.0 
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Table VIII 

Comparison of several ODP and L2 ,v,V-l codes for PBSC 
0.045 

0.045 dec. length 256 

d erased frames 
bit-errors \I type free T 

frames in error 

6 ODP 10 4 0 2468 20817 

10 

I 
2 58 121 1411 

10 ODP 14 4 19 159 2023 

10 6 17 167 2324 

15 ODP 18 4 53 2 100 

23 ODP 25 4 75 0 0 
- - -- - -- - ---- - -- _.- -_. - _._- - - - ~ 

6 

16 

16 

16 

22 

31 

L 
2,6,5 

9 4 0 3732 24132 

2 0 - 368 4749 

L 
2,16,15 

14 4 0 411 5279 

6 0 451 5829 

L 
2,22,21 

19 4 4 15 323 

L 
2,31,30 

23 4 8 0 0 

In Table IX, we compare the number of additional computations 

in order to decode a frame with the indicated noise vector sequence 

starting from position 128. Both codes are v=6 codes with an opti-

mized distance profile, and a free distance of 9 for the L
2

,6,5 

code and a d
f 

of 10 for the QDP code. The code generators are 
ree 

gl=113, g2=153 and gl=135, g2=163, for the L
2

,6,5 and the ODP code, 

respectively. In Table X, the instances are given where the decoder 

gives decoding errors. Accidentally, both codes give the same 

Table. In Table XI, we compare two v=15 codes. Again, one is an 

NIL 

4.1 

10.7 

7.1 

6.1 

8.1 

8.3 
--

2.6 

4.8 

3.1 

2.6 

3.4 

3.5 

ODP code, whereas the other is a code from L2 ,15,14" Both codes were 

error free. For the ODP code gl=103745, and g2=164133. Fbr the 

L2 ,15,14 code, gl=104253 and g2=144253. 

-
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Table IX 

Comparison between, two v = 6 codes in decoding a 

specific noise vector sequence, for an GOP, and an L
2

,6,5 code. 

~ 000 001 010 011 100 101 110 111 

n
2 

000 0 8 4 32 8 26 22 80 

001 8 384 32 662 26 520 80 1124 

010 4 32 324 782 22 80 892 1200 

011 32 662 782 2740 80 1140 1192 4438 

100 8 26 22 80 384 498 1038 1580 

101 26 520 80 1116 498 4678 1476 3148 

110 22 80 892 1180 1038 1552 2074 3854 

111 80 1116 1180 4438 1572 3148 3854 2698 

000 0 8 4 28 8 22 20 76 

001 8 32 28 84 22 66 76 120 

010 4 28 42 84 20 86 64 118 

011 28 84 84 174 78 120 118 428 

100 8 22 20 74 32 98 116 284 

101 22 66 74 120 98 248 258 298 

110 20 74 64 118 116 264 222 370 

111 74 120 118 428 290 298 370 274 

Table X 

Decoding errors for the patterns of Table IX 

~ 
000 001 010 011 100 ' 101 110 111 

n 2 ' 

000 0 0 0 0 0 0 0 0 

001 0 0 0 0 0 0 0 0 

010 0 0 0 0 0 0 0 0 

011 0 0 0 4 0 0 0 3 

100 0 0 0 0 0 0 0 0 

101 0 0 0 0 0 4 0 3 

110 0 0 0 0 0 0 4 3 

111 0 0 0 3 0 3 3 3 
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Table XI 

Comparison between v = 15 codes in decoding a specific noise 

sequence for ODP and L2 ,15,14 code. 

~ 000 001 010 011 100 101 110 

n
2 

000 0 8 4 44 8 24 24 

001 8 122 46 182 24 176 160 

010 4 44 92 776 34 108 244 

011 46 196 966 1656 134 972 1014 

100 8 24 24 220 122 472 1210 

101 24 178 158 522 266 2532 4576 

110 34 102 260 1002 1316 2678 2388 

111 112 1038 1096 25418 2522 29729 15090 

000 a 8 4 28 8 22 20 

001 8 42 28 50 22 42 74 

010 4 28 32 82 20 74 68 

011 28 50 82 300 74 66 132 

100 8 22 20 74 42 42 58 

101 22 42 74 66 42 202 132 

110 20 74 68 132 58 132 364 

111 74 66 132 1032 132 1130 1168 

111 

222 

468 

906 

6012 

9444 

29482 

24548 

29729 

74 

66 

132 

1032 

132 

1130 

1168 

1294 
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IV. Restricted Viterbi Decoding 

The application of the Viterbi decoding algorithm [2] for 

convolutional codes is limited to short constraint length codes. 

The reason for this is the exponentional growth in the number of 

different path- and metric memory registers connected with encoder 

states. In this Chapter we give a decoding scheme with reduced 

memory necessitYI and hence, in this respect, decoder complexity. 

We are able to use the memory in such a way that also the computing 

complexity can be kept low. 

Every decoding step, the Viterbi decoder for a memory length 

v encoder extends 2**v paths, or information sequence estimates. 

These estimates differ at least in the last V stages. The metrics 

of the extended paths depend on the Hamming distance between a re

ceived vector sequence and an estimated code vector sequence. For 

rate 1/2 codes, there are 2~~(v+1) successors, from which the best, 

i.e. lowest metric, of each two estimates ending in the same encoder 

state are retained. For short constraint lengths v<8, the implemen

tation is feasible4 For longer constraint lengths the obtainable 

free distance increases, and thus, th2 undetected error rate Can 

be decreased. Hence, one would like to implement decoders for 

v>7. One solution is found in sequential decoding algorithms like 

Fana or Stack decoding. However, the disadvantages of these decoding 

algorithms are the variable amount of the number of computations, 

and the need for a feedback link. Another solution can be found if 

we sacrifice the optimality of the Viterbi decoding algorithm. 
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Suppose, we make the following restrictions on the Viterbi 

decoding algorithm. 1). Extend a maximum of m<2~~v paths. After 

each extension procedure, retain the m best, i.e. with lowest metric. 

This restriction directly influences the decoding complexity, and 

a few remarks must be made. As the information sequence may take 

on every value with equal probability, all encoder states have the 

same probability of occurance. This forces the last v digits of the 

extended sequences not to be fixed. For, if they were, for values 

of m<2*~v, certain encoder states can never be reached, resulting in 

a useless decoder. Now, we need a sorting algorithm that selects 

the best m paths from a list of 2zm candidates. This sorting algo

rithm strongly influences the decoding complexity, and might be of 

a complexity proportional to m~*2. Hence, only practical for very 

small values of m. However, the metric values of the paths are 

known to be positive, and take on values close to zero. We might 

therefore be able to profit from this knowledge, as will be shown 

later. 2). The second restriction is that only those paths are 

extended that differ from the minimum metric path in the last v-po

sitions. This restriction could lead to paths ending in the same 

state to be present in the decoder. Upon extension, these paths 

again give rise to paths ending in the same state. This effects 

the maximum number of different paths that can be extended, and 

hence, could increase the undetected error rate. However, by lea

ving out the requirement that all paths must be different in the 

last v stages, we greatly influence the computational complexity 

of the decoder. 3). The last restriction is that we only extend 

paths for which the metric is smaller than some fixed value, say 

20 or 25. Again this may increase the undetected error rate. 
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For, a path with a temporarily high metric could be the path to be 

decoded later on. As we are dealing with codes with a free distance 

of about 20, the influence is kept small. 

We will see that there is an implementation for the restricted 

Viterbi decoder for which the complexity is proportional to m. One 

of the interesting questions arises how the undetected error rate 

behaves as a function of m. We now give a description of the res-

tricted algorithm, for a software as well as for a hardware reali-

zation. In the decoding algorithm we use two memories. One of them 

is the transmitting memory, whereas the other plays the role of a 

receiving meomory. The estimates present at one memory on a certain 

time instant are extended and transferred to the receiving memory. 

The locations where the successors are stored are calculated in 

such a way that the computational complexity can be kept proportio-

nal to m. The following time instant, the process goes in the oPPO-

site direction. 

Suppose we have the availability of two addressable memories 

M
O 

and Me, respectively, with a certain word length. This word length 

can be taken equal to the decoding length. Each memory can be divided 

000 e e e 
into buckets B

O
,B

1
,B

2
, ... , and B

O
,B

1
,B

2
, .•. , of variable size. 

o 
On odd time instants bucket B

j 
contains the estimates with a metric 

value equal to j. The same can be said for bucket B~ on even time 
J 

instants. The bucket which contains the estimate with a metric 

value equal to the minimum value is called B
min

, whereas the estima-

tes with maximum metric are stored in B On odd time instants, 
max 
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the successors of an estimate from B~ are stored in memory Me in a 
J 

bucket corresponding with the metric value of the successor. Ear 

even time instants, the operations go the other way around. For 

binary 1/2 codes, there are two possible successors for each esti-

mate, see Figs. 1 and 2. The metric value of the successors is 

equal to the old metric plus the Hamming distance between a received 

pair of digits and the code pair estimate corresponding with the 

respective transitions. It is easily verified that for a code with 

generators g1 and 9
2 

that have a constant term, these distances are 

equal to 0 and 2, or both equal to 1. Hence, an estimate from MO in 

bucket B~ can give rise to a successor in buckets B~ and Be or 
J J j+2' 

two successors in bucket B~ 1" If we subtract the minimum metric 
J+ 

1 f f · f 0 h . va ue, min, 0 the Metrics 0 the estlmates 0 M, t en an estlmate 

o e e 
of B

j 
can give rise to a successor to be stored in B

j
_min , Bj+2-min' 

e 
or B. 1 .' Note that the minimum metric is found easily by sear

J+ -mln 

ching for the first non empty bucket. Based on the above considera-

tions, we can calculate the starting addresses pO and p~ of the 
j J 

e e 
buckets of the receiving memory. For, the pointer P. of bucket B. 

J J 

must be greater or equal to pointer p~ 1 plus the maximum number of 
J-

e 
successors that can be stored in bucket B. 1 Hence, 

]-

(7) 

for the odd time instants. The indexes e and 0 interchange for the 

even time instants. In (7) IB~I denotes the initial number of esti-

o 0 
mates stored in bucket B .. Note that if m paths are stored in M , 

J 

the maximum size of memory Me that can be declared using the above 
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pointer technique is equal to 4xm. In Fig. 22 we give a flowchart 

of the decoding algorithm using the memory organization from above. 

1,0 I B.H 
Qin B~ 
mln-,."O 

I 1·01 + 1 I Isel pOlnlers of r-,n 
~leanB,l. 1-0,"'" 

I J'= 0 I 

no 
" Jlmllx 

! yes 
I i- 0 J I j= i+l I 

I i i+l I f< i ~ ajl " no 
/ 

no last V di9itS>ls 
of palh , *",n 
metric p.;ath 

I .. terd palh i I , 
tore successors with 

rl!.~tric kand n in 
. Bk- min SOn_milL 

incr..-renl Is! 
. . .1 

I = k-mm n-mn 

yes I:'IB·~m A 1"'0 I 

find fi"t bu::ke! s. t. 
18':.,;nl t 0 

decode least recent 
jigi! of pdthof s:nin , 
in !ercha~e 0 and e 
in flowchart 

Fig_ 22 Flowchart of the restricted decoding algorithm_ 
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In Fig. 23 we give the value of the relevant pointers and the 

number of paths stored ~n each bucket, for the example of Fig.3. 

We have taken m=3. If there are more than 3 estimates available in 

the memory, we correct the number of paths available in the buckets 

to equal m. 

01 10 01 10 11 received 

(0) (1) (2) (3) (4) (3) _ metric 

00 " • 00 
'-.... 

10 11 - state 
~ 

"- ( 1 ) 
"-

(2 ) ./ (3) 
/' 

~ 01 11 ,< ·10 

(3) (5) ~ (1) (2 ) 

"- 10 " • 00 

"- "-
(3) "- (2) 

" "-
11 .... 01 

01 00 

(3) / (3) 

00 L --01 

(2) (2) 

10 '" • 00 
"-(4) "- (4) 

"-
11 "01 

e IBel po IB~I 
e IB~I p~ IB~I p~ IB;I p~ IB~I bucket p, p, 

J J J J J J J J 

0 1 0 0 0 1 0 0 0 2 0 1 0 

1 2 2 2 1 3 3 2-1 2 3 ... 2 1 

3 0 6 1 ..... a 5 1-0 9 a 7 2 

4 0 8 0 10 0 12 11 3 

12 12 4 

Fig. 23 Example of the operations of the decoder. 
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We have also implemented ,the restricted decoding algorithm 

using the structure of the class L . As in the restricted deco-
2,v,1 

der all paths have equal length, we have to recalculate (5). We 

therefore define M[~[O,j+~)] to equal the Hamming distance between 

a code sequence £[O,j+R.) and a received sequence £[o,j+i)' The metric 

M[C'[ . 0)] corresponding 
- o,J+JV 

e i~[ . 0) follows easily 
0, J+JV 

with the 

from the 

estimate i' [o,j+~) = i[O,j+£l 

metric M[C[ . 0)]. To wit 
- 0, J+JV 

M[~' [o,jH)] M [c [ j 0)] + d [(11) - 0, +x. H 
(8) 

where 

+2 if 
!:'[j. j+l) 

(00) 

d
H

[ (11) E.[j,j+l) ]= -2 if !:'[j ,j+l) 
(11 ) 

0 otherwise 

The extension of an estimate "to two successors is done in the same 

way as described in Chapter I. From the representative of a class 

of 2~2R, paths, two representatives for two classes of 2*%(1-1) are 

derived. The metric of the altered representative must be calcula-

ted according to (8). Again, as in Chapter I, we extend each repre-

sentative with a noise estimate that is an element from {(00),(01)}. 

If the noise estimate corresponding with a transition to a successor 

of a respective representative equals (00), then the noise estimate 

following from the extension of the other representative equals 

(01). The reason for this is the complementarity of the (~+l)th 

connections of the generator polynomials. As the component i~[ .. 1) 
J,J+ 



is unequal to zero, the transitions resulting from both representa-

tives must differ by a component equal to (01). Using (8), we can 

calculate the overall metric increments for a particular successor. 

These increments are equal to a and 3, a and 1, or 1 and 2, respec-

tively. Using these values, the pointers for the receiving memory 

are set according to 

e= e 10 I 1 0 I 1 0 I 1 0 I Pj Pj - 1 + Bj-l+min + Bj-2+min + Bj-3+min + Bj-4+min (9) 

Again, the size of the declared memory is equal to 4*m. 

Before presenting simulation results for the decoding algorithm, 

we compare a v=15 ODP code with a code from L2 ,15,14. In Table IX 

we give the Hamming weight distribution of paths diverging from the 

Table IX. Weight distribution over the unmerged code word span, 

V = 15, ODP code. 

length 1 2 3 4 5 6 7 8 9 10 11 12 13 14 

distance 

2 1 

3 2 1 

4 2 3 2 

5 1 3 3 6 3 

6 1 6 6 9 11 6 1 

7 1 4 8 13 18 18 21 12 5 

8 8 15 18 35 36 42 36 29 12 

9 1 2 13 30 42 58 73 84 83 80 

10 2 7 28 50 90 116 147 164 171 

total 

1 

3 

7 

16 

40 

100 

231 

466 

775 



length 

distance 

2 

3 

4 

5 

6 

7 

8 

9 

10 
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all zero path in the code tree of an ODP code as a function of the 

length. In Table X we give the same distribution for a code in 

L wi th an optimized distance profile. F,or the last code, we 
2,15,14 

used the tree structure of L2 0" Hate that not only the distance 
,'V/~ 

profiles are quite different, but also the total number of paths 

or representatives at a certain Hamming distance over the unmerged 

span with the all zero sequence. This latter property makes the 

class L2 0' attractable to implement in the restricted decoding 
,V,N 

algorithm, as this algorithm only keeps a small number of paths 

in consideration. 

Table X. Weight distribution over the unmerged code word span, 

v = 15, L2 ,15,14 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 otal 

0 

1 1 

1 1 

1 2 1 4 

1 1 1 3 

2 4 3 1 10 

1 3 3 5 4 3 2 21 

1 4 8 8 4 5 2 32 

3 5 9 10 11 9 8 6 1 62 

In Figs. 24 and 25 we compare several codes from L , 
2,\),v-1 

with some ODP codes. We have plotted the bit error probability as 

a function of m, for both the BSC transition probabilities 0.045 

and 0.033. In Fig. 26 we give the performance of a code from L 
2,16,15 

for several values of m. 
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In the last part of this chapter we partly describe an imple-

mentation of a restricted Viterbi decoder employing a code from 

L2,7,60 The value of m is taken equal to B. The core parts in the 

hardware decoder are the sorting- and extension modules, which we 

first shortly describe. 

As in the software implementation, we want to avoid complica-

ted storing and sorting routines. Therefore, we store the paths, 

generated by the extension module (EXTD), on an address determined 

by the metric value of this path and the number # of paths already 

stored with the same metric value. More specifically: 

write address 8 x M + # + 1, 

where we suppose that the memory has been split up into M domains 

of size 8. As we want to read out or write in different paths every 

time instant the decoder needs to, we have to update the number 

after each read or write cycle. Using this strategy, sorting speed 

depends on the time we need to find a specific metric domain and 

the appropiate value of ~ 

From simulation results, it followed that M=10 was sufficient 

for the specific code to be implemented. So, if we define M to 
c 

equal the current value of the metric, and # M the current number 
c 

of stored paths with metric M , then the read and write addresses 
c 

are calculated as 
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write address 8xM+#M+1 
c c 

(9) 
read address 8xM +#M. 

c c 

For every value of M , we have a memory that contains # M . In prac-
c c 

tice, every write instruction of a path with metric M , # M increa-
c c 

ses by one. For each reading operation Ai M is decreased. For speed 
c 

reasons, the required search for a path of lowest current metric 

should be done asynchronously. The I'address available" moment, 

however,is controlled by the decoder. We now give an explanation 

for the address calculating module as given in Fig. 27. 

i). The write cycle. The extension module generates a path with 

corresponding met~ic. The write address is generated as follows. 

1. The metric value is switched on the BCD/DEC 

decoder which enables the corresponding 

counter / 3-state-latch doublet. 

2. U/D high; EC pulsed: 

#M : = #M + 1 
c c 

3. EI pulsed: 

4lM is read into the latch and available 
c 

at its output. 

Meanwhile the metric value has been multiplied 

by 8 (shifted 3 positions to the left, hard 

wired) and passed to the adder. 

4. The address is read from the output. 
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ii). The read cycle. The decoding computer asks for the address 

of a path having the smallest metric. This is easily found. 

Suppose at the current time, no paths with metrical value of zero 

are stored:"# M = O. 
o 

The carry output of counter 0 = O. Suppose we have stored a number 

of paths with metric 1 so '* Ml F O. Therefore, the carry output of 

counter 1 = 1. The carry outputs of all other counters are don't 

cares to the priority encoder that thus generates a binary one at 

its output. This value is the wanted smallest metric. The value is 

also fed to the BCD/DEC decoder which enables the corresponding 

counter/3-state-latch doublet. 

In time order: 

O. U/O is low. 

1. The switch is set in top position. 

2. EI is pulsed: 

The latch is set to the # Ml value which is 

available on the bus line. 

3. EC is pulsed: the counter is decremented by one. 

4. If this leads to I;t Ml = 0; the priority 

encoder output changes to the smallest non zero 

counter. 

2a. Meanwhile the metric value has been fed to 

the multiplier and adder. 

3a. The read address and the metric of a path of 

smallest metric value are available. 
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Fig. 27. Address computation. 
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In the EXTD module, we calculate the successors to a representative 

and the corresponding metrics, see Fig. 28. 

,Q., 

msb,oo 

F 

Fig. 28. Extension module (EXTD) 

The extensions are done according to noise estimates from 

Vl 
OJ 
> 

o 
~ 

C 
OJ 
Vl 

~ 

{(OO),(Ol)}. If an extension with a digit equal to zero is invalid 

according to this criterion, then the zero is inverted to be a one. 

The determination of ~[j,j+l) according to (8) can be done easily 

by using a delayed version of r
1

ffir
2

, and the properties of 

L
2

,7,6' see Fig. 28. The sorting- and extension modules are the 

core parts in a hardware decoder that is to be described. The use 

of a code from L
2

,7,6 is sufficient to demonstrate decoding feasi

bility. However, without changing the structure of the decoder, a 
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more powerful code could be used. To decrease decoding time, we 

employ "pipe-lining" of the respective data-streams. From Fig. 29 

the circuit and the dataflow will be explained. 

-+-r-;;;-r-
;--

D 
-+-L-- '--

r-- r- ~ 

= + ~ D MEM. EXTD 
L-- addross data 

.-- r-
Sx • --
'-- new metric _ .... 6merric c....:Ro 

.-

jL 

~-"tt-· ~ 
r- r- r*.---_ 

l+ -OMET t, == D 1= '= D 1= 11 #-OMET 
L-- '-- '-- -

;; H # 

--I-

Fig. 29. Block diagram of the decoder. 



-60-

One sub-cycle from a collection of eight consists of: 

1. Locate the stored representative of 

current lowest metric: 

Proceeding according to the above the 

-OMET module emits both the number 17 

and the current lowest metric OMET. 

From these the read address is computed. 

2. Read a representative from the memory. 
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3. The EXTD module extends one representative 

into two, Both have to be stored. 

4. A store address is found from 

~ METRIC (from EXTD module) 
=?- NMET 

METRIC (from 6 module) 

NMET is fed to the right # -OMET module to 

find the adjusted number t7 of stored represen

tatives with a metric equal to NMET. 

NMET 

==? store address 

# 
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5. The representative is stored. 

If eight representatives have been read from the memory, extended 

and stored, the decoder input changes. At this time also the~ -OMET 

modules interchange roles. By means of "pipe-lining", parallel pro

cessing according to Fig. 30 takes place. 

1 2 345 

1 2 345 

1 234 5 

1 2 345 

Fig. 30. . npipe-liningll. 

By this scheme, bus conflicts and double use of modules are avoided. 

To avoid the parallelogram like structure of Fig.30 which is nuis

sanee to the control signal generation, we reset the ~-oMET module, 

used to find the store addresses, to zero just before the first 

address of a cycle is to be found. 
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Conclusions 

In this report we give two decoder implementations for convolutio-

nal codes, for which the class L2 1 gives a significant gain ,v,v-

in computational complexity. Both applications can be extended to 

the case of soft decisions. It is shown that for P
BSC 

= 0.045 the 

hit error probability PB~c.2-1og(m). These results are in agreement 

with theoretical results as given in [11]. For small values of 

P
BSC

' a very low decoder complexity can be obtained. 
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