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Safety stocknorms in divergent systems

with non-identical final products.

by K. van Donselaar and J. Wijngaard.

1. Introduction

The goal of this paper is to determine safety stocknorms for

divergent systems with non-identical final products. The final products

are non-identical with respect to their lot-sizes and demand

characteristics. The stocknorms should yield a pre-specified service

level.

Stocknorms for divergent systems with identical products have been

investigated already in [1]. The major conclusions for those systems

were: 1) Divergent systems may face imbalance. A divergent system is

out of balance if the inventory positions of the final products are not

equivalent, e.g. due to large lot-sizes. 2) If divergent systems are

controlled integrally, the integral stocknorm has to take into account

the presence of imbalance if this imbalance is relatively large.

Corresponding formulas for integral stocknorms are determined for

systems with identical products.

If these results are to be extended to the non-identical products

case several difficulties arise:

- the definition of imbalance is more complex. Simple defining

imbalance as the deviation of the final products' inventories from

the average inventory no longer makes sense. In fact it will become

apparent that different definitions are needed for systems with and

without depot.

the allocation is more complex. For identical products allocation was

simple: allocate to the product with the lowest inventory. If mean

and standard deviation of demand as well as the lot-sizes and

consequently the reorderpoints of all products are different, it is

no wonder that the allocation has to be more complex.

- the system service level is more complex. Simply defining the system

service level as the average of all final products' service level

would be unfair to the products with a large average demand; Raising



their service level with 5% may require a larger amount of inventory

than an equivalent raise of the service level of products with a

smaller average demand. Therefore it is suggested to use as a system

service level the weighted average of the final products' service

level. The weight factors are equal to the ratio's of the final

product's average demand over total average demand.

These aspects will be discussed in Section 2, where imbalance for a

divergent system with non-identical products will be defined.

After finding an estimator for the variance of imbalance in Section 3,

the quality of stocknorms based on this estimator is tested in

Section 4.

It will appear that these stocknorms perform quite well. More

important however is the observation that elements other than imbalance

are more disruptive to the system. For a system with depot e.g. the

main disruption is due to so-called 'dead stock'. Some remedies against

these disruptive elements are suggested in Section 5. Conclusions are

drawn in Section 6.

2. Definition of imbalance

2.1 Implicit definition

In [1] imbalance was studied for divergent systems with identical

final products. There imbalance for a final product j was defined as

the difference between the actual economic inventory of that final

product (I.) and the average inventory level of all final products:
J

imbalance. = 1.- EI./N
J J 1

( 1 ) ,

When the final products have different demand distributions and/or

different lot-sizes, this definition no longer holds. Suppose for

example that two final products each have 100 products on hand.

According to (1) the system would be balanced. This makes sense if both

products have equal average demand. However if the average demand of

one of these products is ten times as high as the average demand of the

other product, it is crystal clear, that the system is out of balance.

A sensible way of defining imbalance seems to be
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*imbalance. = 1.- I.
J J J

(2),

*where I. is the amount of inventory for final product j after an
J

optimal (imaginary) re-allocation of all economic inventory (EI.) took
J

place without lot-sizing-restrictions.

Note that EE[imbalance.l = 0 since EI.
J J

for final product j will be denoted by

2.2 Re-allocation

*= 1:I .. The
2 J

o'mb .. So
1. , J

variance of imbalance
2 *0imb,j= var(I j - I j ).

= c • r., where c = EI./Er .•
J 1. 1.

the inventory of the final products up to their stocknorm and

Having defined imbalance as in formula (2), the remaining problem to

be solved here is finding the optimal re-allocation rule in case of a

system with non-identical products and without lot-sizes. Once that re

allocation rule is defined, imbalance is known according to the above

definition. The system with and without depot will be dealt with

separately.

2.2.1 Re-allocation in a system with depot

f~~mples of re-allocation rules for the system with depot, which can

be used to define imbalance, are:

1) Equalize the run-out-time (that is: the ratio of inventory over

average demand) for all final products. This yields:

* *I. = c • ~., where c = EI./E~. (since EI. = EI.).
J J 1. 1. J J

In this way all final products will tend to run out of stock

simultaneously if their leadtimes are equal.

2) Equalize the expected service-level for all final products.

In case of normal distributed demand this yields:

* *I. = (~.+1)~. + k ·.f(~.+1)o.,
J *J J J J

where k = (EI.-E(~.+1)~.)1 E.f(~.+1)o ..
1. 1. 1. 1. 1.

3) Equalize the stocknorm-ratio for all final products.

This results in:
*I.
J

4) Fill

allocate the difference between total inventory available and the

sum of the final products' stocknorms according to the average

demand of the final products.

- 3 -



3

- 2

/' 1

·2
3

(3)

+ I: I.
1

6040

where c = E(I.-r.)/E}l.
1 1 1
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40
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In this way all final products' economic inventories will tend to

drop below their stocknorm simultaneously. The corresponding

formula is:

*I. = r. + c . }l.,
J J J

t

The proposed allocations using different allocation rules

for a system with two final products A and B having the

following characteristics: }l(A)=}l(B)=10, o(A)=20, o(B)=5,

~(A)=~(B)=O, r(j)=}l(j)+1.6o(j) so r(A)=42, r(B)=18.

The numbers in this figure correspond with the number

of the allocation rule described above.

Figure 1.

It appears that every rule has its weak and strong points. Note for

example that all rules take account of the variance for each final

product, except for the first rule. So in case EI=Er, the first rule

will allocate O.5Er. in stead of r. to each product (see Figure 1).
J J

That implies that the expected service level of A and B will differ. In

case EI=Er and allocation rule 1 is used, the expected service levels

will be ~(1)~84% and ~(4)~100% for A resp. B. With the other allocation

rules the expected service levels of A and B will be the same: they

will both be equal to ~(1.6)~95%.

The second and third rule will tend to allocate too much inventory

to the product with the largest uncertainty if total inventory far

exceeds the sum of the stocknorms (e.g. due to large lot-sizes).
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Suppose for example that EI. equals 220. AcCording to allocation rule 2
J

the 'optimal' allocation is:

* *I
A

= 10 + [(220-20)/25) . 20 = 170, I
B

= 10 + [(220-20)/25) . 5 = 50.

Both products have equal service levels for the next period: ~(8). The

run-out-times however for products A and Bare resp. 17 and 5 periods.

Suppose that the total inventory of 220 products was meant to last for

6 periods. The expected service level for products A and B for 6

periods from now will be ~«170-6·10)/20~6)~99%resp.

~«50-6.10)/5~6)~21%. The reason for this imbalanced result is the

greediness of allocation rule 2: It does not take into account the fact

that total inventory may be needed for more than (~+1) periods.

Analogous results can be derived for allocation rule 3.

The fourth rule will tend to allocate too much inventory to the

product with the largest uncertainty if total inventory is far below

the sum of the stocknorms. Let e.g. EI=E~=20. Then according to

* *allocation rule 4: I A = 42 - 2·10 = 22 and I B = 18 - 2.10 = -2.

The expected service level for the next period equals

~«22-10)/20)~73% for product A and ~«-2-10)/5)~1% for product B.

* *It seems more appropriate in this case to select I A=IB=10.

Since in this paper the attention is focussed on getting an

indication of the impact of imbalance rather than on finding the over

all optimal allocation rule, a simple and robust allocation rule is

selected: allocation rule number 4.

Note that in the special case of identical products all these

policies are the same: the optimal allocation then with each of the

above policies is to allocate to each product the average amount of

inventory.

2.2.2 Re-allocation in a system without depot

In a system without depot a different re-allocation rule has to be

chosen since there are no longer stocknorms for the final products.

Federgruen and Zipkin [3) investigated the allocation of an amount of

inventory among several final products with the restriction that all

inventory had to be allocated. Their research revealed a.o. that a

good, simple and robust allocation rule is the rule proposed by Eppen

and Schrage [2):

I~ = (~.+v+1)~. + k'·~(~.+v+1}·a.
J J J J J

- 5 -
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with I ~,I .
] ]

where k' = [E(I.-(~.+v+l)~.) + dl / E[4(~.+v+l)·a.l
1. 1. 1. 1. 1.

the inventory of final product j after, resp. before

allocation.

v+l the average time between two orders = Qcomm/E~.

d amount available to be allocated.

This is a good rule, except for the cases where the system lot-size

and variances are large. For those cases Federgruen and Zipkin propose

a refinement of this formula:

+v = min( [EI.+d-E(~.+l)~.] /E~., Q /E~-l).
1. 1. 1. 1. comm

This refinement states that if the total inventory which is available

for the final products in the depot or downstream is small, that is:

less than the lot-size of the common part plus the average demand for

the final products times their leadtime, then the expected time up to

the arrival of the next lot for the common part should be decreased

accordingly.

The allocation rule (4) is based on the fact, that allocation takes

place just after an order has arrived in the depot. Since that order

contains v+l periods demand on average, the allocation is chosen such,

that the expected service level after ~+v+l periods is equal for all

products. However, imbalance is measured every period and not only

after an order is allocated. The allocation rule mentioned above has to

be adapted to this to come up with a good re-allocation rule to measure

the imbalance. A sensible adaptation seems to be:

*I. = (~.+v+l)~. + k • 4(~.+v+l)·a.
] ] ] ] ]

where k = E(I.-(~.+v+l)~.) / E[4(~.+v+l)·a.]
1. 1. 1. 1. 1.

(5)

and v = min + +( [EI.-E(~.+l)~.] /E~., [Q /E~-1-t]).
1. 1. 1. 1. comm

with t the number of periods after the last order arrived in the

depot.
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is the integral stocknorm for the common part,

the leadtimes for the common part resp. final product j,

3. An estimator for the variance of imbalance

The goal of this paper is to gain insight in the relationship

between stocknorms and service level. For a divergent system with

identical products this relationship appeared to depend on the variance

of imbalance. Generalisation of that relationship to the non-identical

products case seems to be rather straightforward:

r = E(~ +~,+1)~, - Q /2 +comm comm J J comm

2

Qcomm 2 2 2 }2 J (6)+ k~ [-1-2--- + ~ Ea, + {E~ [(~,+1)a, + a'mb ,Jcomm J J J 1., J

where r comm
~ ,~. arecomm J
Q is the lot-size for the common part andcomm
~., a, are the average and standard deviation of demand.

J J
For the relationship between the safety factor k in this formula and

the expected service level, the reader is referred to [1], Section 5.

According to formula (6) an estimator for the variance of imbalance is

needed in order to be able to determine the stocknorm.

To derive an estimator on the variance of imbalance for the general

systems considered here seems to be very complex_ The only estimator at

hand for the moment is the estimator for the system with identical

products_ By assuming that the variance of imbalance for each final

product in the system with non-identical products is the same as in a

system with all products being identical to that final product, the

following estimator will result:

o if N=1_

if a depot is present and N~1.

Q~ (N-1) (N+2) Q
.=l comm
12----N-------N--- + 0.5 (~ -

J

elsewhere.

(7)

This certainly will not be a good estimator for the variance of

imbalance for final product j. This can be easily seen from the fact

that for N=2 the variance of imbalance for the two final products
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should be equal (since imbalance1 = -imbalance2). If the two products

have different lot-sizes, formula (7) however proposes unequal

variances of imbalance. So formula (7) will not be correct always.

Nevertheless it is possible, although the spread over all final

products is lost, that formula (7) still is a good representative of

the total 'weight' of imbalance in the formula for the stocknorm.

By defining imbalance as in (2), (3) and (5) it is possible by means

of simulation to measure imbalance and to investigate its influence on

the system's performance. This will be described in more detail in the

next Section, where stocknorms based on formula (6) and (7) are tested.

4. Testing the quality of the estimators.

4.1 Description of the simulation experiments.

In order to check the quality of stocknorms based on formulas (6)

and (7), a number of simulations are performed. The number of

simulations is small, since the accent here is not on 'proving'

formulas (6) and (7), but rather on getting an impression of the

quality of the formulas and more importantly: getting an impression of

the behaviour of divergent systems with non-identical products.

These systems differ a great deal from systems with identical products.

To name a few differences:

The definition of imbalance is far more complex. See formulas (2),

(3) and (5).

- The allocation rule is far more complex:

* For identical products all allocation rules mentioned in Section

2.2.1 are equivalent. This is not true for non-identical products.

To define imbalance an allocation rule for systems without lot-sizes

was used. In the simulation rule this same rule will be applied to

actually allocate products, even though the simulated systems have

order policies with lot-sizing.

* For non-identical products it becomes questionable what to do if

the content of the depot is too small (due to lot-sizing) for the

product which needs it most and if another product, which has little

need for it, has a lot-size smaller than the inventory in the depot.

In the simulations this question was answered differently

depending on whether the system has a depot or not. In general it was

- 8 -



considered beneficial to allocate as much inventory as possible to

the final products. For the system with depot therefore the content

of the depot was allocated as long as one or more final products were

below their stocknorm and their lot-size was smaller than the content

of the depot. If this same rule were to be applied to the system

without depot, the slowmovers would get allocated more inventory on

average due to their smaller lot-size. Since this would yield very

unbalanced inventories, it was decided to stop the allocation in a

system without depot as soon as the content of the depot was smaller

than the lot-size of the final product which needed it most.

An alternative solution here is to allocate the amount of

inventory in the depot regardless of the fact that it is smaller than

the lot-size. This solution is not used in the simulations however.

Although it yields a substantial better service level, it is

questionable whether this solution is economical and whether the

production system is flexible enough to meet these order

adaptations.

In total 10 systems were simulated. Each system consisted of 2

product groups: so called fastmovers and slowmovers. The fastmovers

make up 80% of the total demand and have a relatively small coefficient

of variation (0.5 as opposed to 2.0 for the slowmovers). The sum of the

leadtimes for the common part and the final products was always equal

to 6 periods. The demand per period for a slowmover was equal to 10.

The parameters which were varied are:

N:

~:

f 1 :

fO:

dep:

Number of final products: N=2, 4 or 8.

The number of slowmovers was equal to 1, 3 resp. 6

The leadtime for the final product: ~ = 1 or 3.

The ratio Q./~.: f1 = 1 or 3.
J J

The ratio Q IEQ.: fO = 1 or 3.comm J
Depot available or not.

As a performance criterium the system service level a was used. This

criterium was derived from the final products' service levels a.:
J

a = Ea.~. I E~ ..
J J J

For each system three simulations were performed: In these

simulations the estimator for the variance of imbalance was set equal

to resp.

- 9 -



- the estimator in formula (7)

- the average variance of imbalance measured during the simulation

which was based on formula (7).

- zero (to investigate the consequences of neglecting imbalance).

The corresponding service levels are denoted by a(est), a(sim) resp.

a (0) •

4.2 Simulation results.

Table 1 shows the service levels for each of the three simulations

and the corresponding parameter setting:

a a(sim)

dep N .e f1 fO est sim 0 slowm fastm
no 2 1 1 3 92.5 93.0 91.2 91.9 93.2
no 2 1 3 3 92.9 92.8 90.5 87.4 94.1
no 2 1 3 1 89.7 90.3 86.6 90.3 90.3
no 2 1 1 1 88.7 90.2 88.4 94.6 89.1

no 2 3 3 1 90.9 91.1 88.6 89.1 91.7
no 8 3 1 1 92.0 92.5 91.6 93.0 91.7
no 8 1 3 3 94.3 94.0 91.2 87.1 95.7

yes 2 1 3 88.4 86.0 84.2 92.7 84.3
yes 2 1 1 89.5 89.3 89.0 93.5 88.2
yes 8 3 1 92.7 92.7 92.3 94.1 92.4

Table 1. Simulation results for divergent systems

with non-identical final products.

The last columns in Table 1 represent the simulated service level for

the slowmovers resp. fastmovers.

From Table 1 the following observations can be made:

-1. The fact that a(est) and a(sim) are rather close suggests either

that the estimator for the variance of imbalance performs quite

well or that imbalance has hardly any impact on the service level.

The latter is contradicted by columns a(sim) and a(O), at least in

case no depot is present.

-2. The target service level of 95% is not achieved at all. From column

a(sim), where full knowledge of the variance of imbalance is used,

it is clear that this is not due to misestimating the variance of

imbalance. Apparently there are other disturbing factors, which



have more impact on the service level than the mis-estimation of

the variance of imbalance.

A closer examination of the simulations revealed the following two

extra disturbing factors:

a. Dead stock is inevitable.

b. The allocation rule is too simple.

ad a.: Dead stock is inevitable.

In systems with identical final products, the supply and retrieval

of products at the depot are always multiples of the lot-size Q.

Therefore if the simulation starts with a depot having a multiple of

the lot-size Q on hand, the depot will remain to have exactly multiples

of the lot-size. This changes as soon as either the supply or retrieval

of products in the depot deviates slightly from the lot-size Q (or a

multiple of it). If Q-1 products are supplied (e.g. due to random

scrap), these products can not be shipPed out of the depot, that is:

if the lot-size strategy of the final products is interp~eted strictly.

So these Q-1 products have turned into 'dead stock': They are in the

depot but can not be used. If the supply is random, dead stock will be

Q/2 on average.

This phenomena is automatically present in a divergent system with

non-identical products. Since demand is uncertain and the final

products' lot-sizes are different, the inventory in the depot is no

longer guaranteed to be a multiple of the lot-size of the final product

which needs it most. To give an indication on the size of this dead

stock: if supply is deterministic, the dead stock for the fastmover

will approximate (Qf t -Q I )/2 if N=2 and Qf t >Q I .as m s owm as m s owm
For systems with a depot the slowmover has a strong advantage

because of the dead stock for the fastmover: That stock can be used by

the slowmover, which results in a higher service level for the

slowmover. This fact is reflected in Table 1 by the service levels for

the fast- and slowmovers in systems with a depot.

This effect also occurs in systems without depot. This becomes

visible if allocations are made regular (that is: if Q /N~, which iscorom
equal to fO·f1, is small). From Table 1 it can be seen however that if

in systems without depot these allocations are not made frequently,

another phenomena has an opposite effect on the products' service

level:

- 11 -



ad b.: The allocation rule is too simple.

For example in a system without depot, with fO=fl=3 and N=2, Table

shows that the service level of the fastmover (94.1%~ is higher than

the service level of the slowmover (87.4%). The cause for this is the

fact that the allocation rule used was developed for systems without

lot-sizes. The rule allocates an order to the product with the lowest

'inventory-equivalent' (e.g. run-out-time). This has a very different

impact on the service levels of the fast- resp. slowmovers, since the

lot-size of the fastmovers is larger and their coefficient of variation

is smaller compared with the slowmovers.

Suppose e.g. that a fastmover (A) and a slowmover (B) have the

following characteristics:

J.I.(A) = 40, o(A) = 80, Q(A) = 120,

J.I.(B) = 10, o(B) = 20, Q(B) = 30.

The leadtimes are zero for both products.

Furthermore suppose that before allocation takes place both products

have equivalent inventories: inv(A) = 40, inv(B) = 10.

An allocation of one lot to A has far more impact on the service level

than an allocation of one lot to B:

service level (A) = ~[ (40+120-40) / 20 = ~(6), whereas

service level(B) = ~[ (10+ 30-10) / 20 = ~(1.5) if demand is

assumed to be normally distributed.

This shows the fact that the fastmover gets relatively more if it

gets an order allocated compared with the s!owmover, which results in

unbalanced service levels.

5. Remedies for the extra disturbing factors.

Dead stock can be accepted or not.

If dead stock is accepted, a new allocation rule has to be developed

which takes account of the dead stock effects on the service levels.

This allocation rule should give a slight priority to the fastmovers.

Secondly the integral stocknorm for the common part has to be

raised. As a rule of thumb the stocknorm may be raised by

(max{Ql,··.,QN) - HCF{Ql, ... ,QN})/2, where LCD stands for Highest

Common Factor. Note that for N>l combined with equal lot-sizes and for

N=l this raise equals zero.

- 12 -



In general this raise will be approximately max{Q1, ... ,QN}/2 since

it is most likely that HCF{Q1, ... ,QN} is small if the lot-sizes are

determined independently.

In case dead stock is not accepted, sophisticated 'allocate-or-not'

decisions have to be made to decrease the amount of dead stock. An

example of such a rule is: If the inventory in the depot is less than

a minimum order quantity (e.g. Q,/2 ), the inventory is given to
J

product j, otherwise it is retained in the depot.

Such rules may have severe and complex impact on the capacity

requirements (more orders usually imply more set-up times) and it is

therefore questionable whether such rules should be formalized or just

left over to the planner.

Note that although dead stock can be reduced, it is very dubious

whether it can be avoided completely in an economical way.

The second disturbing factor (the fact that the allocation rule is

not based on lot-sizes) also requires an adaptation of the allocation

rule. As demonstrated in Section 4.2 the fastmovers get relatively more

allocated compared with the slowmovers. This can be compensated by

defining a new allocation rule which gives the slowmover a slight

priority over the fastmover. Note that this adaptation of the

allocation rule has an opposite effect compared with the adaptation

necessary to deal with dead stock.

5. Conclusions.

a. In all simulations performed in this paper it appeared that the

stocknorms for systems with non-identical products performed well,

although they were based on the estimators for the variance of

imbalance developed for systems with identical products.

b. Generally order policies with fixed order quantities for the final

products lead to dead stock in divergent systems. This requires an

increase of the integral stocknorm for the common part and an

adaptation of the allocation rule.

c. When allocating inventory to the final products,

- the products with a large lot-size should be given slight priority

in case of divergent systems

* with depot or
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* without depot and short time between two allocations.

- the products with a small lot-size should be given slight priority

in case of divergent systems

* without depot and large time between two allocations.
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Appendix: Minimal variance of imbalance.

Recall from [1] that the minimal variance of imbalance can be

achieved if there is an infinite amount of inventory available in the

depot. In that case it is known that the inventory levels of the final

products will be uniformly distributed between r. and r.+Q ..
2 ) ) )

So var(I.) equals Q./12. This result together with formula (13) can be
) ]

used to derive an estimator for the minimal variance of imbalance:

2 * = var(I.-r,-~,·E(I.-r.)/E~.)a' mb . = var(I.- I. )
1 ,J ] ] ] ] ] 1 1 1

(1 2 2 (Ik ) .= - ~. /E~.) • var(I.) + (~./E~.) ·k~.var
] 1 ] ] 1 ]

2 2 Q~/12 2 2 (5)So a' mb . ~ (1 - ~./E~.) • + (~/E~i) 'k~j Qk/ 12 .
1 , ] ] 1 ]

Note that if ~./E~.~ 0 this tends to Q~/12 just like in the identical
] 1 ]

products case (see [1]).

All conclusions are drawn under the assumption of independent

distributed demand for the final products and unlimited capacity.
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