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Abstract 

The model building for steel ingot thermal behaviour 

is considered. The variables which are taken into account 

are the furnace temperature and the ingot central core 

temperature, and - sometimes - the surface temperature. 

The purpose of the work is to build a simple dynamical 

model in order to predict the central temperature. 

Firstly, the physical modelling is performed, making 

use of the heat transmission theory. Then, black-box 

identification is used to determine models based on the 

experimental data. Experimental test data are used to 

examine the qualities of models from both methods. The 

two methods are compared in several aspects. 
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1. INTRODUCTION 

A substantial proportion of energy consumption in the process of 

steel rolling consists of steel ingot heating. Generally, cool 

steel ingots should be heated to an appropriate temperature before 

slabbing. The heating quality of the ingot exerts a great influ

ence on the rolling process. Meanwhile, the heating strategy 

(heating temperature, heating time etc.) plays an important role in 

the heat efficiency of the furnace. The quality of heated steel 

ingot and energy consumption depends on the type of furnace, com

bustion efficiency and control strategy. 

Experience tells us, that if the thermal states in the heating pro

cess are known, the optimal heating strategy for minimum energy 
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consumption can be realized by computer control. Unfortunately, 

there is no method for the on-line direct measurement of the steel 
ingot thermal states which are needed for the heating process con

trol. Some researchers have tried to build a mathematical model 
which relates these variables to the variables which are needed; 

this model is used to estimate the steel ingot thermal state. They 

have used the method of lumped parameters, distributed parameters, 

regression analysis and state estimate [1] - [4]. 

But most of them are computationally complex and it is difficult to 

use them in practice. The contradiction between estimate precision 

and computational ease prevents such models from being used in 

practice. 

For the computer control of the heavy steel ingot heating furnace 

at the xining Steel Plant, we first developed a mathematical model 

which describes the thermal behaviour of the steel ingot heating 

process. The model is based on the theory of transmitting heat and 

new assumptions. This model has been tested at the Xining Steel 

Plant. Then the other the black-box identification is used to 

determine a model based on the experimental data of the process. 

Experimental testing data is used to examine the qualities of the 
models. 

2. MODEL-BUILDING BY USING HEATING-TRANSMISSION THEORY 

The aim of developing a mathematical model is to obtain a set of 

formulae, here, based on the physical laws of heat-transmission 

theory in order to describe the thermal state of the steel ingot in 
the total heating process, such that a computer simulation on-line 

control of the steel heating process can be realized. 

Based on the specific furnace structure of the xining Steel Plant, 

and for the sake of simplicity, we have made the following assump

tions: 

(1) Heat exchange happens only through the top and bottom surfaces 

of the steel ingot. The heat transmission to the ingot ends 

is neglected. Moreover, a temperature gradient exists only in 

the direction vertical to the top and bottom surface. Hence, 
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a 3-dimensional heat transmission problem is simplified to a 

one-dimensional problem. 

(2) The thermal parameters such as the heat transmission coeffi

cient and the thermal capacity are determined by the type of 

steel and are functions of temperature. In a small time 

interval, the variation of temperature is small enough for the 

temperature to be considered as constant. 

(3) All the ingots in the furnace have the same geometric size. 

Assume the cross-section of steel ingot is 2Hx2H, as in Fig. 1. 

Then the heat transmission process can be described by the follow

ing differential equation 

aT(x,t) 

at 

In the equation: 

T(x,t) -

2 
a T(x,t) 

ix 
= a 

K a = cp 
temperature 

at time t; 

t - time; 

of certain point in the ingot 

a - heat spread coefficient; 

C - thermal capacity; 

p - density of steel ingot. 

X 
T s 

T % Vt.V 
% 

:t:: Z 
% 
7 

Tc % 
% 

~ % 

1 % 
7 

Ts 

Fig. 1. Cross Section of the steel ingot 

In practice, the thermal states which are of interest to us for 

computer control are steel ingot surface temperature Ts and ingot 

centre temperature Tc' To obtain recursive formulae of Ts(n) and 
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TC(n), discretization of eq. (1) is necessary. 
We propose to use a quadratic curve to represent the temperature 
distribution along the x axis as in Fig. 1. This can be proved 

mathematically and the numerical solution of computer simulation 
agrees with the assumption. 

Using the above assumption: 

Assume at a certain time instance the temperature inside the ingot 

along x is T(x), using the above assumption: 

T (x) = a + bx2 
o 

in the equation ao = Tc 

So from equation (1) we obtain 

TC = 2a (T -T ) H s c 

o :5: x :5: H 

b = (T -T ) /H2 
s C 

(2 ) 

The discrete formula can be obtained by discretization of eq. (2). 

Moreover, the boundary conditions can be deduced from the heat bal

ance equation; the heat transmission between the steel ingot and 

gas is mainly in radiation form while, by neglecting convective 

heat transfer, the flow of heat qr described by eq.(31. 

(3 ) 

e blackness coefficient of heated 
(J s-b constant 

TF furnace temperature (CO) 

Ts surface temperature of ingot (CO) 

Assume a tiny column in the steel ingot which has cross section S 
and volume ~V so that ~V = 2HS. 

The heat quantity absorbed by the ingot at time ~t is 

(4) 

Meanwhile, the heat quantity Q which is necessary for the ingot 
temperature to rise, is given in equation (5). 

Q = Q" - Q' 222 (5 ) 
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where Q2 ' Qz are the heat quantities contained by the tiny column 

at time t and t+~t, respectively 

(6 ) 

Qn = CpSH [2Tn + Tn] 
2 3 c s 

(7 ) 

and T' T' and Tn Tn are the centre and surface temperatures 
c' s c' s 

of the small column at time t and t+~t, so that , 

(8 ) 

By the dynamic heat balance equation: Q1 = Q2 we obtain: 

CpH [2 ~Tc + Ms] = ecr[CT f+ 273)4 - CTs+ 273)4] (9) 
3 ~t ~t 

when ~t tends to zero, 

Substitute eq. (2) into (10) 

TS = 3ecr [CT +273)4 
CpH f 

Discretization of eq. (2) and (11) 

T
m

(n+l) = Ts(n) + Al {[T
f

(n)+273]4 - [T
s

(n)+273]4} 

- A2 [T s (n) - Tc(n)] 

- A
2

[T (n) - T (n)] s c 

(10) 

(11) 

(12) 

(13) 
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TC (n+l) 

h A 3ecr A = 4a 
were 1 = CpH ; 2 H ; (14) 

Tm(n+l) is a medium variable, Ts (n+1) is the one-step-ahead predic

tion of the ingot surface temperature. Tc (n+1) is the one-step-ahead 

prediction of the ingot centre temperature. The recursive formulae 

of the steel ingot heating model are equation (12) to equation 

(14), where only Tf is the measured value, the other variables are 

calculated values. 

The surface and centre temperatures of the steel ingot at a certain 

time in the heating process can be obtained by using this mathemat

ical model when the ingot size, type and parameters concerned are 

given. When the estimates of these two temperatures are available, 

the important thermal parameters such as average temperature, the 

temperature difference of ingot surface and centre can be calcul

ated. 

3. MODEL VALIDATION BY SIMULATION AND EXPERIMENTAL TEST 

In the last section, a steel ingot heating process model has been 

established. This model is computationally simple compared with 

other methods [4] [5]. The thermal states of the steel ingot need

ed can be given by computer for different steel ingot sizes, types 

and operation conditions (time in furnace, gas temperature at dif

ferent parts of the furnace). The simulation curve of a carbon 

steel ingot is shown in Fig. 2. The simulation of the steel ingot 

heating process provides the numerical value basis for the instruc

tion for the off-line optimization strategy. 

To verify the precision of this model, an ingot heating test has 

been performed on a furnace in the Xining Steel plant. The centre 

temperature of the steel ingot was measured by a thermocouple plug

ged into a small hole drilled through the top of the ingot. 
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1200,-------------------------------------------, 

1000 

800 

600 T, 

400 

zoo 

°0~----'1~0~----02°0----~3~0------~-----c5~0----~.'0 

Samples 

Fig. 2. The dynamic response of ingot temperature Tf , Ts' Tc' 

(Ingot size 275 x 275 x 1040 mm) 

Fig. 3. The measured data and model output value. 

The furnace temperature and ingot centre temperature were recorded. 

Meanwhile, the steel type, ingot size and furnace temperature was 

given to the computer in order to determine the parameters of the 

model. Hence the estimation value of the steel ingot temperature 

at various sample times can be obtained. The estimated values and 

tested data are shown in Fig. 3. 

The dotted line shows the estimation value given by the model, the 
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solid line is the measured value. The error between model output 

and measured value is less than 17°C, i.e. less than 2 percent over 

the whole measuring range. 

The test shows that the precision of the estimation is good enough 

for industrial application, where the tolerance of the estimation 

error of temperature is 50°C. 

4. MODEL-BUILDING BY SYSTEM IDENTIFICATION 

In previous sections, we built a mathematical model based on phys

ical laws. In that case, the model is derived only from physical 

knowledge. In principle, 

models can be obtained: 

knowledge, e.g. by means 

there are two different ways in which 

One is to derive the model from prior 

of physical laws, the other is by identi-

fication which is an experimental approach to process-modelling. 

An approximate linear time-invariant model of the steel ingot heat

ing process is obtained by system identification. We use two ways 

to obtain models: 

(i) Equation error method (EEM) 

(ii) Output error method (OEM) 

Both are based on the principle of least squares. 

We shall introduce the two methods briefly. For the purpose of 

identification, the process is typically assumed to be a linear 

time-invariant, discrete time system, described by a difference 

equation. In the noise free case the process is given as 
AO(Z-") yO(k) = BO(Z-l)U(k) (15) 

where yO(k) and u(k) are the process output and input at sample 

time k; AO(Z-l) and BO(Z-l) are polynomials of Z-l, the backward 

time-shift operator, and 

AO (Z-l) 1 + a1 Z-l + ... + a~ z -n 

+ ... + b~ 

n is called the order of the model. 

The rational function 

-n z 
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( 16) 

is called transfer function of the process. 

In order to have a more realistic model, one can introduce the pro

cess noise. A natural way to do this is to assume that the output 

is disturbed by an additive noise, 

y (k) = yO(k) + eo (k) (17) 

where yO(k) is the noise-free output, given by (15), {eo (k)} is 

assumed to be white noise or filtered white noise. Hence we have 

the so-called output error structure of the process. 

and 
eo (k) = Y (k) - B (Z-l) u (k) 

A (Z-l) 

(18) 

(19) 

where (19) is the output error model, A(Z-l) and B(z-l) has the 

same structure as AO (Z-l) and BO (Z-l) resp., eo (k) is the output 

error. 

Denote ZN as the input/output data sequence collected from the 

experiments: 
ZN=y(l), u(l), , y (N), u (N) 

where N is the number of samples. 

Let 6 denote the parameter vector of model (19): 

(20 ) 

(21 ) 

The least-squares principle is used to determine an estimate of 6. 
The loss function is given by 

N 1 N -
JO(Z , 6) I eb(k,6) 

N-n k=n+1 
(22 ) 

where -e O(k,6) y (k) - H(Z-1,6)u(k) (23 ) 



and H (z-l, 9) = B (z-l) 
A (z-l) . 

The estimate 9 is obtained by 

min. N 
JO(Z ,9) 

10 

A 

Then the estimate of transfer function is H (Z-l) = H (Z-l, 9) • 

This method is called output error method. 

(24 ) 

If we use the estimated model to simulate the process, using the 

same input as in the estimation, the simulated output is given by 

y (k) = H (Z-l) u (k) (25) 

We see that eO(k) in (23) becomes the simulation error. Therefore, 

the output error model is obtained by minimizing the simulation 

error (in the least-squares sense) and the model is mostly suited 

for the simulation; here the simulation means calculating the out

put, based on the model and the previous and present input. 

Note that (24) is a non-linear least squares minimization problem; 

this is because the error is non-linear in the parameters of A(Z-l) 

(see (19)). The output error method is numerically involved, and 
it can be solved by some hill climbing iteration procedure, for 

example, Newton- Raphson method. 

The process and the model of output error method is given in Fig. 

4. 

e 0 
+ BO ! z- 1 ) ±. .,. 

y process 
AD (z- 1 ) 

---- ------------------------------- ----------
. + 
B(Z-l) -f, 

~ A (Z-l) A 

eO 

model 

Fig. 4, The process and the model for the output error method. 
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The most well known method is the so-called "least squares method", 

which we should call here the "equation error method". The reason 

for this will become clear later on. This method is based on 

another way of introducing the disturbance into the noise-free pro

cess (lS). 

NOw, we assume that the process is disturbed by equation noise, 

then (lS) becomes 

AD (z-') Y (k) = BO (z-') u (k) + e E (k) (26) 

where {eE(k}} is the equation noise. 
Again, we assume that {eE(k}} is either white noise or filtered 

white noise. 

The equation error model is 

e E (k) = A(z-'} Y (k) - B (z-') u (k) 

where eE(k} is the equation error. 

NOw, let us write (27) in terms of the parameters: 

y(k) + a1y{k-l) + ... anY (k-n) = 

putting the data sequence ZN into this model, we get 

y = n(u,y}.9 + EE 

where 
yT [y (n+l) y (n+2) y (N) ] 

"T [~E(n+1} e E (n+2} ~E(N}] E E = 

aT [bo' b
1

, bn , -a
1 

-a2 ... -a ] n 

u(N-n} y(N-1} 

n (u, y) {C' ... n (1) y(n} 
y(l} 1 
y (N-n) 

" 
The equation error least squares method is to determine 9 (the 

(27) 

(28 ) 

(29) 

(30) 

(31 ) 

(32) 

(33 ) 
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estimate of 6) by minimizing the loss function 

1 
N-n 

N 
L e~(k) 

k=n+1 
= _1_ 

N-n (34) 

It is well known that this is a linear least squares problem. The 
solution is explicit and is given by 

e = [nT 
(u, y) .n (u, y) r 1 

n T (u, y) y (35) 

If [nT.nJ is non-singular, we get the unique solution of e. The 

reason for the explicit solution of (35) is that the equation error 

is linear in the parameters of the model (see (27»), and the quad

ratic error criterion (34) is used. 

Let us calculate the one-step prediction, based on the model (28) 

and previous input, - output and present input 

y(k) = - a l y(k-1) - ... - any(k-n) + 

(36) 

then (28) becomes 

eE(k) = y(k) -y(k). 

We can say that the equation error model will give the best one
step ahead prediction (in the least squares sense). The equation 

error process and the model are given in Fig. 5. 

eE 
.± 

+ Y u 1 BO (z- 1 ) 
-.:.;t process 

AD (z-l~ 

---- ---------------------------------------------- ---

0 - 1:"-+ 0 

B (Z-l) " " A(Z-l) model 
0 

e E 

Fig. 5. Process and model for equation error method. 
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Summarizing: the output error model is obtained by minimizing the 

simulation error, the equation error model is obtained by minimiz

ing the one- step prediction error; and the computation of the out
put error method is much more complicated than the equation error 

method. 

Before we estimate the parameters, the order n should be determin

ed. 

Least squares estimators deal with the minimization of a quadratic 

loss function for a given order. The idea of using the loss func

tion for the determination of the parameters can be extended for 

selection of the order of the model within the chosen model set. 

This approach provides a family of loss function tests. The usual 

test quantities are 

1 ATA 
V = - e e N--

where g is the error of the process dynamics which is being model

led. The power of these signals g is dependent on the model order. 

We can observe that V will decrease for increasing order, as for 

too low model orders not enough degrees of freedom have been 

inserted in the model. 

A simple order test can be constructed using the by-products of the 

estimation algorithm for the calculation of the loss function, see 

Fig. 16. 

Note that the errors used here are always the output errors (simu

lation errors) irrespective which model is concerned, because our 

intended use of the model is simulation. 

The experimental data are given in table 1. 
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Before the identification the data are modified by subtracting the 

DC component (420°) from the experimental data. The input variable 

is furnace temperature and the output variable is the centre tem

perature of the steel ingot. To examine the correctness of the 

model, simulation is used and for this problem, the system identi

fication and simulation were implemented on a PC, using the system 

identification toolbox, which is a collection of MATLAB functions 

for all phases of the system identification process. 

The result of the computation and simulation are shown in Fig. 6 -

16. 

Fig. 6 shows the responses of the true system and of the estimated 

model when using the equation error method (EEM) with model order 

n=4, delay=l. Simulation error of 4th equation error model are 

shown in Fig. 7. 

Fig. 8, 9, 10 show Tf , Tc' simulated Tc ' simulation error and zero

pole plot of 2nd order OE model. 

Fig. 11, 12, 13 show Tf , Tc simulated Tc' simulation error and 

zero-pole plot of 3rd order OE model. 

The responses of Tc and simulated Tc of physical model are shown in 

Fig. 14. The errors of 3rd order OE model and physical model are 

shown in Fig. 15 . 

Fig. 16 shows the loss functions of EE, OE and physical models. 

From the plots of loss functions, we see that second order equation 

error and output error models already give better results than the 

physical model; output error models are better than the equation 

error models for the simulation purpose, because the equation error 

models are not obtained by minimizing the simulation error loss 

function. 

Comparison Between Physical Model-building and System 

Identification 

Model-building using physical laws requires knowledge and insight 

into the process. The main problem when making a mathematical mod

el is to find the states of the system. The state variable essen-
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tially describes storage of the energy in the system. 

Typical variables are chosen as furnace temperature, ingot surface 

temperature and ingot centre temperature. 

The relationship between the states is determined using energy bal

ance equation. 

The advantage of model-building from physics is that it gives 

insight; also the different parameters and variables have physical 

interpretations. 

In the economical aspect, this method is cheaper than the system 

identification method, because it is often difficult and costly to 

do experiments with industrial processes. 

The drawback is that it may be difficult and time consuming to 

build the model from first principles. 

Model-building by identification when investigating a process is 

based on experimental data; where the a priori knowledge is poor, 

it is difficult to build the model from physical laws. Then it is 

reasonable to use system identification. The simulation results 

show that the steel ingot heating model obtained by the equation 

error method or output error method gives higher precision than the 

mathematical model obtained by physical laws. But if the type or 

size of the steel ingot are changed, new individual experiment 

tests are needed for different kinds of steel ingots. So if it is 

possible, the best way is to combine the two methods. 

5. CONCLUSIONS 

A mathematical model-building based on the heat transmission theory 

and using a quadratic curve to represent the temperature distribu

tion in a steel ingot is obtained. The simple recursive model of 

the steel ingot heating process, with high calculating speed has 

been developed, which describes the thermal state of steel ingot in 

the whole heating process. The experimental test shows that the 

quality of the model is good enough for industrial application. 

In different ways, the steel ingot heating model also has been 

obtained by experimentation on the process. The equation error 

method and the output error method have been used for analysing 

data obtained from experiments. Simulation results show that the 



17 

steel ingot heating model obtained by system identification gives 

better estimation of the characteristics and higher precision than 

model-building using physical laws. 

The advantage of model-building from physics is that it gives 

insight; also the different parameters and variables have physical 

interpretations. But it may be difficult and time consuming to 

build the model from first principles. 
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