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1 Introduction 

This is a small study of the chaotic behaviour of a dripping faucet. The idea to 
study this system stems from Shaw[1984J. It is easily shown in a measurement 
that the system can be in both periodic and chaotic modes. A model for the 
dripping faucet is given by Molenaar [1992] . A first analysis of this model is 
reported by Noack[1992]. The model is based on a simple mass-spring system. 
The governing equations are linear apart from the action of dripping which is 
formulated as an instantaneous) non-linear event. 

In this project we analyze the chaotic behaviour of time series of the dripping 
faucet by using different methods. The key issue is to find a reliable value 
of the largest Lyapunov exponent, which is a measure of chaotic behaviour. 
Some of the used methods are based on the idea of reconstruction. In section 
2 we will shortly explain some important terms from chaos theory. The model 
of the dripping faucet is presented in section 3. For this model we calculated 
the largest Lyapunov exponent by three different methods, i.e. the "Wolf 
method", as is described in Wolf[1985]' a direct method, and a method based 
on Wales[1991]. These methods can be found in section 4. 

In all three methods it was explicitly used that the system is considered to 
be chaotic. However, it could be that the system is not (or weak) chaotic. 
Therefore we also considered a stochastic prediction method which is described 
in section 5. 

Another aspect of the project is to investigate the behaviour of the model as a 
function of the flow velocity. It is known that for small flow velocity the system 
is not chaotic whereas for a higher velocity it is. In section 6 we consider what 
happens in between. 

Finally in section 7 we present our conclusions and give some recommendations 
for future research. 
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2 Definitions 

In this paragraph we will explain some terms which are frequently referred to 
in this report such as chaotic system, Lyapunov exponent, (chaotic) attractor 
and reconstruction. The explanation will be kept short. For more details we 
refer to Molenaar[1992]. 

The Lyapunov exponents (LE) Ai, i 1, .. n, of an n-dimensional system give 
an indication of the strength of the divergence (if any) on an object X in 
lRn. The sum of the i largest Ai is a measure for the magnification of an 
arbitrarily chosen i-dimensional volume while it evolves in time. For example, 
if Al (the largest eigenvalue) is positive, the length of intervals will on average 
be stretched. The dynamics on X is then called chaotic and X is called a 
strange attractor. 

Consider a one-dimensional system. If co is the length of an interval the interval 
length at time t has changed into 

on average. From here it follows that the Laypunov exponent is equal to 

In many practical situations no appropriate model for the system under con
sideration is known. One does often not know the phase space variables 
needed to fully describe the dynamics, and even the number of the rele
vant degrees of freedom is often uncertain. Only measurements are avail
able. One would like to have at one's disposal measurements of the com
plete state vector (Xl, X2, ....... ). In practice only one or a few components 
are measured. The measured quantity is referred to as the readout function. 
We shall denote it by x(t). In general x is a function of all state variables, 
so x(t) = X(Xl(t),X2(t), ...... ). How could one determine properties of the 
complete system, and in particular of the (possible) attractor, from these in
complete data? There is fortunately a partial answer to this question. The 
standard references are Packard et al.[1980] and Takens[1980]. We call this 
approach reconstruction. 

The key idea is to embed the scalar series X(ti) into a higher dimensional space 
with dimension de, say. First we have to choose an embedding dimension de E IN 
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and a delay k E IN. Then, we construct a series of de-dimensional vectors by 
the procedure: 

Yl - (Xl, Xl+k, Xl+2k, •••• , Xl+d".k) 

Y2 - (X2' X2+k, X2+2k, •••• , X2+de·k) (1) 

The points Yi, i = 1,2, ... lie on an artificial attractor Y in the artificial de-

dimensional phase space, and perform there evolutions. A very important 
observation is (see the standard references mentioned before), that the dy
namics on Y has the same characteristics as the dynamics on X. For example, 
X and Y have identical dimensions and Lyapunov exponents. 

In practice de is not known in advance. To estimate a reliable value for de 
one applies the embedding procedure for increasing de values: de = 1,2, ..... 
The theoretical lower bound on de is given by de = 2d + 1, where d is the 
(capacity or correlation) dimension of Y, thus X. For an explanation of the 
term dimension, we refer to Molenaar[1992]. However, a short impression can 
be given as follows: If the attractor is for instance a point then the dimension 
is 1. If the attractor is a line then the dimension is 2. For chaotic atttactors 
also a fractal dimension is possible. 

The choice of k is not very critical. The value of the time interval ktlt, where 
tlt is a small period of time, should not be too small, because then the compo
nents of the Yi are nearly identical. If ktlt is too large, i.e., much larger than 
the information decay time determined by the largest Lyapunov exponent, 
then there is no dynamical correlation between the points. 
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3 The dripping faucet 

Shaw[1984] modelled the dripping faucet in terms of a vibrating mass point. 
The mass point is attached to the faucet by means of a spring. Its mass m(t) 
increases at a constant rate, so one of the model equation reads: 

Om 
ot f3. (2) 

Due to gravity the mass point will move downwards. When it reaches a certain 
level, part of its mass is instantly cut off at a rate proportional to its velocity. 
Due to the spring force the mass point will jump upwards. After that the 
process will repeat itself more or less. The system is one-dimensional, because 
the motion is only in the vertical direction. The position of the mass is y(t), 
and its velocity v(t) = dy/dt. The second law of Newton reads in this case: 

omv at = -mg - ky - IV' 

We rewrite this as a first order ODE system: 

oy 
ot 
ov 
ot 

orr/, 

ot 

- V 

ky b + (3)v 
-9---

m m 

= f3. 

When y(t) passes Yo from above, the mass is instantly reduced: 

m(t) -+ m(t) * (1 - e-.:;,lIv{t)l) 

The parameters of the system are: 

• k: spring constant; 

• a: parameter determining the cutting rate; 

• f3 : rate of mass increas representing the faucet flow velocity; 
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• i : coefficient of the friction. 

In the following sections the parameters will be set to (k, 0, /3, i) = (10,0.1,0.6,1). 
Only in section 6 we will change the value of f3. 

The ODE system (5) can be integrated yielding m, v and y as functions of 
time. 
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4 Calculation of the largest Lyapunov expo
nent 

In this section we describe three methods to estimate the largest Lyapunov 
exponents. Some of these methods have been tested by applying them to 
systems with known Lyapunov exponents. One of thes systems is the tent 
map, the use of which is presented in some detail. 

4.1 The tent map 

The tent map is a well known discrete time system which features chaotic be
haviour. Time series produced by the tent map are often used to demonstrate 
chaotic behaviour. We apply it also as a test for the calculation of the first 
Lyapunov exponent using a prediction method, see Wales [1991 } and section 
4.4. 

Xn+l - f(xn) (6) 

f(xn) - Z (1 - 21~ Xnl) 

The system is chaotic for Z > 1/2 and it has a Lyapunov exponent of Al = In2z. 
The name tent map becomes clear from Figure 1. 

From the positive Lyapunov exponent of the tent map we know that we have 
to face the loss of significant decimals. Direct implementation of the described 
model yielded only zeros after approximately 100 iterations due to the finite 
computer precision. A number is written as a finite number of bits by a 
computer. If this number is multiplied by 2 in binary code it means the bits 
are shifted one to the left. It appeared that the computer always writes a 0 
behind this string of bits. If the bit string is n bits long, after n multiplications 
the whole string consists of bits equal to O. Multiplication from now on only 
returns zero's. To overcome this problem we use the following trick. We replace 
equation (7) by 

(7) 

where An > 0 has a random value in every iteration In fact this trick 
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Figure 1: Tent map for z = 1.0 

means that the starting value Xo is written as a bit string with infinitely many, 
arbitrarily chosen decimals. 

4.2 The Wolf package 

One way to determine the largest Lyapunov exponent is by following two 
neighbouring trajectories for a certain number of time steps. This approach 
is worked out in a software package by Wolf[1985]. The approach used in this 
package is the following: 

In a reconstructed state space (see section 2) we choose a point that is called 
reference point and a point close to it. The orbits through these points are 
followed and after some time steps the distance between the orbits is calculated. 
If the distance has become too large (much divergence) then a new trajectory 
is sought in the neighbourhood of the reference trajectory and the procedure is 
repeated. The average divergence yields a measure for the Lyapunov exponent. 

Several parameters have to be chosen to run the program. First the embedding 
dimension and the time delay have to be specified. Furthermore an evolution 
time has to be set. This value says how many time steps the two points will 
be followed. If the distance between these points has become larger than the 
parameter maximum seperation a new neighbour of the reference trajectory is 
chosen. Otherwise the process continues with the two trajectories. 
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During running the trajectories of the points for evolution time time steps 
are plotted on the screen. From these pictures you can see if the points keep 
close to each other or not. This can be a bit confusing because you see a 
two-dimensional plot of the trajectories while you are working in a three or 
four dimensional state space. So) two points which seem to be close to each 
other can be far apart in reality. But if it happens a lot of times that you see 
orbital divergence it is better to change the chosen parameters. For example, 
reduction of the evolution time or the maximum seperation. During running 
the program the current estimate of the Lyapunov expnent is printed on top 
of the screen. In this way it is easily checked if this value converges or not. 

First we checked if the Wolf package really does what we want. Therefore we 
made a time series for the following function: 

x(t) = 2sin(t) + 5sin(3t) 

Of course in this series there is no chaos present and the estimated Lyapunov 
exponent was indeed almost zero. Another test was the tent map described 
in section 4.1 for which it is known that the Lyapunov exponent is equal to 
In 2. The estimate from the Wolf program was 0.923 * In 2. This was enough 
evidence that the Wolf package can make reliable estimates. 

From the time series of the dripping faucet we obtain four different series: 

- position data y(t)j 

velocity data v{t)j 

- mass data m(t)j 

- time between two drippings D.T(t). 

On average the time between two drippings is about 2 seconds. Because the 
time step in the data series is 0.4 seconds, 5 or 6 points will be measured 
between two drippings. For reconstruction it is the best to use points which 
are in between two drippings. Therefore the time delay should not be too 
large. In the runs we used 1 and 3 for the time delay. If the time delay would 
set larger there is no dynamical correlation between the points any more. The 
embedding dimension was set to 3 or 4 for the several runs. 

In theory every function should be applicable for estimating the Lyapunov 
exponent. The function chosen is called the readout junction. We used all four 
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Position data yet) 
# data points time delay embedding dim. evolution time Lyapunov exponent 

(time steps) (time steps) (l/s) 
5000 3 4 6 0.20 
5000 3 4 4 0.23 
5000 3 4 2 0.21 
5000 3 4 1 0.21 
5000 3 3 2 0.29 
5000 3 3 1 0.27 
5000 1 4 1 0.20 
5000 1 5 1 0.21 

10000 3 3 2 0.34 
10000 3 3 1 0.33 
32000 3 4 2 0.21 

Table 1: Estimates for the Lyapunov exponent with position as readout func
tion 

Velocity data vet) 
# data points time delay embedding dim. evolution time Lya.punov exponent 

(time steps) (time steps) (l/s) 
5000 3 4 3 0.25 
5000 3 4 5 0.24 
5000 1 4 1 0.25 
5000 1 5 1 0.24 

10000 3 4 3 0.26 
32000 3 4 2 0.25 

Table 2: Estimates for the Lyapunov exponent with velocity as readout func
tion 
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Mass data m( t) 
# data points time delay I embedding dim. evolution time Lyapunov exponent 

(time ste (time steps) (l/s) 
5000 3 4 5 0.40 
5000 2 4 5 0.42 
32000 3 4 2 1.21 

Table 3: Estimates for the Lyapunov exponent with mass as readout function 

Time between drippings !J.T 
# data points time delay embedding dim. evolution time Lyapunov exponent 

(time steps) (time steps) (l/s) 
2450 1 4 1 0.52 
2450 1 3 1 0.52 
2450 1 3 2 0.50 
2450 1 4 2 0.48 

Table 4: Estimates for the Lyapul10v exponent with time between drippings 
as readout function 
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series mentioned above as a readout function. The results are shown in Tables 
1 to 4, respectively. 

We see that the estimates of the Lyapunov exponent using position data or 
velocity data coincide with each other. But if the mass or the times between 
drips are considered, the estimate for the Lyapunov exponent becomes much 
bigger. An explanation could be the following argument: 

For two close points in the reconstructed state space it is calculated how the 
distance between their trajectories increases or decreases in a time interval. 
The smaller the starting distance and the time interval the better the estimate 
for the Lyapunov exponent. The function of the mass is discontinous in time, 
so at jumps the divergence can be very big. Also for the series of the times 
between jumps two close points can be far apart one iteration later. The 
position and velocity function are continous in time and are therefore the best 
to use. 

From each table it can be seen that the estimate is quite insensitive for the 
parameter values. Also the length of the time series seems not to be of great 
importance. Of course there is a transient period but for this model 5000 data 
points seem to be enough. This is remarkable compared with the results of the 
other methods described further on in this section. In those methods longer 
time series give more accurate estimates. 

From Table 1 it follows that an embedding dimension equal to 3 is too small 
because the largest Lyapunov exponent for those runs show a significant differ
ence with runs with larger embedding dimension. This feature becomes more 
clear the longer the time series are. 

4.3 Direct calulation of Al 

4.3.1 Calculation with sorting of the points 

The behaviour of the dripping faucet is described by a system of linear differ
ential equations and a sudden mass decrease in the plain Y = Ylos' If we plot 
the plain Y = Ylos just before and after the jump, the points of the attractor 
seem to form two lines. These lines are shown in Figure 2 and Figure 3 for a 
test series with 10000 data points (2453 jumps). 

The state vector of the faucet follows a trajectory described by the differential 
equations until it reaches the plain Y = Ylos- Then it jumps from one line to 
the other and follows its trajectory again. The attracor is a kind of cut ted 
Mobius band with a gap where the dripping takes place. The Figures 2 and 3 
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Figure 2: Cross section of the strange attractor with the plane Y = Ylos; the 
section before the jump. 
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Figure 3: Same cross section as in Figure 2, but after the jump. 
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suggest that the band is completely fiat, i.e., it is two-dimensionaL Later on 
this suggestion will be checked. In the first instance, the assumption is made, 
that the attractor is a two-dimensional band and the attention is directed to 
the calculation of the average stretching during jumping. 

Sorting of the points 

If we want to determine the stretching factor in a point, we need another point 
in the neighbourhood. Then we can determine the ratio of the distances of 
these points before and after the jump. In general calculations for finding a 
neighbouring point are time consuming. Under the assumption that the cross
sections in Figures 2 and 3 are really lines, we can order the points on the line 
before the jump and then consider two neighbouring points in these order. 

Since the line is not a function, it is not possible to order all points at the 
same time. But by splitting the graph partial functions can be formed. These 
can be ordered after which they are put together again. 

Calculation of the stretching factor during the jump 

The program CHAOSA orders the points in Figures 2 and 3 and computes 
then from the sorted list the stretching factor. As described in section 2, 
the Lyapunov exponent can be numerically determined as the logarithm of 
the stretching factor of two points starting very close together. Therefore the 
program takes two neighbouring points of the list, computes the fraction of the 
distances of these two points before and after the jump and takes the logarithm 
of this value. To average these values, it adds the logarithms for all points in 
the list and divides by the number of the points. So it gets a weighted average 
for the Lyapunov exponent. The results are to be seen in Table 1. 

The largest Lyapunov exponent is decreasing with increasing of the number 
of points. But if the difference between neighbouring points is very small, the 
results are not very exact since the accuracy of the data is only 5 decimals. 
So we can only conclude, that the largest Lyapunov exponent is a very small 
positive value or zero. 
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II # points I # points of jump I stretching factor II 
1,000 244 0.07363 
5,000 979 0.04698 

10,000 2,453 0.03032 

Table 5: Results of program CHAOSA 

The stretching factor of the regular motion 

The dynamics on the band is described by linear differential equations. This 
does not imply that no stretching takes place. Since the stretching· factor of 
the jump is very small, we compute the stretching during the regular motion. 

We look at two neighbouring points after one jump and at the same points 
just before the next jump. The pascal program CHAOS_5 computes like in 
the previous part the logarithm of the fraction of the distances and averages 
this value. The results of CHAOS_5 are summarized in Table 6. 

II # points I # points of jump I stretching factor 11 
1,000 244 0.33155 
5,000 979 0.33350 

10,000 2,453 0.35732 

Table 6: Results of program CHAOS..5 

These values are nearly the same and clearly greater than zero. The interesting 
aspect of this result is, that the stretching during the regular motion is a 
clearly present. However, since we consider neither the influence of jump, 
nor the dependence on time the values are not an estimate for the Lyapunov 
exponent. They only show, that there is stretching. 

The stretching factor of the jump and the regular motion 

The pascal program CHA OS_6 tries to determine an estimate for '\1 taking into 
account the dynamics of both the band and the jump. Under the assumption of 
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a two-dimensional band, we observe two neighbouring points before one jump 
and the same points before the next jump. So, the trajectories are followed 
so long that exactly one jump is taken into account. The results of CHAOS_6 
are shown in Table 3. 

II # points I # points of jump I stretching factor II 
1,000 244 0.10771 
5,000 979 0.11010 

10,000 2,453 0.12652 

Table 7: Results of program CHAOS_6 

This value is much smaller than the results of the WOLF package (see sec
tion 5.1). There are two possible reasons: 

• Since the time between two considered successive points is nearly 2 sec
onds, they evolve faster apart than in the WOLF package. Therefore the 
result is not very exact. 

• The curves may look like a line, but they are not lines. 

To find out, if the second reason is true, we analyse the structure of the at
tractor more exactly in the next part. 

4.3.2 Properties of the attractor 

To check, if the cross-sections shown in Figures 2 and 3 are really one-dimensional 
lines, we can look at points after one jump and the same points before the next 
jump. Since the system of differential equations describing the faucet is au
tonomous, the trajectories can not cross. But if we look at the ten first points 
of a series, we find that these points change their order. They not only reverse 
their order like on an Mobius band, it is also possible, that at the beginning of 
the regular motion a point lies between two other points but afterwards is not. 
This is shown in Figure 4 and Figure 5. As far the points with the numbers 2, 
6 and 9, the point 6 starts between point 2 and point 9, but after the regular 
motion the point 9 lies in the middle. 

Therefore we analysed the attractor more exactly. We split ted an ordered 
output of DRIPS into very little parts of only ten points and looked at these 
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points after the jump and their position before the next jump to find the 
exact irregular behaviour. But these small parts showed regular behaviour, 
the points had before the next jump the same order like after the previous 
Jump. 

Then we considered 24 points nearly uniformly distributed on the line just 
after one jump and determined their position just before the next jump. From 
Figures 6 and 7 one can see, that the two parts of the folded line after one 
jump come together. This means that the trajectories don't cross, but the 
pictures are not really lines, there are a lot of lines very close together. 

If you look at a very small part of the line before the jump you can see, that 
there are two different lines very close together (see Figure 8). The jump brings 
these lines so close together, that after the jump only one line is observable 
seen (see Figure 9). There are two lines, but you can see them only in even 
smaller parts of the whole line (see Figure 10). Before the next jump there are 
these two lines too, and they are splitted in two lines as result of the folding 
during the jump. So we can say that there are a lot of lines very close together, 
but this can only be seen if you zoom in. 

Finally we can conclude that the attractor has the dough like structure which 
is characteristic for chaotic attractors. It consists of infinitely many layers on 
top of each other. The stretching takes place in these layers. The orbits in 
each layer diverge from each other. The orbits mainly tend to visit the upper 
part of the line just before the dripping. The whole structure can be thought 
of as being constructed by stretching a sheet during the regular motion and 
folding it during the dripping. 

4.3.3 Analytical methods to determine Al 

From the above we know that the attractor band is three-dimensional, although 
it is very thin. The dynamics of the jump discrete from JR2 into 'R2. 

The jump occurs only once between two parts of regular motion. So we can 
consider the Jacobian of this mapping only in the points just before the jump, 
we don't have to follow the trajectories. 

The regular motion is described by a system of differential equations. So we 
can follow the motion along the trajectory and determine the greatest possible 
stretching with the method described in section 4c1 of Molenaar[1992]. 
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Figure 9: Only one line after the jump? 
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Figure 10: Also two lines after the jump 

Eigenvalues of the Jacobi matrix of the jump 

The dripping is modelled by a mapping 

{ 
maJter = (1 - exp( a/VbeJore)) mbeJore 

VaJter = VbeJore 

This can be written as a function from JR,2 in JR2 : 

The Jacobi matrix of this mapping is 

( 
1 

0: a 
v2meV' 

-0.58 

This is a matrix with all zeros above the main diagonal, and therefore it is 
easy to determine the eigenvalues of this matrix: these are the elements in the 
main diagonal. One of the eigenvalues is one and the other is smaller than 
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one. The logarithms of the eigenvalues are 

Al 0 
A2 = In(l - e-;) 

Since the argument of the logarithm in A2 is smaller than one, A2 is a negative 
value. The program CHAOS.2 computes for a test series made by DRIPS the 
weighted average of A2. The result for a test series with 1000 measure points 
(244 jumps) was 

A2 = -1.83313 

Because the greatest eigenvalue of the Jacobian is one, there is no stretching 
during the jump in all points of the attractor just before the jump. But one 
can easily see that this cannot be correct. There are points on the attractor 
with stretching during the jump. For instance, two points with the same mass 
but different velocities just before the jump do not change their velocities, but 
have different masses after the jump. So there is stretching in some points 
during the dripping. Therefore, the greatest eigenvalue can not contain the 
whole information about the stretching factor. The reason for this fact is that 
the eigenvalues only give the stretching in the direction of the eigenvectors, 
whereas the greatest stretching can occur in any direction. 

Operator norm of the Jacobi matrix of the jump 

The whole information about the largest stretching of a mapping contains the 
operator norm of the Jacobi matrix J, that means the greatest eigenvalue of 
JT J. This matrix has the following form : 

(~ me~)(l - e~) ) 

(1 - e~)2 

If we write the Jacobi matrix J in short notation, the structure of JT J becomes 
more clear: 

The eigenvalues of this matrix are : 

"'1/2 
a2 +b2 +1 ±/(a2 +b2 +1)(a2 +b2 +1) -b2 

2 4 
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The greatest of these two values is : 

This value gives the greatest stretching factor of the considered mapping, and 
Al = log /11 is the greatest Lyapunov exponent of the mapping. The program 
CHAOS_3 computes for a test series made by DRIPS the weighted average of 
).1. The results of this program are given in Table 4. 

# points # points of jump stretching ~ 
1,000 244 0.15734 
5,000 979 0.17524 

10,000 2453 0.17582 

Table 8: Results of program CHAOS_3 

The results for 5000 and 10000 points are nearly the same, so we can say that 
the real value is between 0.175 and 0.176. 

Stretching during the regular motion 

The differential equations describing the regular motion are 

dy 

dt 
dv 
dt 

dm 
dt 

= v 

k (3+, 
-g--y---v 

m m 

= f3 

In a shorter way we can write this as 

i: = f(;r.) 

In a discrete dynamical system ;r.n+l f(;r.n) we can consider the Jacobian 
of the function f to get the stretching factor. This method is described in 
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Molenaar[1992]. But in the continuous case the function f determines the time 
deravitive and not the next point in a time series. So we cannot take the 
eigenvalues of the Jacobi matrix of f to get the stretching factor. Therefore 
we need a description of a mapping, which attaches to a given point the next 
point in a discrete time series resulting from the differential equations. 

A point 5f. = (y, v, m) moves in the time dt to (y + dy, v + dv, m + dm). We 
can describe this motion by: 

( 

y + vdt ) 
4>(5f.) ~ 5f. + f (5f.)dt = v - (9 + ! y + !3;? v) dt 

m + (3dt 

The Jacobi matrix of this mapping has the form 

dt 0) 
.6+-r dt ~ydt + .6+'1 vdt 

m m2 m 2 

o 1 

To compute the Lyapunov exponent in 5f.a we have to follow the trajectory 
starting in the point 5f.o • We can start with an arbitrary distance vector fa 
between 5f.o and a neighbouring point 5f.a + fa and observe the stretching of the 
interval [5f.o 1 5f.o + fa]. After one iteration we get 

The approximation with the Jacobian only holds if dt ~ O. Repeating the 
iterations we get 

The value In{ \11i:11) gives the stretching in n time steps. To get the average 
stretching in one time step we have to divide this value by n. So we get a 
sequence 

(8) 

The definition of ).1 is then given by 
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At = lim '!'In(lllflnIJI, = lim At(n) 
n-+oo n fo n-+oo 

We have to take two limits: first dt -+ 0 and then n -+ 00. 

To get a trajectory describing the whole attractor, we need an output file of 
DRIPS containing a lot of jumps. The time step between two output points 
can not be so small, that we can describe the behaviour for dt -+ 00 exactly. 

We have two possibilities to compute the Lyapunov exponent : 

1. We linearize the trajectory between two output points of DRIPS and get 
an error resulting from the relative large time between these two points. 

2. We linearize the trajectory only with a very small time step dt. But we 
have no points on the trajectory between the output points of DRIPS to 
compute the Jacobian. So we must take the same Jacobian on the whole 
trajectory between two output points. Therefore we get here an error, 
too. 

Since the jump has nothing to do with the Jacobian of the regular motion we 
can not apply the linearization at a measure point if it is directly followed by 
a jump. So we can follow a trajectory at most until the next jump. That is 
another source of error. 

The pascal programs LYAPUN_l and LYAPUN.2 compute the Lyapunov ex
ponent with the two respective methods mentioned above. With a short time 
series of only 1000 points and a time step of 0.1 we tested the influence of the 
parameters 

accuracy 

ddt 

The program computes Al(n), n = 1,2, ... and stops if 
IlAl(n) - At(n + 1)11 < accuracy, since the series 
At (n) shall converge. 
The program splits every input time interval dt into smaller 
parts of length ddt for the second method 

to get the best parameters for the computations with larger files. The test 
results for the two programs are shown in Tables 5 and 6. The value for 
convergence steps gives on average how many steps were neccesary to reach 
the given accuracy for the convergence. 

Program LYAPUN _1 shows no convergence. We can only get an accuracy 
of 10-2

• If we want to have a better accuracy, then we reach the next jump. 
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II accuracy I Al I convergence steps II 
10-3 0.86891 10.35964 
10 2 1.20908 7.66034 

Table 9: Test results of program LYAPUN_1 

11 accuracy I ddt I Al I convergence steps II 

10- 0.010 1.01691 5.64635 
10-4 0.010 1.30177 
10-5 0.010 0.25933 
10- 0.010 0.03264 
10- 0.001 0.21905 
10-6 0.001 0.23721 

Table 10: Test results of program LYAPUN_2 

This we can see from the number of convergence steps of more than 10. Since 
the time between two jumps is nearly 2 seconds, there are 20 points between 
two drops. So the average number of following points until the next jump is 10. 
If the number of convergence steps is nearly 10, then all the following points 
were used for the computations, but no convergence occurred before the next 
jump. So the program LYAPUN_1 can not be applied to time series with time 
step 0.1. 

The program LYAPUN_2 with time step 0.01 for computing the Jacobian con
verges until an accuracy of 10-5 • If the accuracy is 10-6 , then the number of 
convergence steps is greater than 100, and from the same reason like above, 
now with a time step of 0.01 and there is no convergence. But since the ac
curacy of the input data is 10-5 , this accuracy is enough for the Lyapunov 
exponent. So we can say, this program can be applied to time series with time 
step 0.1 with an accuracy of 10-5 • 

If we take a smaller time step for the Jacobian, then the convergence speed 
increases, since the Jacobian is nearly the unit matrix for very small time 
intervals and the considered Jacobian remains constant during a lot of steps. 
If the Jacobian changes, then also the directions of the eigenvectors change, and 
the differences between the computed eigenvectors and the real eigenvectors 
increase. The results are nearly the same for different time steps. We conclude 
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that this program can be used for computing Lyapunov exponents. 

We applied the program LYAPUN-2 on ten different time series with time 
step 0.1 and 10,000 points and got 

ddt = 0.01 
ddt = 0.001 

, accuracy = 10-5 

, accuracy = 10-5 
-+ Al = 0.265 ± 0.01 
-+ Al = 0.223 ± 0.04 

If ddt is smaller, the linearization is more reliable, but then the influence of the 
errors resulting from the assumption of the Jacobian being constant increasing. 
We take the average of both values to get an estimate for the greatest Lyapunov 
exponent: 

It makes no sense to compute Al with the same program for a time series with 
smaller time step, because then the series must be very long to describe the 
whole attractor, and the computing time will consequently increase dramati
cally. 

A possibility to improve the programs is to consider also the exact time point of 
a jump and apply the Jacobian of the jump in this point. Then the trajectory 
can be followed further, and the convergence would be better. 

4.4 Calculation of A1 using the Wales method 

By ca.lculating the tent map series we saw that chaotic behaviour is seen as a 
loss of information due to the fact that small errors can blow up. The rate of 
this loss is a measure of the chaotic behaviour and related to the Lyapunov 
exponents. In Wales[1991] a theoretical description is given based on this idea. 
This article uses the concept of the Kolmogorov entropy J{, which is equivalent 
to the mean loss of information per unit time. The Kolmogorov entropy J{ 

is equal to the sum of the positive Lyapunov exponents and in our dripping 
faucet model, where we have only one positive Lyapunov exponent, J{ is equal 
to AI' 

The "Wales" method works as follows: First, the time series is divided in two 
parts. The first part is used as a data-base for a prediction method to be 
described here after. The values in the second part are used as starting points 
for predictions. Second, the correlation l' between the predicted values and 
the real values is calculated a.s a function of the number of prediction steps. 
Third, J{ and thus Al is given by half the initial slope of the plot of In(l - r) 
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against the number of predictions steps in time. The initial slope is the slope 
of the graph at prediction step zero. 

In more detail the prediction works as follows (see also Molenaar[1992]) for 
more details): Consider a time series {Xi, i = 1, ... , M}. The procedure to get 
an estimate for XM+l is based on finding local portions of the time series in 
the past, which closely resemble the last part and basing the predictions on 
what occurred immediately after these past events. It should be emphasized 
that no attempt is made to fit a function to the whole time series at once. 
The approach can quite simply be automated and may give striking results, 
if the attractor dimension is not too high and enough data is available. The 
procedure can be summarized as follows : 

• Apply reconstruction. The procedure dealt with in section 2 will yield the 
embedding dimension de. Meanwhile the scalar series Xi, i = 1, ... , M is 
transformed into a series Yi, i = 1, .... , M' of de-dimensional vectors with 
M' = M - (de-I). The problem is now to estimate YM'+l' 

• Search neighbours of YM' in the series Yi. 

• Find the evolution of these neighbours after one iteration. 

• Fit a (linear, quadratic, cubic, or .... ) mapping to the one-step-ahead 
evolutions of the neighbours. 

• Apply this map to YM' This yields an estimate for YM'+l, and the last 
element of YM'+l is an estimate for XM+l' 

This algorithm is applied several times to obtain estimates for XM+b XM+2, ••••• 

4.4.1 Application on the tent map 

In Wales[1991] the above described method is checked for the tent map (4.1). 
We repeated these calculations to verify these results using the chaotic predic
tor PREDCORS. PREDCORS is the implementation of the chaotic prediction 
method described in Molenaar[1992]. 
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Figure 11: Correlation vs. prediction step using position data 

Theoretically the value of Al is In 2 = 0.69315.... In Wales[1991 J the value 
Al = 0.69310 was found for a serie of 1000 points in which the first 500 were 
used to fit the model. Figure 11 shows our results for the same parameters 
as used in Wales[1991]. We calculated the initial slope using a spline function 
(see also the next section). We obtained Al = 0.70. This result is in good 
agreement with the real value. 

4.4.2 Application to the dripping faucet 

We have applied the method above on the position data produced by DRIPS 
consisting of 14000 time steps. The length of the time steps was 0.1 seconds. 
The first 13000 were used to search for neighbouring points. We used a long 
correlation interval, i.e. 500. We have predicted 65 timesteps of 0.1 seconds. 
This corresponds to about 3 drippings of the faucet. An important parameter 
in the prediction is the value of the embedding dimension. Theoretically, the 
value for the embedding dimension must be de ~ 2d + 1 (Molenaar[1992], page 
26) where d is the dimension of the chaotic attractor. For the dripping faucet d 
is probably slightly bigger than two. This means that an embedding dimension 
of 5 seems to be a reasonable choice. In the Figure 13 we give the correlation 
results for this case. 
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Figure 12: Fitted spline using tent map data 

10 

From the logaritmic plot in Figure 14 we have to calculate the initial slope. 
However, the plot is contaminated by noise. It seems to be that the length of 
the correlation interval was not long enough but because of memory problems 
with larger correlation intervals this is the best we can get. We have to smooth 
the graph to remove the effects of the noise. To do this we fitted a spline 
through the graph as can be seen in figure 14. Varying the stiffness of the spline, 
we find 0.09 ::; Al ::; 0.33. The fitted spline shown in the figure corresponds to 
Al = 0.16. We like to stress here that using a spline is just one of the methods 
to remove noise. An estimate of the order of magnitude is the best result we 
can get. 

Remark: The results above are obtained only for the position data of the drip
ping faucet. We have also made several calculations on the velocity and mass 
data. However, these results are worse compared to the results of the position 
data in the sense that larger wiggles were present and that the correlation 
decreases faster. This can also be seen at the following correlation plots for 
a series of 1000 points (see Figures 15-17). They denote the correlations as a 
function of time differences between two points. From the about first 50 points 
in the correlation plots one can see that the position data is on the average 
more correlated than the velocity or mass data. Consequently, predictions 
made by using position data will probably give better estimates. 
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Figure 13: Correlation vs. prediction step using position data 

Theoretically, the velocity and mass are proper read-out functions of the model 
and should provide us the same results. 
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Figure 14: Fitted spline using position data 

5 Stochastic Prediction 

In the previous section we used a chaotic prediction method. In this sec
tion we shall apply a stochastic prediction method. Two programs will be 
used: Autobox, based on the Box-Jenkins model, and Linpred, based on an 
autoregressive model. First we introduce the Box-Jenkins model, second we 
introduce the Linpred predictor and finally we discuss the results obtained 
with both models. 

5.1 The Box-Jenkins method 

The B(ox)-J(enkins) method (Box & Jenkins[1976]) is a time series modeling 
process which describes a variable as a function of its past values (the AutoRe
gressive part) and the past values of the noise (the Moving Average part). The 
purpose of the B-J method is to find the linear model (or filter) which describes 
the underlying structure of the time series best. For the reduced time series 
(the series from which the effects of the underlying structure is "subtracted") 
it must hold that no structure is present. In other words, the reduced time 
series has to be white noise. After finding the model it can be used to forecast 

32 



1~-----------------------------------. 

o 50 100 150 200 250 

Figure 15: Position correlation plot 

future values of the series. 

The modeling procedure itself is a three stage iterative process: 

• Identification: To make the time series stationary. 

• Estimation and Diagnostic checks: To estimate the parameters in the 
identified model. 

• Forecasting: To use the model to generate forecasts for future values of 
the time series. 

Before discussing these points in more detail, it is necessary to introduce some 
terms. A B-J model, often referred to as an ARIMA-model, can be expressed 
in the following form: 

(9) 

where 
(10) 

This form defines a so-called ARIMA(p,d,q)-model. The factors are summa
rized below: 
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Figure 16: Mass correlation plot 

• Zt ::::::; the dicrete time series. 

• J1 = the average value of Zt. 

• 4>p::::::; the autoregressive factor(s) of order p (AR(p». 

• at::::::; the white noise at time step t. 

• ()o = the deterministic trend (constant). 

• ()q = the moving average factor(s) of order q (MA( q». 

• Wt ::::::; the differenced time series of order d and degree c. 

• B::::::; the backshift operator, i.e. BZt = Zt-l. 

It is possible that the time series includes also some seasonal effects, for in
stance an annual cyclus. In that case we can have more than one autore
gressive, moving average and/or differencing factors. For instance, if we have 
monthly data and an annual effect, the model can be an ARI M A12(P12, d12, q12) x 
ARI M A(p, d, q)-model. 

We will now further explain the various components of the above equation. 
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Figure 17: Velocity correlation plot 

Differencing factor ( s). 
A model may have a number of differencing factors. Each differencing factor is 
a polynomial of the form (1 - BC)d. For a model with one or more differencing 
factor ( s ), the expectance of Zt (Jl) can be taken to be equal to zero. This 
remark also applies to the deterministic trend parameter (80 ), 

<pp(B» Autoregressive factor(s) 
A model may have a number of autoregressive factors. Each autoregressive 
factor is a polynomial of the form: 

(11) 

where <P1) ... , ¢>p are the (possibly vanishing) parameter values of the polyno
mial. 

8q(B) Moving average factor(s) 
A model may have a number of moving average factors. Each moving average 
factor is a polynomial of the form 

(12) 

where 01 , ••• , Bp are the (possibly vanishing) parameter values of the polynomial. 
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We now describe the three-stage modeling process in more detail. 

5.1.1 Stage 1: Model Identification. 

In the identification phase the time series is examined in order to choose a 
tentative model form. There are several key statistical tools used during this 
phase. The most important of these are the autocorrelations and the partial 
autocorrelation of the time series. 

The first step in identification is to make the time series stationary. In a 
stationary series, the mean and the variance are constant over time. Differ
encing makes the mean constant over time. Looking at the autocorrelations 
of the time series give clues as to the appropriate level of differencing that is 
required. An autocorrelation function that starts out high (.9 or above) and 
decays slowly indicates the need for differencing. The order of the differenc
ing is determined by the number of time periods between the relatively high 
autocorrelations. For example, if the autocorrelation function is high at lags 
of 12 (for annual data) and dies out very slowly, then this is an indication for 
the need of differencing of order 12 and degree greater or equal to 1. 
Making the variance constant in time can be achieved by a transformation of 
the data. We will not consider this technique in detail. For the interested 
reader we recommend the book of Box & Jenkins[1976]. 

The step succeeding the inducement of stationarity is the tentative identifica
tion of the autoregressive/moving average structure. The autocorrelations and 
the partial autocorrelations of the appropriately differenced and transformed 
series have patterns which are associated with a particular model form. The 
analyst can make a conjecture about model form by examining the information 
in the (partial) autocorrelation functions. In general, decaying autocorrelations 
and a cut-off in the partial autocorrelation indicate an autoregressive struc
ture and decaying partial autocorrelations and a cut-off in the autocorrelation 
indicate a moving average structure. 

5.1.2 Stage 2: Model Estimation and Diagnostic Checking. 

The second stage of the model building process is estimation of the coefficients 
in the tentatively identified model. This is done by a nonlinear least squares 
estimation procedure, which is fully described in Box & Jenkins[1976]. 

There are three basic diagnostic checks that must be performed on the esti
mated model. These tests are for necessity, invertibility and sufficiency. Each 
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parameter included in the model should be statistically significant (necessary) 
and each factor must be invertible. In addition, the residuals from the esti
mated model should be white noise (model sufficiency). 

The test for necessity is performed by examining the t-ratios for the individ
ual parameter estimates. Parameters with nonsignificant estimates should be 
deleted from the model. 

Invertibility is determined by calculating the roots from each factor in the 
model. All of the roots must lie outside the unit circle. If one of the factors is 
noninvertible then the model must be adjusted. The appropriate adjustment 
is dictated by the type of the factor that is noninvertible. For example, a 
noninvertible autoregressive factor usually indicates under-differencing, while 
a noninvertible moving average factor may indicate over-differencing or the 
present of a deterministic factor. 

Model sufficiency is tested in the same way as model identification is per
formed. If there are patterns in the residual autocorrelations and partial au
to correlations of the residuals, then there is the necessity to add parameters 
to the model. 

If all of the parameters are necessary, if each factor is invertible and if the 
model is sufficient, then the ARIMA model is adequate and it can be used for 
forecasting. 

5.1.3 Stage 3: Model Forecasting. 

Model forecasting with the properly identified and estimated model is simply 
an algebraic process of applying the model form to the actual time series data 
and computing the forecast values from a given time origin. The confidence 
intervals give a measure of the uncertainty in the point forecasts. 

Remark: Autobox performs the above described steps automatically. 

5.2 The Linpred predictor 

This program can be probably best explained by comparing it with the Auto
box program: 

• Linpred calculates only AR-factors and difference factors, whereas Au
tobox also calculates MA-factors. MA-factors are not that important for 
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forecasting, because they don not change the forecasts, but only influence 
the confidence interval of the forecasts. 

• Linpred can only calculate one factor in the autoregressive model. This 
is not a very serious restriction, because seasonal effects can always be 
captured by choosing p in the AR(p )-modellarge enough . 

• The size of the dataset is restricted to 300 in the Autobox program, 
whereas Linpred can handle much larger datasets (in our case 13000, 
with the points 13001 to 14000 used to calculate the forecast correlation). 

5.3 Results of Autobox and Linpred 

We applied Linpred to a dataset consisting of 14000 position points, with 0.1 
seconds between two points and we applied Autobox on subsets of this dataset. 
On the average there is a drop every 21 points. However, the spreading is quite 
large, i.e. from 16 to 27. 
We start our discussion with the results of Autobox. The model which fulfilled 
the necessity requirements was an ARM A(2, 0, 1 )-model. No differencing was 
necessary. This was to be expected, because there is no trend in the data of 
the dripping faucet, i.e. the position is after each drip more or less the same. 
Moreover, the variance is stationary. The fraction of the data that could be 
explained by the model was 99% (R2 = 0.99). All the autoregressive factors 
were invertible. Only 7 auto correlations and 10 of the residuals remained sig
nificant (out of 100 calculated autocorrelations). The residuals were normally 
distributed with an extremely small probability level. Furthermore, they were 
close to zero except for some outliers which had an average lag between them 
of 21. This equals the average time between two drops and as a result it could 
be removed by extending the model with a ARIMA-component with lag 2L 
However, this showed not to be significant. The explanation for this could be 
that the series was not long enough (only 300 points). Furthermore, the lag is 
on the average 21, but ranges from 16 to 27. The influence of this phenomenon 
can also be seen in Figure 18, which represents an illustrative part (lag 241 to 
300) of the plot of the fit (B) versus the actual values (A), where X denotes 
the case when the fit and the actual data point coincide. 

It can be seen that the inaccuracies occur in the neighborhood of the jump 
(the low values). 
The problem discussed above has important influence on the accuracy of the 
forecasts as is shown in Figure 19. 

The results get even worse after timestep 320. Figure 20 also suggests a poor 
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----+----+----+----+----+----+----+----+----+----+----+----+ 
TIME 241 250 260 270 280 290 300 

Figure 18: 
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--T--riME-T----FoREcAsr----T-----AcruAL-----T------ERROR-----T-----X-ERROR---
I PERIOD I VALUE I VALUE I I I ============================================================================= 
I 301 -.12934E+Ol -.13218E+Ol -.28447E-01 2.15 
I 302 -.12798E+Ol -.13790E+Ol -.99198E-Ol 7.19 
I 303 -.12143E+01 -.14197E+Ol -.20546E+00 14.47 
I 304 -.11118E+01 -.14479E+01 -.33608E+00 23.21 
I 305 -.98976E+00 -.14674E+01 -.47763E+00 32.55 
I 306 -.86549E+00 -.14457E+01 -.58019E+00 40.13 
I 307 -.75426E+00 -.13423E+01 -.58807E+00 43.81 
I 308 -.66769E+00 -.11947E+01 -.52700E+00 44.11 
I 309 -.61283E+OO -.10348E+Ol -.42198E+00 40.78 
I 310 -.59197E+00 -.88705E+00 -.29508E+00 33.27 
I 311 -.60298E+00 -.76825E+00 -.16527E+00 21.51 
I 312 -.64018E+00 -.68849E+OO -.48310E-01 7.02 
I 313 -.69553E+OO -.65220E+OO .43327E-01 6.64 
I 314 -.75988E+00 -.65932E+00 .10056E+00 15.25 
I 315 -.82427E+00 -.70650E+00 . 11777E+00 16.67 
I 316 -.88093E+00 -.78813E+00 .92802E-Ol 11.77 
I 317 -.92410E+00 -.89730E+00 . 26803E-01 2.99 
I 318 -.95043E+00 -.10266E+01 -.76124E-Ol 7.42 
I 319 -.95903E+OO -.11685E+Ol -.20944E+00 17.92 
I 320 -.95130E+OO -.13162E+01 -.36486E+00 27.72 I 
============================================================================= 

Figure 19: Forecasts made with Autobox 
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.3000E+00 
T . 1900E+00 
H .8000E-Ol 
E -.3000E-Ol 

-.1400E+00 
0 -.2500E+00 
B -.3600E+OO 
S -.4700E+00 
E -.5800E+00 
R -.6900E+OO 
V -.8000E+OO 
E -.9100E+OO 
0 -.1020E+Ol 

-.1130E+Ol 
S -.1240E+Ol 
E -.1350E+Ol 
R -.1460E+Ol 
I -.1570E+Ol 
E -.1680E+Ol 
S -.1790E+Ol 

-.1900E+Ol 

PLOT OF THE FORECAST VALUES VS TIME =================================== 
KEY : . = ACTUALS (IF KNOWN) 

F = FORECAST VALUES 
+ = UPPER LIMIT VALUES 
- = LOWER LIMIT VALUES 

----+----+----+----+----+----+----+----+----+----+----+----+ 

+++++ 
++ ++ 

+ 

+ 

+++++++ 

+++ 
++++ ++ 

+ FFF 
F FF 

+ F FF FFFFFFFF 
F FFFFFFFF 

+ F 
F 

.FFF 

----+----+----+----+----+----+----+----+----+----+----+----+ 
TIME 288 297 307 317 327 337 347 

Figure 20: Forecasts made with Autobox 

prediction capacity. 

This poor prediction ability is probably due to the jump. This causes that the 
MA-factor is very important (the t~ratio is about 11, whereas to be included 
in the model it has to be at least 2). As discussed before, the MA-factor has 
no influence on the predicted value, but more on the width of the confidence 
interval. 

As can be expected, the conclusions drawn from the Linpred-results do not 
differ very much from the conclusions drawn from the Autobox-modeL Figure 
21 and 22 obtain the results of two models, an AR(2)~model and an AR(25)
modeL The first is similar to the model found above, except for the MA-factor 
(which is not important for the predicted values). The second is a result of 
a closer examination of the AR(2)-plotj we can see that there seems to be a 
period of about 21 in the series. This was also noted in the discussion of the 
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Autobox results. An AR(2) x AR21 (p) seems to be usefuL This can be partially 
simulated by an AR(25)-model. The models are equal if the 3rd until the 20th 

and the 22th until the 25th coefficients in the AR(25}-model are zero. The 
resulting graph from the AR(25)-model is given in figure 22. The period of 21 
seems to be removed. Moreover, the accuracy of the prediction is improved, 
but still much worse than that achieved using the chaotic prediction method 
and given in Figure 13. 
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Figure 21: AR(2)-model 
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LINEAR PREDICTION CORRELATION 
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Figure 22: AR(25)~model 

6 Towards chaotic behaviour of the dripping 
faucet 

Until now, in this project we have always set the flow velocity fJ of the faucet 
equal to 0.6. It is known that the system is chaotic for this value. For small 
flow velocities no chaos is present. Here, we want to find out how the system 
becomes chaotic as a function of parameter fJ. 

For a certain flow velocity we calculate values of the times between two drips 
Tn, n 1,2, ... using the program DRIPS. From the plot of Tn versus Tn+! we 
can see if the system is chaotic or not for this flow velocity. If the plotted points 
are centered at n points this means that the system has period n. Otherwise 
the system is probably chaotic. 

For 25 values for fJ in the interval [0.5 - 0.6J we followed this procedure. We 
calculated 2000 points with a time step 0.2 and skipped the first 1000 points. 
This is to avoid a possible transient period. So, we obtained about 85 points 
of times between jumps. The results of the period for these values are given 
in Figure 23. For practical reasons chaotic behavior is indicated by a "0" 
although it corresponds to a period 00 .. 
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----- Pe~iod vs. beta -------
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Figure 23: 

We see that there is no period doubling as in the logistic map. For some 
values it is difficult to say if the period is equal to 3 or 4 (but that is not 
very important). Remarkable is that at the end (f3 between 0.576 and 0.6) 
the system is first chaotic, then periodic, and afterwards chaotic again. In the 
interval [0.588 - 0.592J we made 10 runs to see what happens there. The result 
is shown in Figure 24. For f3 increasing from 0.590 it suddenly changes from 
periodic to chaotic behavior. The intervals can be made smaller and smaller 
but we did not do this because it takes too much computing time. In this 
run we took 5000 points of which we skipped the first 4000 points because the 
transient can be very long. For this last run the calculation took about 50 
minutes for each f3 value. 
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7 Conclusions and recommendations 

In this report we described several methods to calculate the Lyapunov expo
nent of the model of the dripping faucet. The outcomes are presented in Table 
11. 

II method I Lyapunov exponent I lower bound I upperbound II 
WOLF package 0.23 0.20 0.25 
Direct 0.24 0.22 0.26 
Prediction 0.16 0.09 0.33 

Table 11: Best values for the Lyapunov exponent 

From this Table we may conclude that the largest Lyapunov exponent of the 
model of the dripping faucet is about 0.24. Consequently the dripping faucet 
is a weakly chaotic system. 

It is hard to compare the used methods with each other. Looking at the 
length of the interval of estimates it seems that the direct method gives the 

45 



best results, followed by the Wolf package. 

The following remarks should be made about the several methods: 

Wolf package 

It seems that the results depend on the used readout function. Using the 
time series of the dripping intervals or the mass series does not give reliable 
results. The reason probably is the discontinuity of these series. The position 
and velocity series give better results. This does not match with the theory 
which says that every function of the state variables can be used as a readout 
function (Takens[1981]). 

Another aspect found is that the embedding dimension used for reconstruction 
should be bigger than 3. 

Direct method 

Since the attractor is not two-dimensional, it is not useful to order the points 
in the plain of the jump. A two-dimensional set can not be ordered like a line. 
So the results of the sorting gave only the hint to analyse the attractor more 
exactly, but have nothing to do with the largest Lyapunov exponent. 

The method takes into account the behaviour of the system from its description 
by differential equations. So this must be the most exact method to determine 
the largest Lyapunov exponent, because it uses all information about the sys
tem. In practice it often happens that the exact description is not known, only 
a time series is given. Then the direct method is not applicable. 

Prediction method 

By the prediction method it is also found that the results depend on the used 
readout function. 

The method of Wales produces estimates of the Lyapunov exponent which lie 
in the largest interval of the 3 methods. The reason could be that the time 
series were not long enough. This can be seen from the correlation plot, which 
still contains wiggles. Longer time series, however, introduce computability 
problems. Wiggles were not present in the correlation plot of the tent map. 
For this map the value found for the Lyapunov exponent coincides with the 
value in Wales[I991 J and with the theoretical value. 

We also applied a stochastic description. The underlying statistical model 
seems to bean ARIMA(2,O, I)-model (AUTOBOX)or perhaps an ARIMA(2,O, 1) 
x ARI M A21 (2,0,1 )-model. In both cases, the predictions are bad. Proba-
bly due to the fact that the jumps in the data have a large influence on the 
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predictions. 

If the flow velocity is equal to 0.5 the system is periodic. For a flow velocity 
equal to 0.6 it is chaotic. In the interval in between the system is sometimes 
periodic and sometimes chaotic. No period doubling has been observed, as is 
seen for the well-known logistic map. 

In future research it would be interesting to look at the influence of the readout 
function. As we have seen there are big differences by using the position series 
or, for example, the series of times between jumps. 

Another recommendation is that the stochastic model could be extended to a 
model which can handle jumps (see Box & Jenkins[1976]). 
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