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Summary 

This report is a concise survey as well as an exposition 
of ideas about automation of layout design. In the first 
part the state and position of this part of CAD is considered. 
The central part of this report is a discussion of imperatives 
of a layout design system suitable for VLSI. Of course, such 
a system has to take account of the embedding into an Integrated 
design system. However, layout design faces two other major 
problems. One results from industry's ability to pack over 
10,000 gate equivalents into a single chip. Beside this increase 
of complexity today's micro-electronics technology made a variety 
of processes - each with its own set of design rules - available 
for integration. Diversity has been existing for a long time, 
but complexity raised the problem, since development of efficient 
systems for designing complex systems is costly and time-consuming. 
Layout design shares the complexity problem with any other design 
task. From the proliferation of different device technologies 
layout design seems to suffer most heavily. The last part of this 
report is a precursory presentation of an approach striving for 
conformance to the imperatives of the second part. 

Otten, R. H.J .M. 
STRUCTURED LAYOUT DESIGN. 
Eindhoven University of Technology, Department of Electrical 
Engineering, Eindhoven, The Netherlands, 1981. 
Eindhoven University of Technology Research Reports, 
EUT Report 80-E-l11. 

Address of the author: 

Dr.ir. R.H.J.M. Otten, 
Automatic System Design Group, 
Department of Electrical Engineering, 
Eindhoven University of Technology, 
P.O. Box 513, 
5600 MB EINDHOVEN, 
The Netherl ands 

Presently on leave with: IBM Thomas J. Watson Research Center, 
P.O. Box 218, 
Yorktown Heights, NY 10598, 
U.S.A. 



- 1 -

STRUCTURED LAYOUT DESIGN 

1. Computer aided layout design 

A layout of a system is any set of data that uniquely specifies the masks 

necessary for integrating the system. The layout tasks adressed in this 

report are those in which components or subsystems of fixed or variable 

shape have to be arranged within a given or as small as possible geometrical 

figure and to be interconnected by a network of conducting paths embedded 

in one or more layers while giving due consideration to technological. 

electronic and economic constraints. 
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1.1 Its context 

.1.1.1 Data base considerations 

The evolution of silicon technology over the past decade has been so rapid 

that the development of computer aids could not maintain pace with it. 

Existing design methods cannot cope with the presently feasible scales of 

integration. Many CAD-tools are outdated and some projects for developing 

new ones ·were already obsolete before completion. Layout in parti cul ar 

seems to be destined to make a bottleneck in the design cycle. The Intel 

8086 microprocessor, for example, required thirteen manyears merely for 

layout design LAT79. Yet it cannot be regarded as an isolated problem. 

Anyone in VLSI design must endorse Brooks' assertion that conceptual in

tegrity is the most important consideration in system design BR075. From 

the first conception to the last test the design must be guided by well-

coordinated ideas taking into account the affects a decision has on all 

future design tasks. During the design process the design is to be stored 

as data on computers. So the integrity of a design is in fact the in-

tegrity of its data base. Thoughts connected with data base design should 

precede the program design for individual design stages. Questions like: 

"what data is needed, when is it needed, by which program?" should. be 

answered. The answers will lead to a tentative data base configuration. 

Design automation data can be divided into two types: design data and 

library data. The division is not based on a difference in logical or 

physical representation, but on how the data is utilized. LZ~~y data is 

utilized in a "read-only mode" by the program subsystems. The data is not 

changed during a design. It is accessed by pointer references and program 

subsystems may copy pertinent parts of the library. Library data can also 

be divided into two types: data stored in the master library and data 
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stored in the user library. The mao~~ tibtahy is built. maintained and 

updated by a group of authorized people and protected against alterations 

by users. Many designs may reference data of this type. It typically re

presents standard components. complete with their simulation models and 

mask geometry. The Me·'! UlnaJty contains data entered by the user and 

specific for his own design. for example. a layout structure defined by 

the user. Ve6~n data is the set of data that describes the actual state 

of the design. This set can also· be divided into two classes: design data 

available to all program subsystems and design data exclusively pertaining 

to one particular program subsystem. The two classes are called ~ommon 

deo~n data and p/Uva;te de6-i.gYi data respectively. 

design automation data 

library data design data 

master user cammon p .... lvate 

library library design design 

data data data data 

Figure 1.1: Interpretive division of data in a design automation data base 

Circuit topology data is a typical example of common design data. 

It defines how modules - generic name for components and subsystems -

are interconnected. These data are reflected in a structure known as 

the po~en.t.iA..t 9ltaph OTT7 6. It is a bipartite graph in which every 

module is represented by a c-v~ex. and every signal (in layout 

literature "every net") is represented by a ~-v~ex. An edge indic

ates that a module represented by the incident c-vertex. and the sig-
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nal represented by the incident t-vertex, have a pin in common. For 

now a p~n can be seen as merely a mechanism relating modules to sig

na)s and reversely. 

Th . f ··d DEM68 h h BER70 . e notion 0 an Inci ence structure or ypergrap IS 

apparent if the structure is introduced in the following way. With 

each module a set of pins is associated. The set of electrically 

common pins is called a signal. So, consider the first set as a 

point, the signals as blocks, and the pins as flags. However, only 

a cumbersome concept is introduced this way, without a single ad

vantage over the formulation in terms of conventional graphs. 

Every program subsystem in an automated design system will utilize 

the portion of the data base that represents the structure of the 

potential graph. However, each will replace the modules by different 

models. The simulator will use a functional model adequate for its 

level of analysis. The layout design program needs geometries of masks. 

The division of design automation data into the above defined classes in

duces a standard data flow for the program subsystems in the system. A 

subsystem interacts heavily with its private data base. It is profitable 

that the program has direct access to this data base. So, if possible, it 

liti 11 reside in primary storage devices while the concerned program sub

system is active. The data in the private data base is structured accord

ing to efficiency considerations derived from the specific task of the 

subsystem. This is not the case for the other classes of data. For any 

design of considerable size they have to be on secondary storage. Program 

subsystems extract required data from those data bases and, if necessary, 

restructure it and store it into their private data bases. After appropri-

ate decisions are taken the common data base might be updated. 

Up to now full automation of all design tasks has been unsuccessful or 
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Figure 1.2: Masterplan of a data base configuration for program subsystems. 

The comparison between a design system and a multi-story build

ing has been presented at a symposium. The individual subsystems occupied 

a 'design' floor together with their private data base and,possibly, their 

interaction facilities. Communications with the common data base and the 

libraries, placed in the basement. were envisioned as elevators. Specific

ation and supply could be localized on the main floor. 

The symbols in the figure do not prescribe hardware) they only indicate 

relative accessibility 
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even impossible. Most CAD systems therefore allow extensive human inter

vention. In that case users should be provided with the capability of re

stricting and delegating read and write access to the design data base. 

This blurs the distinction between the user library and the design data 

base and raises the problem of protection against concurrent and incon

sistent updates. Integration of CAD tools is to a great extent hampered 

by these updating and protection requirements. Additionally. capabilities 

to display the data in a convenient way to users should be provided. 

1.1.2 The design cycle 

Figure 1.3 is an oversimplification (not an idealization) of the design 

of an integrated circuit. Automation of the integral design leads to numer

ous interface problems due to the enormous quantities of design data and 

design constraints. It stresses the need for a well-considered common data 

base. The consideration for the structure of this data base is to be de

rived from the design decisions to be taken and the requirement of 

efficient and reliable storing and retrieving relevant data. 

Specification answers the problem of getting design data into the data 

base of the automation system. Graphical means have become more and more 

popular. but with the increase of complexity textual forms might surpass 

graphical specificati,on in many automation activities. Attention has to be 

paid to the constraints forced upon the prospective user. His reluctance 

to use new tools has often been the insuperable problem of a CAD system. 

Automatic synthesis is even not yet in its infancy. It only exists for 

very specific structures like PLA's. Nevertheless. the problem gets atten

tion at some - mostly academic - places. It will certainly get more atten-
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Figure 1.3: The design cycle. Half of the cycle is dominated by testability 

considerations: 
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tion in the_future as the problem of producing correct designs is going to 

dominate all other cost factors. 

Single-level simulation systems have gradually found acceptance among 

circuit designers in the seventies, but in the same decade their inherent 

limits were incurred. For complex circuits simulation at several levels is 

absolutely necessary, preferably simultaneously. Mixed-level simulation 

programs were the first answer to this need. However, more encouraging is 

the recent emergence of a transparent-level simulator which has a common 

approach to all levels while using a uniform data base vB081 

When the design is functionally specified down to the lowest level and the 

prediction of its operation and performance is satisfactory, the physical 

geometries have to be developed. This task is the topic of this chapter. 

The state-of-the-art will be briefly described in the next section. 

Actual testing is separated from the other stages of the design cycle by 

the fabrication of the wafer. Current philosophies concerning testing in

evitably lead to the conviction that testing should conceptually be re

lated to the-earlier parts of the design cycle. 'Design with testing in 

mind' is the accepted apothegm reflecting this conviction. The inability 

to develop a test method in line with this principle made testability to 

the most immediate problem of complex integrated circuit design. 

The major activities in test design method development have been concerned 

with the gate-level. Those gate-level techniques are not attractive for 

large scale designs. For LSI circuits it is difficult to obtain suitable 

specifications, and when available, fault simulation and test generation 
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programs turn out to be very expensive, and result in excessive test 

application times. Trends in logical design pose additional problems 

for which existing techniques are not adequate. Constraining the designer 

by testable design rule enforcement,such as the successful level sensitive 

scan design approach, only delays the awareness of the fact that present

day gate-level software cannot handle the immense volume of data to be 

processed, often demands impracticable modeling, and has a poor adapt~ 

ability to technological evolution. More future seems to be in behavior

al-level testing 'when a top-down design approach is adopted. With this 

technique testability analysis can be started at an early pOint in the 

design cycle. The volume of detail is often considerably reduced, the 

models are easy to prepare and to some degree independent of detailed 

realization, and not sensitive to technological changes. However, there 

is a lack of timing details. The break-through might finally be brought 

about by technological progress. Recently improved electron-beam techniques 

for the inspection of integrated circuits enhanced the observability of the 

desig~' WOL79. Now it is possible to measure voltages at any pOint on the 

chip under test. Comparing response patterns extracted by these measure

ments with stored patterns of a standard model gives information about the 

presence of faults. 

The impact of methods for increasing testability on layout design is not 

known. Of course, level sensitive scan design will increase the needed 

chip area, and the scan paths and shift lines will disturb the structure 

of the functional design. Layout techniques making use of such structure 

are degraded by these constraints; but not outdone. Electron-beam measure

ment might also affect the layout design stage, but probably any extra 

requirement can be hidden in a conventional set of design rules without 
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1. Geometrical design rule checKers determine conformance to layout rules 

such as minimum di5tances~ tolerances, and overlap. 

2. Electrical rule checkers search for illegal structures~ such as crossing 

power lines~ ground connections of individual components, cross-unders in 

power lines. 

3, Connectivity checKs trace the layout to determine which pins are connected 

to the same 'potential tree', to compare the result against an independent 

connection list. 

4. Device recognition programs try to recognize components from the artwork 

features. 

5. Electrical parameter extraction aims at determining of Gomponent para

meters~ load capacitances, coupling capacitances and many other parasitic 

elements introduced with the construction of the mask. 
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forcing a mutation in the methodology. 

Checking layouts by an automatic layout verification system disencumbers 

people of the so-called eyeball hours, in which detailed computer-drawn 

plots (100 to 1000 times larger than the size of the actual circuit) are 

meticulously scrutinized to check for conformance to design rules. Some 

of these systems also extract electrical parameters (parasitics in par

ticular) and verify whether the circuit behavior may still be expected to 

Correspond to the intended behavior. The most heavily used automated aid 

in this class is the geometrical design rule checker. It measures certain 

geometrical relationships and checks by comparison whether and where the 

design rules of the concerned technology are violated. It is an indispens

able tool when the layout of complex circuits is manually or interactively 

designed. However, existing programs have a number of serious drawbacks. 

First of all, their hi~haverage time and storage complexity. Secondly, many 

spurious errors are indicated. Thirdly, no program is yet capable of 

accommodating all design rules. Besides, existing algorithms are highly 

dependent on a restriction to orthogonal geometries which is presently 

not a bad trade-off, but with the advent of regular structures such as 

hexagonal arrays and technologies with more than two metallization layers 

current verification software is outdated. The other parts of a complete 

verification system are still in their infancy, and for custom design 

almost absent. Yet, it is of utmost importance that the artwork information 

is correct before offering it to the production department. Two answers , 

are promising, both avoiding layout verification. One of them is symbolic 

layout combined with automatic compaction techniques. The other one is 

complete automation of the layout design task. 
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.1.2 Its rresent state 

Initially, many of the computer aids developed for printed circuit boards 

were adapted for integrated:"circuit layout systems. This can be seen in 

many present-day designs where digitizers supporting manual design and 

placement-routing decompositions are still prevalent. In this section 

several approaches are characterized in an order of ascending degree of 

automation. In the second part of the paper some aspects of these approaches 

will be discussed in more detail. 

1.2.1 Manual design with digitizer support 

Problems in drawing highly precise artwork completely by hand made design

ers pass to digitizing techniques. A digitizer is a large back-lit drawing 

board which is connected to a minicomputer. Coordinates of each point the 

designer indicates on the board by means of a cursor or digitizing pen can 

be read into the computer on command. With a plotter artwork of the de

sired quality can be generated. 

Often the configuration is combined with a cathode-ray-tube terminal. 

Beside data entry on-line error correction is possible with such a system. 

However, the decision about "what goes where" is still with the designer. 

No particular layout style is forced upon the designer if a style-dependent 

checking algorithm is absent. Widely used systems in this class are CALMA 

and APPLICON . 

. 1.2.2 Symbolic layout design 

The earliest symbolic design systems substituted a set of symbols for the 

mask features. The designer manipulates these symbols observing a few 

simple rules for placement on a coarse grid. Though the designer still 

decides, the design is considerably faster at the cost of some restrictions 
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on the layout style. Batch programming is feasible with these computer 

aids GIB76 

With the coming of the dynamic color graphic display symbolic layout design 

evolved from an aid with rather incommodious alpha-numeric characters to 

one of the most promising approaches. The experience and cleverness of the 

designer is used for developing good layout topologies, since his task is 

only to obtain a relative placement and interconnection of symbols without 

observing hardly any design rule. An automatic program is capable of per-

forming geometry transformation such as compaction and interconnection 

bending ("jogs"). The automatic program guarantees conformance to design 

rules which makes a design rule checker superfluous HSI79 

1.2.3 Master slice approach 

A master slice is a wafer processed up to the metalization layers. Each 

chip from such a wafer is identical as far as the kind and position of 

modules is concerned. Customization is only achieved through interconnect-

ion geometries. Computer aids in this approach are therefore routing 

programs. Full wiring completion is seldom automatically achieved and 

chances become very small when more than 80% of the functions on a chip 

are incorporated in the system. 

1.2.4 Standard-cell 

Functional cells of gate and register level are designed to conform to a 

common cell height and pin distribution, which often leads to non-optimal 

area utilization. These cells are to be placed in rows and interconnected 

through the intervening routing channels: The goal of placement as well 

as routing is to keep the channel widths as small as possible. 
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In principle no human interaction is required in layout design systems 

based on the standard cell approach. Simple designer intervention. however, 

appreciably enhances the r1acement techniques. Up to 500 cells standard 

cell programs perform very well, especially when design time dominates 

other cost factors such as yield, signal delay and power requirements. Its 

success was manifest for MaS-technology. The construction and maintenance 

of an up-to-date cell library has proven to be a significant overhead PER77 

1.2.5 Array layouts 

Automatic generation of regular array structures such as programmable 

regular arrays from a functional specification such as a switching function 

is straightforward. To obtain high densities and small layouts functional 

minimization and decomposition techniques are applied. Though layout con

siderations are important, they are translated into terms consistent with 

these techniques, and therefore they are specific for the method of funct-

ional realization. 

1.2.6 Building Blocks 

There have been several attempts to solve the layout problem stated at the 

beginning of this chapter completely automatically. Starting from a funct-

ional circuit specification a layout has to be generated without any human 

intervention. Of some of the projects with such objectives successful 

completion has been announced, but acceptance in a production environment 

has not been reported. Besides, many results of these projects are of value 

only for some technologies. 

More complex systems demand for more restrictions on the shape of the 

modules to be placed. Most current approaches restrict the shape to rect-
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angles. One class of these approaches is referred to as the building-block 

method KAN76. The blocks are functional units with a predesigned layout 

within rectangular boundaries. The interior of a block is usually very 

efficiently packed, and the sizes and aspect ratios, therefore, are quite 

varied. Placement of these blocks in a rectangular area leaves many ir-

regularly shaped areas unutilized. Consequently, building-block approach-es 

often yield sparse layouts. Most programs of the building-block type separ

ate placement and routing which even more degrades the area utilization. 

1.2.7 Other computer aids 

Many subtasks of certain layout styles have been developed. One of the most 

important aids, certainly for symbolic layout, but also in many other ap-

proaches, is compaction. The intention of compaction algorithms is to squeeze 

layouts to reduce the amount of 'dead area'. 

Wirability prediction programs have been developed for master _slice lay-_ 

outs -HEL78- Such-like programs for other layout styles will become im-

portant in the future, because the area consumption by interconnections 

grows very fast with the increase of complexity. As early as possible during 

the design estimation of local wiring areas is important. Since not much is 

known in that stage the programs will be probabilistic in nature. As more 

information becomes available the estimationS have to be revised ,_to ,guide 

placement decisions with as much information as possible. 

The classical serial decomposition of the layout design task has three parts: 

partitioning, placement and routing. The latter two have got much attention 

in literature. 

Placement algorithms got a definite treatment in HAN72. The -first 
routers were mainly versions of a breadth-first search algorithm on 
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a gr i d 
LEE6, They work on a one-connection-at-a-time basis. If there 

are solutions in a particular stage the shortest among them wi 11 be 

found. However, look-ahead to avoid unnecessary blocking of future 

connections is difficult to implement. Later, many other grid routers 

were published, sometimes with quite original solutions like determ

ining the area to be etched instead of the area to be covered by metal 

and amoebic movements to establ ish the routes. Those algorithms, 

however, only perform efficiently in labyrinth-like situations. For 

VLSI circuits storage complexity will inhibit application. Also grid

free routers have been developed. Especially successful is the line 

search router HIG69, which is considerably faster than 'wave front 

routers'. However, there is no guarantee for finding a path even if it 

exists, but it can be modified to abol ish this defect. The algorithm 

works with two sequences of escape points from which horizontal and 

vertical 1 ine probes are started. The first two points are the pins to 

be interconnected. When probes of different sequences intersect the 

seatch is ended, and the route is reconstructed with the line segments 

between the escape points. 

Though the line search router is also used for LSI circuits LAUBO, the 

most successful routers for complex circuits are channel routers. The 

problem is decomposed into independent routing problems in small rect

angular areas with pins on two opposite sides. The routes consist of 

vertical and horizontal pieces to be realized in at least two different 

layers. The subtasks are reduced to easy combinatorial problems that 

can be .fast 1 y so 1 ved wi thout heavy memory requ i rements. The nets have 

to interconnect certain pins on the sides and may create points on two 

other sides to leave the channel area. 

The first channel router HAS7' has been labeled as the unconstrained 

left-edge algorithm. The wire segments are considered to be intervals 

[L,R) and a partial ordering is defined over the set of intervals 

([L,. R,l-< [L Z' Rzl<->R{Lz ). Each actual track is subsequently filled 

with an unplaced interval having the lowest L greater than the preceding 

R. If no interval satisfies those conditions a new track is initiated 

unti 1 all intervals are assigned to a track. If pins are restricted .to 

grid coordinates and contacts are never exactly opposite the algorithm 
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gives an optimal solution •. Inval i.dating tb.is condition introduces 

constraints on the track assignment which might be cycl ic. These 

cycles have to be broken for example by manipulating pin positions. 

Optimal solutions have been published KE R73, but these branch-and 

bound techniques are very time-consuming. More freedom is created by 

allowing nets to be real ized in more than one track. This led to 

trunkdivision and 'dogleg' algorithms. PER77 



- 18 -

2. Structured layout design 

It has been noted before that the situation in VLSI design is to a certeiln' 
. .;:,- . . ~~-' 

extent comparable wi th the software cri siS of the late sixtie~,. }t;.omi/lis 

period of confusion structured programming emerged as. a systematic protess 

for masteri ng compl exity. It is therefore expedient to exam.ine the prin

ciples of structured programming upOn their relevance to layout design. The 

results of such an examination are interwoven in the following discussion . 

. 2.1 The inevitable hierarchy 

There is a conjecture that complex systems evolve far more quickly if they 

are of hierarchic nature than non~hierarchic systems of comparable size, and 

that aspects of complex systems that are not hierarchic even elude human 

understanding and. observation. Both in nature and in scienCe many instances 

support this conjecture SIM62. VlSI' systems will be just new examples of 

systems exhibiting hierarchic structure whether they evolve from stable 

intermediate forms (e.g. a single-chip microcomputer which combines a num-

ber of functions that previously occupied separate chips) or by a practic-

able design discipline (still to be developed, but certainly topCdown . 

organized) . 

A hierarchic system or IUeJ[aJr.ehy is a system composed of interrelated sub

systems, each of the latter being hierarchic in structure, until some lowest 

level of elementary subsystems is reached. The systems in a hierarchy are 

called moduteo. A hierarchy can be represented by a directed tree. tach 

vertex in this tree represents a module. An arrow is pOinting from a module 

to its direct subsystems (~ubmodui~). The incoming arrow of a module referS 

to its unique ~upetunod!lte. The root represents the whole system. The element-

.:.., ',: 

,,,-
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ary subsystems are represented by the leaves of the tree. In several 

approaches to layout design the submodules of the whole system playa 

distinct role •. In order to aid memory when this set of modules recurs, 

these modules are related to the rather eccentric figure 6.5 by naming 

them ca4~na£ moduteh. The set of cardinal modules covers the whole system. 

None of the other layers in the hierarchy must have this property. 

Figure 2.1: The etymological origin of the word hierarchy as an aid to 

memory when the notion 'cardinal modules' turns up 

The hierarchy to be expected in VLSI systems is a functional hierarchy. 

The modules in this hierarcpy realize partial functions of the system. 

These functions again are specified in terms of partial functions to be 

performed by lower modules except for the elementary modules. Thus, two 

kinds of modules are distinguished on the basis of this hierarchy: ce£ih, 
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units that are not divided into submodules, and eOmpOUJ1cL6, units composed· 

of submodules. Cells a)"e the only technology dependent units of the system· 

as far as their realization onthe ·Chip is concerned. ·Th~·laYDut ofeerta'in 

cells is stored in a library, because of thelrfrequent appearance. The lay .. 

out of a cell may also be defilled by the user. For both l<if1d~·()TCe4;h{ .Yf -

mcu,,telt edU and Melt edU respectively, the layout is tdbl! fi!tchedintacti,.· 
,- '-

from the placE! where it is stored, and inserted into the layout of a system. 

They are called ~n6et edU to set them apart from blank edU of which the 

layout is to be determined by special technology dependent algorithms. 

The functional hierarchy is to be suppliedby the design system or by the 

designer. In the latter case the designer is constrained to make the in

herent hierarchy expl icit. EverybOQY in cOillputer aided deSign knows how 

difficult it is to manage the introduction of a system with new ~onstraints. 

When a complete system is delivered by the designer without an, explicit 

hierarchy, it lias to be partitioned on the basis of what seem to be reason-

able criteria. 

Partitioning is one of the classical problems in the physical realiza:Hon 

of a system and it never was satisfactorily solved forSystemS·for"~*ch . 

it is needed most, namely large scal~ systems. When the ~1;yst!!lJtiS ~J!iPlex, 
'S_. ~-

partitioning is a very complex task. The problems start already with the 

selection of the criteria. The most important consideration in decomposing 

a design is high block independence. Partitioning should therefore .. be or

ganized in such a way that the relationships among blocks were minimized 

and the relationships among the elements of an indivtdualblock .. were max

imized. In other words blocks should 'have a high internal strength ilnQiI. 

low mutual coupling. The classical measure of block depende~ce in":layout 
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design is connectivity. It suffices for an after-the-fact judgement of the 

partitioning result. What is needed, however, is a guideline for producing 

an acceptable solution. 

A partitioning method in use for building block approaches is min-cut 

placement GUN69. The acceptance can be explained by the principle of 

deferring detailed considerations as long as possible and the combin

ation of partitioning and global placement. Each step a set of modules 

is partitioned into two blocks such that the number of signals common 

to both blocks is minimal. for this partitioning a modification of the 

Kernighan-lin-algorithm KER70 is applied. This algorithm starts from 

an initial two-block partition, and improves this partition by inter

changing the pair of elements which reduces the number of common sig

nals most. This is repeated until all elements of one block have been 

involved in an interchange. The best intermediate result is taken. 

This gives a new two-block partition with which the procedure can be 

repeated. Possible modifications are concerned with excluding elements 

from the interchange operations, and taking module areas into account. 

2.2 The structural restraint 

In structured programming there exists the discipline to restrict control 

flow constructs to the Jacopini-structures BOH66. These structures are 

theoretically sufficient and ensure a straightforward mapping between the 

t t · 1 d th k' . t DAH72 I h . '1 compu a lona process an e program evo lng 1 • s t ere a slml ar 

rule concerning the structure of layouts as beneficial to layout design as 

the structuring principle is to programming? In the past many restrictions 

have been proposed with different degrees of success. Building blocks, stand

ard cell, and bristle blocks are famed examples. 

In toe building blocks approach the only restriction is that the 

structure consists of abutting rectangles. These rectangles must 

give room to a given set of layout problems with fixed shape. This 

problem has been translated to several mathematical models in order 

to apply known solution techniques. These translations mostly use a 
BR040 certain digraph representation of dissected rectangles The 
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name polar graph for the~e digraphs has found acceptance in layout 

design literature 

A po£ivL gnaph is an aeycl ic digraph wi th exactly one .clurd!! al'!tii)-ne. 

sink which has a plane representation with the sourCe and the"sink 

on the same face boundary. 

A r~ctangle partitioned into subrectangles, called a nectangie~-

.6 ec..tio 11 , consists of two sets of parallel 1 ine segments, Ii and V. Any 

segment in Ii is perpendicular to any segment in V. To construct a 

polar graph associated with a rectangle dissection take either Ii or 

V as the set of vertices and connect two vertices if the corresponding 

segments contain sides of the same subrectangle. So, there is a one" 

one correspondence between subrectangles and arcs. The direction of 

the arcs must be consistent 'with position of the corresponding rect

angle relative to the line segment. 

I--

Figure 2.2: A partitioned rectangle and its associated polar graphs 

Four, generally different, polar graphs are associated with each 

rectangle dissection. When taking Ii as the set of vertices the polar 

graphs are the same except for a reversal of all arc orientations. 

The same holds in case V is taken. The polar graphS with Ii-vertices' 



- 23 -

are said to be the dual of the polar graphs with V-vertices. 

When length and width of the subrectangles are assigned to the 

corresponding arcs a polar graph contains the same information as 

the rectangle dissection. These lengths and widths satisfy the 

Kirchhoff laws of netwerk theory. This observation is the key to 

many applications of this model in layout design. By formulating all 

other constraints as linear inequalities, the Kirchhoff equations 

and these inequalities form the simplex-tableau for minimizing the 

perimeter of the chip as a good approximation when the chip is kept 
OTT76 from becoming very oblong 

The modules to be placed have different, but fixed rectangular shapes 

and if there is a method to obtain a suitable polar graph the problem 

of minimizing the chip area Can be formulated as a mixed-integer 0-1 
ZIB74 linear optimization problem In the CALCOS system this formul-

ation has been applied to LSI layout where the polar graph is obtain

ed by a min-cut technique with alternately horizontal and vertical 

1
• LAU80 
Ines 

I .. n the layout style called -6.tal'tdalld c.elt or po.tyc.elt the majority of 

the design rules are hidden in cells stored in the cell library. The 

cells have a rectangular outline. Two opposite sides of each cell 

have to be consistent with very strict rules: the same length and 

fixed pin positions for the nets common to all cells. By locating 

a cell alongside any other cell the corresponding pins are automatic

ally interconnected. By arranging cells in parallel rows straight 

power, ground and clock lines are thus realized in each row. All other 

pins of a cell have to be located at the other sides. If both sides 

are used, cells are placed in single rows. If only one side contains 

individual pins cells are placed 'back-to-back' in double rows. 

Between the rows there are domains not occupied by cells. These 

domains are called -6tneet c.hann~. By the arrangement of cells in 

rows as described all pins except those belonging to the common lines 

are facing a channel. These channels are used for realizing inter

connections between pins. A net connecting pins at various locations 

may lie entirely within a single channel or interconnect more than 
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one channel. Avel'we c.hmll'lw perpendicular to the ones intervening 

the cell rows mostly contain the interconnections between the channels 

and between the common lines of each row. In order to avoid long inter

connections 6eed-.tlvtough c~ are sometimes employed. 

The actual layout stages of a standard cell design PER77 are: 

1. Partitioning of the cells into rows by a crude global clustering 

algorithm or by a two dimensional placement consisting of a candid

ate cell selection on connectivity basis, an initial placement 

trying to minimize the total net ler.gth, and an iterative exchanging 

of cells to improve the placement taking into account net length, 

row capacity, etc. 

2. Determining the sequence of cells within a row. The sequence of 

the cells influences the net length and the density of the channel. 

The local density of a channel is the number of interconnections 

that have to ir.tersect the cross-section perpendicular to the cell 

rows at that spot. The c.hannel den6ity is the maximum value attain

ed by the local density anywhere along the channel. From the channel 

density a lower bound on the channel width required to contain the 

associated interconnections can be derived. The major task of this 

stage and the next one is to minimize the necessary channel width. 

3. Placement of the cells within a row. This is a rather straight

forward task when the sequence of cells is known. However, the 

freedom left can be used to facilitate the tasks in the later 

stages of the design, in particular solving pin position conflicts. 

4. Net decomposition and assignment of subnets to channels. Nets with 

pins in more than one channel have to be decomposed in order to 

route the channels one by one. Beside subnets in the channels con

taining the concerned pins, interconnections between these subnets 

have to be made. The avenue channels can be used if ~tAeet pin-o~ 

are created. In order to avoid very long interconnections inter

channel feed-throughs often can be established either by using 

electrically equivalent pins on opposite sides of a cell or by in

serting feed-through cells into a row. 

5. Analysis of pin positions. By fixing the positions and orientations 
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of the cells, and thus the pin positions along the street channels 

~Xu~na1 cOnh~a~~ are introduced, when two nets enter the 

channel from opposite sides in the same interconnection layer and 

at exactly or almost the same longitudinal coordinate. If long

itudinal parts of a net are to be realized by only one straight 

~un~ cyclic constraints on the position of trunks may occur. Some 

confl ict situations can be eliminated by adjusting pin posItions. 

If not all constraint cycles can be broken the remaining problems 

must be solved by the router by slackening the straight trunk re

quirement ('trunkdivision', 'doglegging" 

6. Routing of the street channels. For each channel pin positions on 

both sides are known and a net list is available. The net ii6t 

contains the nets. A net is a set of pins that must be inter

connected. Some nets may also have a street pin-out at one or 

both ends of the channel. The numbers of interconnection layers 

and the clearances are imposed by the technology. In order to sim

plify the router task the routing on a particular level mostly 

occurs in only one direction, either longitudinal or latitudinal. 

Under these constraints the router has to route all of the nets 

successfully in the minimum possible area. 

7. Routing of the avenue channels. After the routing of the street 

channels the position of the street pin-outs is known. Since the 

position of the other pins on the sides of an avenue channel were 

predetermined all relevant pin positions are known. The net list 

is also available, thus the routing of the avenue channels can be 

performed by the same algorithm as the routing of the street 

channels. 

Standard cell is the most successful layout design automation of the 

seventies. It is capable of always achieving a layout with all con

nections completed and all local design rules obeyed, but it also 

allows a high degree of user control. The success of the method prob

ably can be explained by its hiding of all design rules in the pre

defined cells except the clearances of the wiring. Thus it reduces 

the design task to one optimization: minimize the width of the in

dividual channels. 
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The bristle blocks system imposes a generic layout scheme at the 

cost of a restriction to processor chips with communication across 

databusses. For this I imited class of circuits, however, the system 

fastly delivers a compact layout. The cells in the I ibrary have a 

certain flexibil ity that allows 'pitch matching' for simplifying 
JOH79 interconnections between the data processing elements 
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el. men • Figure 2.4: The format of a bristle 

block chip 

data path 

pad. 
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Building blocks, standurd cell, bristle blocks-and many other standard 

form layout methods share the rectangular shape requirement, and there is 

no evidence that it was the limiting factor for the complexity the method 

can handle. Allowing arbitrary cell boundaries will certainly complicate 

layout design. Beside the rectangular form of the cells, another well

structuring principle is expedient as can be learned from careful examin

ation of existing layout styles. This principle only allows layout struct

ures which can be obtained by an operation called 4ticing. A single applic

ation of this operation divides a rectangle into smaller rectangles by 

parallel lines. The operation can be applied to each of the resulting 

rectangles, 4lice6, but with lines perpendicular to the preceding set of 

dividing lines. Slicing can be repeated to any depth, alternating the 

orientation of the dividing lines. 

Figure 2.5: Slicing lEvels. 

Slicing configurations can be represented by a rooted tree. To describe 

this tree the genealogical terminology is adopted. The whole rectangle 

is represented by the common ancestor. Each sliCing corresponds with a 

parent and his children. These children are ordered according to the 
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relative position of the associated subslices. Leaves represent slices 

to which no further slicing is applied. The structure tree represents the 

genealogy of the structure. Topologically a slicing structure is fixed 

by its genealogy. However, absolute coordinates may be generated later. 

That the slicing concept yields a simple data structure is not surprising 

after the introduction of the genealogy tree. The genealogy tree is an 

ordered tree and consequently it naturally corresponds with a binary tree. 

In order to facilitate the traversal of the tree in both directions refer

ences to parents should be added. This leads to a triply linked tree where 

each vertex has, beside a pointer to the data of the corresponding slice, 

a pointer to its primogenitive, a pointer to the next sibling, and a 

pOinter to its parent. 

Another principle of structured programming is that a clear notation 

should support the logical design. Graphical representations have always 

been considered to be the apt form of communicating layout data. For VLSI 

systems textual forms are expected to be more efficient GRA80. A layout 

structure satisfying the slicing principle has a natural textual form, 

using a kind of block structure known in some programming languages. 

(Figure 2.6) 

Both, a sliced layout and a hierarchic system, can be represented by 

rooted trees. It is tempting to identify the genealogy tree of the layout 

structure with the hierarchy tree of a given functional hierarchy. However, 

this will most likely result in a structure clash, because the functional 

hierarchy is not primarily based on layout considerations such as area, 

deformation, position, orientation, and ease of wiring. Only functional 
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strength and connectivity are often correlated. Yet it is the functional 

hierarchy which is most easily supp1ied by the designer. So it seems to be 

expedient to accept the functional hierarchy as a starting point. and to 

modify the ensuing decomposition on the basis of criteria more directly 

related to layout. This modified decomposition should be suitable to be 

mapped onto a slicing configuration. This mapping will assign a slice to 
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chip 
slice 
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K 

slice A, B, C end 
slice 

slice 0, E end 
F 

end 
G 

end 
slice H, 

slice L 

slice J, K end 
end 

end 
endchip 

Figure 2.6: A slicing configuration. its structure tree and its textual form 
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each module in the hierarchy. Slices. however. will be assigned to groups 

of modules that do not constitute a supermodule in the given hierarchy. 

In order to obtain uniformity in treatment and description the class of 

compounds is ex-tended by considering these groups as modules. These 

newly formed modules are called pJtogJtam compound.6. The compounds that are 

present in the functional hierarchy. are called U<leIl compound.6. By this 

extension a one-to-one correspondence between slices and modules is est-

ablished. 

Although slicing has some clear-cut advantages (not yet all mentioned). 

the question about the price paid for giving up the generality of building 

blocks must be answered. The answer is twofold. Firstly. the restriction 

imposed by the slicing principle is not very detrimental. Most manual de

signs are compatible with slicing. and some trials will readily show the 

range of the concept. Secondly. there are no cycles in the precedence con-
. . KAW73 

straints for the wiring areas as there generally are in bUlldlng blocks 

Moreover. in slicing structures at least one set of permissible sequences 

can be characterized by one simple condition: the wiring areas of a slice 

must be routed after the wiring areas of its child slices has been routed. 

Figure 2.7: A configuration essentially excluded by the slicing principle 
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It is easy to prove that dissection rectangles satisfy the slicing 

principle fif their polar graphs are series-parallel graphs. 

2.3 Wiring space management 

Even a glimps at a number of chips of different complexity reveals the 

problem of the wiring space inflation. A lower bound on the wiring space 

is the total interconnect length times a constant imposed by technology 

(minimum line width + minimum spacing). It has been experimentally estab

lished that the total interconnect length is growing exponentially with 

the number of devices HIG79. Progress in technology cannot overcome this 

effect. Of course. more interconnection layers. tricks for distributing 

the supply voltage. flashing the clock signal onto the chip with light. 

and suchlike amendments will only partially offset the problem. Only a 

new design methodology can change the tendency. In many logic designs. 

for example. complex functions can be implemented in very regular patterns. 

In that case the increase in space required for interconnection and logic 

is kept close to linear. 

Outside the regular patterns the wiring is an extra area consumer and 

should be treated as such. For that reason a new class of modules can be 

created. Their place is in between any pair of slices. Since they are not 

to be decomposed into submodu1es. they form a subset of the class of cells. 

To distinguish between the cells already present in the hierarchy and the 

newly created cells they are called 6unction eelt6 and ju~n eelt6 res

pectively. 

For each module area has to be reserved. However. it is impossible to assess 

the wiring space before any information concerning the placement of modules 
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Figure Z.8: The classification of modules 

is available. Topological data such as a genealogy makes area prediction 

feasible. As more information comes available the estimates have to be 

revised. 

Stochastic models for estimating wiring demand did not get much 

attention in literature. For master-slice circuits a probabilistic 

model for wiring has been developed in order to predict wirability 
HELl8 That approach is not suited for estimating. the local wiring 

demand in a slicing configuration in an early stage of the design. 

An attempt to model interconnections in custom integrated circuits 

has been published eGA80. It starts from a building block configur

ation. The rectangle partitioned into rectangles is viewed as a 

planar representation of the ehannei g~ph. It js assumed that pins 

are distributed over the edges of the graph according to a Poisson 

function, that interconnection paths are minimum distance paths 

along the edges of the channel graph while choosing between feasible 

minimum distance paths occurs with equal probability, and that inter

connections have random lengths with an exponential distribution. 

Under these assumptions the local and maximum density on an edge of 

the channel graph can be estimated. 
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The occupation of j).Jnction cells by interconnections mus.t be carefully 

controlled, to check the disproportionate growth of the wiring space. 

Two guidelines, both having a parallel in programming, are gainful in 

this respect. 

The first one can be compared with the desirability of scope minimiz

ation in programming WUL73. Its translation into the layout environment 

is something like "keep wires as local as possible". The scope of a net 

can be reflected in the textual form suggested a few paragraphs earlier. 

slice external, < li~t of inherited nets> 

internal, < list of local nets> 

< s lice body> 

end 

The pins interconnected by a certain net belong to function cells. The 

minimal subtree of the genealogy containing these function cells has as" 

its vertices 'slices' with the concerned net in their lists. Only the 

common ancestor has the net declared as internal. Outside this minimal 

subtree only junction cells might contain a part of that net. 

The other area-saving principle is pitch-matching. It consists of adjust

ing the pin position such that the interconnections can be made by crossing 

the channel without using a track. In programming it is comparable with re

ducing the interface complexity by using a suitable data structure common 

to the blocks. 
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Figure 2.9: Apart from junction cells only slices in the minimal subtree of 

the concerned function cells are involved. However, even the 

junction cell of the--common ancestor might contain the net: 
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Figure 2.10: Stretching sometimes reduces the total area of its parent slice. 
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2.4 The flexibility imperati.ve 

The development of a structured program is a sequence of refinement 

steps that terminates when all instructions are expressed in terms of 

the concerned programmi ng 1 anguage WIR71. The whole poi nt of programmi n9 

by stepwise refinement can also be seen as delaying design decisions. 

This avoids committing the design prematurely to specific implementation 

ideas and increases the ease with which modifications can subsequently 

be made. 

This postponement of design decisions is also of fundamental importance 

in layout design. Premature decisions lead to inefficient use of silicon 

area. Layout systems based on the building blocks approach manipulate 

rigid boxes and always end with a very low layout density. because of 

this a priori decision on the shapes of the modules. 

The layout of a module may be realized in differently shaped areas if 

only the cells covered by the module and their mutual interconnections 

are accommodated. Of cours~ not all modules have the same degree of 

flexibility. Inset cells for example have fixed shapes. A layout system 

can only assign position and orientation to them. At the other extreme 

large portions of random logic have a lot of freedom as far as their circ

umscription is concerned. This flexibility must be used by a layout system 

to compensate differences in wiring space estimation. to allow for cell 

stretching in order to adjust the pin positions. and to obtain high packing 

densities. 

In this respect layout design can be regarded as a gradual stiffening of 

modules, in which the modules get shape, position, orientation and pin 
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positions. The moments of the stiffening step depend on the kind of 

module. 

Although flexibility of modules has to be ~nforced, preferable shapes 

exist, also for modules with a high degree of flexibility. Deviations 

from these favored shapes can be measured in order to steer the stiffen

ing process. The steering parameters or de604matio~ are measured with 

formulas that depend on the type of the module. Inset cells have to fit 

in the assigned domains. If not, high deformations have to result. Other 

modules, with high flexibility, should have lower penalties for deform

ation. Square shapes are preferable for these modules. Adjustments to 

modules requiring big areas affect the final result stronger than modules 

with low area consumption. This should also be expressed in the deform

ation value. 

2.5 Generality desirable 

Developing layout design software is a costly affair. Considering the 

existing variety in technological processes and the rapid changes in 

fabrication methods, the need for largely general approaches becomes 

apparent. Sooner or later, howeve~ the differences between the various 

sets of design rules will take their toll. Whether it is possible to keep 

the divergence concentrated in small parts of the program is an open quest

ion. The leaves of the genealogy tree, i.e. the cells of the system, are 

of course most heavily dependent on technology. Particularly the blank cells 

have to be filled by technology dependent algorithms. Though the complex-

ity of the concerned problems is quite low, one may still ask which algor

ithms have to be used. For neither an established theory for automatic lay

out design nor a set of approved algorithms is available. The main reason 
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is that for this scale of problems manual and interactive methods were 

preferred. 

The most successful approach with a considerable degree of automation 

is the standard cell technique. As a first step towards more general 

layout methods one may ask whether other technologies allow for 

layout design along similar lines. Although the number of inter

connection layers was expected to be the most stringent condition, 

a program similar to standard cell has been implemented for a single-
onSo . layer technology . BeSide the potential graph the algorithms 

in that program work upon a two dimensional ~if 06 bOXe6 ('rect

angular grid'). A box stands for a square unit-surface. The size of 

such a box depends on the components of the concerned circuit. It 

must be chosen such that each component can be efficiently fit in a 

number of these boxes. This number is called the component 6~ze. Boxes 

are arranged in rOWS and columns. Boxes in the first and the last 

columns and rows form the boad~ of the array. Boxes are adjacent 
if they have a side in common. 

To emphasize the parallelism the decomposition is kept similar to the 

one of standard cell systems given in section 2.2. 

1. Partitioning of components in c-Ievels. Because of its bipartite

ness the vertices of the potential graph can be partitioned such 

that no block in that partition contains c-vertices as well as t

vertices. Edges connect only vertices of different blocks in such 

a partition. Some of these partitions have the property that blocks 

have one-edge-connections to at most two blocks. Assuming that the 

graph is connected and that at least one block does not have one

edge connections to two different blocks, it is possible to order 

the blocks linearly such that only pairs of consecutive blocks have 

edges between each other. In that case the blocks are called !evel6 

and they are ordered by !evei numb~. A partitioning into levels 

is easily obtained: select any subset consisting either of c-vertices 

or of t-vertices for being the first block; each next block consists 

of the vertices not yet selected and connected by one edge to an 

already establ ished block. This way of obtaining levels is often too 

rigid to be practical. Replacement of an edge by a chain of edges 
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with p~eudo-e-ve~CeA and extra t-vertices is allowed if the 

bipartiteness of the graph is preserved. These extensions and 

thec;holc;eof the first block can be used to get bonding pads in 

the chip border and to control the c-levet-c~ i.e. the minimal 

area requ i red to conta ina 11 components represented i'n the cOll1lern

ed level. level claims are also.measured in the number of boxes. For 

reasons to be explained level claims have to be odd, but apart from 

that not greater than necessary. Accordingly the level claim for 

a certain level is obtained by summing up the component sizes of 

all c-vertices in that level, and in case the result is even in

creasing it by one. The extra box is the size of an extra c-vertex 

called the p~y v~ex. In order to determine the number of rows 

and columns the level claims are added together. The result is a 

lower bound on the number of boxes. In determining the array dimens

ions several rules are taken into account: small chip area, rest

rictions on length-width ratio and others. Futhermore, the number 

of columns have to be even and less than the level claim of all 

levels except the first one and the last one. Together with the 

oddness of the level claims the last requirement facilitates the 

placement procedure without appreciably affecting the quality of 

the layout. 

2. Ordering of the c-vertices within a level. This ordering may be 

establ ished under different criteria such as short total inter

connection length, small number of crossings, andnarrow·wii-ing 

channels. If only one interconnection layer is available a plan

arization process is required. A suitable planarization algorithm 

is the "cascade method" OTT76 since it produces simultaneously an 

ordering of the vertices in the levels. The obtained orderings are 

recorded by v~ex po~~~. In order to facilitate the discussion 

the levet llep.teAenta..tion 06 a gllaph (LRG) has been introduced. The 

vertex position - if assigned - and the level number are considered 

as an abscissa and an ordinate respectively. Edges are represented 

by curves between the points assigned to its vertices by their 

vertex positions and level numbers. If the graph has been planarized 

these curves must be disjoint. Parity vertices obtain a greater 

vertex position than any other vertex in the level. 
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Figure 2,11: 

The level representation of a 

planarized potential graph. Vertex 

positions and level numbers are 

chosen to be consecutive integers. 

3. Placement of the components. The task of the placement algorithm is 

to establ ish a relation between the c-vertices and the array of 

boxes. On the basis of the graph, the level number, the vertex pos

itions and the component sizes strips of boxes will be assigned to 

c-levels and connected sets of boxes in these strips will be assign

ed to c-vertices. 

StJUp a.6l>.i.gnmun-t: A strip is a set of lexicographically consecutive 

boxes. They have exactly as many boxes as the respective level claim 

amounts to. Provided that components with sizes greater than two 

have flexible geometry, every component can be represented in the 

strip of its level by a connected set of boxes having the correct 

size. If the strips are ordered according to the associated level 

numbers, the strip assignment must be such that the lexicographical 

ordering of the boxes is a refinement of the strip ordering. This 

method of assigning strips causes interconnections to be needed 

only between components in the same orin successive strips. Only 

pseudo-c-vertices make interconnections between non-adjacent strips 

possible. 
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meander 

which is o.btained by folding 

th~ c-level c The arrows indic

ate the ordering of the boxes 

in the strips 

Box o..M.{.gnmen-t: In order to preserve the ordering of c-vertices in ,. 
their levels, boxes in a strip are ordered columnwise;' traversi'ng 

the columns alternately up and down. In case the level number is odd, 

the first column is traversed top-down; if the level number is even, 

the first column is traversed bottom-up. Thus the ordering of c

vertices in the levels is reflected in the placement of components 

in a strip. Since the level claims - except possibly the first and 

the last one - are greater than the number of columns, components 

represented by c-vertices with the extreme vertex positions of the 

level are placed in the border of the array. If the level claims of 

the extreme levels are less than or equal to the number of columns 

all the c-vertices of these levels are assigned to border boxes. 

Because of the odd-and-even conditions a connected set of boxes (a 

componen-t domo.tn) is assigned to each component. The truth of this 

assettion is immediately clear after observing that possible jumps 

in the horizontal strip boundaries occur alternately after an odd 
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and an even numbered column. As a result of this procedure the 

Figure 2,13: 

If the odd-and-even conditions are 

not observed, components might get 

domains which are not connected. 

c-level is supplied with the required number of boxes folded up 

to fit in the width of the array. The component domains of a c-level 

thus obtain a meander I ike structure (Figure 6.16),:. 

4. Determination of the downsets and upsets. The corresponding step 

in standard cell methods, net decomposition, is considerably more 

complex than this step, because much of the work has been done 

already in generating an LRG. The procedure follows from the 

definitions. The downoet of a c-vertex is the set of t-vertices 

in a level with a lower number and connected with that c-vertex 

via an edge. The t-vertices in a higher level that are connected 

with a c-vertex via an edge make its up~et. 

5. Transet analysis. Let us consider a homeomorphic mapping from the 

plane in which the LRG is onto the plane of the array of boxes 

which maps the LRG within the boundary of the array and the c

vertices on points in the associated components domains. The 

images of c-vertices in adjacent component domains are thought 

to be connected with the boundary by the shortest possible line 

segments. The images of these line segments under the inverse 

of the mentioned homeomorphic mapping are called ~noc~ve6. With 

each pair of c-vertices having a claim to interconnection by a 

transcurve and with each c-vertex demanding a connecting trans

curve to the image of the array boundary a so-called transet is 

associated. A ~noet is defined as the set of t-vertices of which 

the t-stars a t-~~ is a t-vertex with its incident edges) have 

to intersect the concerned transcurve irrespective of the chosen 

mapping. Three kinds of transets are distinguished. In6~ are 

transets associated with c-vertices of the same level. Int~~ 

belong to c-vertices from different levels. Ex~~ are transets 

involving the array boundary. Transets can be easily derived from 

the LRG. The whole procedure determining the transets comes to 
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Figure 2.14: Three transcurves (full lines) are shown. Notice that the t-

stars that are intersected by these transcurves cannot be 

avoided. These transcurves give rise to three different kinds of transets: 

the inset (16,20), the interset (15,25) and the exset (17). The subsets 

which have to be examined are (17, 18, 19) and (12, 13, 14, 15) for the 

inset (16,20) (16, 17, 18, 19, 20, 26) and (24, 23, 22, 21, 12, 13, 14) 

for the interset (15,25) and (18, 19, 20) and (12, 13, 14, 15, 16) for 

the exset (17) 

forming two subsets of the concerned c-levels and examining the t

vertices of the concerned t-level on having edges to vertices of 

both subsets (Figure 2.14). To enhance uniformity in the procedures 

to follow downsets and upsets are also ca!'led transets. In the single 

layer case all these sets must be ordered. The ordering is automat

ically obtained by a systematical search for the elements of these 

sets. The system must be based on the sequence in which edges leave 

c-Ievels. 

6. Routing of the horizontal channels. Wiring is restricted to channeio 
between strips and some folds of the meanders. Only pseudo-c-vertices 

make deviations from this rule possible. Ho~zontal channelh strictly 

follow the dividing lines between the strips which will be their 

centerlines. They extend from border to border without any break. 
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In the formation of the channels transets playa crucial role, 

because of the relation between their cardinality and the re

quired channel capacity. If the transets are ordered sets - as 

for example in the single layer case - there is also a direct 

relation between these orderings and the sequence in which the 

interconnections are entering the channel and the relative pos

itions of the wires in the channel. The consequence of being 

able to determine the required channel capacity and the pin 

sequence a priori is that one is no longer dependent on path

finding algotithms liable to fail completion because of mutual 

blocking. Having found the pin sequence by juxtaposition of the 

respective transets coordinates have to be assigned to the pins 

in accordance with that sequence. In absence of a more specific 

rule one may uniformly distribute the pins over channel segments 

reserved for connections leaving the contiguous component domain 

(upsets or downsets!) or for connections entering the channel be

tween two adjacent components domains (insets!). Often there are 

specific rules for example imposed by the layout of the individual 

components Or necessary to avoid loop constraints. Anyway the 

relevant information for the router is a set of longitudinal ~n 

~oo~nate¢, a specification of the pin position relative to the 

channel, and the t-vertex involved. The procedure for tracing the 

interconnections loosely adapts the idea of Lass' aperture LAS69. 

Here an ap~~e is a channel segment between two consecutive pin 

coordinates. The procedure completes all parts of interconnection 

nets that will fall into the range of the actual aperture before 

stepping to the next pin coordinate. The ordered sets of nets 

entering the rear side and exiting the front side are called the 

old and the new bu66en respectively. Each net in the old buffer 

corresponds with a single point at the rear side of the aperture. 

The points in question are called po~e~ point6. They are dis

tributed over the channel width. To each net in the new buffer a 

potential point at the front side is assigned. Potential points 

are the terminal points of interconnection segments to be completed 

within the aperture. If the same net is contained in both buffers 

the corresponding potential points will be connected. It is im

portant to notice that the new buffer can be easily obtained from 
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Figure 2.15: Formation of a channel 

the old one, since differences are restricted to the outmost nets 

due to the entering or the termination of nets in the channel. 

New buffers are formed by duplicating the nets which have to be 

extended and by prefixing or postfixing eventual new nets. The 

procedure for assigning strips C stage 3) allows for one jump in 

a horizontal channel. Such a jump does not cause serious difficult

ies. The channel is divided into pa<'ts by ~ 450 tut at the place-', 

of a jump and one part is shifted over one grid unit. Corresponding 

nets are connected by vertical paths . 
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Figure 2.16: Results of the two routing phases 

7. Routing of the vertical channels. Apart from some slight divergences 

vertical channels are formed in the same way as horizontal channels. 

They follow the vertical grid Lines of the array. When they meet a 

horizontal channel, all the nets of the vertical channel are termin

ated (the new buffer does not become an old one), At the other side 
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nets have to be entered to form an old buffer from which the channel 

fnl"ma,tion is continued. 

Figure 2.17. TI-JQ results of the router. On the left hand side is the com

pletion of the example used throughout the description of the 

program. On the right hand side is the combination of the two results of 

figure 2.16 
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3. The genealogical approach 

In the Automatic System Design Group of the Eindhoven University of Tech

nology a project has been initiated to implement a system conformal to the 

imperatives of structured layout design. The first results were published 

in 1980 SZE80 The operating principles of this system, called SAGA, will 

be presented in this chapter. 

3.1 Outline of the SAGA system 

The core of SAGA can be divided into three successive parts that can be 

distinguished mainly on the basis of the way they treat the structure tree. 

The last part does not affect the structure tree, the first two parts do 

extend the structure tree, but in ent i re~l y -d i fferentmanners. The three 

parts are called GENEALOGIZE, PROCREATE, and INTERRELATE. because of an 

analogy with composing a saga (figure 3 • .1) •. 

In the other sections th.e main lines of the system are sketched. The 

position of individual procedures is here indicated in an informal program 

description. 

SAGA (hierarchy, {module characterization }) 
procedure INSETFIT (slice] 

begin for each 'successor' inset cell do 

assign predescribed dimensions: 
adjust slice width to widest sUCCessor slice; 
fit other slices with minimum overall disturbance 

end 

procedure PERMUTE (slice) 
order successor slices to reduce the width to be expected: 



procedure REFLECT (inset cell) 

find optimal orientation; 

procedure IMPROVE (slice) 

begin INSETFIT 

for successor slices do 
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begin PERMUTE (successor slice) 

end 

end 

for each 'second generation successor' inset cell do REFLECT 

(, secondoenerat ion successor' inset cell) 

PERMUTE (slice) 

for each 'successor' inset cell do REFLECT ('successor' inset cell) 

procedure OATASCRAPE (structure) 

collect as much information as possible (pin positions of the inset 

cells ("FETCH"). assign net to the junction cells. assign sets of pins 

to slice sides. call a "FILL" routine with correct technology and style 

dependent features to establish the layout of the blank cells), 

procedure EXPAND (structure. {modules}) 

expand structure with a slice; 

procedure MERGE (user compound) 

minimize deformation by merging successor slices into rrogram compounds; 

procedure ROUTER (junction cell. technology. style) 

determine the contents by the appropriate algorithm, 

procedure ASSEMBLE (slice) 

begin compact, 

determine relative coordinates of successor slices 

end 

procedure GENEALOGIZE ({modules}) 

begin select a germ module; 

assign a slice to the germ module; 
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Figure 3.1: The name and the terminology is chosen, because the procedure 

can be nicely compared with preparations a writer of a saga. 

a historical novel about a family, might make. His starting point is a 

number of historical facts he wants to fit in his own pattern. Since such 

a comparison also enhances comprehension of the program's operation~ an 

example is given. The corresponding terms of the description in the text 

are given between brackets. 

a) In the example the Medici are chosen as the family the saga is about. 

The writer has chosen Giuliano. the only brother of Lorenzo il MagnifiCO 

as the central character (germ module). 

b) In order to find the family relations he needs a family tree in which 

all legitimate male adult Medici that lived before or during the life 

of Giuliano, are represented. He starts with constructing this family 

tree (structure tree) by finding all brothers of Giuliano with their 

children ordered according to their age (relative position). Giuliano 

had only one brother, Lorenzo, who was 4 years his senior and left 3 sons. 

c) Then the writer passes on to the father, Piero il Gottoso, who is treated 

in the same manner. However, this Medici member had only one brother, 

Giovanni, whose only child died before reaching adulthood (so Giovanni 

is a leaf in the family tree Which corresponds to a slice aSSigned to a 

cell). 

d) The father of Piero il Gottoso was the famous Cosimo, the Father of the 

State. His younger brother Lorenzo begot only one son, Pierfrancesco. 

(In the structure tree the counterpart of an only-begotten son is an 

extra change of slicing direction). With this extension of the tree the 

'genealogical phase' comes to an end, because the father. of C9simo and 

Lorenzo is the oldest Medici whose precise facts are known. (The 

structure is not expansible). He is to be the common ancestor of the 

characters in the saga. 

e) TlloUgh lack of factual background prevents the writer from continuing 

tracing ancestors, he still is capable of extending the tree by finding 

children and grand-children of family members represented by leaves in 

the partial tree (user compounds). Pierfrancesco for example had two 

sons, of which the elder, Lorenzo il Popolano, had three sons. In one 

step of the 'procreative phase' the generations are thus extended. (In 

the slicing configuration the corresponding cutting line is first ver

tical, because Pierfrancesco Was the only son of Lorenzo). 
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Four steps in the genealogical phase and one in the procreative phase are 

illustrated. It is impurtant for comprehending the operation of the pro-

gram to note which generations are involved in each step, and when the two 

phases come to an end. The genealogical phase stops when the common ancest

or is found (the structure is not expansible, i.e. the whole system is cover

ed). The procreative phase continues until all potential parents are invest

igated (until all leaves represent slices assigned to cells). In the third 

phase the writer has to fill in the details of the lives and interrelations 

of his characters with different degrees of freedom depending on the hist

orical facts known abollt the~. 



end 

structure: = assigned slice; 

~. structure expansible ~ 

- 50 -

begin EXPAND (structure, {unplaced cardinal modules}), 

IMPROVE (new slice) 

end 

OATASCRAPE (structure) 

procedure PROCREATE (structure tree, {user compounds}) 

begin while uSer compound leaves exist do 

end 

begin take a user compound 

represented by a leaf, 

MERGE (user compound), 

IMPROVE (new slice), 

DATASCRAPE (new slice) 

end 

procedure INTERRELATE (structure tree) 

begin ~ common ancestor not visited do 

begin select a node with all successors 

except juntion cells processed, 

end 

end 

for each 'successor'junction cell of 

the associated slice do 

ROUTER (., successor' junction cell), 

ASSEMBLE (associated slice) 

begin data preparation, 

end 

GENEALOGIZE ({principal modules}), 

PROCREATE (partial genealogy, (user compounds}), 

INTERRELATE (genealogy), 

data collection 
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3.2 Data preparation 

Beside some auxiliary data derived from design rules and designer require

ments the input for the SAGA-·system consists of the (functional) hierarchy 

of the system to be integrated and the initial characterization of the 

modules represented in the hierarchy. With these data the program starts 

building up a module data ba~e. This module data base will at any moment 

contain the actual characterization of each module. This characterization 

consists of: 

1. The ~denti6~c~on pa4t: In this part some fixed information is encoded 

such as name in the input file, type of the module, and place in the 

hierarchy. Some variant data may be added such as flexibility class (dis

cussed later) and level in the structure tree. 

2. The gkaph£cal pa4t: This part either contains a pointer indicating where 

the layout of the module is stored or a pointer referring to the data from 

which the layout is to be derived and by which algorithm. 

3. The 60nm vecto4: The components of this vector are the parameters in cal

culating the deformation and position cost of the module in a certain 

realization. The cost formula depends on the type of the module. 

4. The 6le~bLeity p~: Data subjected to the stiffening process such as 

dimensions and orientation (preliminary or definitive) and pin inform

ation (net to which the pin belongs, side of the rectangle in which the 

module is to be realized, pin position) is referred to by PQinters con

tained in this part. 

What data have to be immediately entered into the module data base depends 

on the type of the module. For master cells the input file contains a refer

ence to the master library, where the layout, the form vector, and the list 

of external nets with the associated relative pin positions are stored. For 

user cells these data must be contained in the input file itself, and routed 
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to the user library. A pointer indicating its place in the user library 

should be stored in the pertaining parts of the module characterization. 

The form vector, the list of external nets, and the data for technology 

and style dependent algorithms that have to determine the internal layout 

of blank cells, should be in the input file for all other function cells. 

Again pOinters should be sent to the module data base, the bulk is to be 

stored in the user library. For user compounds the form vector should be 

evaluated from the form vectors of its submodules and some empirical pro

vision for the area of junction cells. 

The entire module data base resides in the common data base of the design 

system. Parts of it are from time to time copied in the private data base 

and an updated version might be sent back. 

3.3 GENEALOGIZE 

GENEALOGIZE only works on the set of cardinal modules. It selects one 

cardinal module that is going to be the geam module. This single slice 

is the first of a sequence of expan6~bte ¢tnu~~. The expansion is per

formed by selecting a group of cardinal modules on the basis of a heuristic 

drop-out procedure. The heuristic is based on the cost calculated with the 

components of the form vector. It measures in a weighted manner the defon~

ation these modules will incur and the connectivity with the expansible 

structure. To perform deformation calculations the width of the interjacent 

junction cells has to be estimated even with the sparse information avail

able in this stage. The inexactitudes have to be compensated by the flex~ 

ibility of the modules. The contribution of connectivity plays a role in 

preventing interconnection lengths from unnecessary inflation, but also in 

choosing a side of attachment by discriminating the four sides. Each ex-
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pansion, therefore, tries all sides of the expansible structure, and chooses 

the one allowing the lowest cost. The selected group will form a program 

compound if it consists of more than one cardinal module. 

In figure 3.2 two successive expansions are illustrated. Each time a slice 

is assigned to the selected group. This new slice is immediately subjected 

to some improvements concerning its dimensions in order to fit in inset cells, 

the sequence of child slices in order to minimize the maximally needed width, 

and the or'ientation of inset cells in order to simplify future wiring patterns. 

-
The structure is no longer expansiblE when it ~ontains all cardinal moduleso 

Of such a structure as much data is extracted as possible in that stage of 

the construction. The contents of the inset cells are therefore fetched from 

the libraries, nets are assigned to junction cells, pins are distributed 

over the four sides of their modules, and blank cells are filled by special 

technology and style dependent algorithms. 

GENEALOGIZE can be seen as an automatic chip-planning method. The decisions 

are dominated by form considerations. However, interconnections playa 

dominant role in area consumption. The justification of this choice must 

come from practice. If interconnections should dominate the decision steps 

another chip-planning algorithm must be developed. It should derive and 

take into account length of routes, ease of wiring, area consumption, etc. 

The advantages of slicing are still valid· and should be obtained. 
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FIGura 1.2: GENEALOI;IZE start. with HAlectlng a Hsrm module amonc thn 

cardinal modules. B in the figure. EXPANU starts with join

ing a slice containing all unplaced cardinal modules. Since the width of 

this slice is fixed by the side of the actual structure. the height has 

to be adjusted such that these modules and the estimated junction cells 

can be accommodated. For each individual module its deformation and its 

connectivity to the expansible structure is determined. These values and 

the components of the form vector are the arguments for the contribution 

of a module to the cost associated with the proposed structure. Next. 

the module with the highest contribution is removed. C in the figure. Now. 

the calculations are performed for a slice with all unplaced cardinal mod

ules except the one removed. If the total cost and at least one individual 

contribution are lower than in the preceding structure the process is con

tinued. otherwise the preceding structure is accepted for that side of the 

expansible structure. In the figure the process is continued until only 

one module was proposed for joining the expansible structure. Apparently. 

either the total cost or the individual contribution of that module in

creased. so the structure with two cardinal modules. E and F. is accepted. 

The entire process is repeated for all sides of the expansible structure. 

and the result with the lowest total cost is accepted as the new structure 

which is immediately improved. If this new structure is expansible the 

EXPAND procedure is applied to it. otherwise GENEALDGIZE is completed by 

extracting new data from the final structure. To prevent excessive deform

ation in the last steps of GENEALOGIZE the total cost of the preceding 

slice is added to that of the actual new sllce and compared with the low

est first proposal (thus. with all unplaced cardinal modules) of EXPAND 

in the preceding step. If the latter is lower that proposal is still accepted. 

3.4 PROCREATE 

PROCREATE is directing all action to user compounds represented by leaves 

in the partial genealogy tree. As GENEALOGIZE this procedure also establishes 

program compounds, but the constraints are now essentially different. Whereas 

GENEALOGIZE utilized the fact that chip dimensions are quite free, PROCREATE 

attempts to fit the modules in given contours guided by the deformations the 

modules incur. However, the area assigned to a user compound is partially 
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based on area estimations. If less area is needed than was expected an 

amount of spare area results. Spare area can be used to offset extra area 

demands of child slices. If more area is needed than expected extra area 

has to be demanded from ancestors. The nearer this ancestor is the sooner 

the disturbance is nullified. 

The dimensions of a slice and its child slices have to satisfy the equations 

in figure 3.3. By giving the widths of the junction cells estimated values. 

only one degree of freedom is left. This can be eliminated by constraining 

the dimensions of the slice. for example fixing one of them or the aspect 

ratio to a feasible value. 

Figure 3.3: In PROCREATE user compounds are optimized by establishing new 

program compounds such that the sum of all individual deform

ations is reduced. This optimization is performed for each user compound 

by the MERGE procedul'e. It starts by assigning a slice to each submodule 

of the concerned usel' compound. The widths of the junction cells are again 

estimated by probabilistic techniques. Next. the dimensions of the slices 

are calculated. and the deformations associated with these dimensions are 

determined. Summation of these deformations gives the total cost of the 

proposed slice. The ~air of child slices having the highest contribution 

to this sum is combined to form a program compound. This is a new proposal 

for the slice to be assigned to the user compound. The same calculations 

are repeated for this newly proposed slice. If the cost is lower than for 

the preceding slice proposal a new program compound is formed in the same 

manner. If the cost is 'not reduced the preceding slice configuration is 

accepted. In the figure the five submodules are initially assigned to child 

slices. G and J, apparently. have the highest deformation, and consequently 

have to be combined into one child slice. This new child slice and H have 

the highest deformations in the new configuration. So, they are combined. 

Now. I and K are the candidates to be merged which yields the last config

uration in the figure. Combining the final child slices does not reduce the 

cost which means that the user compound gets a slice with two child slices 

containing I and K. and G, J and H, respectively 
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Figure 3.4: A slice and its associated set of equations (no variable is 

negative) . 

The final slice configuration assigned to the user compound is subjected 

to similar improvements and data determination as in GENEALOGIZE. 

3.5 INTERRELATE 

GENEALOGIZE and PROCREATE establish the genealogy of the system once and for 

all. INTERRELATE has to assemble the layout in a bottom-up fashion. Slices 

are to be treated one by one in a sequence satisfying the condition that no 

slice is treated before all its successor slices are treated. Visitino a node 

during the bottom-up traversal of the genealogy tree means: finding the 

contents of all junction cells of the corresponding slice and subsequently 

squeezing the slice longitudinally. The relative coordinates of the successor 

slices are recorded. 

3.6 Stiffening of modules 

One of the imperatives of structured layout design is the flexibility of 

the modules. During the design process the modules are subjected to a 

stiffening process. In SAGA a module can be in six different flexibility 

classes. In which class a module is depends on how much data have been 

acquired. particularly on what is known about the distribution of the pins. 

the dimensions and the position. At the end of the design all modules should 
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be in the lowest class. 
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Conc 1 us ion 

In conclusion it may be stated that the design of correct lay-outs for 

densly packed large integrated circuits is a difficult but manageable 

task. The key to the solution of the problem is structuring the design 

problem. The present state of the art together with some of the new con-

'cepts- assenibfea-in~thls report present a fairly dependable foundation 

for further approaches. 

Our optimism is based on the observation that many very complex systems 

(electronics and other) have been successfully designed and built in 

the past. The amount of design data of a large mainframe Is in no way 

less than that of a future VLSI microprocessor chip. Still engineers 

and managers were able to cope successfully with those masses of data. 

For those design problems structural hierarchy was the essential tool 

as well. The hierarchy was Imposed by the physical realisation via 

racks - back planes - printed circuit cards - chips. The design data 

were distributed over various designers all 'WOrKIng on--,HUe-'::-e-nt' 

levels of the hierarchy. Anyone of them saw only a limited subset of 

the data, namely the ones being relevant for his task. The managers 

were responsible for the proper partitioning of the design task and 

data such that any designer saw not more data than he could cope with. 

VLSI technology suddenly enhances the complexity on the chip level to 

the extend that a whole design crew has to be put to work in order to 

complete the design on one Single chip within reasonable time. 

However, the design data created by any of the designers have to be 

assembled into one single set of masks. Moreover area, shape and 

structure of any of the modules have a great Influence on the overall 

effectivity of the design. This results In Iterative reshaping and re

structuring of the various modules and this process requires more 

communication between the designers of various modules than with 

previous realisation techniques. Consequently, the convergence of the 

design may be slow or even not at all present. 

As it has been said this problem seems manageable. The essential 

breakpoint of VLSI design and -production will eventually be the 

testing problem. Whereas the testing of random access memory chips 

will probably be not too difficult, the testing of data processing 

chips is at the moment the essentially unsolved problem. 
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