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ISOSCELES POINT SETS IN 

by Aart Blokhuis 

Abstract. 

Let X be a set of points in Rd such that the triangle determined 

by an arbitrary triple from X is isosceles, then 

card(X) ~ ~(d+l) (d+2) • 

Introduction. 

An isosceles set X in Rd is a set of points such that any triple 

among them determines an isosceles triangle. Isosceles sets where 

introduced by Kelly, the problem goes back to Erdos tl] 
Troughout the article X will denote an isoscel€s set in Rd, 

X = f xl' x2 ' ••• , Xv 1 and we assume 

aff{X) = I i aixi \ L ai=l 1 = Rd. 
\ 

For any subset Xl c: X, dim(X
l

) denotes the dimension of aff(X l ). 

By A(X) we mean the set of distances between points of X. 

For a eA(X} we denote by x the graph with point set X and 
a 

edges the pairs of points at distance a. X is called decomposable 

if it is possible to partition X in sets Xl and X2 with l X2 \ '> 1 

such that a point of Xl has the same distance to all points of X
2 

• 

(This distance may be different for several points of Xl though.) 

Finally if card (A (X» = 2 :; X is called a two.;..distance set. 

The structure of isosceles sets. 

Lemma 1. 

Proof. 

If X is decomposable, and (X l 'X2) is a decomposition for 

X, then dim (Xl ) + dim(X
2

) -::: dim(X) . 
Let P be the orthogonal projection on Aff(X

2
) . Then for 

any Xl e: Xl ' pXl is the center of a sphere in Aff(X2) 

containing X2 • Since X
2 

spans Aff(X
2

) P maps Xl onto 

a single point. Therefore the flats Aff(Xl ' and Aff(X2) are 

orthogonal and the result follows. 
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Lemma 2. If X is indecomposable then it is a two~distance set. 

The proof is split into three parts, first we examine the case 

that there is some distance a for which X is disconnected. 
a 

Then we look at the case where there is some a for which X a 
has diameter larger then two. And finally we consider the case 

that X has diameter two for each ae A(X). a 

Case 1. 

Case 2. 

Suppose there is an a e A(X) such that X 
a 

is disconnected, 

then X is decomposable,for let X
2 

be a component of 

having more then 1 point. From the isosceles property 

it now follows that any point not in X
2 

has the same 

distance to all points in X
2

• 

X 
a 

Now suppose 

be a distance 

X a 
is connected for all a e. A(X} and let b 

such that there are two points, u and v at 

distance 3 in ~ • Let a be the euclidean distance between 

u and v. We claim that X is a two~distance set. Let u 

be the set of points in X that are closer to u than to v 

in the graph Xb and let V = X, U For any z in U 

there is a (u,z) path entirely in U so by the isosceles 

property v and z have distance a. Similarly u has 

(Euclidean) distance a to any point in V. Now take zl E- U 

and and let be a shortest (zi'u) path and 

a shortes (z ,v) path. If z is adjacent to 
2 1 

in 

they have distance b which is okay. If zi is not 

adjacent to any point on P
2 

then they have distance a 

by the isosceles property, similarly if z2 is not adjacent 

to any point of Pi • Now if both points do have a neighbour 

on the other path it is clear from the picture that the 

following holds : "Z.,"z. , 

contradiction. Now for any further distance 

c the graph cannot be connected since U and V 

are only joined by distances a and b 

a two~distance set. 
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Case 3. Finally we suppose that X is connected for every distance a 
a 

Theorem. 

and has diameter 2. Now suppose there are three distances, 

call them a, b and c. We will construct an infinite subset 

of X thus obtaining a contradiction. 

Let z be an arbitrary point in X and a 1 a point at distance 

a from z. In 

both z and 

X there is a point b
1 

having distance b to 

for the diameter of ~ is 2. Similarly we 

can find a point c
1 

having distance c to both z and b 1• 

Since is part of the triangle is either 

c or b ,but since it is also a side of the triangle c
1

a
1
z it 

is either a or c, and therefore it has to be c. Now let 

be a point at distance a from both and z and define 

b
2

, c
2

, a
3

, .•. in the way indicated above, <we will show that 

at each step at the const~uction of the infinite set the last 

constructed point has the same distance to all previous constructed 

points. Suppose the last point we added was ~, we assume 

that our induction assumption holds for all points preceeding ~, 

i.e. d
j 

is a point of the sequence, where d = a,b or c 

and j < k then d. has distance d to all points preceeding 
J 

if 

d
j

• By definition a
k 

has distance a to z and c
k

_
1

• 

Comparing the triangles zakbj and Ck_l~bj we see that 

~bj is a. Similarly, comparing the triangle' Z~Cj and 

b j +1akc j (where j+l <: k) we conclude that ~Cj is a. 

Finally th~ triangles bk _1a
k

a
j 

and ck_l~aj force ~aj to 

be a. Since every point has a different distance to it's 

immediate successor and it's predecessors all points we obtain 

in this way are new, therefore we constructed an infinite subset 

of XJ a contradiction. Therefore X is two~distance set. 

Let X be an isosceles set in Rd I then 

card (X) ~ ~(d+l) (d+2) 

equality implies that X is a two~distance set, or a 

spherical two-distance set together with the center. 
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Proof. The proof is by induction. If d=l then 3 is the maximal 

cardinality and X is a spherical set together with it"s 

center. For d==2 Kelly t 1] proved that the maximum is 6 

realized only by the centered regular pentagon. 

Now let d > 2. If X is a two-distance set then we have the requiered 

inequality (see l ~1) .. Now suppose X is decomposable, (XI ,X2) being 

a decomposition. 

Case 1. dim Xl =F O. Since I X2 \ "> I we have 0 < dim Xl < d 

Let dl=dim Xl ,then by induction we have: 

Case 2. dim Xl == O. In this case Xl is a single point and therefore 

X
2 

is spherical. If X
2 

is not a two-distance set it is 

decomposable say X
2 

= (X
2 

I , X
2 
It). But now (Xl V X2 I , X2 It) is 

a decomposition of X as in Case 1. This finishes the proof. 

Final Remarks. 

Cases 2 and 3 in the proof of Lemma 2. can be considered as the 

proof of the following pure graph~theoretic theorem: 

Let K (the complete graph on n vertices) be edge~colored with k 
n 

colors, such that (i) every triangle has at most two colors, and (ii) for 

each color, the induced graph on that color is connected. Then k=2 • 

I wonder what the implications and possible generalizations of a theorem 

like this are in graph-theory. 
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