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Information about this Report 

In 1989. from September 22 till September 29, Prof. H.J. Wacker from 

the Johannes Kepler Universitat (Linz, Austria) gave a course on 

Optimization at the University of Technology Eindhoven (The Netherlands). 

This course was given by him to an audience of ECMI-students and faculty 

staff members. 

After having finished his lectures Prof. Wacker left some problems to 

be solved behind him in Eindhoven. One of those problems was given to three 

students as a problem to be solved for the "Modelling Colloquium". 

This "Modelling Colloquium" is an important part of the ECMI-education 

in Eindhoven. All the Dutch ECMI-students have to play an active part in 

this course. They are splitted into small groups, two to four persons, and 

must try to solve a (mathematical) modelling problem. They work on this 

problem for about three to four months, and finish it by writing a report, 

in English. about it. As the name of the course suggests emphasis is placed 

on the modelling aspects of the problem at hand rather than on the 

mathematical techniques to solve it. 

This report is the result of the work done by the three students on the 

problem from Prof. Wacker. This was a problem about the optimization of 

hydro energy power plants. In his lectures Prof. Wacker presented a rather 

difficult theorem which was used in order to obtain a solution for the 

optimization problem. However, we do not use this theorem. Instead of using 

this theorem, we tried to find an easier way to get a solution. We chose 

this option because we wanted to make new models of a power plant. In this 

way we were able to train our modelling skills. 

Our solution to the problem is the subject of this report. 

We hope you enjoy reading this report. 
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1. Introduction to the Problem 
§ 1.1 General Introduction 

In Austria the energy production by means of hydro energy power plants 

is, in contrast to most European countries, a very important economic 

factor. In 1983, for instance, hydro energy constituted 68% of the total 

energy production. 

There are two types of hydro energy power plants: river power plants 

and storage power plants. The total energy production of river power plants 

is more than twice as large as that of storage power plants. However, 

storage power plants are more important. The reason for this is that storage 

power plants allow the producer to produce the most energy when the demands 

are the highest. 

Storage power plants can be classified according to their 

"characteristic" periods. A characteristic period of a storage power plant 

is the time-interval in which the full reservoir can be emptied and refilled 

again. For small reservoirs this time-interval is at least some hours, and 

for large reservoirs at most one year. 

Another important feature of a storage power plant is whether or not it 

is part of a system of (serially) connected storage power plants. Of course 

the operation of such systems is much more difficult to optimize than only 

one storage power plant. 

In this report we try to maximize the profit of two storage power 

plants over one week. These storage power plants are situated near the 

Schwarzenegger lake in Austria. The two power plants operate differently 

with respect to the discharges. For one reservoir, the older one, the 

discharges can only change at some fixed time-points during the day. For the 

other power plant, the modern power plant, the discharge can vary 

continuously during the day. 

The profit depends on the tariff, which is time-dependent (e.g. 

different tariffs for day and night), on the discharge and on the height of 

water in the reservoir. During a period of maximal tariff we would like to 

have both maximal discharge and maximal height of water in the reservoirs. 

This is obviously impossible. So, we have to find some sort of balance. It 

is important to realize that the reservoirs and the outlets of the 

reservoirs have limited capacity. For example, the characteristic period of 

the reservoirs under consideration is about one day. 
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§ 1.2 The Problem 

As already mentioned in the preceding section, in this report we 

consider a system with two power plants (See figure 1.1). Because these 

power plants are rather small (the characteristic periods are about one 

day), and because the power plants are connected to the comparatively large 

Schwarzenegger lake, which guarantees a constant influx of water in the 

reservoirs, we can consider the two power plants to be independent. This 

means that we can optimize the two power plant independently. The resulting 

two optimal controls together form the optimal control for the whole system. 

We try to maximize the profits of the given power plants over a week. 

The profit is the integral of the product of the tariff, which is a 

time-dependent block-function, and the momental power production. This 

momenta! power production is a function of the head of the water reservoir 

and the discharge. By means of the discharge the producer can control the 

momental power production. 

The capacity of the reservoirs and the capacity of the outlet lead to 

some constraints on the total amount of available water and on the discharge 

respectively. Moreover for one reservoir, the old one, only discharges of a 

special type are possible. Since for this power plant it is only possible to 

switch from one constant discharge to another one at flXed time-points. 

With these constraints, taking the profit as object-function, together 

with integral formula to describe the water flow, we have a nice way to 

consider the actual problem as an optimal control problem. 

The following numerical data are given to us by the producer of the 

hydro energy in the two power plants. These data are summarized again in 

Chapter 4. 

The old power plant: 

- The volume of the reservoir V must satisfy Vmin ~ V ~ Vmax. 

WhereVmin = 500000 m3 from Saturday 6 am till Sunday 12 pm. 

Vmin =: 50000 m3 the rest of the week, and Vmax =: 750000 m3
• 

- The constant influx Z is given by Z = 10 m3/s. 

- The maximal height Hmax = 165 m. 

- The discharge Q must satisfy Qmin ~ Q ~ Qmax. 

Where Qmin = 0 m3/s and Qmax = 30 m3/s. 
Because this is an old power plant, which is difficult to operate, the 

operators decided to change the discharge at fixed time-points. They 
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choose these fixed time-points to be the moments at which the tariff 
switches. 

For the modern power plant we have the same numerical data. 
The modern power plant: 

- The volume of the reservoir V must satisfy V min S; V S; V max. 

Where Vmin = 500000 m3 from Saturday 6 am till Sunday 12 pm, 

Vmin = 50000 m3 the rest of the week, and Vmax = 750000 m3
• 

- The constant influx Z = 10 m3/s. 

- The maximal height Hmax = 165 m. 

- The discharge Q must satisfy Qmin S; Q S; Qmax. 

Where Qmin = 0 m3/s. and Qmax = 30 m 3/s. 

- With this modern power plant it is possible to change the discharges at 

any moment. 

(N.B. We use the same notation for the old and for the modern power plant. 

Because the power plants are optimized independently. we think that this 

will not confuse the reader.) 

Modern 

Power Plant 

Figure 1 .• 

Old 

Power Plant 

§ 1.3 The Results 

The optimal discharge structures are drawn in Figure 5.1 for the old 

power plant, and in Figure 5.2 for the modern power plant. These optimal 

discharge functions will be discussed "in Chapter 5. In general, we can say 

that the optimal discharge functions have a bang-bang like structure. This 

is proven in Chapter 3. 
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2. The Problem 

§ 2.1 Mathematical Formulation of the Problem 

In this section . we define some constants, parameters, variables and 

functions. Some of them have been defined implicitly in the preceding 

section. Here, we also state which relations and constraints between them 

must be satisfied. We end by giving the mathematical formulation of our 

optimal control problem. 

We define: 

(*) to is the time at which we start to optimize. 

tN is the time at which we end. 

(*) Vo is the volume of water in the reservoir at time to. 

VN is the minimal volume of water in the reservoir at time tN. 

(*) Vmin and Vmax are the minimal and maximal volume of water respectively 

in the reservoir under consideration. 

(*) Qmin and Qmax are the minimal and maximal discharge respectively of this 

reservoir. 

We also define the following functions : 

(*) Q(t) is the discharge from the reservoir at time 1. We are able to 

control this function. So, in mathematical terms we can take this as a 

control variable. 

(*) Z(t) is the known influx at time t. 

(*) VQ(t) is the volume of water in the reservoir at time t if the discharge 

is given by the function Q. 

(*) A(t) is the tariff function. This function can be described by : 

A(t) = Ai for t e (ti-l, til (i = 1, ... , N ) 

for certain moments to, tt. u .... , tN. The Ai's are constants. 

With these functions we define : 

(*) The height H of water in the reservoir is a function of VQ(t). 

H(t) = h(VQ(t» , with h strictly increasing. 

A typical example, which actually describes the modem reservoir, is 

h(V) = 160 + I V / 30000 · . 

(*) The power production P at time t is a function of Q(t) and VQ(t). 

P(t) = p(Q(t),VQ(t». We will use p(Q,V) = Qf(V) • with f strictly 
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increasing. In Section 3.1 and Section 3.2 we take f(V) = ch(V) with c a 

constant number. 

(*) The spillage S is a function of VQ(t). 

S(t) = s(VQ(t». 

We have the following relations and constraints: 
t 

(1) VQ(t) = Vo + I (Z(t) - Q(t) - S(t»dt 
to 

(2) VQ(O) = Vo 

(3) VQ(tN) ~ VN 

(4) Vrnin S; VQ(t) S; Vmax ( t e [to,tN] ) 

(5) Qmin S; Q(t) S; Qmax ( t e [to,tN] ) 

Our optimal control problem can be stated in the following way: 
tN 

Maximize the quantity I A(t)p(Q(t},VQ(t}}dt (= the profit) with respect to 
to 

all discharges such that (1), (2), (3), (4) and (5) are satisfied. 

§ 2.2 A Dynamic Programming Approach 

§ 2.2.1 Introduction 

An approximation of the solution of the mathematical problem defined in 

Section 2.1 can be found by solving a corresponding discrete problem. For a 

suitable discretization of time, the mathematical model sketched in Section 

2.1 can be reduced to a discrete problem, in the sense that integrals are 

replaced by sums. The solution of this discrete problem is an approximation 

of the solution of the continuous problem, and can be handled with the aid 

of dynamic programming. The general method to do this is sketched in this 

section. In Section 3 it is applied to some special situations. 

§ 2.2.2 Formulation of the Discrete Problem 

The general idea is the following. Subdivide the period [to,tN] in M 

subperiods. At the beginning of each subperiod i the decision must be taken 

of what type the discharge must be in this subperiod . So, we also have M 

decision time-points. 
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More formally we have : 

to, ..... tM decision time-points, 

Vi : volume at time-point ti (= state variable), 

: discharge function for the period i (= control function). 

In order to apply the principle of dynamic programming. the subdivision 

must be chosen in such a way that the tariff is constant on each period. 

The volume Vi+1 depends on the volume Vi, and on the discharge function 

Qi defined on [ti-I,ti]. The discharges Qi are taken out of some function 

space gi. 

More formally we define transition functions fi by fi(Vi-I.Qi) =: Vi. 

The function fi describes which state we obtain at time-point ti if we start 

with state Vi-I at time-point ti-I, and use a discharge Qi on [ti-l,ti]. Our 

goal is to maximize the profit Oi over the whole period [to.tN]. Therefore, 

we define a profit function Oi for each interval i. 

In the problem under consideration we have : 

ti 
fi(Vi-I.Qi) = Vi-I + I (Z(t) - Q(t) - S(t»dt for all i e (1 ..... Ml. 

ti - 1 
and 

ti 
Oi(Vi-I.Qi) = f Aip(Q(t),VQ(t» dt for all i e {1, ...• M}, 

t i -I 

. where Ai = tariff of period i (see Section 2.1). 

We now arrive at the following discretized problem: 

Maximize Li~ 10i(Vi-l.Qi) such that Qi e ~. and Vi = fi(Vi-l.Qi) (for all i 

e (1 •... ,M)). here gj is the decision function space for period i. It is at 

least to be taken such that VQi(t) e [Vrnin,Vmax]. and Qi(t) e [Qmm,Qrnax] 

for all t e [ti-l,ti]. 

To solve this optimal control problem we can use the principle of 

dynamic programming (Ref. 1). For this we define the following functions: 

Qi.opt: optimal decision function for the decision at time-point lM·i+ I, 

1'i: total value of returns over the last i periods when optimal decisions 

are taken. 

The functions Qi.opt and 1'i are determined recursively (Ref. 1): 

1'l(VM-l) = max OM(VM-l.QM). 
QM e gM 

1'2(VM-2) = max (OM-I(Vm-2,QM-l) + fl(SM-I(VM-2.QM-l»} 
QM- 1 e gm- 1 

etc. until 

1'M(Vo) = max (Ol(VO.Ql) + fM-l(Sl(VO,Ql»}. 
QI e gl 
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3. Some Models 

In this chapter. we give some models to describe the hydro energy power 

plants. Because in former times the strategy was to keep the reservoirs full 

all the time, there used to be no need to measure the spillage. The general 

opinion of the operators is however, that spillage is negligible. For this 

reason, we concentrate on models without spillage. In fact, only for these 

models we have numerical results. However. in Section 3.3 and Section 3.4 we 

do describe two models which include spillage. These models might be useful 

if spillage turns out to be not negligible. 

Note that if spillage is constant we can still use the models without 

spillage. In this case one can say that the net influx is the constant 

influx minus the constant spillage. Then one can use the net influx instead 

of the influx in the calculations. 

As we already indicated in the previous chapter, we use a dynamic 

programming approach in order to obtain an approximation for the optimal 

solution. 

§ 3.1 A Model for the Old Power Plant 

We start with a model for the old power plant. In this model there is 

no spillage, and the influx Z is constant in time. Furthermore time is made 

discrete by splitting each tariff period into smaller subperiods. During 

these subperiods the discharge Q is constant. 

Now, we can formulate this model as a dynamic programming problem as 

follows. 

1. The time is discretized into M ~ N periods to < 'tl < ... < 'tM. where to 

= to, 'tM = IN and {to,tt, .... IN} ~ {'to,'tl, ... ,'tM}. 

2. For ease of notation we introduce new tariff constants Bl,B2, ... ,BM. 

such 

that for each time t, the tariff at time t will be Bi, when 'ti·t S; t < 'ti. 
3. The state at time-point i, Vi, should be between Vmu and Vmin. 

4. The transition function fi(Vi,Qi) = Vi + (Z - Qi)(ti+l - 'ti). 

5. The allowed decision set at decision time-point i, Si(Vi), should allow 

as decision functions only those Qi that would not let the reservoir 

overflow or underflow. 

Therefore Si(Vi) = ( Qi E [Qrnm,Qmu) I Vmin S; f(Vi,Qi) S Vmu }. 
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6. The profit earned during period i Gi(Vi,Qi) is given by: 
ti 

Gi(Vi,Qi) = J CQih(Vi + (Z - Qi)(t - ti.l»dt. 
ti· 

With these definitions the problem can be stated as : 
M· 1 

max ( L Gi(Vi,Qi) I Vi+l = fi(Vi,Qi). Qi e Si(Vi) (i = O •... ,M-l). QM = VN }. 
i=O 

§ 3.2 A Model for the Modern Power Plant 

The previous model has two disadvantages if we use this as a model for 

the modem power plant. 

The first disadvantage is that only an approximation of the optimal 

control function can be given. 

The second disadvantage is that the total period has to be partitioned 

into very small periods in order to reach a certain precision. In this 

section we prove that the optimal control function has a bang-bang like 

structure, but the pieces where it is constant still can form any partition 

of the total period. A reasonably good approximation of the optimal control 

function can be obtained only if the total period is partitioned into 

sufficiently small periods. This will increase computing time. 

The model for the modem power plant, which is described below. has 

only one disadvantage namely, still only an approximation of the optimal 

control function can be given. It is not necessary however, to partition the 

total period into very small subperiods in order to obtain precise results. 

This model for the modem power plant is obtained by using two 

theorems. These two theorems describe the structure of the optimal control 

functions if the volumes of the water at the decision time-points are known. 

In the model for the modem power plant we use these optimal parts of the 

control function instead of constant parts. 

The state at the end of a tariff period depends on the volume of the 

reservoir at the beginning of that period and on the total discharge of 

water in that period. Since there is no spillage , the state does not depend 

on the way in which water is discharged. However, the way in which the water 

is discharged does influence the profit earned in that period, since the 

height from which the water falls down is important. This height should be 

as great as possible, in order to maximize the profit during that period, 

given the initial and final volume. The maximization of the height can be 

accomplished by waiting as long as possible before discharging the water, 
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thus filling the reservoir. If V max is reached, the discharge Q is taken 

equal to the influx Z. thus keeping V = Vmax. This is the idea behind the. 

optimal strategy proven in the next theorem. 

Theorem 3.1 Let A(t) be constant during t e [a,b) and yea) = Va. Let the 

objective be to reach a final volume V(b) = Vb, then the optimal strategy to 

reach this final volume is as follows: 

Qopt(t) = Qmin if t e [ a,ta) 

Qopt(t) = Z(t) if t e [ta,tb) 

Qopt(t) = Qmax if t e [tb, b) 

With ta such that 
t. 

Va + J (Z(t) - Qmin)dt = Vmax, 
a 

and tb such that 
b 

Vmax + J (Z(t) - Qmax)dt = Vb 
tb 

Unless t. ::; tb, in which case ta = tb are such that 
ta b 

V. + J (Z(t) - Qmin)dt + J (Z(t) - Qmax)dt = Vb. 
a t. 

Proof: The proof is rather straightforward. Let Q be an arbitrarily control 

function. Then 
t t 

VQopt(t) = Va + J (Z - Qmin)dt ~ Va + J (Z - Q)dt = VQ(t) if t e [a,ta) 
a a 

VQopt(t) = Vmax ~ VQ(t) if t e [ta,tb) 
b b 

VQopt(t) = Vb - J (Z - Qmax)dt ~ Vb + J (Z - Q)dt = VQ(t) if t e [tb,b) 
t t 

Thus VQopt ~ VQ for all strategies Q. The profit for a strategy Q is 

b 
GQ= J cQ(t)h(VQ(t»dt 

a 
b 

= J c(Q(t) - Z + Z)h(VQ(t»dt 
a 
b b 

= J cZh(VQ(t»dt - J cVQ(t)h(VQ(t»dt 
a a 
b 

= J cZh(VQ(t»dt - CH(Vb) + cH(Va), 
a 

in which H is the primitive function of h. Thus 

b 
GQopt = J cZh(VQopt(t»dt + cH(V.) - CH(Vb) 

a 
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b ;;:: J cZh(VQ(t»dt + cH(V.) - cH(Vb) 
a 

= GQ, 

which concludes the proof. • 
This theorem only says something about the optimal strategy between 

tariff switches. However, an extension to the whole period is easily made by 

the following theorem. 

Theorem 3.2 If an optimal strategy exists, then an optimal strategy exists 

with the optimal form described in theorem 3.1 during each period of 

constant tariff. 

Proof: Let Q be an optimal strategy of any form. Then between two tariff 

switches ti-t and ti the strategy has a certain form. Replacing this form by 

the optimal form described in theorem 3.1, such that V(ti-I) and yeti) do 

not change, can only improve the profit during this period, while the other 

profits remain the same. Since this argument holds for all i. the theorem is 

proven. • 
We can formulate the model for the modern power plant as a dynamic 

programming problem as follows: 

1. The state at time-point 'ti, Vi, should be between Vrnax and Vmin. 

2. The decision variable at time-point 'tit Xi. indicates the volume you want 

to have at the end of a period. This volume should be attainable so the 

allowed decision set should take this into consideration. 

3. The allowed decision set at time-point 'ti is given by 

Si(Vi) = { Xi e [Vmin.Vmax] I Xi;;:: Vi + (Z - Qmax)(ti+l - ti) 

Xi ~ Vi + (Z - Qrnm)(ti+l - ti) }. 

4. The transition function fi(Vi,Xi) = Xi. 

5. The profit during period i is given by: 

ti 
Gi(Vi,Xi) = J CQi,opth(Vi + (Z - Qi,opt)(t - ti-l»dt, 

t i-I 
where Qi.opt is a strategy of the form described in Theorem 3.1, and such 

that VQopt(ti-t) = Vi and VQopt(ti) = Xi. 

With these definitions we find the following problem: 
N - 1 

max ( 1: Gi(Vi,Xi) I Vi+l = fi(Vi.Xi). Xi e Si(Vi) for i = O, ...• N-l } 
Xo, •.. ,XN -1 i = 0 
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This is a problem which can be solved with the aid of dynamic programming. 

§ 3.3 A General Model with Spillage 

In this section we return to the most general model as it is presented 

in Chapter 2. In contrast to the two preceding sectiClnS, in this section and 

in the following section we assume that the spillage is of importance. It 

turns out that for the old power plant it is possible to find the optimal 

solution through the use of dynamic programming, but for the modem power 

plant this is in general not possible. However. we can always calculate an 

approximation of the optimal solution. Moreover, in case of certain special 

spillage functions we can find the optimal solution for the modern power 

plant. This is done in Section 3.4. 

Formulation of the Discrete Problem. Again we introduce M decision 

time-points. In order to apply dynamic programming, we assume Q to be 

constant during each subperiod. It is clear that the decision function set 

~i is compact for all i, thus dynamic programming can be applied. It is easy 

to formulate the discrete problem. See for instance Section 3.1. 

§ 3.4 Models with Special Spillage Functions 

In Section 3.2 the solution of the initial problem is obtained by first 

determining the optimal structure in subperiods with a constant tariff. Then 

the optimal solution for the whole period is found by applying the principle 

of dynamic programming. In this section a similar procedure is applied to 

solve a problem in which spillage is included. As in Section 3.2 we assume 

that the discharge can be changed any moment. So, these models are only 

suited for the modem power plant. 

The optimal structure of the solution. Consider a time interval [a,b] in 

which the tariff is constant. We assume that the influx Z is constant on 

[a,b]. We try to find the optimal structure on [a,b] given the volume at t = 

a, Va, and the volume at t = b, Vb. In the deduction of the optimal 

structure the following function plays a crucial role: 

I(V) = [Z - S(V)]h(V) V e [Vmin,Vmax]. 

We can present three conditions for the function I which assure the 
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existence of an optimal structure. 

(1) I has a maximum on [Vmin,Vmax] at V = V·. 

(2) I is strictly increasing on [Vmin,V·]. 

(3) I is strictly decreasing on [V· ,Vmax]. 

If the conditions (1),(2), and (3) are fulfilled then an optimal structure 

exists. This optimal structure is given in Theorem 3.3. 

Theorem 3.3 Let ta and tb be time-points in [a,b] such that a S ta S; tb S b, 

and Veta) = v· = V(tb). Then the optimal control function Qopt is given 

by: Qopt = Qmax on [a,ta] if V. > V· 

Qopt = Qmm on [a,ta] if V. < V· 
... 

Qopt = Z - S(V) on (ta,tb) 

Qopt = Qmm on [tb,b] if Vb > V· 

Qopt = Qmax on [tb,b] if Vb < V·. 

If V. = V'" then ta will be equal to a and if Vb = V· then tb will be equal 
to b. 

In Figure 3.1 and Figure 3.2 two examples of the optimal structure are 

presented. In these figures the volume V is chosen instead of the control 

function Q in order to clarify the optimal structure. The relation between Q 
. 

and V is given by: V = Z - Q - S. 

Proof of Theorem 3.3: Let Qopt be the control function on [a,b] as in the 

theorem, and let Vopt be the corresponding volume function. The goal is to 

maximize the profit with respect to the control function Q. The profit is 

given by: 

b J cQ(t)h(V(t»dt , where c is a constant including tariff etc. 
a . 

We substitute Q = Z - S - V in the integral above, and find the problem: 

Jb Ib . max { c(Z - S)h(V)dt - cVh(V)dt}, which is equivalent to 
Q a 

b b 
max J c(Z - S)h(V)dt - max J ch(V)dV (*) 

Q a Q a 
b 

Since J ch(V)dV is independent of Q, we only have to maximize the frrst part 
a 

of (*). Furthermore, because C is a constant (*) is equivalent to 
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b 
maximizing J I{V)dt with respect to Q. 

a 
(**). 

In order to have Qopt as the optimal control function and Vopt as the 

corresponding optimal volume function, the following equation must be valid: 

b b J I(Vopt )dt - J I(Vopt + V')dt ~ 0 
a a 

, where Vopt + V' is a feasible volume function on [a,b]. In order to prove 

this relation we subdivide [a,b] into three subintervals, namely: [a,ta], 

(ta,tb), and [tb,b]. 

Subinterval [a,ta]: 

On this interval we have the following equations. These equations follow 

immediately from the defmitions of Qopt and Vopt. 

Vopt(t) S Vopt(t) + V'(t) if Va > V· 

Vopt(t) ~ Vopt(t) + V'(t) if Va < V· 

Vopt(t) = V· if V. = V· 

From the conditions (1),(2), and (3) on page 11 follows: 

Vopt(t) S Vopt(t) + V'(t) ~ I(Vopt(t» ~ I(Vopt(t) + V'(t» if Vopt(t) > V· 

Vopt(t) ~ Vopt(t) + V'(t) ~ I(Vopt(t» ~ I(Vopt(t) + V'(t» if Vopt(t) S V· 

Vopt(t) = y. ~ I(Vopt(t» ~ I(Vopt(t) + V'(t» 

So, for the interval [a,ta] we can conclude that 

ta ta 
f I(Vopt(t»dt ~ J I(Vopt(t) + V'(t»dt. (i) 
a a 

Subinterval (ta, tb ): 

On this interval we have Vopt= V·. and thus we have 

I(Vopt(t» ~ I(Vopt(t) + V'(t». 

And so for this interval too, we can conclude that 

tb tb J I(Vopt(t»dt ~ J I(Vopt(t) + V'(t»dt. (ii) 
ta ta 

Subinterval [tb,b]: 

In the same way as for subinterval [a,ta] we can derive the following 

equations: 

Vopt(t) S Vopt(t) + V'(t) 

Vopt(t) ~ Vopt(t) + V'(t) 

Vopt(t) = V • 

if Vb > V· 
if Vb < V· 

if Vb = V· 

In the same way as for subinterval we can prove the following equation: 
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b b J I(Vopt(t»dt ~ J I(Vopt(t) + V'(t»dt. (iii) 
tb tb 

Taking the sum of (i). (ii), and (iii) concludes the proof. • 
To get an idea which kind of spillage functions fulfill the conditions 

(1), (2), and (3) on page 11. we examine the derivative of I(V) with respect 

to V. 

dI (V) = (Z _ S(V»dh _ dSh(V) 
dV dV dV 

The conditions (2) and (3) give the following conditions for the 

spillage function S: 

(2') (Z - S(V»dh > dSh(V) if V < V· 
dV dV 

(3') (Z - S(V»dh < dS hey) if V > v· 
dV dV 

Where we assume for the moment that a maximum for the function I exists. 
Conditions (2') and (3') tell us that in cases where the spillage function 

has sharp increases there does not exist an optimal structure. An example of 

such a function is a step function as is shown in Figure 3.3. However, if 

the spillage function is sufficiently smooth then the conditions (2') and 

(3') are fulfilled. For example, it is easy to prove that conditions (2') 

and (3') are fulfilled for convex spillage functions. 

The optimal solution. In the same way as in Section 3.2 an extension to· the 

whole period can be made. 

Theorem 3.4 If an optimal solution for the whole period [lo,tN] exists, then 

this optimal solution has the optimal structure as is defined in Theorem 3.3 

during subperiods with constant tariff. 

Proof: Let Q be any feasible control function on the whole interval [to,tN]. 

Then the function Q has a certain form between two tariff switches ti·1 and 

ti. Replacing this form by the optimal form described in Theorem 3.3, such 

that V(ti-I) and yeti) do not change, can only improve the profit during 

this period. while the other profits remain the same. Since this argument 

holds for all i. the theorem is proven. • 
From Theorem 3.4 we can conclude that to find the optimal 

solution for the period [to,tN], only the optimal volumes V(n) have to be 
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detennined. 

This can be done by fannulating a suitable dynamic programming problem. 

1. The state at time-point 'ti, Vi, should be between Vmax and Vrnin. 

2. The allowed decision set at time-point 'ti is given by: 

!fi(Vi) = ( Xi e Yi I VXi(t) e [Vrnin,Vmax] for all t e [ti-l,ti], 

and VXi(ti-l) = Vi·l 

Where Yi is the set of functions on the interval [ti.l,ti] having the 

structure given by Theorem 3.3. 

3. The transition function fi(Vi,Qi) = Vi+l. 

4. The profit made during period i is given by: 
t i 

Gi{Vi,Qi) = J CQi.opth(Vi + (Z - Qi.opt)(t - ti-l»dt, 
t i . 1 

where Qi,opt is a strategy of the form described in Theorem 3.1, and such 

that VQopt(ti.l) = Vi and VQopt{ti) = Vi+l. 

With these definitions we find the following problem. 
N 

max {}: Gi{Vi,Qi) I Vi = fi{Vi.l,Qi), Qi e :fi(Vi) for i = 1, ... ,N }. 
QI, ..• ,QN i=l 
This is again a problem which can be solved by dynamic programming. 
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4. The Numerical Data 

§ 4.1 The Two Power Plants 

Both power plants are situated near the Schwarzenegger lake in Austria. 

Because the reservoirs of these power plants are small, and the 

Schwarzenegger lake is large in comparison to them, the operators of the 

power plants can decide for themselves how much energy they will produce. 

This can be done for each power plant separately. The amount of energy the 

power plants can produce is only determined by the technical constraints of 

the maximal amount of discharge. 

Because of the touristic nature of the district, it was decided by the 

local council that the. reservoirs should be relatively full during the 

weekends and the holiday season. 

This project was initiated because the control of one power plant was 
modernized, and the tariff structure was altered. Because of this change of 

the tariff structure the strategy of the old power plant needed to be 

changed also. The former strategy was to keep the reservoirs full all the 
time. 

Together with the modernization an experiment would be held in which a 

day is divided in four different tariff periods.(In fact, this experiment 

was the main reason for the modernization.) These periods correspond to four 

periods during the day in which a significant difference in energy usage is 

measured. The first period is from 6 am till 6 pm, the normal working hours. 

during which the most energy is consumed. The second period is only from 6 

pm till 8 pm, dinner hours, during which the energy consumption drops 

considerably. The energy consumption increases to a fairly high rate again 

from 8 pm till 12 pm. This increase is due to the fun-fair, which is open 

during the same hours. Finally, the last period is from 12 pm till 6 am, 

during which of course the least energy is consumed. The tariff from 6 am 

till 6 pm in the weekends is only half of the normal tariff, since nobody 

works during the weekends. 

Our aim was to calculate the strategies for a week in the winter 
period. These strategies should be an improvement of the current strategy, 

which was to keep the lake full at all times. If possible the strategies 

should even optimize the profit. 
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The numerical data concerning the tariffs are given by 

- There are 4 tariff periods in a day. With t in hours, and t = O. 

corresponding to Wednesday 0 am, we get the following time-points: 

t4i = 24i + 6 6 am, 

t4i+l = 24i + 18 6 pm, 

t4i+2 = 24i + 20 8 pm, 

t4i+3 = 24i + 24 12 pm, i = 0, ... , 6, 

and the final time-point t2B = 154. 

N.B. we start on Wednesday 6 am, because both intuition and calculation have 

shown that it is optimal for the reservoirs to be full at this time-point. 

This is because 6 am is the start of the period with the highest tariff, and 

because on Wednesday the weekend is still far away. 

- The tariffs during these periods are 

A4i+l = 0.8 ATS/kWh if i e {0,1.2,5,6}, 

A4i+l = 0.4 ATS/kWh if i e (3,4), 

A4i+2 = 0.4 ATS/kWh, 

A4i+3 = 0.6 ATS/kWh, 

A4i+4 = 0.3 ATS/kWh, with i = 0, ... ,6. 

§ 4.2 The Old Power Plant 

The numerical data for the old power plant w:e given below. 

- The volume V of the water of the reservoir must satisfy the following 

constraint: V i,min S; V S; V i,max. 

Vi,min and Vi,max are given by 

Vi,max = 750000 m3 

Vi,min 

Vi,min 

Vi,min 

= 50000 m3 

= 500000 m3 

= 50000 m3 

i 
i 

i 

i 

= 1, ... ,28, 

= 1, ... ,12, 

= 13, ... ,19, 

= 20, .... 28. 

- The height of the water in the reservoir is given by 

h(V) = 160 + I V/3oooo • . 

- The discharge Q satisfies: Qmm S; Q S; Qmax. Where Qmm = 0 m3/s. and 

Qmax = 30 m3/sec. 

- The constant influx is Z = 10 m3/s. 
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§ 4.3 The Modern Power Plant 

The numerical data for the modem power plant are given in this 

section. 

- The volume of the water in the reservoir must satisfy the following 

constraint: Vi,min ~ V ~ Vi,max. 

Vi,min and Vi,max are given by: 

Vi,max = 750000 m3 

Vi,min = 50000 m3 

Vi,min = 500000 m3 

Vi,min = 50000 m3 

i = 1, ... ,28, 

i = 1, ... ,12, 

i = 13, ... ,19, 

i = 20 •...• 28. 

The height of the water in the reservoir is given by: 

hey) = 160 + I V/30000 ' 

- The discharge Q satisfies: Qmin !it Q !it Qmu. Where Qmm = 0 ml/s. and 

Qmax = 30 m3/s. 

- The constant influx Z = 10 m3/s. 

21 



5. The Results 

In this section we will give the results for the optimal strategies of 

the two power plants connected to the Schwarzenegger lake. Since these two 

power plants have no spillage, they can be modelled by the models from 

Section 3.1 respectively Section 3.2. The optimal strategies calculated by 

dynamic programming can be seen in Figure 5.1 respectively Figure 5.2. 

§ 5.1 The Results for the Old Power Plant 

The (almost) optimal strategy for the old power plant is summarized in 

Table 5.1. In this table the new discharges at switching points, and the 

volumes at these time-points, are shown. So, for instance, on Friday 6 am 

the new discharge will be 25.8 m3/s. and the volume at that moment is 
750000 m3

• 

In Table 5.3 this strategy is, partially, summarized again, but this 
time at the switching points of the modem power plant. This is done in 

order to make a comparison between the two strategies somewhat easier. 

(N.B. In the table-heading we call the switching time-points of the modem 

power plant tithe new switching points tl
.) 

The optimal strategy is also displayed in Figure 5.1. 

§ 5.2 The Results for the Modern Power Plant 

The (almost) optimal strategy for the modem power plant is summarized 

in Table 5.2. This table is similar to Table 5.1. Here, however, the new 

discharges and volumes at the (new) switching points are given. 

In Table 5.4 this strategy is, partially, summarized again, but this 

time at the possible switching points of the old power plant. This table can 

be used again to compare the two strategies. 

(N.B. In the table-heading we call the possible switching time-points of the 

old power plant, which are the tariff switching points, "the switching 
points".) 

The optimal strategy is also displayed in Figure 5.2. 
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Table 5.1: The optimal strategy for the old power plant. 

Day Time New Discharge Volume 

Wednesday 6:00 am 20 m'/s 750000 m' 

Wednesday 6:00 pm 0 m'/s 318000 m' 

Wednesday 8:00 pm 0 m'/s 390000 m' 

Thursday 0:00 am 0 m'/s 534000 m' 

Thursday 6:00 am 20 m'/s 750000 m' 
Thursday 6:00 pm 0 m'/s 318000 m' 

Thursday 8:00 pm 0 m'/s 390000 m' 

Friday 0:00 am 0 m'/s 534000 m' 
Friday 6:00 am 25.8 m' Is 750000 m3 

Friday 6:00 pm 0 m3 /s 68000 m' 

Friday 8:00 pm 0 m3 /s 140000 ml 

Saturday 0:00 am 0 m3 /s 284000 m3 

Saturday 6:00 am 4.2 m3 /s 500000 ml 

Saturday 6:00 pm 10 m'/s 750000 ml 

Saturday 8:00 pm 27.4 m'/s 750000 ml 

Sunday 0:00 am 0 m'/s 500000 m3 

Sunday 6:00 am 9.2 m'/s 716000 m3 

Sunday 6:00 pm 10 m'/s 750000 ml 

Sunday 8:00 pm 25 m'/s 750000 m3 

Monday 0:00 am 0 m'/s 534000 m' 

Monday 6:00 am 20 m'/s 750000 m' 

Monday 6:00 pm 0 m'/s 318000 m' 

Monday 8:00 0 m'/s 390000 l pm m 

Tuesday 0:00 am 0 m'/s 534000 m' 

Tuesday 6:00 am 20 ml/s 750000 m' 

Tuesday 6:00 pm 0 m'/s 318000 ml 

Tuesday 8:00 pm 0 m'/s 390000 m' 

Wednesday 0:00 pm 0 m'/s 750000 m' 
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Tabla 5.2: The optimal strategy for the modern power plant. 

Day Time New Discharge Volume 

Wednesday 6:00 am 10 m3 /s 750000 m3 

Wednesday 0:00 pm 30 m3 /s 750000 m3 

Wednesday 6:00 pm 0 m3 /s 318000 m3 

Thursday 6:00 am 10 m3 /s 750000 m3 

Thursday 0:00 pm 30 m3 /s 750000 m3 

Thursday 6:00 pm 0 m3 /s 318000 m3 

Friday 6:00 am 10 m3 /s 750000 m3 

Friday 8:32 am 30 m3 /s 750000 m3 

Friday 6:00 pm 0 m3 /s 68000 3 m 

Saturday 0:57 pm 10 m3 /s 750000 m3 

Saturday 8:32 pm 30 m3 Is 750000 m3 

Sunday 0:00 am 0 m3 /s 500000 m3 

Sunday 6:57 am 10 m3 /s 750000 m3 

Sunday 9:00 pm 30 m3 /s 750000 m3 

Monday 0:00 am 0 m3 /s 534000 m3 

Monday 6:00 am 10 m3 /s 750000 m3 

Monday 0:00 pm 30 m3 /s 750000 m3 

Monday 6:00 pm 0 m3 /s 318000 m3 

Tuesday 6:00 am 10 m3 /s 750000 m3 

Tuesday 0:00 pm 30 ml/s 750000 m3 

Tuesday 6:00 pm 0 m3 /s 318000 m3 

Wednesday 6:00 am 10 m3 /s 750000 m3 
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'able 5.3: The strategy of the old power plant at the new switching points. 

Day Time New Discharge Volume 

Wednesday 6:00 am 20 m3 /s 150000 m3 

Wednesday 0:01 pm 20 m3 /s 150000 m3 

Wednesday 6:00 pm 0 m3 /s 325158 m3 

Thursday 6:00 am 20 m3 /s 150000 m3 

Thursday 0:01 pm 20 m3 /s 150000 m3 

Thursday 6:00 pm 0 m3 /s 325158 m3 

Friday 6:00 am 25.8 m3 /s 150000 m3 

Friday 8:40 am 25.8 m3 /s 150000 m3 

Friday 6:00 pm 0 m3 /s 18283 m3 

Saturday 0:48 pm 4.2 m3 /s 750000 m3 

Saturday 8:32 pm 21.4 m3 /s 150000 m3 

Sunday 0:48 am 0 m3 /s 500000 m3 

Sunday 8:59 am 8.4 m3 /s 150000 m3 

Sunday 9:01 pm 25 m3 /s 150000 m3 

Monday 0:00 am 0 m3 /s 535354 m3 

Monday 6:00 am 20 m3 /s 150000 m3 

Monday 0:07 pm 20 m3 /s 150000 m3 

Monday 6:00 pm 0 m3 /s 325158 m3 

Tuesday 6:00 am 20 m3 /s 150000 m3 

Tuesday 0:01 pm 20 m3 /s 150000 m3 

Tuesday 6:00 pm 0 m3 /s 325158 m3 

Wednesday 6:00 am 20 m3 /s 750000 m3 
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Tabla 5.4: The strategy of the modern power plant at the switching points. 

Day Time New Discharge Volume 

Wednesday 6:00 am 10 m3 /s 750000 m3 

Wednesday 6:00 pm o.m 3 /s 318000 m3 

Wednesday 8:00 pm 0 m3 /s 390000 m3 

Thursday 0:00 am 0 m3 /s 534000 m3 

Thursday 6:00 am 10 m3 /s 750000 m3 

Thursday 6:00 pm 0 m3 /s 318000 m3 

Thursday 8:00 pm 0 m3 /s 390000 m3 

Friday 0:00 am 0 m3 /s 534000 m3 

Friday 6:00 am 10 m3 /s 750000 m3 

Friday 6:00 pm 0 m3 /s 68000 m3 

Friday 8:00 pm 0 m3 /s 140000 m3 

Saturday 0:00 am 0 m3 /s 284000 m3 

Saturday 6:00 am 0 ml/s 500000 m3 

Saturday 6:00 pm 10 m3 /s 750000 m3 

Saturday 8:00 pm 10 m3 /s 750000 m3 

Sunday 0:00 am 30 m3 /s 500000 m3 

Sunday 6:00 am 0 m3 /s 716000 m3 

Sunday 6:00 pm 10 m3 /s 750000 m3 

Sunday 8:00 pm 10 m3 /s 750000 m3 

Monday 0:00 am 0 m3 /s 534000 m3 

Monday 6:00 am 10 m3 /s 750000 m3 

Monday 6:00 pm 0 m3 /s 318000 m3 

Monday 8:00 pm 0 m3 /s 390000 m3 

Tuesday 0:00 am 0 m3 /s 534000 m3 

Tuesday 6:00 am 10 m3 /s 750000 m3 

Tuesday 6:00 pm . 0 m3 /s 318000 m3 

Tuesday 8:00 pm 0 m3 /s 390000 m3 

Wednesday 0:00 am 0 m3 /s 750000 m3 
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Figure 5.1. The optimal strategy for the modem power plant. 
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§ S.3 A Comparison of the Results 

We can compare these strategies with the old strategy of keeping the 

reservoir full all the time. 

The new strategy for the old power plant earns a profit of 719,342 ATS 

in a week. The strategy for the new power plant earns 725,670 ATS in a week. 

The old strategy however, earned only 550,044 ATS in a week. We can conclude 

that the new strategies are considerably better than the old strategy. 

Hence, the strategies calculated with dynamic programming are major 

improvements over the old strategy. But the difference in profits between 
the two power plants are negligible. 
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6. Conclusions 

In this report we demonstrate that dynamic programming, despite its 

simplicity, is an efficient way to approximate the optimal control of an 

hydro energy power plant. We were able to get a very good approximation of 

the optimal solution. 

For the two power plants we were able to obtain a profit increase of 

about 30%. The difference in profit for the two power plants is however 

negligible. 

In this report, we assume that there is no spillage of water. 
Stochastic influences are also neglected. 
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To end this report we would like to quote a bear of little brain: 

"We've come to wish you a Very Happy Thursday," said Pooh, when he had gone 

in and out once or twice just to make sure that he could get out again. 

"Why, what's going to happen on Thursday?" asked Rabbit, and when Pooh had 

explained, and Rabbit, whose life was made up of Important Things, said, 

"Oh, I thought you'd really come about something," they sat down for a 

little ... and by-and-by Pooh and Piglet went on again. The wind was behind 

them now, so they didn't have to shout. 

"Rabbit's clever, It said Pooh thoughtfully. 

"Yes," said Piglet, "Rabbit's clever." 

"And he has Brain." 

"Yes," said Piglet, "Rabbit has Brain." 

There was a long silence. 

"/ suppose," said Pooh, "that that's why he never understands anything." 
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