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Abstract 

In modern industry, production machines form the basis for manufacturing mass 
products. A lot of these machines have only one task, which they'll perform over 
and over again. Time and costs are essential, so the better and faster it works, 
the more money you make. To make such machines perform better, a good 
knowledge of its dynamics is needed. With this knowledge, good control strate- 
gies can be developed. Another way to make the machine perform better, is to 
let it learn from his earlier mistakes. This is called Learning Control. A lot of 
research has been done already, and a lot of solutions were found. Non-minimum 
phase systems, however, form a big problem when solving with Learning Con- 
trol, because the positive zeros become unstable poles in the learning filter. In 
this report a new solving method is discussed and compared with a conventional 
method. This new method can deal with Learning Filters which contains more 
zeros than poles and also it solves for unstable poles. The general idea is to 
split the Learning Filter into a causal and non-causal part and filter each part 
separately. 
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Introduction 

Today's mass production processes mostly consist of machines doing the same 
job over and over again. Speed and accuracy are keywords for these kind of 
processes. A good knowledge of the system is required to implement new and 
better control strategies. One of those strategies is learning control. 

1.1 What is (iterative) learning control? 

Learning control is a type of control in which the controller learns from its own 
previous mistakes. 

When a purely feedback controlled system (e.g. figure 1.1) performs the 

Figure 1.1: Standard feedback system 

reference ,error 

same (array of) actions over and over again, one can imagine that the signals 
which are used to control the actuators will (globally) have great similarities each 
sequence. As a matter of fact, a 'base' signal (see figure 1.2) can be extracted 
from several sequences. Any differences from this base signal are of stochastic 
nature or can be attributed to environmental issues. 

The base signal can be passed to the system as a feedforward signal. This 
feedforward signal is responsible almost completely for the positioning. Any 
deviations from the reference signal will be much smaller than would have been 
the case for a purely feedback system, meaning that the controller can focus 
on other sources of errors. The block diagram shown in figure 1.1 needs to be 
adjusted to the the new feedforward configuration, as presented in figure 1.3. 

C control signal 
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Control signals Base signal Additional signals 

Figure 1.2: Extracting a base signal from several control signals 

feed forward signal 

Figure 1.3: Feedforward system with base signal 

The feedforward can also be calculated from (experimental) data, instead 
of 'extracted' from control signals. This can be done when both the system 
characteristics and the tracking error(s) are known. When future experiments 
or production cycles, using the feedforward, point out that there is still a definite 
correlation in the new tracking error(s), a new iteration step can be made. The 
new calculated feedforward signal is the signal that rules out the tracking errors 
for which it was calculated, therefore it has to be added to the already existing 
feedforward. If certain user specified demands are met or purely stochastic 
tracking errors remain, the iteration process can be stopped and the found 
feedforward signal is the best you can achieve for the system. The method 
described above is presented schematically in figure 1.4 

In figure 1.4, S;l is the inverse process sensitivity defined as: 

In equation 1.1, A f is the signal that is to eliminate the last found tracking 
error. It can be written in following way: 

A j = Sgle = L.e ( 1.2) 

Here, L is referred to as the learning filter. After this, the new (total) feed- 
forward is the summation of the old feedforward with the Af calculated from 
equation (1.2): 
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Figure 1.4: Schematic view of the learning algorithm 

The algorithm discussed above is, as already mentioned, an iterative process, 
one can repeat until the demands have been reached or when there are no more 
dynamics left in the tracking error, due to measurement or stochastic noise. 

Notice that when no control action is present (the process is steered), the 
tracking error e(t) will be equal to the reference and the learning filter L(s) will 
be the exact inverse of the system P(s).  

A major advantage of ILC is that without a perfect knowledge of the system, 
still very good results can be obtained after few iterations [I]. 

1.2 Goal of this research 

The global concept of learning control is discussed in the previous section. When 
implementing it for real systems, one can encounter all different kinds of prob- 
lems. 

The inverse of the process sensitivity is needed to calculate feedforward sig- 
nals. For non-minimum phase systems, this means that the inverse becomes 
(partially) unstable. 

Several algorithms have been developed. One of the most used algorithms 
is ZPETC. Recently, another algorithm is proposed. Both algorithms will be 
discussed in further detail in chapter 2. In this report, a comparison between 
the two algorithms will be made. 

For the case of production processes doing endlessly the same (array of) 
movements, one can imagine that the same feedforward signal is therefore re- 
peated each time. For reasons of continuity the end-conditions of the feedfor- 
ward have to be the same as the begin-conditions of the following (new) feed- 
forward. The algorithm calculating the feedforward has to account for these 
(two-point) boundary values. 

Goal of this research is to present a framework within MATLAB to solve iter- 
ative learning control problems for non-minimum phase systems, taking bound- 



ary values at both ends of the feedforwaxd signal into account. 



Learning control methods 

This chapter discusses the ZPETC method for calculating feedforward signals, 
as well as the new method. An example shows the capabilities of the two 
methods. 

2.1 ZPETC 

Figure 2.1: Learning algorithm for use with ZPETC-method 

The key problem with learning control is to find a learning filter which is the 
inverse of the process sensitivity. Especially when dealing with non-minimum 
phase systems, the inverse can contain unstable poles. Since the error signal is 
filtered with the inverse, one wants to use a stable approximation of the inverse 
process sensitivity. This is done by a method called ZPETC (Zero Phase Error 
Tracking Control). The approximated learning filter is stable, so that there will 
be no problems when filtering the tracking error with it. 



During the approximation process, the dynamics have been 'changed'. Due 
to these changes, an error signal filtered by the approximation will not give the 
same results as an exact inverse would do. For high frequencies, this becomes 
a problem, therefore a robustness filter Q(s) is introduced. The Q-filter makes 
sure that the following convergence criterion is met: 

Here, L is the inverse approximation of the process sensitivity. Usually, the 
Q-filter has low-pass characteristics. 

The filtered tracking error (i.e. the new feedforward update Af) is filtered 
with this robustness filter. This has to be done anti-causally to compensate for 
the leadllag of Q(s). This method will be called the ZPETC-method throughout 
this report. 

In some cases the process sensitivity can have more poles than zeros. As a result, 
the learning filter has more zeros than poles, making it more difficult to filter 
signals with this learning filter using standard routines. The ZPETC-method 
modifies the original inverse of the process sensitivity. In that case a perfect 
feedforward signal can not be found. 

In [2] a new method is proposed, especially designed for systems having 
a numerator of higher order than the denominator. This is presented in the 
following equation: 

n 

The excess of zeros will be split from L(s), resulting in a causal and a non- 
causal part, as can be seen in the next equation: 

non-causal j=1 - 
causal 

The non-causal part of equation 2.3 is a polynomial in s and in fact it's 
nothing less than a differentiating action. 

With the split learning filter, the calculation now has two phases. The feed- 
forward cpdate A f will be obtained by first filtering the tracking error with the 
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Figure 2.2: Schematic representation of the new method 

non-causal part, resulting in a signal called y,,(t), and secondly, filtering with 
the causal part resulting in A f .  Visually, the method is presented in figure 2.2. 

2.3 Learning control on a 4th order system 

In previous sections, the idea of (iterative) learning co~tro! is discussed. So 
far, no real example has been given. In this section we'll show the effectiveness 
of learning control by calculating the feedforward for a stable 4th order system. 
Physically the example can be thought of as two masses connected to each other 
with a spring and a damper (see figure 2.3). 

Figure 2.3: Schematic view of the 4th order system 

While measuring the position of the second mass, the first will be actuated. 
The transfer function is: 

In appendix A.l ,  the derivation of equation 2.4 is given, as well as all param- 
eters used in this example. In this example a simple PD-controller will be used. 
It is not an optimal controller, because the main point of this report is learning 
control. Figure 2.4 shows the open loop nyquist diagram for this system. 
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Figure 2.4: Nyquist diagram of the open loop dynamics. 
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Figure 2.5: Reference signal of the 4th order system. 

The setpoint which will be presented to the system is a third order point- 
to-point movement as can be seen in figure 2.5. 

No feedforward is given for the first simulation. The result of the tracking 
error can be seen in figure 2.6. 

After just one iteration, the tracking error is reduced significantly for both 
the ZPETC-method, as well as the new D&F method, see figure 2.7. 

From now on we will take the Integrated Absolute Error (HE) as a measure 
for the performance of the system. The IAE is defined as: 

t=t1 

IAE = 1 e( t )dt  
t= to  

Figure 2.8 shows the IAE during 20 iterations. As can be seen from this 
figure, both methods score almost the same, except for the ZPETC without 



Figure 2.6: h c k i n g  error for the 4th order system without using feedforward. Dashed 
line represents the acceleration setpoint. 
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Figure 2.7: Seruo error for the 4th order system using the ZPETC method (blue) 
and the D&F method (red) after the first (top) and second (bottom) iteration. 
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Figure 2.8: Integrated Absolute Error for the 4th order system using the ZPETC 
method (blue) and the D&F method (red). Without Q-filter (solid) and with Q-filter 
(dashed). 

a Q-filter. After a minimum IAE value has been reached, the D&F method 
without using the Q-filter starts to increase the IAE. However, when the same 
&-filter as with the ZPETC method is used, both methods will perform the 
same. 

The best feedforward and resulting tracking error, after the fourth iteration, 
for each method axe presented figwe 2.9 . 

As can be seen in figure 2.8, the servo error with the D&F method will in- 
crease after the fourth iteration step. This is due to numerical problems used 
for this learning problem. When decreasing the sample time used in this exam- 
ple, the right part of the line will flatten, to become (eventually) a horizontal 
line. The calculation time on the other hand will increase dramatically. For this 
example, where the inverse of the process sensitivity is stable, both methods 
almost perform the same. Later, when a non-minimum phase system will be 
discussed, we will see that the ZPETC method performs worse. 

As stated before, the D&F method does not need a robustness filter, since 
the inverse of the process sensitivity is in essence exact. However, due to dis- 
cretization, in order to calculate the feedforward signal, the dynamics will be 
altered slightly. The feedforward signal without using the Q-filter has a spiky 
character which leads to numerical problems for the used solver. Decreasing the 
step size and tolerances to zero will solve the problem, however, the calculation 
time will increase. Another way is to smooth the signal which is presented to 
the filter. Therefore the same Q-filter as for the ZPETC method is used. 

2.4 Disadvantages and improvements 

Learning control will be most likely used in (high-speed) mass production. Every 
separate movement can be optimized with this algorithm. Later, these optimized 
movements can be combined or 'glued' together forming an array of movements, 
however the conditions at the endpoint of one movement must be the same as the 
starting point of the next movement. Hence, when calculating the feedforward, 
one wants to specify both begin and end conditions (two-point boundary value 
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Figure 2.9: Servo error (top) and feedforward signal (bottomt) for the 4th order 
system using the ZPETC method (blue) and the D&F method (red). 

problem). 
The previous example was a stable 4th order system, also its inverse was 

stable, therefore the calculations on this system were not complicated. The 
problems start when the inverse dynamics of the system, which are directly in 
the learning filter, become unstable. This is the case with a non-minimum phase 
system. 

Non-minimum phase systems have an inverse response, due to one or more 
zeros in the right half plane. When taking it's inverse, the positive zero becomes 
a positive, unstable pole, making the calculations with this learning filter more 
complicated. Earlier work on solving mixed stable/unstable systems resulted 
in a new ODEsolver [3]. This so-called RICLBVP (RICatti Linear Boundary 
Value Problem) is a two-point boundary value solver for stiff systems. 

The next chapter discusses the design of a MatLab based program to solve 
non-minimum phase learning problems with a two-point boundary value prob- 
lem using the RICLBVP-solver. 



Design Learning Control Tool 
in MATLAB 

In this chapter, a framework is presented to solve learning control problems for 
different kind of systems. In this report we only focus on non-minimum phase 
systems with two-point boundary value demands, bxt in f~ tu re ,  also other types 
of systems and algorithms can be integrated in this tool. 

3.1 Splitting the system 
As has been mentioned earlier, the learning filter can contain more zeros than 
poles, therefore the system has to be split into two parts (non-causal and causal 
part) - 

One has to be careful when splitting the system. Sometimes the poles of a 
system are complex conjugate pairs. These pairs must stay together to avoid 
calculation errors in MatLab. When splitting the system, the order of the non- 
causal (differentiating) part is always tried to be kept as low as possible, whereas 
the causal part is preferred to be strictly proper (ie. same order of numerator 
and denominator). In the case of complex conjugate pairs it can occur that the 
order of the numerator in the causal part is one less than the denominator. As 
a result of this, the order of the differential part the order increases by one. 
Appendix (B.l) shows the MatLab script and some comments on this method 

3.2 Using differentiating filters 
If the learning filter contains more zeros than poles, splitting the system will 
end up with a non-causal part which is not equal to 1. This part tells some- 
thing about the way the input signal has to be differentiated. In [2] some 
differentiating mehtods (eg. Shannon-based differentiators and Polynomial in- 
terpolation/fitting) are discussed and implemented in MatLab. 



These filter schemes results in imperfections at the begin and the end of 
the differentiated signal, due to the lack of data at these points. These bor- 
der distortions are the major source of concern when using it for feedforward 
calculations. 

Figure 3.1 shows the way in which the non-causal is implemented. 

3.3 Using a two-point value boundary solver for 
unstable systems 

Figure 3.2: Schematic representation of causal filtering 

The previous chapter already discussed that the inverse of (stable) non- 
minimum phase systems become unstable and are therefore rather difficult to 



solve. One cannot use a standard MATLAB ODEsolver in these cases. In [3] a 
solver has been developed which deals with combined stable/unstable systems. 
Also a number of begin and end conditions can be accounted for. 

The RICLBVP-solver does not give a direct solution for the feedforward 
update, it only solves the state at each time. From equation 3.1 this can be 
made clear: 

x(t) = Ax(t) + Bu(t) (3.1) 
y(t) = Cx(t) + Du(t) 

Above, the general state-space notation is given. This represents the causal 
part of the learning filter. The signal u(t) will, in this case, be the (non-causal) 
filtered error signal. The output y(t) is the same as A f ,  as mentioned in equation 
1.3. Equation 3.1 now tranforms into the following equation (see figure 3.2): 

The RICLBVP-solver calculates the state x(t). In order to use the RICLBVP- 
solver to calculate ILC problems, the initial and the end conditions for the 
feedforward Af (t), must be rewritten for the state x(t): 

In this equation, B, and Bb are square matrices, used by the RICLBVP 
solver. The vectors :(to) and :(tl) are the state vector boundary values at 
the begin and end point respectively and d(x) is the relation between these 
boundary values specified by the matrices B, and Bb. This vector is also passed 
to the solver. Combined boundary values (eg. x(to) + x(t1) = 0) cannot be 
dealt with by the RICLBVP-solver. 

With learning control we do not want to specify begin and end conditions 
for the state x(t) in figure 3.2, instead we want to specify the begin and end 
conditions on the feedforward signal f (t). The learning algorithm, however, 
only calculates the feedforward update A f (t). The two-point boundary value 
problem for the feedforward update can be written in the same way as equation 
3.3: 

Wa A f (to) + Wb A f ( t ~ )  = d ~ ,  (3.4) 

When A f (t) is rewritten in terms of the state-vector x(t) and the vector 
yne(t) (see Appendix C) we get: 

Substituting into equation 3.4 this results in: 



From this equation, the matrices B, and Bb as well as the vector & can be 
determined: 

B, = W,O 

Now, the complete MATLAB tool for solving non-minimum phase feedfor- 
ward sip-ds is made, so we can iuse it, to solve the iterative 1ea.snaing problem for 
which it is designed. The next chapter discusses the iterative learning problem 
for a non-minimum phase system with a two-point boundary problem. 



Chapter 4 

Comparison D&F-method vs. 
ZPETC 

In this chapter, the new method will be compared with the ZPETC method for 
non-minimum phase systems. The goal of this example is to position the tip of 
a f,exib!e beam 

4.1 Model of the flexible beam 
In figure 4.1 a sketch of the flexible beam is presented. Using the Lagrange 
method, one can obtain the equations of motion for the system. The system 
equations will be linearized around = 82. 

Figure 4.1: Schematic view of the 2"d order non-minimum phase system 

In this example we will control O2 by applying a torque T, at 81. The 
transfer function then becomes (see appendix A.2): 
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Figure 4.2: Reference signal of the 4" order system. 
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Figure 4.3: Nyquist diagram of the open loop dynamics. 

Where, 

Figure 4.2 shows the reference position, velocity and acceleration signals. 
The system is controlled with a soft PD-controller, because the goal of this 
example is to show the strength of the learning algorithm. The open loop 
dynamics of the controlled system is presented in figure 4.3. 

When applying a zero feedforward, the resulting tracking error is as pre- 
sented in figure 4.4. This tracking error and the knowledge of the system is 
used to calculate the new feedforward. 
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Figure 4.4: Daclcing error for the 4th order sgstem without using feedfornard. The 
dashed line represents the reference acceleration signal. 

4.2 ILC applied to the non-minimum phase sys- 
tem 

Now, we will use the two methods (ZPETC and D&F) to calculate a feedforward 
signal which minimizes the servo error for the setpoint in figure 4.2. 

The ZPETC-method uses a robustness filter, Q. The choice of this fiiter 
is not straightforward, a number of different filter types can give good results. 
Here a 4th order Butterworth low-pass filter is used. The choice of the cut-off 
frequency has a significant influence on the performance of the learning process. 
Here it is chosen such that the convergence criterion of equation 2.1 will be met 
amply. 

Unliie the ZPETC method, the new D&F method for non-minimum phase 
systems allows the user to  define begin and end conditions of the feedforward 
signal: 

In other words, the begin and end values of the feedforward, as well as the begin 
and end values of its first derivative must be zero. 

Figure 4.5 shows the summated absolute error for the D&F as well as the 
ZPETC method. We can see that, in contradiction to the ILC problem for the 
stable fourth order system, now the new D&F method scores better than the 
ZPETC method. 

Figure 4.6 shows the servo error after the first and the second iteration. 
After three iterations, a feedforward signal resulting in the smallest IAE has 
been found. The calculation times for the D&F method are significantly longer 
than the ZPETC method because of the combined stable/unstable poIes in 
the learning filter. Using the same Q-filter from the ZPETC method for the 
feedforward update of the D&F method results in smaller calculation times, 
but the IAE is comparable to the ZPETC method. 



Figure 4.5: Integrated Absolute Error for the non-minimum phase system using the 
Z P E T C  method (blue) and the D&F method (red). Without Q-filter (solid) and with 
Q-filter (dashed). 

Figure 4.6: Servo error after the first (top) and second (bottom) ateration for the 
non-minimum phase system using the Z P E T C  method (blue) and the D&F method 
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Figure 4.7: Servo error (top) and fedforward signal (bottomt) for the non-minimum 
phase system win9 the ZPETC method (Eke) and the DBF method (red). 

The servo error as well as the feedforward signal for both ILC methods after 
the third iteration signals are shown in figure 4.7. 



Conclusions and 
recommendat ions 

5.1 Conclusions 

Tne D&F method cdcuiates the exact inverse of the process sensitivity, instead 
of the approximation calculated with the ZPETC-method. This implies that 
the D&F method will always perform optimal for each type of ILC problem. 
However, due to discretization the properties of the inverse process sensitivity 
will change slightly and the exactness of the method is lost. The differentiating 
filter, which is used in case of a non-causal part of the learning filter, will lead 
to imperfections around the beginning and the end of the signal. 

The number of iterations needed to come to the most optimal feedforward 
signal are about the same for the two methods discussed in this report. For 
non-minimum phase systems, the D&F method will result in significantly bet- 
ter servo behavior. 

There is no real need for a robustness filter after calculating the new feedfor- 
ward with the D&F method. When the Q-filter is used, calculation times will 
drop, but the minimal IAE will be larger than the minimal IAE value without 
using a robustness filter. 

The D&F method is, in terms of calculation time, not competitive to the 
ZPETC-method, when solving ILC problems for non-minimum phase systems. 
However, because of the offline calculation this weak point might not be a big 
problem. 

With this D&F method, begin and end conditions for the feedforward can 
be demanded, so it will be suitable for designing repetitive tasks which are part 
of an array of diierent motions. 



5.2 Recomrnendat ions 

In future work, the D&F method has to be tested on an experimental set-up to 
check it's usability. 

The calculation time of the RICLBVP-solver, used in this report, is very 
large. Maybe, the solver can improved to decrease the calculation time. 

For stable systems, a two-point boundary solver has to be added to the 
MatLab tool, enabling demands for begin and end conditions for these systems 
too. 



[I] M.J.G. van de Molengraft M. Steinbuch. Iterative Learning Control of In- 
dustrial Motion Systems. Eindhoven, University of Technology, Faculty of 
Mechanical Engineering, Systems and Control Group. 

[2] M. Steinbuch M.G.E. Schneiders, M. J.G. van de Molengraft. Evaluation of 
(unstable) non-causal systems applied to  iterative learning control. Eind- 
hoven, University of Technology, Faculty of Mechanical Engineering, Sys- 
tems and Control Group. DCT report 2001.08. 

[3] 8. Ilaset. T w o - p i ~ t  boudary solver h r  stiff unstable linear system (suited 
for application to ILC theory. Eindhoven, University of Technology, Fac- 
ulty of Mechanical Engineering, Systems and Control Group. DCT report 
2001.50. 



Used systems 

A . l  Stable 4th order system 

Figure A.l: Schematic view of the 4th order system 

mlZl = + (xz - q) k + ( f  1 - 22) b  + F(t)  
(-4.1) 

m2x2 = - (x2 - X I )  k  - (kl - 22) b  

After Laplace transformation: 

(mls2 + bs + k)  Xl ( s )  = (bs + k)  X2 ( s )  + F(s )  
( A 4  

(m2s2 + bs + k )  X2 ( s )  = (bs + k)  XI  ( s )  

Now, the two transfer functions become: 

In this report, we will only look at the second transfer firnction, from F + z2. 



Bode Diagmm 

Figure A.2: Bode diagram of the fourth order system. From F -+ XI (blue) and 
F -+ 2 2  (green). 

The system parameters which are used during the simulations of this system 
are: 

parameter I value I units 

8.78 x 

The bode diagram of the fourth order system is presented in A.2. 

A.2 Non-minimum phase model 

The Lagrange method will be used to obtain the equations of motion. 

From the figure above, the following equations can be written for the position 
of the center of gravity for each link: 

x2 = z1 cos el + 1 z 2  cos O2 
1 

~2 = ll sin + 12 sin O2 



Figure A.3: Schematic view of the 2nd order non-minimum phase system 

And the velocities will respectively be: 

x2 = -1181 sin kJ1 - $12& sin 82 
g2 = z,ol c o d l  + hz2d2 C O S ~ ,  

Now that the velocities are known, the kinetic and potential energies can be 
calculated: 

V = -$ lc (~~  - 82)2 
T = $(JI + $mll;)@ + $(J2 + $m21,2)6,2 + !jm2~l12$192 cos (81 - 82) 

(A.9) 
Also the extra forces (acting on the center of gravity of each link) on the 

system can be written: 

According to Lagrange the equations of motion must obey: 

Eventually, the equation of motion for the first link is: 

1 0 -  1 1 
(Jl + am~l~)812m21112& cos (81 - 82) + -m21112$: sin (81 - 82) + ... 

2 
... + k(8, -e2) + bm& + b(& - $2) = T, (A.12) 



And for the second: 
1 1 1 

(J2 + -m21;)e2 + -m211/2& cos (el - 8 2 )  - -m2l1l2@~ sin (el - e2) + 
4 2 2 

One can clearly see that these equations are nonlinear. The ILC method 
discussed in this report can only handle linear systems, so we will linearize the 
system around el = 132. The equations will now change to: 

In matrix notation: 

In short: 
M q + B q + K q = g  - - - 

The transfer functions from Tm -+ and Tm -+ 0 2  are: 

Here, 

A1 = bmk 
A2 =kJi + ikmllf +bbm +kJz + $km21; +m2l1l2k 
A3 = bJ1 + $ h l l :  + bm J2 + %,m& + bJ2 + +bm2l$ + malllab 

(A. 18) 
4 A4 = J1 J2 + $ ~ l r n 2 1 ;  + $mill ~2 + 1/16mll:m21$ - $m;l:l; 

The system parameters which are used during the simulations of this system 
are: 

parameter 

ml 
m2 
J1 

J2 

11 

12 
k 
b 

bm 

value 
0.27 
0.27 

9.6 
9.6 

0.2 
0.2 
100 
0.1 
1 

units 

kg 
kg 
kg.m2 
kg.m2 
m 
m 
N/" 
N/ms 
N/ms 

Figure A.4 shows the bode diagrams of the linearized non-minimum phase 
system. 



Bode Diaaram 

Frequency (Hz) 

Figure A.4: Bode diagram of the non-minimum phase system. From Tm + 61 (blue) 
and Tm + 62 (green). 



Appendix B 

MATLAB implement at ion 

B . l  Splitting the learning filter 

function [LC ,Lncl=SplitSystem(L) ; 
% Sp1itSystem.m 
7 ------------- 
% This function splits a systemsinto a causal and a non-causal 
% part. If the system has more zeros than poles, the order of the 
% numerator is higher than that of the denurnerator. 
% The excess of zeros can be eliminated from the total system, 
% forming the non-causal part (Lnc). The causal system is the 
% system remaining from the original system minus the non-causal 
% system. Example: 
% (s-21) (s-z2) (s-z3) (s-z2) (s-z3) 
% L(s)= k ------------------ = k*(s-zl)*------------ = Lnc * LC 
% (s-PI) (s-p2) (s-pi) (s-p2) 
% 
% If no non-causal or causal part exists, then respectively Lnc 
% and LC will be equal to I. (Note: if both parts aren't equal to 
% I, then Lnc includes the system gain k). 
% 
% usage : [LC ,Lnc] = SplitSystem(L) 
% where: L : System to split. 
% LC : Causal part of L. 
% Lnc : Non-causal part of L. 

% Author : Arjan Teerhuis, 2001 

if not (isob j ect (L) ) 
err~r(~Systern L is not a lti system7) 

end 



% ................................... 
% are there are more zeros than poles 
% ................................... 
Czz ,pp,kkl=zpkdata(L, 'v9) ; 
nd=length (zz) -length (pp) ; 
if nd>O 

% more zeros than poles, so differentiating action is needed 
% seperate zeros (keep compl. conj. pares together) 
% fill two vectors with real poles and compl. conj. pares 
N-real= [I ; N-conj= [I ; 
for i=l : length (zz) 

if imag(zz (i) )==O 
% puur reeel 
N-real= [N-real ; zz (i) 1 ; 

else 
N-conj= [N-conj ;zz(i)] ; 

end 
end 
% check if causal part can be filled with conj. pares 
% perhaps, one or more real poles must be added 
if length(pp) >0 

% causal filter needed! 
if floor (length(pp) /2) ==length(pp) /2 

% even number of poles 
if length(N-conj ) <=length(pp) 

% all conj. pares can be used 
zz=N-conj ; 
n=length (pp) -length (zz) ; 
if n>O 

% room left for real poles 
zz= [zz; N-real (I : n)] ; 
dd=N-real(n+l:end); 

else 
dd=N-real; 

end 
else 

% only a few conj. pares can be used 
zz=N-conj (1 : length (pp) ) ; 
if length(N-real)>O 

dd= CN-conj (length(pp1 +I : end) ;N-real1 ; 
else 

dd= [N-conj (length(pp)+l :end)] ; 
end 

end 
else 

% odd number of poles 



i f  length (N-conj ) <=2*f loor (length (pp) /2) 
% a l l  conj. pares can be used + one r e a l  
zz= [N-conj ; N-real ( I )  1 ; 
dd=N_real(2 : end) ; 

e l s e  
% only a few conj. pares can be used + r e a l  
i f  length (N-real) >0 

% room l e f t  f o r  r e a l  pole i n  causal f i l t e r  
zz= [N-conj (I : 2*f loor (length(pp) /2)) ;IT-real (1 ) I  ; 
i f  length(N-real) >I 

% room l e f t  f o r  r e a l  numbers i n  di f f  action 

dd= [N-conj (2*f loor (length(pp)/2)+1 :end)] 
dd= [dd; N-real(2 :end)] ; 

e l se  
dd= [N-conj (2*f loor (length(pp) /2) +1: end) 1 ; 

end 
e l s e  

zz= CN-conj ( I  : 2*f loor (length(pp)/2) 11 ; 
dd= [N-conj (2*f loor (length(pp) /2) +I  : end)] ; 

end 
end 

end 
e l s e  

% no causal f i l t e r  needed, jus t  a d i f f .  f i l t e r  
zz= [I ; 
dd= [N-real ; N-conj 1 ; 

end 
Lnc=zpk (dd , [I , kk) ; 
Lc=zpk (zz , pp , I )  ; 

e l s e  
% no non-causal f i l t e r  needed 
dd= [I ; 
Lnc=zpk ( [I , El , I )  ; 
Lc=zpk (zz , pp , kk) ; 

end 



B. 2 Using the differentiating filter (s) 

[numDD, denDDl =tf data(Lnc , ' v ' ) ; 
DiffOrde=length(numDD)-I; 
Dif f Sigs= [I ; 
if DiffOrde>O 

Dif f Sigs=e ( : ) ; 
Ync=numDD(Dif f Orde+l) *e (: ) ; 
for Orde=f:DiffOrde 

CC=bdiffilt(Orde,2*Orde,'PInt',2*0rde); 
Dif f Sig=dif f ilt (e ( : , CC , Orde , dt) ; 
Dif f Sigs= CDif f Sigs Dif f Sig( : ) ]  ; 
Ync=Ync+numDD(DiffOrde+l-Orde)*DiffSig; 

end 
else 

Ync=e(:) ; 
end 
Dif f Sigs= [Dif f Sigs Ync ( : )] ; 



B.3 Filtering the unstable system 
When the error signal has been filtered by the non-causal filter, it has to  be 
fed through the causal filter. Because of the example used in this report, this 
filter has unstable poles. To solve this problem, the RICLBVP-solver is used. 
Before the causal filter can be presented to it, the upper part of the state-space 
notation must contain the stable equations (the first k equations). 

Cm-Lc,BEN-Lc]=tbdata(Lc, 'v') ; 
if not (lengtb(NUM-Lc)==length(DEN-LC) ) 

m - L c =  [zeros (I, length(DEN-LC) -length(NUM-LC) ) NUM-Lcl; 
end 
AA= C-DEN-LC (2 :end) ' . . . 

. . . [eye (length(DEN-LC) -2) ;zeros (I, length(DEN-LC) -2) 11 ; 
BB=NUM-LC (2 : end) ' -NUM-LC (I) . *DEN-LC (2 : end) ' ; 
CC=[l zeros(l,size(A~,l)-I)] ; 
DD=NUM-LC (I) ; 
[AA,BB,CC,DD,k,order]=sysreorder(AA,B~,CC,DD); 
[Ma, Mb, do] =boundvals (CC, DD ,wa, wb, d, Ync) ; 
~=riclbv~(AA,B~,~nc,t,Ma,Mb,dO,k,Rmax,RelTol,AbsTol, ... 

. . . interp-methode , ode) ; 
uu=CC*X+DD*Ync ( : ) ' ; 



Rewriting the Learning Filter 
in State-Space notation 

This section shows how the initial and the end conditions for the state can be 
calculated in the case of any demands in derivatives of the feedforward. The 
solver gsed here, asks for a statespace representatkc of the causal part, of the 
learning filter: 

To rewrite the num/den representation into a state-space notation, the ob- 
servable canonical form is used: 

0 

1 
-a0 0 ... 0 

c=[1  0 ... 0 1  

To calculate any derivatives of y(t), two more matrices must be known: 

y ( t )  = Ox(t) + Ru(t) (c-3) 

where: 



The matrices 0 and R are defined like: 

I 
D 

- 
0 0 0 0 ... 0 

CB D 0 0 0 ... 0 
CAB CB D 0 0 ... 0 

R =  CA2B CAB CB D 0 ... 0 

1 C A K - 2 ~  C A K - 3 ~  ... ... CAB CB D 1 (c.4) 
C - 

CA 
I.= I y2 

CAK-I 

From here, the calculation of the boundary matrices B,, Bb and d is the 
same as equation (3.2), but now the C and D matrices are replaced by the 0 
and R matrices respectively. 


