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Abstract 

Following earlier stochastic models of crack growth a simple function 
of the crack length follows a normal distribution. From this 
observation the parameters of the Paris-Erdogan model are readily 
evaluated without the need to estimate the crack growth rate. 
Moreover, the approach lends itself to the analysis of properly 
designed experiments to determine the effect of environmental factors 
on the parameters of the Paris-Erdogan equation through the medium of 
accelerated failure time models borrowed from reliability theory. 

Introduction 

There is now an extensive literature on the subject of the statistical 
1-6 nature of crack growth . Most of the literature is concerned with model 

building and the agreement between the general features of the model and the 

observed behaviour of the crack. However, little use has been made of the 

statistical nature of the models to analyse experimental results. The basis of 

most of the models is the Paris-Erdogan equation relating the rate of growth 

of crack length, a, after N cycles to the stress intensity, l:::.K, 

da 
(IN 

where A and m are constants. If the stress intensity is taken to be 

proportional to a1h the Paris-Erdogan equation becomes 

~N = Otav.;n = Ota
q

, with m = 2q (1) 

which, as is well known, integrates easily to give the length as 

a {a~-q - Ot(q-l)(N-No)}l/(I-Q), for m>2, (2) 
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and 

a = ao exp{o:(N-No)}, for m=2, (3) 

where ao and No are the initial values. 

The basis of most data analyses seems to be to take logarithms in (1) and 

estimate m and 0: by least squares in the equation 

In(o:) + qln(a) (4) 

Unfortunately to use this equation estimates of ~N are required. Estimates of 

derivatives are notoriously unreliable. If several repetitions of an 

experiment under the same conditions are done it is not always clear how to 

combine the results. Moreover, as a regression model the properties of the 

estimates of the coefficients in (4) are not the same as those of estimates of 

the coefficients in (2). Thus it is sensible to ask why the estimation does 

not proceed directly from the data on crack length and cycles through equation 

(2) or equation (3). It is interesting to note that if q were known 0: could 

be estimated from a straight line 

and indeed such a plot for a few values of q is indicative of the nature of 

the Paris-Erdogan equation in a particular case. 

Stochastic models 

When the stochastic models are considered the probability density of the 

crack length is exhibited as a solution of the Fokker-Planck equation1
• A 

stationary solution is given by Sobczyk1 in the form 
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and in non-stationary cases (N-No) is replaced by, for example, a measure of 

accumulated 10ading7. This density function (5) gives the basis for direct 

analyses based on the crack data. The density says that the function 

~-q- i-q is normally distributed with mean (q-l)o:(N-No) and standard 

deviation (q-l) (3V'N=N;. Thus using the standard normal distribution function, 

~, we can write the cumulative distribution 

, 

1-q 1-q N N } 
F(a,Nlao,No) = ao - a - ( q-l )o:( - .ul 

(q-l)~ 
(6) 

although as has been noted elsewhere5
,6 the distribution is defective because 

there is a finite escape time. 

Data analysis for a single crack 

The regression model corresponding to this normal distributions states that 

(7) 

where 'Uc is normally distributed with standard deviation (q-l)(3V'N=N;. Because 

the variance is non-constant (7) is a non-standard model, however, on dividing 

by l/N=N; the model becomes 

a~ - q - a 1
-

q = o:(q-l)VN - No' + e 

VN=N; 
(8) 

where e is normally distributed with mean zero and standard deviation (q-l)fJ 

independent of N. Thus if q is known the estimator of (q-l)o: is just the least 

squares estimator of the coefficient in equation (8) and the estimate of 

(q-l)P is just the estimate of the variance of the regression. It remains to 

determine what to do about q. 

Given the data describing a single crack, say a sequence {(ai,Ni)}~=O' it 

is easy to construct a log-likelihoods using density (5) and estimate the 

parameters q, 0: and P by maximum likelihood. The log-likelihood is 
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[

1- q l-q N N J2 
£(q,a:,,8I{(ai,Nd} = -qLtn(a) - ntn(,8) - ~ L ao - a - (q-l )a( - 0) 

(q-l)~ 

where for ease of reading the subscript i has been dropped on the right hand 

side of the equation. Inspection shows that this differs from the standard 

least squares equation only in the term -q:[ tn( a ). The likelihood estimators 

are obtained by solving the equations 

o£ 
8q = 0 

o£ 
-- = 0 oa 

o£ 
8{3 = 0 

From the invariance property of likelihood estimators8 the estimator q of q 

gives the estimator for m directly as in = 2q. In this case the equations have 

no closed solution. However, it is easy to see that the estimators for a: and 

,8 given m are the usual least squares estimators for the coefficients in (8) 

conditioned on q, 

(9) 

[ 
l-q l-q ANN]2 

A2 _ 1 L ao - a - a:(q)(q-l)( - 0) 
,8 (q) - 2 (N - N ) 

n(q-l) 0 

and on substituting these back in the log-likelihood gives a function of q 

alone, 

£*(q) = -q:[ tn(a) - nen[ ~(q) ] -!l. 
2 
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Thus the technique is to search for the value of q which maximises C* by 

estimating 0: and (3 as functions of q and substituting in C. In this study a 

simple golden-section search9 worked very effectively. 

Pooling data 

When several experiments have been performed it is possible to combine the 

log-likelihoods from each experiment to give estimators of the parameters of 

interest. Suppose that several experiments have been performed. Each 

experiment 

The data 

j=l, ... , Sj. 

the sum 

is labelled with i, i runs from 1 to n, and yields Si observations. 

is then a set of sequences {(aij)Njj )}, with i=l, .. , n, 

The log-likelihood for the whole set of experiments is simply 

of the log-likelihoods9 for the individual cracks, writing 

-qir tn(aij) 
j 

and 

C = r Ci (Qi,O:i,(3i) 
i 

The global log-likelihood can be used to investigate explicit parametric 

models for the parameters, or simply as a way to -pool data. In the 

illustrative example data from 9 cracks are available, and the log-likelihood 

is used to obtain an estimate of a value of the Paris-Erdogan parameter, m, 

that is common to all the cracks, while the o:'s and (3's are supposed to 

reflect the experimental conditions. Estimation by maximum likelihood 

proceeds exactly as above, the o:'s and (3's are obtained as ordinary least 

squares estimators from equations like (9) and (10), one for each crack and 

substituted back into the log-likelihood to yield 
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.c*(ql) qz, ... , qn) = - L qiL tn(aij) - L 8itn [ Pdq;) ] - ~ L 8i 
i j i i 

Moreover, when the cracks are all assumed to be independent with distinct 

parameters the estimators from the joint log-likelihood are precisely those 

obtained by estimating from each separately as outlined above. In the 

simplest case when a common value of m (and thus q) is used and the o:'s and 

(3's are assumed to absorb most of the experimental variability the joint 

log-likelihood reduces to, up to a constant, 

.c*(q) = - qL L tn(aij) - L 8itn [ Pdq) ] 
i j i 

which is the form used for the illustrative example. 

Example 

Data from nine crack growth experiments on two types of (A533B and A508) 

steel used in the manufacture of pressure vessels was made available to the 

author. The experiments were carried out in air and in water and the stress 

amplitude, temperature, and frequency, were also varied. The results are 

analysed using the approach outlined above to obtain estimators of the 

Paris-Erdogan parameter, m, and the constants 0: and {3. The results of 

grouping the experiments are also reported. The calculations and graphics 

were done with the PC-MATLAB package. A FORTRAN program for estimation in the 

model with a fixed m and different o:'s and {3's is available from the author. 

In Figure 1 are shown plots of the observed crack length against the estimated 

crack growth using parameters estimated by simple least squares in equation 

( 4) and against the crack length estimated by the method of maximum likelihood 

applied to a single crack. It can be seen that the least squares estimates 

usually underestimate the crack length, and in Figure l(i) the least squares 

method predicts an explosion after about 7.5x104 cycles. The results are 

summarised in Table 1. 
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Summary of exper imental condi t ion s 

All the test spec imens were subjected to a sinusoidal load. 

Experiment 

A Steel A533B; ai r j room temp.; 10Hz; R=O.1 j Pmax=35kNj Pmin=3.5kN 

B Steel A533B; air; room temp.; 10Hz j R=O.1; Pmax=9kN; Pmin=O. 9kN 

C Steel A533B; air; room temp.; 10Hz; R=O.l; Pmax=16kN; Pmin=1.6kN 

D Steel A533B; air; room temp.; O.5Hz; R=O.1; Pmax=55kNj P min=5. 5kN 

E Steel A533B; water; 20°C' , O.1Hz; R=O.1; Pmax=50kNj Pmin=5kN 

F Steel A533B; water; 20°C' , O.1Hz; R=O.1; Pmax=55kNj Pmin=5. 5kN 

G Steel A508; water; 20°C' , O.1Hz; R=O.1; Pmax=55kNj Pmin=5. 5kN 

H Steel A508; water; 20°C' , O.1Hz; R=O.1; Pmax=50kNj 

I Steel A508; air; room temp.; O.5Hz; R=O.1; Pmax=55kNj 

To illustrate the method of pooling the data are taken in four groups: 

steel A533B at low frequency (experiments A-C); steel A533B at high frequency 

(experiments D-F); steel A533B at both low and high frequency (experiments 

A-F); and steel A508 (experiments G-H). The results for A533B at high 

frequency are summarised in Table 2, and shown in Figure 2. The 

maximum-likelihood estimators again do better overall. The results for the 

2nd to 4th groups are given in Tables 3-5 and Figures 3-5. Again it can be 

seen that the likelihood method gives closer fit for both crack length and 

crack growth rates. Clearly other subdivisions of the data could be used. The 

basic assumption was that the Paris-Erdogan parameter, m, is a fixed material 

property and that the parameters a and (3 reflect the effects of the factors 

(frequency, temperature, presence or not of water) on the rate of growth. 

7 
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FIGURE 1: Cracks analysed individually 
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FIGURE 2: Steel A533B high frequency 
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FIGURE 3: Steel A533B low frequency 
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FIGURE 4: Steel A533B high and low frequency 
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FIGURE 5: Steel A508 
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Extending the Model 

The analysis above falls into a group of problems frequently considered by 

reliability analysts. In those cases the reliability analyst attempts to 

determine the effect of operating conditions on the failure behaviour of a 

component or a system. Two standard approaches are commonly used, the 

accelerated failure time modellO
, and the proportional hazards modelll• A 

widely used concept in reliability analysis is that of the hazard rate, h(t), 

a function of time which gives the chance of failure in the next instant of 

time given no earlier failure. The hazard rate is related to the distribution 

F(t) and density f(t) of the lifetimes of the system by 

d 
h(t) = - Tt-tn{l-F(t)} = f ( t ) 

I-F(t) 

The proportional hazards model assumes that the hazard rate for a system 

operating under conditions represented by a measurement z consists of two 

parts and may be written for a measurement zi as 

where ho is called the baseline hazard rate and W the relative risk function. 

When W(zi»l, the risk of failure is increased and when W(zi)<l, the risk of 

failure is decreased. Proportional hazards is useful because the analysis of 

the effects of the conditions can be done in terms of the function W alone 

without any assumptions about ho. 

The accelerated failure time model assumes that the life times are 

described by a probability distribution function G(tlk,'I?-)=F[llk], where F is a 

one parameter distribution with parameter k, 'I?-=1 gives F in standard form. 

The effect of conditions on the system life time is assumed to act through 

changes in the scale parameter 'I?-, that is 'I?-=*(z). It is easy to see that both 

c¥ and (3 play the role of a scale parameter in the distribution (5). Thus the 

accelerated failure time approach can be used to model the effects of 

16 



experimental conditions on crack growth. The initial steps of the analysis 

are elementary, but there may well be computational problems. For simplicity 

of exposition suppose that the distribution (5) describes the length of a 

crack after N cycles, and that 0: is a function of the experimental conditions 

as measured by Z but m and (:J are constant. Suppose further that 0: can be 

written as o:=ex(Zj>",JL) where>.. and JL are parameters. Write the likelihood for 

the i-the experiment as L(m,ex(zi),{:J), then the overall likelihood is 

e(m,C!.,(J) = E L(m,o:(zi),(J) 
i 

and the likelihood equations are 

ae E: 0 8m = = 
i 

ae L aL aex 
0 a>.. = a>.. = 

i ao: 

ae L aL ao: 
0 

aJL 
= .~ aJL 

= 
% 

ae L aL 0 a(J = = 
i8/3 

with a proper interpretation of the chain rule in the second and third 

equations. In this way it is easy to extend the approach of the above example 

to cover explicit parametric models of the effect of operating conditions on 

the material. 

With the data available it is not possible to build models as described 

here, for example in considering the experiments A-C a two parameter form for 

ex, say ex is a function of P max, requires 4 estimating equations, and there are 

only three observations on the values of P max' However, an idea of the form 

of dependence may be obtained from simple graphical analyses. In Figure 6 the 
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a values reported in Table 3 are plotted against the P max, on linear scales 

and on log-log scales, there is some indication of a linear or power 

relationship between a and P max- It was not possible to conclude anything 

about the influence of the frequency of loading nor of the influence of the 

presence of water. 

Experimental Design 

The author came to this problem as do most statisticians by being asked to 

analyse data which had already been collected. Clearly there are a number of 

factors that may affect the rate of fatigue growth in a steel, the experiments 

used for the example had as variables frequency, stress range, temperature, 

and the presence or absence of water. However, the experiments were not 

carried out in a way which allows the best use to be made of the data. These 

comments also hold for the analysis of a similar problem given by Bhuyan, 

Swamidas and Vosikovskl2
, while the regression analysis gives no problems, 

the constants in the Paris-Erdogan equation are the responses and so a more 

explicit consideration of the choice of levels for the factors would have 

added to the confidence with which their results could be reported. 

Experimental design 8 begins by examining what needs to be done to best answer 

the question of interest, the result of a good design is an economical set of 

experiments that give the best chance of determining the effects of the 
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variables of interest. In this report the response variables are m, 0:, and f3 

and to determine the effects on them of the three factors which are varied in 

this set of experiments would need 30 experiments (three factors, one with two 

levels, one with three levels, and one with five levels) in a factorial 

design. The number of experiments can be significantly reduced by using 

orthogonal designs. 

Discussion 

The above description of a method of analysis and the example have been 

used to show how a better approach to the analysis of crack growth data can be 

developed. The important points are (i) the analysis proceeds directly from 

the data recorded without the need for intervening transformations and 

estimations and gives results as least as good as existing methods; (ii) it 

derives directly from the statistical properties of a now widely used model of 

crack growthj (iii) it is flexible, and given well designed experiments should 

be capable of demonstrating the effects of environmental or experimental 

conditions on the rate of crack propagation. 
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