

Contribution to the mechanics of machining

Citation for published version (APA): Veenstra, P. C. (1965). *Contribution to the mechanics of machining*. (TH Eindhoven. Afd. Werktuigbouwkunde, Laboratorium voor mechanische technologie en werkplaatstechniek : WT rapporten; Vol. WT0139). Technische Hogeschool Eindhoven.

Document status and date: Published: 01/01/1965

Document Version:

Publisher's PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website.

• The final author version and the galley proof are versions of the publication after peer review.

• The final published version features the final layout of the paper including the volume, issue and page numbers.

Link to publication

General rights

Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

- · Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
- You may not further distribute the material or use it for any profit-making activity or commercial gain
 You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:

www.tue.nl/taverne

Take down policy

If you believe that this document breaches copyright please contact us at:

openaccess@tue.nl

providing details and we will investigate your claim.

an 49 i nr. 01
nr. 01
• • •
]•
a.1
u.
panin
•
1 796
) Z.
t voor
ie in:
P
P n.
P n.

0

5

10

15

20

25

30

35

40

45

50

blz. 2 van 49 blz.

Summary

Based on the Merchant shear plane model and assuming global mechanical equilibrium between average values of stress in a state of plane stress, a shear angle relation is derived by identifying the direction of maximum strain with the direction of maximum principal stress.

It is shown that but the von Mises plasticity condition no particular assumption as to minimum work has to be introduced. The shear angle solution is fixed by the prevalent state of stress, which can be expressed in terms of the ratio between the average value of the maximum shear stress and the plasticity constant of the material machined, which also holds when strain-hardening occurs.

A comparison is made with experimental results and a true strain-stress curve of the work-piece material, as obtained from the present theory is given.

werkplaatstechniek

0

5

10

15

20

25

30

35

40

45

50

blz. 3 van 49 blz.

Resumé

Basé sur le modèle de cisaillement de Merchant et supposé qu'une équilibre globale existera entre valeurs moyennes des tensions dans un cas de tension plan, une relation d' angle de cisaillement est déduite par identifier la direction du allongement maximum contre la direction de la tension maximum principale.

Il est demontré que outre la Mises-Huber-Hencky condition de plasticité aucune surposition queleonque sera besoin d'introduire. La résolution de l'angle de cisaillement est complètement fixée par l'état de tension préponderant, étant calé par l'idee de relation de la valeur moyenne de la tension de cisaillement maximum et la constante de plasticité du matériel travaillé. Aussi dans le domaine de tremper ce theorème reste valable.

Enfin un parallèle est tiré entre les résultats expérimentals et une courbe allongement-tension vrai du matériel de la pièce à travailler, obtenue de la théorie présente est montrée.

werkplaatstechniek

Ø

5

10

15

20

25

30

35

40

45

50

blz. 4 van 49 blz.

Zusammenfassung

Gegründet auf dem Merchant'schen Modell des Schervorgangs bei der Zerspanung und mit der Annahme dasz ein Gleichgewicht zwischen mittlere Werte der Spannungen in einem ebenen Spannungszustand bestehe, wird mittels Identifizierung der Richtung der Maximaldehnung mit der enige der maximalen Hauptspannung im System eine Scherwinkelgleichung abgeleitet.

Es wird gezeigt desz auszer die von Mises-Huber-Hencky Bedingung keine weitere Voraussetzung bezüglich die Minimalarbeit notwendig ist.

Die Lösungen der Schwerwinkeleleichung werden völlig bestimmt won dem herrschenden Spannungzustand wie festgelegt durch das Verhältnis zwischen den Wert der maximalen Scherspannung und die Flastizitätskonstante des Materials. Auch im Gebiete der Dehnungsverfestigung bewährt die Theorie seine Gültigkeit.

Die Voraussage der Theorie wird verglichen mit Experimentalergebnisse und eine Dehnungs-Spannungskurve für das bearbeitete Material, wie aus der Theorie hervor geht, wird dargestellt.

werkplaatstechniek

rapport nr.	0139	•	blz. 5 van 49 bl
-		,	
	Nomencla	ture and units	
- •	σ σ 1 3	average principal stresses in shear zone	Nm ⁻²
	σ, σ χ, σ	average normal stresses in shear zone	Nm ⁻²
for	t	average shear stress in shear plane	Nm ⁻²
	τ max	average maximum shear stress in shear zo	ne Nm ⁻²
	φ	shear angle	
- ¥	β	friction angle	
	a	rake angle	
-	¥	direction of maximum crystal elongation	with respect
	Ω	direction of maximum principal stress	to the shear
			plane
• ••	۲.	shear strain, $\tan Y = \tan(\varphi - \alpha) + \cot \varphi$	1
	Ir	nlasticite constant	Nm-2
	σ	the topoile cross $-1\sqrt{7}$	N2
	3	2σ	NE
u. .	g	J.J. Stress parameter y, x	
	f	max ratio factor	
	t	feed	m/rev
	đ	depth of cut	M
	r	chip thickness ratio	
-	v	cutting speed	- 1 ms
	ê	true strain	
	3	natural strain = Pn $(1 + \mathcal{E})$	
-	-		
		·	

biz. 6 van49 biz. 0139 rapport nr. ۵ Contribution to the Mechanics of Machining. I. Introduction. 5 During the past decades a number of theories on the mechanics of machining has been published. Some of them investigate the entire state of stress, while otherwise equilibrium between average values of stress is assumed to be present in a geometric model of the cutting process. 10 All theories are directed towards the formulation of a shear angle relation, which is an accessible equation between measurable quantities predicting an unique steadystate configuration for tool rake and friction angle. A hypothesis of minimum work is generally introduced in order 15 to secure the uniqueness of the shear angle solution. It even has been shown (1) that the search for uniqueness might considered being fruitless, as a range of steadystate solutions of the Merchant shear-plane type (2) is 20 to be expected within permissible regions of the characteristic angles describing the geometry and the mechanics of the cutting process. The present author reconsidered extant theories based on 25 the assumption of global equilibrium between average values of stress. It will be shown that when identifying the direction of maximum strain with the direction of maximum principal stress a shear angle relation can be formulated. 30 As to this it is not required to introduce any energy condition. However when aiming at a shear angle solution an additional assumption has to be made with regard to the prevalent state of stress, which will prove to be equivalent to assuming a 35 value of the maximum /shear stress in the system in the case that materials behaving according to the von Mises condition of plasticity are being machined. As a matter of fact the introduction of the von Mises condi-40 tion implies accepting an energy condition. The latter however, regards exclusively the deformation of the workpiece material and does not refer to the cutting process as a whole. 45 A treatment of the problem along these lines will prove to be able to account for the strain-hardening properties of the material. 50

werkplaatstechniek

2. The direction of maximum strain (3), and a shear angle relation.

In the present theory the Merchant shear plane geometric model according to fig. 1 is accepted. The problem will be treated as a case of plane stress. From fig. 1 follows the geometric condition:

$$\dot{\sigma}_{v} = \tau_{e} \tan(\varphi + \beta - \alpha) \qquad \dots \qquad (1)$$

and hence can be deduced from the Mohr equilibrium condition as represented in fig. 2:

$$tan(\alpha + \beta - \alpha) = g \cot 2\Omega \quad (4) \qquad \dots \qquad (2)$$

where the parameter g defines the state of stress. As is clear from the figure this parameter can be expressed in terms of the prevalent stresses:

$$g = \frac{OP}{MP} = \frac{2\sigma y}{\sigma - \sigma}$$
(3)

Thus g = 1 defines a state of pure shear.

Merchant introduces the angle $\underline{\mathbf{W}}$ as the direction of the maximum value of the crystal elongation in the chip with respect to the shear plane, which can be interpreted as the direction of the maximum value of strain and hence in mechanical respect as the direction of the maximum (tensile) principal stress in the system.

This is expressed by:

$$\Psi = Q$$

..... (4)

Now, as shown in fig. 3 an element AF of the workpiece material will be transformed by the cutting process into the state AF'.

Its original position is fixed by an angle p relative to the coordinate system shown in the figure, the position after deformation is defined by the angle q.

The strain resulting from the deformation amounts:

$$\mathbf{e} = \frac{\mathbf{AF'} - \mathbf{AF}}{\mathbf{AF}} = \frac{\cos \mathbf{p}}{\cos \mathbf{q}} - 1 \qquad \dots \dots (5)$$

Furthermore follows from fig. 3:

$$\tan q = \tan \gamma_{-} + \tan p_{-}$$

..... (6)

werkplaatstechniek

٥

Ő

5

blz, 8 van 49 blz.

.... (10)

rapport nr. 0139

۵

5

10

15

20

25

30

35

40

45

50

and hence:

$$\cos p = \begin{bmatrix} \frac{1}{1 + (\tan q - \tan \gamma_s)^2} \end{bmatrix}^{\frac{1}{2}} \qquad \dots (7)$$

Combining eqs. 5 and 7:

$$e = \frac{1}{\cos q} \left[\frac{1}{1 + (\tan q - \tan \gamma_s)^2} \right]^{\frac{1}{2}} - 1 \dots (8)$$

The direction of the maximum strain in terms of the angle q by now follows from:

$$\frac{de}{dq} = 0$$

which renders:

 $\tan q_{e,\max}^{+} = \cot \Psi =$

 $= \frac{1}{2} \tan \gamma_{s} + \left[\frac{1}{2} \tan^{2} \gamma_{s} + 1\right]^{\frac{1}{2}} \dots (9)$ from which easily can be derived:

$$\cot 2\Psi = \frac{1}{2} \tan \gamma_8$$

Using the eqs. 4 and 2 :

$$\tan(\varphi + \beta - \alpha) = \frac{1}{2} g \tan \Upsilon_{S} \qquad \dots \qquad (11)$$

Substitution of the explicite expression for the shear strain in terms of φ and α according to Merchant results in:

$$\tan(\varphi + \beta - \alpha) = \frac{1}{2}g[\tan(\varphi - \alpha) + \cot\varphi] \dots (12)$$

which is a shear angle relation valid in a state of stress defined by the parameter g. The value of the maximum strain follows from eqs. 9 and 8:

 $\max = \left[1 + \tan \gamma_{g} \left\{\frac{1}{2} \tan \gamma_{g} + \left(1 + \frac{1}{4} \tan^{2} \gamma_{g}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} - 1$ Hence: $E = \frac{1}{2} \ln \left[1 + \tan \delta_{g} \left\{\frac{1}{2} \tan \delta_{g} + \left(1 + \frac{1}{4} \tan^{2} \delta_{g}\right)^{\frac{1}{2}}\right]^{\frac{1}{2}} - (13)$ By now it is possible to derive the shear angle relation eq.11 in a direct way from the Mohr equilibrium diagram fig.2. According to eas.4 and 10 the equality holds:

werkplaatstechniek

0139 blz. 9 van 49blz. rapport nr. 0 $\frac{MP}{PQ} = \cot 2Q = \frac{1}{2} \tan \gamma_{s}$ and as: MP = 1 PR 5 ≮ PQR - Y follows: by which a graphical interpretation is obtained of the 10 relation between the shear strain and the characteristic angle $(-\varphi + \beta - \alpha)$. From this follows the shear angle relation: $\tan(\varphi + \beta - \alpha) = \frac{OP}{MP} \frac{1}{2} \tan \gamma_s$ 15 * and hence: $g = \frac{OP}{MP}$ 20 as already has been defined in eq. 3. Finally is remarked that the shear strain which in origin has been defined merely as a geometric quantity can be expressed in terms of stress, as also can be concluded from fig.2: 25 $\tan \gamma_{\rm S} = \frac{\sigma_{\rm X}^{-} \sigma_{\rm y}}{\tau_{\rm S}}$ 30 35 40 45 50 werkplaatstechniek technische hogeschool eindhoven

blz. 10 van 49 blz.

rapport nr. 0139

0

5

10

15

20

25

30

35

40

45

50

3. The stress parameter g.

In the case that the value of the stress parameter g is known, the shear angle relation eq. 12 allows for a shear angle solution, i.e. the determination of the shear angle in dependance of the friction angle, with the rake angle as a parameter.

As eq. 13 predicts that the strain in the material can be expressed merely in terms of the shear strain, and thus in terms of the shear angle φ , this means that an analytical formulation will be obtained accounting for the interaction between the friction on the rake of the tool - whatsoever the physical background of this particular process might be and the deformation of the workpiece material in the shear zone. Thus it is important to investigate the physical meaning of the stress parameter g, apart from its definition eq. 3.

The general von Mises plasticity condition reduces to:

$$\sigma_{x}^{2} + \sigma_{y}^{2} - \sigma_{x}\sigma_{y} + 3\tau_{g}^{2} = 3k^{2} \qquad \dots \qquad (14)$$

in the state of plane stress. The plasticity constant k is considered being a function of the strain ε , and hence eq. 14 remains valid when strain-hardening occurs.

This means that the plasticity ellipse, when transferred to the coordinate system of principal stresses:

$$\sigma_1^2 + \sigma_3^2 - \sigma_1 \sigma_3 = 3 k^2 \qquad \dots \qquad (15)$$

shows semi-axes of variable magnitude in dependance of the state of strain at a given strain rate.

The equilibrium condition according to fig.2 requires:

$$\sigma_{\mathbf{x}} = \sigma_{\mathbf{y}} - 2\tau_{\mathbf{g}} \cot 2\Omega \qquad \dots (16)$$

The geometric condition as to the stresses has been formulated in eq. 1.

Now the solution of eqs. 1, 14 and 16 refers to a state of stress satisfying simultaneously the geometric condition prescribed by the shear plane model, the condition of global equilibrium and finally the condition of plasticity at the given state of strain and strain rate.

werkplaatstechniek

-	rapport nr. 0139	biz. 11 van 49 biz.
0 -		
	The solution is:	
5 -	$=\frac{\kappa\sqrt{3}}{\left[\tan^{2}(\varphi+\beta-\alpha)-2\tan(\varphi+\beta-\alpha)\cot2\Omega+4\cot^{2}2\Omega+4\right]}$	- 3 ¹ (17)
a -	$= \sigma_{y} = \frac{k\sqrt{3} \tan(\varphi + \beta - \alpha)}{[\tan^{2}(\varphi + \beta - \alpha) - 2\tan(\varphi + \beta - \alpha)\cot^{2}\Omega + 4\cot^{2}2\Omega + 4\cot^{2}\Omega +$	3
5	The counterpart of eq.16 also goes from fig. 2:	
0	$\tau_{g} = -\tau_{\max} \sin 2\Omega$ and: $2\tau_{max} = \sigma_{1} - \sigma_{2}$	(18)
	max 1 3 Now two different extreme situations of stress may oc 1) a state of linear stress:	cur:
5	$\sigma_1 \neq 0 \qquad or \qquad \sigma_1 = 0$ $\sigma_3 = 0 \qquad \sigma_3 \neq 0$ To this is a first transformed at the second se	
10 -	The this case follows from eqs. (5 and (c): $\tau_{max} = \frac{1}{2} k \sqrt{3}$ 2) a state of pure shear :	
5	where follows from the same equations :	
10	$T_{max} = k$ In general thus can be put: $T_{max} = f.k$	
15	and: $\tau_s = -fk \sin 2\Omega$ where: $\frac{1}{2}\sqrt{3} \le f \le 1$	(19)
50	From this it is clear that any a priori assumption wi to the value of the maximum shear stress in terms of ticity constant defines a state of stress.	th regard the plas-

0

5

10

15

20

25

30

35

40

45

50

In particular the condition $\tau = k$, which is quite common in extant theories, defines a state of pure shear.

Substitution of eq. 19 into eq. 17 and using eqs. 4 and 10 again leads to a shear angle relation:

$$\tan(\varphi + \beta - \alpha) = \begin{bmatrix} 1 \pm \{3(1 + \frac{4}{\tan^2 \gamma_8}, \frac{1}{f^2} - 1)\}^{\frac{1}{2}} \end{bmatrix} \frac{1}{2} \tan \gamma_8 \dots (20)$$

Comparison with eq. 11 shows that holds:

$$g = 1 \pm \left[3(1 + \frac{4}{t \sigma c^2 \gamma_{s}}) (\frac{1}{f^2} - 1) \right]^{\frac{1}{2}} \dots (21)$$

from which it is obvious that the state of stress defined in terms of the parameter g at a given state of strain has its physical origin in the ratio f between the average value of the maximum shear stress and the plasticity constant of the material.

The positive sign in eq. 21 implies:

the negative sign means:

$$|\sigma_{y}| < \sigma_{x}$$

 $|\sigma_{y}| > \sigma_{x}$

The condition f = 1 is compatible with g = 1, and defines a state of pure shear, as is shown before.

werkplaatstechniek

rapport nr. 0139 blz.13 van 49blz. 0 4. Shear angle solutions. 1. The case of pure shear. From the foregoing it will be clear that the shear angle relation eq. 20 or 12 reduces to : $\tan(\varphi + \beta - \alpha) = \frac{1}{2} \left[\tan(\varphi - \alpha) + \cot \varphi \right]$...(22) from which ϕ can be solved as a function of β , for given values of the rake angle α . The solution has been plotted in fig. 4, where in the usual way of representation the shear angle of appears as a function of the angle $\beta - \alpha$. A remarkable fact is that in the present theory the rake angle operates as a parameter which definitely influences the solution obtained. 20 This is shown for the values $\alpha = \pm 30^{\circ}$ and $\alpha = 0^{\circ}$. As a comparison also the Merchant and Lee and Shaffer (5) solutions have been plotted. The present theory proves to arrive at values intermediate between those predicted by the theories mentioned, as it should do whenever it would have a chance to cover reality. It is observed that in the interval $0 \le \phi \le \frac{1}{2}\pi$, the theory apparently does not allow for unique solutions. As to deal with this it is sufficient to remark that the shear strain passes through a minimum value as a function of the shear angle φ : d tan Y_s $\cos^2(\varphi - \alpha) = \sin^2$ -- = 0 - d 🌳 Hence the minimum value of the shear strain is reached at: $\varphi = \frac{1}{2}\pi - \frac{1}{2}\alpha$...(23) where the friction angle β has the value zero as can be checked by substitution of eq.23 into eq. 22. In this state the cutting process dissipates energy only by deformation of the workpiece material in absence of friction on the rake of the tool. It seems obvious that this never can be a physical reality and thus the uniqueness of the solution of eq. 22 is secured by: $\beta > 0$...(24) $\varphi \leq \frac{1}{2}\pi + \frac{1}{2}\alpha$

werkplaatstechniek

technische hogeschool eindhoven

5

10

15

25

30

35

40

45

50

0139 blz. 14van 49blz. rapport nr. 0 In the figure 4 the region of physical significance is restricted to : $\mathbf{w} = 30^\circ$ for $\alpha = -30^\circ$, to $\mathbf{w} = 45^\circ$ for $\alpha = 0^\circ$ and to 5 $\varphi = 60^\circ$ for $\alpha = + 30^\circ$. The solutions again prove to be unique. 10 2. The case of a general state of stress. As discussed before the state of general stress prevails when: $f = \frac{\pi}{k} < 1$ 15 18 The system governed by the shear angle relation eq.20, from which after expressing the shear strain in terms of shear angle and rake angle, shear angle solutions can 20 be obtained with both f and α as parameters. As is shown in fig. 5 the ratio f has a very strong influence on the course of the shear angle solution, and so it does in particular in the region close to f = 1. 25 When reading fig. 5 it should be kept in mind that every value of the parameter f gives to two different shear angle solutions, corresponding to the choice of the sign in the eqs. 20 and 21, and hence dependent on the modulus 30 of the ratio between the principal stresses, which can be expressed in terms of $g \ge 1$, as shown before. When is accepted that the average value of the maximum shear stress as a resultant of a hypothetic stress distribution might differ up to about 2% from the plasticity 35 constant of the material machined, quite a number of the observations published in current literature is covered by the present theory. It even might be that the extreme sensitiviness of the shear angle solution with respect to the state of stress suggests 40 a lack of unique solutions of the problem. A more complete victure gives fig. 6 where the effect of both of the two parameters is shown simultaneously under 45 the condition $x \ge 1$, as appears to be usual in a majority of the practical cases investigated. It is observed that the influence of the rake angle decreases rapidly as the value of f decreases, i.e. when the average behaviour of the system moves out of the state of 50 pure shear. In conclusion is shown the figure 7 where experimental data as used by Oxley (6) as an example are compared with the present theory. werkplaatstechniek technische hogeschool eindhoven

0

5

0

5

20

25

30

35

ю

15

50

5. Experimental results.

A major difficulty in verifying shear-angle solutions arises from measuring the shear-angle φ in an accuracy comparable with which can be obtained when measuring the friction angle β by means of dynamometry. As a rule cutting forces will be recorded during a considerable length of time and hence an average value of the friction angle can be determined with fair precision.

On the contrary determination of the shear-angle depends on measuring the chip-ratio from samples of the chip. A vast number of samples should be taken in order to arrive at an accuracy comparable with the one obtained by dynamometry.

Now, in a program of investigation of cutting temperatures, an extensive study has been made of the behaviour of the chip contact length in relation to the cutting conditions (7).

When machining obliquely an annealed steel C 45 with a carbide tool of the grade S 2 (1 SO - P 2O) a definite relation between feed, speed and chip ratio proves to exist:

$$\mathbf{r}_{c} = \frac{0.615 \text{ t}}{0.205.10^{-3} + 0.850 \text{ t} - 0.029.10^{-3} \text{ v}} \dots (25)$$

in the speed range $1 \le v \le 5 \text{ ms}^{-1}$, in the feed range $0.2.10^{-3} \le t \le 1.0.10^{-3} \text{ m/rev}$, and at the depth of cut of $d = 3.10^{-3} \text{m}$.

As eq.25 has been obtained from the study of the average behaviour of the chip contact length as recorded in a natural way in the wear pattern on the rake of the tool, the accuracy in determining the shear-angle from it proves to be about the same in determining the friction-angle from recordings obtained with a sensitive strain-gage dynamometer (8).

Statistical evaluation shows a relative error of 2% in the shear-angle and a relative error of 2.5% in the angle $\beta - \alpha$.

The experimental results have been plotted in fig. 8, where both values of the shear-angle obtained by use of eq. 25 and those obtained by direct measurement of the chip ratio have been used. The presence of a systematic error is evident.

The agreement with the present shear-angle relation eq. 22 is pretty good, from which it might be concluded that the material is machined in an average state of pure shear, and probably behaves according to the von Mises condition of plasticity.

werkplaatstechniek

technische hogeschool eindhoven

blz. 16 van 49 blz.

In conclusion it is remarked that eq. 17 when used in connection with dynamometric experiments allows for investigation into the plastic behaviour of the workpiece material under machining conditions when assuming validity of the von Mises condition. When using: $\cot 2\Omega = \frac{1}{2} \tan \gamma$ as has been derived earlier, the eq. 17 can be written like: $\sigma_{\varepsilon} = k\sqrt{3} = \tau_{s} \left[\tan^{2}(\varphi + \beta - \alpha) - \tan(\varphi + \beta - \alpha) \tan \gamma_{s} + \tan^{2} \gamma_{s} + 3 \right]^{2}$ (26) by which the true stress σ_{ϵ} is expressed in dynamometric quantities and hence can be calculated from numerical experimental values. The amount of computing work is considerably reduced when is known that the material is machined in a state of pure shear, as in this case eq. 17 reduces to $T_{s} = k \sin 2\Omega$ As derived in eq. 13 the true strain can be calculated from the prevalent value of the shear strain and thus a stressstrain relation in the region of machining conditions can be plotted. This is shown in fig. 1C as based on the measurements of fig. 8when machining an annealed steel C 45. The mechanical properties of the material are illustrated in fig. 11, which represents the true stress-strain relation as obtained from a step by step interrupted tensile test. The yield point of the 'material is reached at a true stress of $3.42.10^{\circ}$ Nm⁻² (34.2 kgf/mm²), and fraction occurs at a value of the stress close to 10° Nm⁻² (100 kgf/mm²). In the region between, the stress-strain curve behaves almost perfectly in accordance with the power function: σ_ε = 1.18.10^αε^{0,22} From fig. 10 it may be concluded that in the region of high strain and strain rate, as typical for conditions of machining. approximately holds: σε = 1.56.10⁹ ε^{1.32} A simultaneous representation of our of the two relations is given in fig. 12. werkplaatstechniek technische hogeschool eindhoven

A second series of experiments has been performed with a negative value of the rake-angle. The results are shown in fig. 9 from which the conclusion might be the same.

0

5

0

5

20

15

10

15

0

5

0

This preliminary investigation into the plastic behaviour of the material under conditions of machining does not conclude to a significant influence of the cutting speed and hence of the strain rate on the strain hardening. By far the most important factor in strain hardening, refering to the particular material studied, appears to be the value of the strain.

So far, however, no experiments have been performed in the region of strain which links the ultimate values of the quasi-static tensile test with the minimum values achievable in machining, in order to investigate wether some continuous transition from the one region to the other might exist.

werkplaatstechniek

	rapport	nr.	0139			blz. 18 van49 blz.
0		Refe	erences			
		1.	Hill, R.	J. Mech.Phys. Solids	. 3.	(1954) 47
		2.	Merchant, M.E.	J. Appl.Phys.	11,	(1940) 3 230
5		•		J. Appl. Phys.	16.	(1945) 5 267
		,	,	J. Appl.Phys.	16,	(1945) 6 318
10		3.	Zweekhorst,E.T.W.	Netaalbewerking	29,	(1964)22 471
		4.	Colding, B.N.	Thesis, Stockholm 1959, p. 39		
15	_	5.	Lee, F.H. and Shaffer, B.W.	J. Appi.Mech.	73,	(1951) 405
		6. 4	Oxley, P.L.B.	Int.J.Mach.Tool Des.Res.	2	(1962) 219
			-	Frod.Eng.	43	(1964) 609
20			Oxley, P.L.B. and			-
			Hatton, A.P.	Int.J.Mech.Sci.	5	(1963) 41
		7.	Hulst, A.P.A.J.	Lab.research report WT 129, WT	135	
25				Eindhoven		(1965)
		8.	Ten Horn, B.L.	Metaalbewerking	24	(1958) 3,39
			and Schürmann, R.A	A. Metaalbewerking	24	(1958) 5,85
30				· · ·		
35			i	1		
10	<u> </u>					
4.6		×				
•3						
50						
				- ,		•
					-	
	werkp	laatst	echniek	technische hoge	scho	ol eindhoven

Fig. 1.

The Merchant shear plane model and the geometric stress condition:

 $\sigma_{y} = \tau_{s} \tan(\varphi + \beta_{s} - \alpha)$

werkplaatstechniek

....

rapport nr.	0139 blz. 21 van 49 blz.
	· · · ·
· •	
	Fig. 2
	$\frac{\Gamma_{\rm LK} \cdot C}{\Gamma_{\rm LK} \cdot C}$
	The Monr equilibrium condition and the stress parameter $\frac{2\sigma}{v}$
	$g = MP = \overline{\sigma} - \overline{\sigma}$, from which is derived: y x
	$\tan(\varphi + \beta - \alpha) = g \cot 2 \Omega$
	If the direction Q of the maximum principal stress is iden-
	tified with the direction of maximum strain, it can be shown that holds:
	$\cot 2\Omega = \frac{1}{2} \tan Y$
_	from which fallows
	IFOM WAICA IOIIOWS:
	≪ PQR = Y s
	and hence the shear angle; equation:
	$\tan(\varphi + \beta - \alpha) = \frac{1}{2}g \tan \gamma = \frac{1}{2}g \left[\tan(\varphi - \alpha) + \cot \varphi \right].$
·	
	•

werkplaatstechniek

	rapport nr.	0139	blz. 23 van	49 blz.
0		``````````````````````````````````````		•
5				
10				
15	· ·	Fig. 3 Determination of the direction $q = \frac{\pi}{2} - \psi = \frac{\pi}{2} - Q$		
20		of maximum strain. An element of material AF is deformed by the cutting into the state AF' and is thus strained to the amoun AF^{\dagger} . cos p	proces t	
25		From the condition $\frac{d\epsilon}{dq} = 0$, can be derived the diremaximum strain:	≥ction of	
30		$\cot 2\Omega = \frac{1}{2} \tan \gamma_{g} = \cot 2\Psi$		
35		· · · · · · · · · · · · · · · · · · ·		
40				
45				
50				
	werkplaatst	echniek technische hogescho	ol eindhov	en

rapport nr.012	r	ap	po	rt	nr		01	39
----------------	---	----	----	----	----	--	----	----

blz. 24 van 49 biz.

	rapport nr.	0139	blz. 25 van 49	blz.
				•
0				
5				
10				
		<u>r1e. 4</u>		
15		The shear angle solution eq. 20 in the state of pure shear, as defined by the condition σ_{q} = - σ_{q}	stress of and hence	
		by $\mathbf{T}_{max} = \mathbf{k}$ or $\mathbf{f} = \mathbf{g}^{-1}$		
20		Shown is the effect of the rake angle as a param	neter.	
		A comperison is made with toth the Merchant and Schaffer solutions.	the Lee and	
25			-	
30		<i>.</i>		
35				
40	"			
45				
50				
	werkplaats	techniek technische hog	jeschool eindhoven	

blz. 26 van 49 blz.

	rapport nr.	0139	blz27 van 49 blz.
0			
5			
10			
		Fig. 5	
15		The shear angle relation eq. 20 for the value of the $\alpha = 0$ and different values of the ratio	rake angle
		f max	
20		Shown is the sensitiveness of the solution with respe- minor changes in f in the region close to $f = 1$. Both the possible solutions have been plotted accord:	ect to ing to the
		value $f = 0.99$, corresponding with the two possible (states of average stress.	lifferent
25			
30			
35			
40			
45			
50			
		·	
	werkplaats	itechniek technische hogesch	ool eindhoven

blz. 28 van 40 blz.

Fig. 6 The shear angle relation eq.20 for different values of both th rake angle a and the rotio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the mejority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the des. 20 and 21 have been platted, as will refer to the majority of the practical canes. The observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	rappo	rt nr.	0139	biz. 20 van40	bł z
Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the preticel cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in giority of the practical pases. De observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.				1999 - Anna -	\$
Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical canes. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the mojority of the practicel cases. De observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.					
Fig. 6 The shear angle relation eq.20 for different values of both th rake angle a and the rotio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the mejority of the practical cases. To be observed is the decreasing importance of the roke angle as the rotio f decreases due to the moving of the system out of a state of pure shear.	Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in mejority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.					
Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	Fig. 6 Fig. 6 The shear angle relation en.20 for different values of both the rake angle a and the rakio f. Output of the solutions corresponding with the positive size in its developed of the tract of the rake angle a solution of the rake angle developed is the developed in protance of the system angle is the ratio f decreases due to the moving of the system out of a state of pure shear.					
Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decremants importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the equation of the practice is cases. To be observed is the decreasing importance of the rake angle of a state of pure shear.					
Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decreases due to the moving of the system out of a state of pure shear.	<section-header><section-header><text><text></text></text></section-header></section-header>			,	·	
Fig. 6 The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the mejority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	<text><text><text></text></text></text>					
The shear angle relation eq.20 for different values of both the rake angle g and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. De observed is the decreases importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.					
The shear angle relation eq.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decreases ing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	The shear angle relation en.20 for different values of both the rake angle a and the ratio f. Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.			<u>r1g. 0</u>		
Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	Only the solutions corresponding with the positive sign in the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.			The shear angle relation eq.20 for different van rake angle a and the ratio f	ues of both th	e
the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	<pre>the eqs. 20 and 21 have been plotted, as will refer to the majority of the practical cases. To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.</pre>			Only the solutions corresponding with the positiv	ve sign in	
To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	To be observed is the decreasing importance of the rake angle as the ratio f decreases due to the moving of the system out of a state of pure shear.	_		the eqs. 20 and 21 have been plotted, as will remajority of the practical cases.	fer to the	
	of a state of pure shear.			To be observed is the decreasing importance of the as the ratio f decreases due to the moving of the	he rake angle e system out	
				of a state of pure shear.		
		•				
		_				
		- .				
	· · · · ·					
-	· · · · ·					
•	·			· •		

werkplaatstechniek

blz. 30 van 49 biz.

r:

	rapport nr.	0139	biz. 31van49 biz.
0			
5			
10			
15		<u>Fig. 7</u>	
20		Comparison of a number of shear angl Oxley (6) with the predictions of th according to eq. 20.	e values as used by e present theory
25			-
30			
35			
40			
45		· · · · · · · · · · · · · · · · · · ·	
50			
	werkplaatste	:hnlek tec	hnische hogeschool eindhoven

	rapport nr.	0139	biz. 33 van49 biz.
0			
U			
5			
10			
		Fig. 8 and fig. 9	
15		Comparison of experimental results with the predict present theory, eq. 22 when machining an annealed s	ions of the teel C 45.
20		Speed range 1 - 5 ms ⁻¹ , feed range 0,2 - 1,0 mm/rev cut 3 mm.	, depth of
		<pre>• = determined indirectly from chip ratio relation x = measured directly from chip ratio by sampling.</pre>	en 25
25	b atangg		-
30		·	
35	-		
40			
×			
45			
50			
	werkplaats	techniek technische hoges	chool eindhoven

	rapport nr. 0139	blz. 36 van	د عbiz.
0			•
5			
10			
15	Fig. 10 The stress-strain relation of an annealed steel C 4	5 in metal	
20	cutting, according to eqs. 73 and 26 and based on t ments of fig. 8.	ne measure-	
25			
30)		
35			
40			
45	5		
50			
	werkplaatstechniek technische hoges	school eindho	ven

rapport nr.	0139	blz.38 van 49blz
		,
	<u>Fig. 11</u>	
	The stress-strain relation of an annealed steel C obtained from a step by step interrupted tensile t Yield point 3.42 10° Nm ⁻² (34.2 kgf/mm ²),	45 as est.
	fracture $109 \text{ Nm}^{-2}(100 \text{ kgi/mm}^2)$.	
	·	
	·	
werkplaatst	ochniek technische hogesc	hool eindhoven

¥

	rapport nr.	0139					blz. 40 van 49 blz.
0							
5							
10							·
15							
20		Comparison process of	of strain he metal cuttin	rdening in a S•	a tensile	test and	in the
25							
30							
35							
40	,						
45							
50							
	werkplaatst	echniek			technische	hogeschoo	ol eindhoven

blz. 41 van 49 blz.

·,

blz. 42 van 49 blz. rapport nr. 0139 0 Appendix concerning numerical values obtained by dynamometry when machining steel 3 45 (annealed) with a carbide 5 tool grade \$2(P20) In these reports the following symbols are used: 10 v = cutting speed a = feed P_{v} = main cutting force P_{L} = force in direction of feed, thrust force 15 $\mathbf{T}_{\mathbf{F}}$ = average shear stress in shear plane λ inverse value of chip thickness ratio 11 11 Y = shear strain 20 Φ = shear angle ß = friction angle = rake angle 5 25 = true strain 3 = coefficient of friction μ ¢ε = true tensile stress 30 The rake angle is defined in a plane passing through the direction of the cutting speed vector and the direction of the corral to the plane machined. 35 6**°** Table A, rake angue 5° clearance angle side cutting edge angle 15° 1,2 mm nose radius 40 depth of cut 3 mm Table A2 results of calculations referring to observations A, + 60 rake angle Table B₁ 45 50 clearance angle side cutting edge angle 00 1,2 mm nose radius depth of cut 3 mm 50 results of calculations referring to observations \mathbb{B}_1 Table B₂

werkplaatstechniek

	rapport nr.	0139		blz.43 van49 blz.
0				
5		Table C ₁	rake angle clearance angle side cutting edge ang rose radius depth of cut	- 6° 17° zle 0° 1,2 mm 3 mm
10		Table C ₂	results of calculations C ₁	ons refering to
15		The machine	tool used is a lathe, typ input power 60/80 kW.	pe A.I.DR 200-special
20			range of feeds 0,0025 # centrol,max. cutting for	40 mm/rev., continuous rce 10 ⁴ N (1000 kgf).
25		The measurem research tea	ents have been performed m under the direction of	by the metal cutting Chr. Bus, ing.
30		Detailed inf WT 138 by A.	ormation is given in the G. Strous and H. Munnecon	lahoracory report n.
35	 			
40				
45				
50	· ·			
	werkplaatstec	hniek	technisc	che hogeschool eindhoven

1	Nr	0,1	10	Q,1	!3	0,1	.6	0,2	20	0,2	25	0,3	32	<i>Q, 4</i>	10	<i>Q</i> ,	50	0,0	53	0,7	' <u>9</u>	port 0139
	1	125	410	-1 30	346	137	2,87	150	2,60	182	2,40	215	2,31	247	212	287	500	340	186	402	1,69	blz.,
•	1,00	778	830	80	74,3	85	71,1	90	655	97	68,5	104	66,0	109	640-	110	63,0	113	63,0	115	625	44
•	1.0	122	4,00	127	3,30	133	2,81	155	2,55	477	2,32	210	217	240	206	282	192	340	178	407	1,69	
	2,12	. 75	82,5	78	74,9	82	694	90	69 <u>,</u> 0	Ŷ5	67.0	9 8	66,5	403	63,0	1:04	63,1	110	64,0	115	63,8	
	1.	110	3,70	125	3,15	128	2,63	148	2,40	175	2,24	202	2,12	245	2,00	287	4,92	335	177	412	1,64	-
	1,26	70	780	80	748	78	69,4	83	6 <i>8</i> ,0	88	. 68,5	92	64,5	100	66,2	101	65,2	.102	640	110	64,6	
	1	113	3,70	12.0	2,92	132	2,56	148	2,35	172	220	212	2,09	237	1,95	275	1,86	335	4.75	400	169	
	1,41	75	775	75	755	78	730	83	69,0	85	68,5	92	69,5	92	65,6	92	63,6	-97	65,0	102	63,9	
	1 - 0	112	350	121	2,92	125	2,50	144	2,25	170	212	205	2,00	232	1,88	277	1,76	330	1,63	410	1,55	
	1,30	70	82,5	73	748	74	69.6	78	68,5	82	69,0	86	68,0	88	647	89	661	91	655	100	67.3	
	1 70	110	3,20	415	2,69	423	2,31	140	2,05	157	2,00	190	1,87	222	185	277	1,77	327	1,65	398	1,54	
	1,70	65	86,0	65	77,4	68	72,1	70	70,5	70	66,0	73	67.0	75	63,4	82	673	85	655	80	66,4	
	2 ~~	95	3,00	102	2,46	115	2,31	135	215	157	2,00	190	487	230	(77	273	1.64	325	1,60	405	1,53	
- <u></u> -	2,00	58	770	60	70,6	63	67.8	67	67,5	70	66,0	72	67,0	.79	67,1	78	67.6	82	66D	90	67,8	
	2	90	2,50	105	231	120	2,13	.140	2,00	163	1,92	190	187	230	173	275	170	330	1,59	405	155	·* _
	. ~,24	55	79,0	60	749	65	72,7	66	72,0	68	705	70	67 <u>0</u>	77	676	80	67.3	83	670	88	67,8	
	2 51	90	2,70	105	2,30	118	213	435	1,95	160	1,84	200	178	225	175	265	172	337	1,63	400	1,58	
· (~,31	55	770	60	74,9	60	732	63	705	65	705	73	715	70	67,2	73	65 <u>8</u>	80	690	85	67,3	
-	2 04	90	240	105	216	120	50Q	140	185	162	1,80	192	172	220	1,70	277	4,66	337	1,59	400	458	
•	~, 0 4	53	810	59	768	60	758	63	750	64	72,5	69	720	69	66,1	75	69,6	82	69,0	87	66,9	
	34	85	2,30	100	2,15	112	1,88	132	175	160	1,84	190	1,63	225	1.60	271	1,60	325	4,60	400	1.57	
· 1	5,70	51	780	55	738	57	710	59	71,0	65	70,5	68	69,5	68	690	71	69,1	75	67 <u>0</u>	85	67,4	
	3.0	83	2,40	99	208	415	1,94	135	4,80	155	1,65	194	1,59	225	1,53	263	148	323	150			
	0,33	47	760	52	75 2	54	750	55	74,5	55	73,0	67	720	65	70,0	69	67,3	75	67,0			
•	300	85	220	100	2,08	117	187	140	1,80	160	1,60	194	1,59	220	1,53	267	1,58	330	448		-	
· ·	3,70	50	790	53	75,4	55	760	57	775	60	740	65	725	67	67.6	72	67,4	78	6 <u>9</u> 0		. 14	
	4	83	2,00	95	1,85	112	1,81	130	1,70	455	1,72	19 <u>2</u>	1,57	230	1,60	275	1,54			₿, [₹]	λ «	
- 4	'14 f	· 48	79 <u>5</u>	49	74,1	50	753	53	730	55	72,5	68	710	71	704	77	690			P, °	Zs ^v	
	5-	85	210	100	2,00	122	1,94	140	1,95	157	1,84	190	1,75	240	1,68					A.		
	5,02	51	795	52	767	57	801	64	740	64.	69,5	66	69,5	76	721					14		

No tom	0,10	013	016	0,20	0,25	0,32	0,40	050	063	0,79	port 0139
1.00	4 14 077 340 310 1410 3120	3.54 0.77 2.80 266 1630 3140	3.02 0.78 2.31 2.23 1950 3150	2,78 0.75 2,10 212 2,150 3100	261 068 196 197 2330 2805	2,54 0,62 189 190 2420 2550	2,39 0,57 1,75 183 2620 2350	230 051 168 175 2750 2100	219 045 158 169 2930 1820	208 040 149 165 3240 1600	blz. 45
112	40 5 0.77 330 310 1420 3120	340 0.77 267 255 1720 3135	296 077 227 225 2015 3140	2,74 0,73 207 208 2210 3010	2,5 <i>5</i> 0,68 1,90 194 2,4°10 2,8°15	243 060 180 184 2550 2500	234 056 171 180 2700 2320	2 24 049 163 175 28°50 20°20	214 044 154 169 30%3 1800	208 010 119 165 3290 1545	-
126	3,77 0,80 3,03 290 15°30 3230	3,27 0,80 2,55 2,50 18°10 3226	281 076 213 217 2130 3125	262 071 196 202 2330 2920	2,59 0,64 1,93 197 2510 2620	2 39 0,59 1,78 184 2620 2430	230 053 168 177 2720 2210	224 047 163 175 2850 1925	213 042 153 166 3055 1706	205 0,40 146 162 3300 1600	
141	377 091 303 290 1530 3610	3,06 0,78 2,36 2.37 1 9 30 3200	275 074 207 213 2205 3035	2,58 0,71 1,92 202 2,400 2920	2,45 0,63 1,81 191 2,530 2620	2,36 057 1,73 182 2620 2330	2,26 0,51 1,64 177 2820 2110	220 046 159 173 2940 1830	212 041 152 166 3110 1610	208 037 149 165 3210 1420	
158	3,58 0,78 2,83 2,78 1620 3200	3.06 0.76 2.36 237 1930 3110	2,70 0,74 2,03 213 2240 3040	249 069 1,84 195 2500 2830	2,39 0,62 1,76 188 2620 2525	2.30 0.55 1.68 179 2740 2250	221 0.51 160 175 2920 2030	213 044 153 468 3100 1750	204 0.39 145 164 3310 1530	200 0.36 142 160 3440 1340	
1,78	331 074 260 262 1750 3020	2,86 0,71 2,18 228 2105 4930	2,54 0,70 1,90 203 2420 2900	2,33 0,64 1,71 189 2710 2630	2.30 0.58 1,68 182 2745 2400	2,20 0,51 1,59 176 2920 2100	219 0.46 158 172 2945 1840	2.13 041 153 168 30594630	206 038 447 164 3250 1440	199 0.34 141 160 3445 1 25 0	
2,00	313 077 243 252 1900 3130	2.67 074 200 217 2300 3030	2,54 0,6 9 190 20 3 2420 2820	2,41 0,63 1,77 192 2690 2620	2,30 0.58 168 182 2745 2400	2,20 0,51 1,59 1,76 2920 2050	213 047 153 172 3055 1900	205 040 146 165 3300 1600	202 0.37 143 164 3340 1410	498 033 440 460 3500 1230	. .
2,24	2.71 0.77 205 2.31 2.305 3130	254 0,72 1,90 210 2420 2945	240 0,69 176 197 2610 2830	2,30 0,61 1,68 186 2745 2515	224 055 162 182 2850 2240	220 0.48 1.59 1.76 2920 2020	211 047 151 470 3130 1900	209 041 150 168 3100 1675	202 037 443 164 3330 1410	200 0.33 142 160 3440 1 220	
2,51	287 077 218 239 2100 3130	2,54 0,72 1,90 210 2430 2945	240 065 176 197 2610 2700	2 2 6 0,60 1,65 186 2820 2500	218 0,53 158 180 2955 2210	214 049 154 173 3040 2005	212 043 152 170 3110 1720	210 039 150 168 3/20 1520	200 0,35 142 162 33% 1320	201 032 143 160 3400 1200	· •
282	262 074 196 223 2405 3040	242 071 179 203 2550 2926	2,30 0,64 4,68 494 2745 2635	2,18 0,58 1,58 184 2945 2415	215 052 155 177 3030 2135	210 048 150 171 3120 1950	209 043 150 170 3200 1725	206 0,39 1,46 165 32 40 1510	202 0.36 1,43 164 3350 1340	201 033 143 160 3400 1 220	
3,16	2,53 0,75 1,88 220 24,25 3100	241 0.70 179 203 2600 2850	221 0,65 1,60 188 29 ² 02700	212 058 152 178 3110 2410	218 0.53 1.58 180 29 55 22 10	204 048 145 169 3310 1940	202 042 143 167 3340 1650	202 0.38 143 165 3340 1440	203 034 144 164 3366 1300	201 032 143 160 3410 1200	
3,55	262 072 196 223 2405 2935	2,36 0,67 1,74 200 2650 2740	225 0.60 168 191 28 30 25 1 0	215 053 155 181 30°30 22°10	205 048 146 172 3300 19°30	202 0,46 144 169 3350 1900	198 041 140 165 3500 1610	195 0.38 1,37 161 3600 1440	1,97 0,35 1,39 162 3530 1310		
3,98	2,45 0,74 1,81 216 2,530 3070	236 067 174 200 26°50 28°00	221 0.60 160 188 2930 2510	215 0.53 1.55 181 30 30 2240	202 0.50 143 172 33 ² 40 20 ³ 0	202 046 144 169 3350 1830	198 042 140 165 3500 1700	201 0.39 143 163 3400 1510	196 035 138 162 3555 1320		-
447	2,30 0,73 1,68 206 2740 30°00	219 0,66 1,58 194 2945 2720	216 0.58 156 185 3020 2400	209 053 150 178 3200 2210	210 048 150 174 3140 1930	2.01 0.48 1.43 166 3410 1930	202 043 143 167 33401710	499 0.40 1.40 163 3450 1540		tany M E JE Y 3-S	
5.01	2370,75 174 210 2630 3100	230 0,66 1,68 197 2745 2730	2,25 0,59 168 191 28302440	226059 165 186 28202435	2,1 8 0,53 1,58 180 29,55 22,10	2.12 0.47 1.52 1.71 3110 1910	208 044 149 170 32201740	•		A ₂	

10 com	0,1	0	0,	13	Ò,1	16.	O,	20	0,	25	0,3	32.	0.	<u>40</u>	Ò,ť	50		53	0.7	79	Rap- port 0139
400	110	3,80	117	3,16	135	2,82	153	2,65	180	2,48	214	2,25	248	210	295	1,98	350	1.84	420	1,71	blz.
1,00	68	770	75	69,9	83	70,7	90	667	95	667	101	665	103	65,7	108	657	110	65,5	115	65 8	46
442	110	3,80	120	3,08	135	2,88	153	2,60	1 80	240	Ż14	2,22	245	208	28.8	1,92	343	1,79	412	171	
· 1,14	70	76,4	75	73 <u>4</u>	84	688	89	67,4	95	676	99	67,1	100	651	100	65,5	102	69 <u>4</u>	105	65,7	
121	108	3,50	111	2,85	131	2,75	150	2,55	173	2,28	205	2,16	241	2,05	283	1,86	340	1,76	405	1,65	•
10	71	78 <u>6</u>	74	68,7	79	697	85	67,4	87	67,3	90	66 <u>.</u> 2	93	655	94	658	. 98	657	100	655	r
A / A	115	3.80	115	3,00	130	269	150	245	177	2,24	203	2,09	270	2.35	280	188	333	1,75	398	162	
141	71	80,2	.71	717	75	704	°82	69,3	88	69,3	85	67,3	125	66.3	90	654	-90	652	94	64,3	
458	113	340	115	2,70	132	2,50	150	2,30	180	2,12	205	5`00	242	195	285	1,76	337	1,71	420	1.65	
	75	8ર્ગ્ઠ	73	74,8	80	729	83	70.6	90	717	89	67 <u>9</u>	90	675	95	67.6	94	65,9	107	67,2	
478	123	400	134	3,16	130	250	155	240	177	208	203	1,94	247	1,87	280	1,74	335	159	410	1,63	
	8.0	825	80	817	76	727	85	718	88	710	85	68 <u></u> 8	101	679	90	66.7	94	667	103	66,0	
200	111	3,80	127	293	125	2,50	146	2,30	175	200	203	2,03	250	182	280	172	335	157	407	1,62	
	74	76 <u>5</u>	78	80,2	72	70,3	. 78	69,7	83	719	83	68,1	99	69 <u>,</u> 2	88	672	91	67,5	100	66,1	
	10.0	. 3,10	124	262	123	2,31	145	2,25	170	·1 <u>96</u>	200	194	250	\$8 0	280	170	330	1,54	407	1,62	
6 , , , 1	59	80,3	. 76	825	69	692	75	701	78	711	79	68,7	97	70,2	85	680	90	66,3	100	66,1	
251	95	3,00	115	2,38	122	2,31	445	2,25	167	1,88	202	2 <u>0</u> 0	250	177	278	1,68	350	1,63	412	1,58	
	60	76,4	71	7 <u>9</u> 0	67	<u>68</u> 8	72	710	77	70,8	75	695	95	70,9	84	67.5	95	69,8	95	68.2	
282	90	5 , 30	106	2,08	120	2,31	145	2 <u>,</u> 20	168	1,88	199	197	250	1.75	277	168	. 345	1,59	415	1,58	
	56	739	65	75 <u>4</u>	66	67,5	70	72,8	76	715	75	68,7	94	712	81	<u>68</u> 3	95	<i>69</i> 0	96	68,6	
316	91	2,30	106	1,93	120	212	145	2,25	168	1,84	197	1,91	238	1,80	285	1,66	348	1,59			,
	55	755	60	790	67	715	71	722	73	72,8	73	68,6	83	68 <u></u> 8	85	69,8	95	694			
355	90	2,50	105	208	120	219	137	1,95	167	1,84	192	1,78	238	1,75	282	1,66	348	1,62			
	53	80,0	62	76,1	66	71,5	57	74.6	73	733	59	717	. 81	697	85	<u>68,</u> 6	93	69,7			
398	90	2,30	106	2,08	119	206	135	1,90	167	1,88	190	191	240	1,75	285	168					
	52	834	60	783	65	730	57	733	72	721	60	702	83	699	85	69,8			(
447	92	2,50	105	2,16	120	206	135	1,90	165	1,84	189	1,91	225	175					P.	λ	
•	53	81,6	59	770	65	735	57	733	72	71,6	63	68,6	70	67,6	· · · · · ·				Pa	\mathcal{T}_{s}	•
501	92	2,50	105	208	115	2,06	135	1,95	170	1,84	195	187	225	1,75					B	1	
- , '	55	807	58	781	60	705	58	735	81	713	68	645	72	673							

C III	0,'	10	0.	13	0,4	16	0.	20	0.	25	0.3	52	0,4	۱D	0.5	50	0	63	0]	79	Rap- port 0139
100	3,86 311 1510	0,78² 2,95 3150	327 256 1810	0,80 250 3240	297 2,30 2010	077 209 31 40	2,82 2,16 2120	074 212 3030	2,68 2,03 22 50	0,67 201 2 75 0	249 1,85 2500	0,61 190 2520	2,37 1,74 2630	0,54 183 2230	228 166 2800	0,49 175 2010	218 4,56 2950	0,43 171 1730	209 148 3150	0.39 165 1520	blz. 47
112	3,86 3,11 1510	0,80 295 3230	3,20 2,50 1830	078 245 320	3,03 2,35 1950	0,78 214 3150	278 212 2150	0.73 212 3010	262 197 2330	0.67 197 2750	247 183 2520	060 187 2450	2,36 1,73 2650	0.54 180 2210	224 1,62 2830	047 175 1910	245 4,54 3030	0,41 168 1630	209 1,48 3150	0,37 165 1420	
1,26	3,58 2,85 1620	0,82 277 33°30	300 2,32 20°00	0,83 236 3340	2,91 2,24 2040	076 189 3100	2,74 2,08 2210	0,71 209 2930	2,52 1,88 2,440	0,64 194 2640	2,42 1,79 2550	057 185 2340	234 171 2710	0,51 180 2110	219 1,59 2930	0,46 172 1830	213 152 3100	0.41 168 1610	206 146 3250	0,36 163 13350	* 1
1,41	3,86 -311 1510	0,77 295 3120	3,13 2,44 19°00	077 241 3140	2,86 219 219	0,73 206 30°00	2,66 201 2300	0,69 206 2870	2,48 1,84 2500	0,64 192 2630	2.37 1.74 2640	0,55 185 2240	2,57 1,93 2400	060 192 2450	221 1,60 2920	044 172 1750	212 150 3110	0,39 166 15 ¹⁰	204 144 3320	0,35 163 1320	
158	3,49 2,77 16 5 0	0,83 277 3340	2,87 2,20 2100	0,79 237 3 22 0	2,70 2,04 2240	0.76 196 3110	2,53 1,97 2420	070 199 2900	2,39 1,76 2620	0.64 188 2640	2,30 1,68 2750	0,57 180 2330	226 164 2820	0,50 177 2020	213 152 3100	045 170 1800	209 148 3150	0,40 166 1520	206 146 3250	0.37 163 1420	
1,78	405 328 1420	0,81 309 3300	3,27 2,56 1805	0,75 250 30 5 0	270 204 2240	073 196 3020	261 1,89 2330	0.69 206 2850	236 1,73 2650	0,63 185 2630	225 163 2830	0.55 180 2250	2,20 1,59 29 ² 0	0,54 175 2220	211 1,50 3120	0,44 167 1750	2,02 1,42 3350	0,40 163 1520	204 144 3310	0,37 463 1410	
200	3,86 3,11 1505	0,83 295 3340	3,86 2,38 1930	0,83 241 3135	270 204 2240	072 196 2950	253 189 2420	0.68 199 2810	230 168 2 750	0,60 184 2530	2,32 170 2720	054 182 2220	217 1456 3010	0.52 171 2120	210 149 3140	044 167 1730	200 140 3410	0,39 161 1510	204 144 3320	0,3% 163 1350	• • •
2,24	3,22 2,52 1825	0, 74 256 30°30	2,80 214 2140	077 224 3130	2,53 1,89 2430	0,71 189 2920	249 185 2500	0,66 199 2730	228 166 2820	0.59 184 24 ¹ 10	2,25 1,63 2830	0,52 180 2130	2,16 1,55 3030	051 171 2110	209 148 3200	042 167 1700	199 1,38 3450	039 161 1520	204 1,44 3320	0,36 163 1350	
2,51	313 244 1900	0,79 251 3220	2,60 1,95 2340	0.77 217 3140	2,53 1,89 2430	0,70 189 2850	244 1,85 2500	0,62 199 2540	220 159 29 [°] 40	0,58 180 2420	2,30 1,68 2750	0,49 180 2020	2,14 1,53 3030	051 171 2050	207 1,46 3210	042 167 1700	204 1,44 3310	0,39 163 1510	201 1,40 3400	0,34 160 13 [°] 00	
282	3,04 2,35 19 ¹ 40	0,78 243 3155	2,36 1,73 2650	077 200 3135	2,53 4,89 2430	0,70 189 28 [°] 50	2,44 1,80 2500	0,62 195 25 ² 40	220 159 29 ² 0	0,58 180 2,410	2,28 1,66 2810	0,50 180 20 [°] L0	212 151 3110	0,50 169 2040	207 1,46 3210	041 167 1620	2,02 1,42 3350	039 163 1520	201 140 34°	0,34 160 13°	
3,16	3.04 2.35 19 [°] 40	0,76 243 3110	2,25 1,63 28 ⁴ 0	0.71 197 2930	2,37 1,74 2630	0,71 183 29 ² 20	249 185 2500	0,63 199 2610	218 156 2950	0,56 178 2320	2,23 1,61 2850	0,49 176 2020	216 155 3030	047 471 1920	2,06 1,45 3220	042 165 1640	202 1,42 3351	0,39 163 1520			
3,55	2,71 2,05 2305	0,74 2 30 3030	2.36 1.73 2650	0,74 200 3030	2.45 1.81 2530	0,7 0 187 2850	226 164 2810	0,54 187 2220	2,18 1,56 29 ³ 50	0,57 178 2330	214 153 3050	043 174 1710	212 151 3110	0,46 169 18 ⁵⁰	206 145 3240	042 165 1700	2,03 1,43 3320	0,38 163 1500			•
.3,98	2.53 1,88 24 ² 5	0,73 219 30°00	2,36 1,73 26 ⁵⁰	0 71 200 2930	2,34 1,71 2700	0.70 180 2840	222 160 2900	0,55 183 2250	2,21 1,60 29 ² 0	0,56 180 2320	223 161 2850	0,44 180 1730	212 151 3140	047 169 1920	207 1,46 3210	042 167 1640					
447	271 205 2305	072 230 29 ⁵⁵	2,42 178 2550	0,71 210 2920	2,34 1,71 2700	0,68 180 2820	2,22 1,60 2900	0,55 183 2250	2,18 1,56 29 ⁵⁰	0,56 178 2320	223 1,61 2850	045 180 18°30	2,12 1,51 3140	043 169 1720					tony E y	ли 2 Се 4 15-5	
5,01	2,71 2,05 2305	0,75 230 3050	2,36 1,73 26 [°] 50	0,70 200 2300	2,34 1,71 2700	0,66 180 27 3 0	2,26 1,64 2820	0,56 187 2320	218 1,56 29 2 0	0,60 178 2530	2,20 1,58 29 3 0	047 176 19°20	2,12 1,51 3110	0,44 169 1720					В	2	

,

-

V.	<i>Q</i> , 1	10	0,1	!3 -	0, 1	16	<i>Q</i> ;	20	0,2	5	0,3	52	<i>Q</i> ,4	40	0, 8	50	Q, C	53	0,7	9	Rap- port 0139
1,00	135	4,40	152	3,54	158	3,32	170	2,80	206	2,60	239	2,38	277	2,15 hu a	332	2,02	410	1,84			blz. 48
	122	77.9	110	743	120	09,0 245	123	05;4 1 10	138	07,5	130	04,5	239 179	040	270	104,0	202	124			•
1,12	105	4,10 78.4	110	9 735	115	66.8	119	643	137	2,40 650	145	1,20 640	272 154	2,00 64.0	172	2,00 65.0	409 198	2.70 666		••••	
·	125	3,90	130	3.23	143	294	164	2.55	191	2.36	228	2 19	269	2.03	325	186	405	173			
1,26	98	79.0	104	6q,8	105	67,2	115	66,2	126	65,0	138	64,5	147	64,0	165	b5,0	190	66,8			
	115	360	123	3,00	137	2,75	162	2,45	190	2,28	224	2,09	266	195	326	1,80	400	1,62		*****	
2,41	90	76,1	96	6g.0	102	66,3	112	67.0	122	65,5	132	64,5	142	64,5	159	66,5	210	64,0			2 2
1 50	106	3,30	120	2,84	135	2,56	161	2,35	187	2,20	220	2,03	263	1,85	315	1,74	400	1,58			
1,50	84	733	95	68,6	98	67,0	105	68,8	117	66,5	126	64,5	137	65,5	150	65,3	209	65,5	-		ł
128	101	3,10	118	2,69	132	2,50	154	2,25	182	2,12	218	197	261	1,77	305	1,68	392	1,53			
	79	72,0	90	69,7	92	67,4	100	67,0	104	67,8	120	65,5	128	66,5	145	63.7	204	03,0			
200	110 AD	5,50 A1 5	213 D)	2,62 705	255	2,44 1/5	255	220	179 102	2,08 44 Q	112	1,94 hsh	20 <i>f</i> 195	1, f3 66 0	203 141	1,00 145	372 902	2,33 630			
genet-stat	106	3.10	115	254	130	2.31	154	2.15	175	204	210	191	255	1,75	309	1.66	380	1.54			e x
2,24	81	77,0	81	71,8	88	69.0	95	70,0	99	65,8	109	64,8	122	66,0	140	65,6	160	66,5			
	105	2,90	110	2,46	129	225	153	2,10	174	1,96	210	1,87	254	1,70	310	1,64	380	1,56			
2,51	79	79,0	76	70,0	85	70,0	92	70,0	96	668	106	65,8	120	66,5	139	66,5	162	66,0	-	~	
9 01	92	2,70	108	2,31	127	2,19	150	2,05	173	1,92	210	1,84	253	1,70	306	1,62	390	1,57	*****		
2,02	67	72,0	73	70,6	81	790	89	69,5	94	66,8	105	66,2	119	66,5	137	65,6	165	67,5		······	
316	90	2,70	106	2,23	126	2,13	147	200	174	1,88	210	1,84	253	1,65	296	1,64	-	-			
	64	720	70	70,6	80	70,0	87	69,0	94	67.8	103	66.6	116	67,5	126	64,2					
3,55	60	2,60	106	2,15	125	2,06	149	1,95	172	1,88	209 aà	1,84	256	1,05	310 171	1,06					
	0) 20	71.5 260	09	71,0	101	195	00	145	170	00,1 1 84	33	67.3 1.97	110	160	· ·	01,4					
3,98	60	73.0	68	721	77	700	143 76	695	87	67.6	103	67.0	120	685		-					
	· <i>8</i> 9	2,50	108	233	125	2.06	, 142	1,85	170	1,84	215	1.78	_						P, a	λ ⁽²	
4.47	61	73.0	69	72,0	78	70,5	76	70,0	88	67.5	106	68,5	-	_					PA (*	Zs ⁴	
5	86	2,50	110	2,33	126	2,06	150	200		-		-							0		
J,01	59	71,0	71	73.0	78	71,0	90	69,0		_		-								1	

N-mm	0,10	0,13	0.16	0,20	0,25	0,32	0,40	0,50	0,63	0,79	Rap- port 0139
1,00	4,83 1,01 4,08 346 12 30 39 20	4,03 0,96 3,27 280 15 20 37 50	3,83 0,94 3,08 262 16 20' 37 10'	3,37 0,91 2,64 233 19° 36°10'	3,19 0,83 2,48 220 2020 3350	3,01 0,79 2,30 208 22° 32°10	2,83 0,72 2,15 196 24° 2956	2,72 0,68 2,05 1 90 25 10 28 10	2,59 0,63 193 183 2715 2615		blz.
1,12	4,64 0,99 3,88 324 13° as 38° w	3,89 0,97 3,13 272 16° 38°10'	3,68 0,95 2,94 254 17 10 37 40	3,28 0,89 2,56 228 19 40 3546	3,09 0,04 2,39 215 2/10 34°	2,93 0,78 2,24 204 22 si 31 si	2,77 0,71 2,09 195 24°4i 29°3i	2,62 0,67 1,96 185 26 si 27 40	2,54 0,62 1,89 1,81 28 15 25 só		•.
1,26	4,36 0,97 3,60 308 14° 38°	3,75 0,99 3,00 265 16 40 38 40	3,49 0,91 2,76 244 18*10 36*10	3,15 0,87 2,45 221 20°40' 35°	2,99 0,82 2,30 210 22 10 3330	2,86 0,76 2,17 200 23 36 31 16	2,73 0,69 2,06 193 25 10 2840	2,61 0,65 1.95 1.85 27° 27°	2.52 0,60 1,87 1.80 28°40 25°10		• • • •
1,41	4,09 0,97 3,35 294 15°10 38°	3,54 0,96 2,80 252 17°50 38°	3,32 0,92 2,60 235 1910 3630	3.07 9.86 2.36 217 2125 34 40	2,85 0,80 2,17 204 23°05 32°46	2,78 0,74 2,10 197 24' 30 30 30	2.67 0.68 2.01 190 26° 28%	2,57 0,63 1,92 1,83 2745 26°	2,45 0,67 1,81 177 30 ri 27 yi		r ·
1,58	3,71 0,98 2,96 271 16°10 38°10	3,40 0,98 2,67 2.46 18 50 3820	3,16 0,91 2,44 226 20°40 36°10	2.99 0,81 1.29 214 22°10 33°	2,87 0,78 2,18 204 23°30°32°	2,73 0,72 2,05 194 25 10 29 so	2,60 0,66 1,94 1.87 27 10 2730	2.53 0,61 2.88 1.82 2830 2530	2.43 0,66 1.79 1.76 30 só 27 só		•
1,78	3,63 0,97 2,88 2,67 17° 20 38°	3,27 0,94 2,55 238 19 40 37 20	3,11 0,87 2,40 224 21° 35°	1.90 0.81 1.11 208 23° 33°	2,80 0,71 2,12 201 24°10 29°20	2,69 0,70 2,02 192 25 so 28 so	2,55 0,63 1,90 1.84 2.8 10 26 10	2.49 0.61 1.85 1.80 2920 2530	2,40 9,66 1,76 1,75 31 36 2,7 36		1
2,00	3,81 0,94 3,06 2,83 16° 1037 10	3,21 0,88 2,50 236 2010 3530	3.06 Q83 2,35 221 21 30 33 50	2,87 0,73 2,18 212 2330 30 10	2,77 0,72 2,10 200 24 35 29 40	2.67 0.67 2.00 191 2610 2745	2,53 0,62 1,88 1.84 2896 2556	2.48 0.60 1.83 1.79 29 40 24 50	2,40 0,66 1,76 1,75 31 - 2730		• •
2,24	3,63 0,94 1,88 267 17° 2037 18	3,14 0,87 2,42,231, 20° no 3510	2.95 0.84 2.26 2.16	2,83 0,76 2,75 206 24° 31°10	2,74 0,72 2,06 198 25° 29° 50	2,65 0,66 1,98 190 26 27 20	2,53 0,62 1,89 1.84 2,830 25 00	2,48 0,59 1,83 1,79 19 mi 14 3	2.40 0,55 1.76 1.75 31 2012 50		•
2,51	3.45 0.93 2,71 258 18°2036 50	3.08 0.86 2.38 229 21 20 34 40	2,90 0,82 2,21 214 2,3° 33° 30	2,79 0,75 2,11 203 24'30' 31°	2,68 0,70 2,02 195 25 50 28 50	2,62 0,65 1,96 1.89 26 50 26 50	2,50 0,61 1,85 182 29° 7530	2,46 0,58 1,82 1,78 29,50 24 10	2,41 0,55 2,97 1,26 31° 23°		•
2,82	3.28 0,91 2,56 24 7 19° 4036°10'	2,95 0,84 2,25 222 22°30' 34°	2,86 0,80 2,18 210 23303240	2,75 0,74 2,07 201 25° 5030	2,65 0,69 1,99 193 26 20 28 30	2,60 0,64 1,94 188 2715 26 **	2.50 0,60 1.85 1.82 29° 25 10	2,45 0,58 1,81 1,78 30 10 24 10	2,42 0,55 1,78 176 30 56 23°		
3,16	3,28 0,91 2,56 247 19°4035°20	2.89 0.82 2.20 218 23°10'53°30	2,81 0,79 2,13 209 24 10 52 30	2.71 9.74 2.04 2.00 25 30 30 30	2,63 0,68 1,97 293 26°50 28°20	2.60 0.63 1.94 1.88 27 16 16 16	2.47 0.59 1.83 1.81 29 w 24 w	2,46 0,56 1,82 1,78 29 55 23 16			•
3,55	3,19 0,87 2,48 242 20° 20 35°	2,83 0,81 2,16 215 24° 33°	2,76 0,77 1,08 206 14 50 31 30	267 0,71 2,00 198 26° 29° 50	2,63 0,66 1,97 193 16 so 27 10	2,60 0,61 1,94 188 2715 25 30	2.47 0,59 1,83 1.81 2940 2440	2,48 0,55 1,83 1,79 29°46 23°			
3,98	3,19 0,83 2,48 242 20° 2033°so	2,83 0,80 2,16 2/5 24° 32°46	2,76 0,77 2,08 206 24 số 31 số	2,67 0,67 2,00 198 26° 28°	2,60 0,66 1,94 191 27° 2027° 10	2,58 0,63 1,92 187 2740 26 16	2,49 0,59 1,85 1,82 29°10' 24°40				
4,47	3,11 9,85 2,41 238 21° 3420	2,97 0,80 2,27 223 22 20 3235	2,76 0,77 2,08 206 24 so 31 so	2,60 0,68 1,94 194 27 10' 28 10	2,60 0,66 1,94 191 27°20 27°20	2.55 0.63 1.90 1.86 28° 26° 26		•		E C C U () C C C C C C C C C C C C C C C C C C C	
5,01	3,11 0,86 2,41 238 21° 34°40	2,97 Q81 2,27 223 2226 3256	2,76 0,77 2,08 206 24 so 31 so	2,76 0,75 2,08 201 25°30 31°						C 2	