

Mixed integer predictive control

Citation for published version (APA):
Cloosterman, M. B. G. (2001). Mixed integer predictive control. (DCT rapporten; Vol. 2001.049). Technische
Universiteit Eindhoven.

Document status and date:
Published: 01/01/2001

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 16. Nov. 2023

https://research.tue.nl/en/publications/2d483a97-581c-4d95-a4ae-1c81e4556802

Mixed integer predictive control

DCT report: 2001-49

Student: M.B. G. Cloostennan

September 2001

Supervisor: dr. ir. H.A. van Essen

Contents

Chapter Title Page

Introduction 3
1. Model predictive control 4
1.1 Concepts 4
1.2 Relative optimisation scheme 6
1.2.1 Constraints 7
1.3 Absolute optimisation scheme 8
1 " 1 Constraints 8 1.,,).1.

1.4 Final remarks 9

2. Mixed logical dynamical systems 10
2.1 Introduction 10
2.2 Logical variables 11
2.3 Examples 12
2.3.1 Logical constraints on the state 12
2.3.2 Piecewise linear systems 13
2.3.3 Discrete inputs 15

3. Model with three water tanks 16
3.1 Overali model 16
3.2 Simulation models 17

4. Mixed integer predictive control 19
4.1 Model with non-continuous inputs 19
4.1.1 Logical statements and system equations 19
4.1.2 Constraints for relative optimisation 20
4.1.3 Results 22
4.2 Model with a discrete input 23
4.2.1 Logical statements and system equations 23
4.2.2 Constraints for absolute optimisation 25
4.2.3 Results 27

5.1 Conclusion 29
5.2 Recommendations 29

Literature 30

Appendices
I
2
3
4
5
6
7

8
9
9a
9b

9c

9d
10
lOa
lOb

lOc

11

List of symbols
Constraints for piecewise linear system
Determination of the parameters
Reliability of the linearised and the discrete linearised systems
Results of the model with non-continuous inputs
<I> and r matrices of the model with non continuous inputs
<I> and r matrices of the model with a discrete input

The next appendices are given a separate report with appendices
M-files: linearisation and discretisation
Model with non-continuous inputs.
Mipwaterbak
Function file to compute discrete model, weighing matrices and
prediction matrix Y
Function file to compute optimisation variables and matrices

Function file which gives the model
Model with a discrete input
Mipwaterbak
Function file to compute discrete model, weighing matrices and
prediction matrix Y
Function file to compute optimisation variables and matrices

Function file which computes the setpoints

2

Introduction

When a certain output of a system is desired, a controller can be implemented to reach these
goals. For many applications it is useful the controller can stop the machine or a part of the
machine during some time instead of running machines at an inefficient level. This feature is
for instance useful in assembly lines, with different parallel machines. The controller will turn
off a machine when the throughput descends, other machines will take over a part of the work
of the closed machine and their operating point will be more efficient. A model predictive
controller can deal with this problem, because it computes the most optimal operating point of
all machines.
Hardly any machine will turn out softly or continuously but turn out abrupt, when a minimal
value is reached. This behaviour can be modelled with logical constraints. These determine
when a machine is on or off and can be written in mathematical (inequality) equations. MPC
controls the system with use of an optimisation problem, which uses these constraints.
To investigate if the demands written above are possible a model predictive controller, which
can handle with logical constraints will be designed and simulated.

First MPC and logical constraints were studied. For logical constraints this means to rewrite
them into inequalities and check if the new equation gives the same results as the logical
constraint. Then the rewriting of logical constraints and the theory of MPC are combined in
mixed integer predictive control (MIPC). A matlab-file according to this theory is written.
This file uses mixed integer quadratic programming (miqp), an existing Matlab-function. To
test the Matlab-file a simulation is done on a model with logical constraints, which are
expressed in inequalities. This implemented model is controlled by MIPC. The results of the
simulation are interpreted. The results show if the Matlab-file and the constraints are
implemented correct for MIPe.
This report follows the different steps that were made during this traineeship. In chapter 1 the
model predictive controller will be introduced. Chapter 2 handles about mixed integer control.
Therefore logical constraints will be used, explained and rewritten in a useful notation for
MIPC. Chapter 3 describes two models, with logical constraints, which are used in
simulations. To make these simulations possible the logical constraints have to be rewritten
into inequalities and implemented in a Matlab-file, which is described in chapter 4. In this
chapter the results of the models are also interpreted. This report will end with a conclusion
and recommendations.

3

Chapter 1: Model predictive control

1.1 Concepts
Model Predictive Control (MPC) is a control strategy that uses a model of the process that
will be controlled to obtain the control inputs by minimising an objective function.

Equation 1.1 gives a linear, discrete time model. In figure 1 a schematic representation of this
model is given. This scheme is based on a system with single input and single output.

x(k + 1) = <Dx(k) + ruCk)

y(k + 1) = Cx(k + 1) + Du(k)

x(k): current state vector
u(k): inputvector

--.--f-'-,--~------ - -- - -.- - - - - - .. - - - ..
past future reference ,(k)

• pr:dicted output y(h/lt)
•

input u(t)

+p

prediction horizon

Figure 1: Concept of Model Predictive Control

[1.1]

At the present time k, the response of the output y is predicted over the prediction horizon
with a length of p samples. This prediction is calculated with past inputs, current model states,
latest process measurements, proposed future inputs and possibly predicted disturbances. The
variables are allowed to vary over the control horizon with a length of m samples. The inputs
(absolute or relative) are computed such that the future deviations between the predicted and
desired output are minimised. This will be done with an optimisation routine, i.e. Quadratic
Programming. Of the computed optimal control moves, only the first value is implemented
and the algorithm repeats the same procedure for the next sample.
To minimise the future deviations the following quadratic objective function is used:

p m

min I [Q{Y(k +/1 k) - r(k+ 1))]2 + I [R(L'lu(k + 1))]2
llu(k+1) ... llu(k+m) 1=2 /=1

m: control horizon
p: prediction horizon
y(k): process output at sample k
y(k+l): process output at sample kpredicted I steps ahead ..
y(k+llk): estimation of the process outputy:(k+l).
r(k): reference signal at sample k
r(k+l): reference signal computed for sample k and I steps predicted ahead
Llu: vector with new inputs (change of the input from equation 1.1)
Q: weights for the relevance of the output deviations
R: weights for the actions of the manipulated variables

[1.2]

The weighing matrices are chosen diagonal. Both matrices depend on the number of
repetitions of the algorithm. Further, R depends on the control horizon; Q depends on the
prediction horizon.

4

An advantage ofMPC in comparison with standard feedback is the explicit use of a finite
prediction horizon in the control problem. This allows MPC controller to take control action
at the current time step in response to the future behaviour of the system, even if the current
error is zero. Another advantage is the capability to handle with constraints. Physical, safety
and performance demands or laws can be taken into account.

The most important disadvantages of the MPC are the computational demand and the
performance ofMPC strongly depends on tuning parameters, like weighting factors, length of
horizons and sample intervals and the accuracy of the mode1.
The computational demanding makes it only useful for relatively slow processes, e.g. valves
in water circuits or burning furnaces.

Two optimisation schemes of MPC can be distinguished, a relative and an absolute. The
relative optimisation makes use of input changes to compute the optimal value. The absolute
optimisation uses the input itself. Both optimisation schemes will be explained in the next
paragraphs. In general the relative optimisation can schematically be presented, as shown in
figure 2.

[X(k~llk)]
x(k+plk)

Optimisation
",.roeIJOM

and optimfsation I---~""'--")..---+::=.0;;;0:

k
k+l

Figure 2: Schematic view of a relative MPC controller

In this figure the new estimated state x(k+ 11k) and input u(k+ llk)are calculated. For this
calculation the old estimation of the current sample ofthe state x(klk-l) and the input u(klk-l)
are used. Further the estimated states with L1U=O and the reference signal for the current state
are used in the optimisation mode1. The estimated state with L1U=O computes the behaviour of
the system when nothing is done.
The new input is calculated as the computed change of the input together with the estimated
input of the sample k.
The absolute optimisation is schematically given by:

Xu;o::uo

(kJk -1 x~ Prediction
u ~

Model
IPM

+p

.. ...

.. ...

I
I r(k:+ 1) 1
r(k+p)

~
Optimisation
Model 10M

and optimisation

Figure 3: Schematic view of an absolute MPC controller

x(k+1Jk)
~

u(k+1Jk)

---...

5

For this optimisation the same inputs are used at the left side as in the relative scheme. A
difference is that the estimated state is computed with u=uO, which means again that the input
is not changed. The last difference with the relative scheme is that this optimisation gives the
new estimated input as an output, so no extra computations have to be done.

1.2 Relative optimisation scheme
The relative optimisation uses the input changes as optimisation parameters. The minimal and
maximal values of the inputs are given as linear constraints. A Quadratic Programming
Problem will be used to compute the optimal values.

x; (k + 1) = x:.~u~o (k + 1) + x:.~u (k + 1) [1.3]

YPfk+l)' = yP fk+l)' +yP (k + 1)" a \ o,8.u=O \ o,~u \ [1.4]

In these equations x; is a (s*p) column. The different states are given by sand p

correspondents to the p samples over the prediction horizon. The same holds for the value 0 in
the output, it gives the different measured outputs. The output is therefore a (o*p) column.
The sample is given by (k+ 1).

According to equation 1.1 and with known initial values, the MPC problem can be written as:

xs(k+2Ik)

xs(k+3Ik)

xs(k+m+llk)

xs(k+m+2Ik)

xs(k+p+llk)

<l>2

<1>3

<l>m+l

<l>m+2

<l>p+l

<l>1+1
2

L<l>i1
;=0

m
L<l>i1

x(k) + i=O
m+l

L<l>i1
;=0

p
L<l>i1
i=O

past

1 0 o
<l>1+1 1

o
m-l
L<l>i1

u(k) + i=O
m

L<l>i1

<l>1+1 1 [~U(k+llk)l

<l>1+1 ~U(k~m Ik)
;=0

p-2
L<l>i1
;=0 ;=0

future

In this equation contains x the states and u the inputs of the model at sample k.
[1.5]

The measured output, when the inputs do not influence the output, so D=O is defined as:
[1.6]

The new output can be written as:

yg(k+ 1) = yg~~o(k + 1) + Y!J.u;(k + 1)
[1.7]

Y is called the prediction matrix. Y can be calculated with the part of equation 1.5 which is

called future. The past is given by: yt,~u~o (k + 1)

The tracking error e is then defined as:

e: (k) = y: (k) - r: (k) [1.8]
In this equation r is a known trajectory. r: (k) gives the trajectory for all controlled outputs

over the whole prediction horizon. Analogue the predicted error, when nothing is done, is
defined as:

6

[1.9]
The predicted error is not influenced by f..u, and when the error becomes zero the change of
the input f..u should be chosen zero. The quadratic performance criterion is now:

~~~ = (e:'L\u=o + Y f..u; t Q(e:,L\u=o + Y f..u; )+ (f..u; t R(f..u; ) [1.10] 

This can be written as: 

~~~ = e:'L\u=oT Qe:'L\u=o + e:'L\u=o T QY f..u; + (Y f..u; Y Qe:,L\u=o + (Y f..u; Y QY f..u; + (f..u i
m Y R(f..u;)

[1.11]
and rewritten to a standard QP problem:

~? = ~(LlU;' Y [yTQY + R ILlu;')+ (yTQe:ilU=oXLlu;')

e:,ilu=O T Qe:'l>.u=o is not used in the equation above, because it has a constant value and

therefore does not influence the optimisation. The standard QP formulation is:

min f(f..u) = {t~u;(k+1)TH~uim(k+1)-G~u;(k+1)}
L\u;"Ck+l)

[1.12]

[1.13]

H is defined as the Hessian and contains second derivatives; G is the gradient with first
derivatives.
H=yTQY +R

The solution of the unconstrained problem can be solved:

8J(f..u) = Hf..u + G = 0
8(f..u)

~u = -H-1G = [yTQY +R]-IyTQe:'L\u=o

[1.14]

[1.15]

From equation 1.12 can be seen that no final state error occurs, because when the input is the
desired input, the change of input is zero so the optimisation can reach its minimal value zero.

1.2.1 Constraints
Constraints will always be present at some time. Three types of constraints can be
distinguished in a continuous model.

Constraints on the output of the process, for instance a minimal and maximal water height
in a water tank
Constraints on the input signals, for instance a minimal and maximal value of the valves
Constraints on the changes in input signals, or move constraints. This is the maximal
move rate of the input signal per sample.

The optimisation problem can be written as:
min {t f..u m (k + 1)T Hf..ui

m (k + 1) - Gf..ui
m (k + 1)}

L\uj"Ck+I) I [1.16]

subject to Cf..ui
m (k + 1) 2: c

Hand G are the Hessian matrix and the Gradient vector of the QP formulation respectively. C
and c formulate the inequality constraints. The Hessian contains the second derivatives of the
problem. The Gradient vector contains the first derivatives of the optimisation problem.

7

The constraints from equation 1.16 can be written in an upper and lower bounded form. This
simplifies the implementation in Matlab.

b
l

:::; [l1u] :::; b
u Cl1u [1.17]

In equation 1.17 bu and bl are the upper and lowerbounds, bl is equal to c if there are only
lowerbounds in the equation. In this case bu contains only the values infinite.

1.3 Absolute optimisation scheme
The input (u) is used as optimisation parameter for the absolute optimisation. The maximum
and minimum step sizes are given as linear constraints. For this case Quadratic Programming
is again useful.

xsCk+2Ik) <I> i 0 0

xs(k+3Ik) <1>2 <1>i i 0 0

xs(k+m+ll k) <1>m x(k+llk)+
<1>m-l i <1>m-2i <1>i i [U(k~ll k) 1

xs(k+m+21 k) <1>m+1 <1>mi <1>m-l i <1>2i <1>i + K1 u(k+mlk)

p-m-I

xsCk+p+llk) <1>P <1> p-1i <1>p-2 i <1>p+I-'"i <1>P-mi+K L<1>ii
i=O

past
fuiure

[1.18]
The output y is defined as:
y: = Cx;(k+1) [1.19]
This equation is equal to the relative problem. The optimisation criterion can be defined as:

n;j.n = i(ui
m y[yTQY + RKu;)+ (yTQe:,u=uo)

[1.20]

e:u~uo is the predicted error and is defined as:

e:,u~uo(k) = y:u~uo(k)-r:(k) [1.20b]

Therefore the optimisation routine will stay the same as described in paragraph 1.2.

From equation 1.20 can be seen that a small final state error occurs. When the desired value is
nearly reached there will be still a value for the input u, the optimisation will therefore never
reach its minimal value zero. When the final error should be zero the absolute optimisation
gives less results than the relative optimisation.

1.3.1 Constraints
The constraints for absolute optimisation can be derived from paragraph 1.2.1. The
formulation differs, because the input is used. The optimisation problem will be:

min {tu~ (k + l)THu~ (k + 1) - Gui
m (k + I)}

u;"Ck+l)

subject to Cu
i
m (k + 1) ~ c [1.21]

All constraints are written in Matlab according to the next formulation, on the same reasons as
equation 1.17:

8

[1.22]

1.4 Final remarks
The optimisation schemes derived above make use of continuous (real) variables. When
integer variables are used, the equations are the same, but the optimisation routine Quadratic
Programming is not able to solve discrete integer problems. The optimisation will be executed
with Mixed Integer Quadratic Programming. The input and state vector can contain both real
and integer variables. The constraints are in this case the ones mentioned in paragraph 1.2.1
and additional constraints for the relations between different integer variables or integer and
real variables.

9

Chapter 2: Mixed logical dynamical systems

This chapter describes a optimisation scheme to model and control systems described by
physical laws, logical rules and operating constraints, denoted as a mixed logical dynamical
(MLD) system.

2.1 Introduction
A model is traditionally written as a differential or difference equation, derived from the
physical laws governing the dynamics of the system. In many applications the system to be
controlled is also constituted by parts described by logic variables. Examples are onl off
switches or valves, gears or speed selectors, whose evolutions depend on if-then-else rules.
Those systems will be written as a mixed logical dynamical (MLD) system, described by
linear dynamic equations subject to linear mixed integer inequalities, i.e. equations containing
both continuous and binary (or 0-1, or logical) variables.

2.2 Logical variables
Statements are implemented to model logical variables. Capital letters (X;) represent
statements, e.g. "x 20", or "valve is open". Boolean algebra enables statements to be
combined in compound statements by means of the connectives (table 2.1).

Connective Description
1\ And

v Or
~ Not

---+ Implies

~ If and only if

Efl Exclusive or
Table 2.1: Boolean connectives and their descriptions

The connectives are defined in truth tables (table 2.2).
Xj X2 ~Xj XjVX2 Xjl\X2 Xj---+ X2 Xj~X2 XjEflX2
F F T F F T T F
F T T T F T F T
T F F T F F F T
T T F T T T T F

Table 2.2: Truth table

With the literal X; a logical variable OJ {0,1}, which can have a value of either 1 (if Xi is true),
or 0 (if X; is false), can be associated. The statement X; can be written as an inequality
involving logical variables OJ.
XjvX2 is equivalent to oj+82~1
X jl\X2 is equivalent to oj=1,02=1
~ Xj is equivalent to OJ=O
Xj---+X2 is equivalent to OJ-02S0
Xj ~X2 is equivalent to OJ-02=0
X jEflX2is equivalent to oj+02=1 [2.1]

This technique will be used to model logical parts of processes.

10

Consider the statement X is true iff (x) :::; 0, where f JR n -+JR is linear. Assume xEL, where L
is a given bounded set and define

M~ maxf(x) [2.1b]

m~ minf(x)

These logical statements can be written in a Boolean formula, which can be rewritten as
inequalities, with help of the truth table. In these equations 8 is a small value, often machine
precision, beyond which the constraint is regarded as violated.

[f(x):::;O] /\ [8=1] is true if and only if: [2.2a]
f(x)-8 :::;-1 +m(1-8)
Prove: ifj(x) :::;0,8 should be equal to 1 to give true. The equation givesf(x):sO, which is
correct. If 8 would be zero, the equations give f(x) :::;-1 +m, this gives a false answer,
because m is defined as the minimum off(x).

[f (x):::;o] v [8=1] is true if and only if: [2.2b]
f(x) :::;M8
Prove: ifj(x) :::;0,8 can be 1 or ° to give true. The equations give:f(x) :::;0 orf(x) :::;M, both
equations are correct
If 8=lj(x) can have all possible values to give true. The equations give:f(x) :SM, which is
correct.

[f(x):::;O] ~ [8=1] is true if and only if: [2.2c]
f(x)~8+(m-8)8

Prove: ifj(x):::;O 8 should be 1. The inequality gives:f(x)~m, which is true.
ifj(x) is larger than zero, 8 can be ° and 1, this gives:
j(x)~8, which is also correct in this case, or
fix)~m, which is also true.

[f (x):::;O] B [8=1] is true if and only if: [2.2d]
f(X)~8+(m-8)8
f(x) :::;M(1-8)
Prove: iff(x) :::;0,8 should be 1 to give true. The equations give:
f(x)~m andf(x):::;O which is true
ifj(x):::;O and 8 is 0, it has to give false. The equations give:
f(X)~8 andf(x) :::;M which is false becausef(x) :::;0.
ifj(x» 0, 8 should be equal to 0. In the equations this gives:
f(X)~8 and f(x) :::;M. When 8 is chosen to be machine precision these equations give j(;x) >0
ifj(x» ° and 8 is 1, the equations must be incorrect. They give:
f(x)~m and f(x) :::;0. This gives incorrect because f(x) was said to be larger than zero. So
equation 2.2d is correct.

11

These logical variables can be used in a mixed logical dynamical system. Equation 2.3 gives
the general form. The logical constraints, which are rewritten as inequalities, can be
implemented in the third equation.

x(t + 1) = Atx(t) + Bttu(t) + B2t5(t) + B3t z(t)

yet) = Ctx(t) + Dttu(t) + D2t5(t) + D3t z(t)

E2t5 (t) + E3t z(t) ::; Ettu(t) + E4t X (t) + ESt5 (t)
[2.3]

Where x is the state of the system, yet) is the output vector and u(t) is the input vector. The
first two equations are the system equations. They can be in a continuous and a discrete form.
The last one gives the constraints. Both 8(t) and z(t) represent auxiliary variables. It is
possible to augment the input u(t) with both 8(t) and z(t). The different Band D matrices win
form one Band D matrix which sizes are the same as the new input vector. The same holds
for the different E-matrices. All vectors can contain integer and real variables. The first and
the second equation give the dynamics of the system. The third equation gives the constraints.
It contains the relations between integer and real variables, or between integers and input,
output and move constraints, as mentioned in chapter 1. The next examples will all be written
in the formulation of equation 2.3.

2.3 Examples
The next examples will explain the usefulness of these equations. In the examples an
application of this optimisation scheme for logical constraints on the state, piecewise linear
systems and discrete inputs can be seen.

2.3.1 Logical constraints on the state
A logical constraint on the state is implemented for a single input single output system:

{
0.8x(t) + u(t) if x(t) ~ 0

x(t + 1) =
- 0.8x(t) + u(t) if x(t) < 0

where
x(t) E [-10,10]

u(t) E [-1,1]

The condition x(t)~O can be associated with a binary variable ~t) such that

[5(t) = l]B [xCt) ~ 0]

By using the transformation of equation 2.2 this can be expressed by the inequalities
m5(t) ::; x(t)

- (M + &)5::; -x(t)-&
WhereM= -m = 10

Equation 2.4 can be rewritten as
x(t + 1) = 1.65(t)x(t) - 0.8x(t) + u(t)

[2.4]

[2.5]

[2.6]

[2.7]

When ~t)x(t) is expressed by a new variable z(t) the evolution of the system is ruled by
x(t + 1) = 1.6z(t) - 0.8x(t) + u(t) [2.8]

12

To guarantee z(t) is the same as b(t)x(t), some constraints are implemented.
z(t)::;; M5(t)

z(t) ~ m5(t)

z(t) ::;; x(t) - m{1- 5(t))

z(t) ~ x(t) - M{l- 5(t))

[2.9]

The first constraint gives that z(t) is always smaller than the maximum of ~t)x(t). The second
constraint gives that z(t) is always larger than the minimum of ~t)x(t). The last two
constraints are derived from equation 2.6.

At this moment equation 2.4 is written in one equation and four constraints. In the standard
fOITImlation of equation 2.3 it gives:

x(t + 1) = -O.8x(t) + u(t) + 1.6z(t)

yet) = x(t)
[2.10a]

And the constraints of equation 2.3 give:

-m 0 0 1 0

-(M +&) 0 0 -1 -&

-M 1 0 0 0
5(t) +

-1
z(t) ::;;

0
u(t) +

0
x(t) +

0 -m
[2. lOb]

-m 1 0 1 -m

M -1 0 -1 M

2.3.2 Piecewise linear system
Piecewise linear systems contain different linear equation. These equation are useful for given
values of the state, therefore they succeed each other. When the maximal value (or a specified
value) of the first system is reached the system alternates to the next system equation, which
is again linear and holds for the new values of the state (Xi). An example of a piecewise linear
system, with a single inputs and single output, is given in equation 2.9.

x(t + 1) = Ajx(t) + B1u(t) if 51 (t) = 1

x(t + 1) = A2x(t) + B2u(t) if 52 (t) = 1

x(t + 1) = A3X(t) + B3u(t) if 53 (t) = 1

Where bi(t) is a 0-1 variable, satisfying the exclusive or condition;
[bI(t)=l]EB [b2(t)=1] EB [b3(t)=1]

[2.11]

[2.12]

In equation 2.11 is not defined when ~(t) is zero and when it is one. The next equation is
implemented to prescribe these rules.

[5j = 1] ~-dAiX(t) + Bju(t) ::;; :z;] [2.13]

13

The value of Ii can be chosen. It is in this example defined as the maximal value for which
the equation is linear. For a larger value the system has to alternate to the next equation. The
value Ti can therefore also be the minimum of the next system equation.

1'; =max{~x(t)+B;u(t)} [2.14]

With these assumptions it is possible to rewrite equation 2.11. The Ai and Bi matrices are only
used when 8/t) is one, so it can be written as:

3

x(t + 1) = I (A;x(t) + B;U(t)5i (t) [2.15]
;=1

This equation is non-linear since it involves products between logical variables and states or
inputs. The equation can be written into an equivalent mixed integer linear inequality.

3

x(t + 1) = I (z;(t)) [2.16]
;=1

The next definitions are needed to derive the constraints. Every system equation needs is own
minimum and maximum value for which the system has to alternate to another system
equation.

M; = max {A; x(t) + B; u(t)) = 1';

m; = min {A; x(t) + B; u(t))

The exclusive or condition of equation 2.12 can be rewritten as:

1 1 1 l' 1 lo (t)]

[-1 -1 -IJ [-1] 02 (t) ;:::

°3(t)

Equation 2.13 can be rewritten as:

A;x(t) + B;u(t) ;::: (m - M)o + M

A;x(t) + B;u(t):=;; -Mo + 2M

For z(t) the constraints are, just as in the previous example:

z;(t) :=;;Mo;(t)

Z; (t) ;::: mo; (t)

Z; (t) :=;; A;x(t) + B;u - m(l- 0; (t))

Z; (t) ;::: ~x(t) + B;u - M(l- 0; (t))

[2.17]

[2.18]

[2.19]

[2.20]

Equation 2.16 gives the new system equation, in equation 2.21 it is written in the standard
fonnu1ation. The constraints are given by equation 2.19 and 2.20. Their standard fonnulation
is given in appendix 2, for the three different equations in 2.12.

{

ZI(t)]
x(t) = ~ 1 1 Z2(t)

Z3(t)
[2.21]

14

2.3.3 Discrete inputs
Discrete inputs are for example useful for application with on/off switches, gears and speed
selectors. Such systems can be easily modelled by logical variables, for example the system in
equation 2.22.
x(t + 1) = Ax(t) + Bu(t)

u(t) E {U p U2 ,U3,U4} [2.22]

To simplify the equations a single input, single output system is chosen, so the dimension of
every Ui is one. The dimension of the state x(t) also one.
When four discrete values of the input are used, equation 2.22 can be written as:

x(t+l) = Ax(t) + B[ul u2 u3 U4]uk(t) [2.23a]

A new B-matrix can be defined as:
[2.23b]

To guarantee that never two discrete inputs are implemented together on the system
constraints are used. These give that exactly one ult) is one and the others are zero. This
gives the following constraints:

[-1 -1 -1 -1] [-1] Uk (t) ::;; 1 1 1 1 1
with
Uk (t) == [Ukl (t) Uk2 (t) Uk3 (t) Uk4 (t)]

ukJt) E {0,1}
The first equation in 2.24 guarantees that at least one Uk(t) is one, the second equation
guarantees that at most one Uk(t) is one.
In the standard formulation it can be rewritten as:

x(t + 1) = Ax(t) + Bnewuk (t)

[0] [1 1 1 1] [-1] ::;; uk(t)+ ° -1 -1 -1 -1 1

[2.24]

[2.25a]

[2.25b]

15

Chapter 3: Model with three water tanks

In this chapter the model will be derived and it will be rewritten into the formulation of
chapter two. This will be used to test this optimisation scheme and formulations.

3.1 Overall model
The schematic model of the system with three water tanks is given in figure 3.1.

II l_ ~~ ____ n' w~r=

C1R1
··········"/1\··· ~

Figure 3.1: schematic representation ofthe simulation model

The controller should stabilise the water heights in tank 1,2 and 3. To achieve these demands
the valve values (R],R2) and the water input (w) can be controlled.
At first the equations for the different water tanks are derived:

Xj = _1_ (w(t) + k2 ~ pgx2 - clRI ~ pgXj - c2R2 ~ pgxI)
p·Aj

x2 =_I_(cjRI~pgxj -k2~pgX2) p·A2

X3 = _1_ (c2R2 ~ pgXj - k3 ~ pgx3)
p·A3

The constant parameters in this equation are:
2 AJ=O.1 m

A2= 0.1 m 2

2 A3= 0.1 m
k2 = 0.055 (kg·m)1I2
k3 = 0.055 (kg·m)1I2

)
112

Cl = 0.06 (kg·m
)

1/2 C2 = 0.06 (kg·m
g=9.81 m1s2

p=1000 kg/m3

The pump efficiency is 100%.

[3.1]

16

The detennination of these constants is given in appendix 3

In chapter 1 the equations are written for a linear system. The system given in equation 3.1 is
non-linear and has to be linearised. The behaviour of the non-linear model and its linearisation
is given in appendix 4. The linearisation is satisfying and therefore useful in the optimisation
problem.

3.2 Simulation models
The equations in 3.1 assume that the valves (R) have values between 0 and 1.In practice a
valve will not close softly, but tum off when a minimal value is reached. This behaviour will
be modelled in two different ways.

X=

The first model uses two non-continuous inputs. When the vaives CR) reach a value below
0.2 the valve will be closed compieteiy, so R is set to zero. This assumption gives several
equations for the system according to the value of R. The equations are given in fonnula
3.2.

Xl =_1_(w(t)+k2~pgx2 -cIRI~pgXI -c2Rl~pgXI)
p·AI

Xl =-l-(CIRI~Pgxl -kl~pgXJ
p·A l

Xl =_l_(w(t)+kl~pgXl -cIRI~pgXI -c2Rl~pgXI)
p·AI

Xl = 1 (CIRI ~ pgxI - kl ~ pgxl) if RI ?:. 0.2 /\ Rl < 0.2
p.A

2

l X3 = P .lA3 (C1Rl.J pgx, - k3.J pgx3)

Xl = _1_(w(t) + k2~ pgxl)
p·Al

x2 = p .1A (- k2 ~ pgx2) if R j :s; 0.2
2

X3 = _1 - (- k3 ~ pgx3)
p·A3

[3.2]

17

The second model uses a discrete RI and R2 is continuous, to simplifY the equations. Valve
RI can have values {O, 0.2, 0.4, 0.6, 0.8, 1.0}. Equation 3.1 holds, with a discrete instead
of a continuous RI .

18

4. Mixed integer predictive control

The two different models of chapter 3 will be used to simulate the behaviour of the water
tanks and their valves. They will be described after each other. Paragraph 4.1 gives the model
with a non-continuous input. It describes the use of logical statements, the system, the
constraints and the results. Paragraph 4.2 gives these subjects for the model with a discrete
input

4.1 Model with non-continuous inputs

4.1.1 Logical statements and system equations
At first the equations will be derived with R (valve 1 and 2), which can vary continuous
between 0.2 and 1 and will be closed (R=O) when R becomes smaller then 0.2.

The logical statement can replace the conditions for Ri in equation 3.2.

[di (t)=l]B-[R i ;:::0.2]

[diet) = O]B- [Ri = 0]

With:
R E JR., JR.: Real numbers
dE Z, Z: Integer numbers

This logical statement can be written in inequality equations as, just as equation 2.6:
md ::;; R(t)

-(M +&)d ::;;-R-&

With:

m=0.2

M=l

The inequality equations become:

R(t);::: 0.2d

R(t) ::;; (1- &)d + &

These inequality constraints satisfy equation 4.1 :

[4.1a]

[4.1 b]

[4.2]

[4.3]

• Equation 4.2a gives that if d=l, it means R should be larger or equal to 0.2 to be
correct. The inequality constraints of equation 4.3 give:

R(t) ;:::0.2

R(t)::;; 1
[4.4]

• The second logical statement (4.1 b) says if d is zero R should be zero to be correct.
Equation 4.3 gives when d is zero:

R(t);::: 0

R(t)::;; &
[4.5]

So R will be zero.

19

For both situations the inequality constraints are correct. So these inequality constraints will
substitute the logical variables. When these variables are substituted in equation 3.1, the
system equation can be written as:

x] (k + 1) = _l_(w(k) + knJ pgX2 (k) - c]R]d] ~ pgx] (k) - c2R2d 2 ~ pgX] (k»)
p·A]

X2 (k + 1) = _l_(c]R]d] ~ pgx] (k) - kl ~ pgxz (k))
p·A2

X3 (k + 1) = _1_(cl R2d 2 ~ pgx] (k) - k3 ~ pgX3 (k»)
L p·A3

[4.6]

This non-linear equation will be used to simulate the system. For the MIP-controller a linear
approximation is needed.

The 1inearised discrete equation is:
x(k + 1) = <l>x(k) + lu(k) [4.7]
The <l> and r matrices are given in appendix 6. Appendix 4 shows that the 1inearised discrete
system is a satisfying approximation for the non-linear model. It is remarkable that the first
column of matrix <l> contains products of inputs. A relative optimisation will be used to solve
the problem. The constraints will be derived with respect to Liu.

The change of the inputs Liu is defined as:

i1u = [M] M2 i1w i1d] i1d2Y [4.8a]
The state is defined as:

x = [x] Xl x3Y [4.8b]

The use of the change of inputs makes equation 1.5 applicable. It will be used in the
optimisation problem. Note that it is derived for the standard MPC problem, but still useful is
because only the constraints are extended. The input vector contains in this case also integer
variables.

4.1.2 Constraints for relative optimisation
The different constraints for this optimisation problem will be described in this paragraph.
The possible constraints are already mentioned in chapter 1. Below the move, input, output
and logical constraints will be derived.

• As first the constraints for Liu, known as the move constraints:

-1 M] 1

-1 M z 1

-10 ~ i1w ~ 10 [4.9]

-1 i1d] 1

-1 i1d2 1

These constraints can be implemented in this way. For every prediction in the control
horizon this equation holds. This equation repeats therefore m times per sample in the
optimisation problem.

20

• The input constraints are given by their minimal and maximal values:
o R[1

o 1

O::S;w::S;inf

o
o

1

1

[4.10]

The absolute inputs are unknown in the relative optimisation problem; therefore 4.10
is re\vritten as a function of Liu, with:

!1u = u(k + 1) -u(k)

u(k + 1) ==!1u + u(k)

The minimal and maximal values will be implemented with the next equation:

0- u(k) 11R[1-u(k)

O-u(k) 11R2 1-u(k)

O-u(k) ::s; !1w ::s; inf-u(k)

O-u(k) I1d[1-u(k)

O-u(k) I1d2 1-u(k)

[4.11]

[4.12]

• Next the constraints on the water height, which is the output, will be determined. The
output must have values between the upper and lower bounds. For the implementation
the output must be rewritten as a function of the input and the state, because it is not a
part of the optimisation problem. Therefore the outputs of the system will be
computed with equation 1.5 which gives the new state. The new outputs are equal to
the new states, because all outputs are measured.

/b-

When the outputs are rewritten as a function of both the input and the state and must
be between the upper and lower bounds it results in the next equation:

<1>[,+[, [' 0 0 2
<1>2 L<1>i[' <1>[,+[, [' <1>2

<1>3 i=O
0 <1>3

m m-!

[i\U(k~llk)]<ub-L<1>i[' L<1>i[' <1>[,+[, ['
<1>m+! x(k)- i=O u(k) :0; i=O <1>m+! x(k)-

m+! m
<1>m+2 L <1>i[' L<Di[' <1>[,+[, ~u(k+mlk) <1>m+2

i=O i=O

<1>~+! J l~~i['
p-2 p-m-! <1>P+!
L<1>i[' L<1>i['
i=O i=O

[4.13]
The columns lb and ub are p times the upper and lower bounds of the output.

[4.14]

<1>[,+[,
2

L<1>i['
i=O

m
L<1>i['
i=O
m+!
L<Di['
i=O

~~i['J

21

u(k)

•• Equation 4.3 gives the inequalities of the logical constraints. These constraints hold
for both RJ and R2. In matrix formulation this gives the next result:

0 1 0 0 -0.2 0
Rl

inf

0 0 1 0 0 -0.2
Rl

inf [4.15]
:::; w :::;

-& -1 0 0 -&+1 0 inf

0 -1 0 0 -&+1
d1 inf -&
d2

This formulation uses the input, but in the optimisation only the change of input (Ltu)
is given. So they are re\vritten with ..1u as input

o -u(k) 1 0 0 -0.2 0
I~.l?·ll

inf

o -u(k) 0 1 0 0 -0.2
Ml

inf
:::; L'lw :::;

-&-u(k) -1 0 0 -&+1 0 inf

- & -u(k) 0 -1 0 0 -&+1
L'ld1 inf
L'ld2

The value c in equation 4.15 and 4.16 is used to avoid numerical problems.

4.1.3. Results
The result of the given problem is shown in figure 4.2:

setpoints
0,5

OA5· ,- -' - " - ... _ - ---.

0.4

0,351--------~-----+__f___

0,3

0,25 _.

1.",11
0.2 reference le\.€l 1

1.",12
- reference le\el 2

0,15 1.",13
..... - reference level 3

0.1 __ L.... 1-._ ••. «.±on. •..• -'-"',_-'-·.i.":=::::-: ... :::r:::::::= ... _"--.... _ .. __ 1-. ••. _ •• ___ i. ________ -1._._ __ 1

o 1 2 3 4 5 6 7 8 9 10

Figure 4.1: Setpoints and behaviour of the water tanks for the model with non-continuous inputs

[4.16]

The other results are shown in appendix 5. From this figure can be seen that the optimisation
does not give a satisfying result. The optimisation gives after some samples an infeasible
result if all constraints are used. Below the problems are described. Both the logical
constraints and the move constraints on the integers must be excluded to give a feasible result.
At first the move constraints on the integers will be described. The logical constraints were
not used in this case. When the solution is computed with an optimisation to Ltu the logical
variable di is also computed in the form of Ltdi. The minimal and maximal values of Ltdi are
between -1 and 1. When these constraints are implemented in the Matlab model the
simulation gives an infeasible result. The change of the integer input has to be between 0 and
1 to obtain a feasible result. This input leads to a non-changing variable d, and it can therefore

22

not be optimised. This problem is probably due to linearisation. The values of the constraints
are computed for the non-linear system. The move constraints are in all cases the same, but
the input constraints need to be changed. This can lead to overlying constraints and then a
value of -1 for the move constraints gives an infeasible result for the input constraints.
Another solution is to exclude all move constraints, but this means that the changes of the
input are not weighted anymore.
The optimisation only terminates successful when also the logical constraints are excluded.
This problem is due to the dependence of Rand d in the input vector. The optimisation routine
needs independent optimisation parameters to compute an optimisation, because it cannot see
the dependence between the different input variables. The optimisation routine computes the
optimal input with respect to all input variables. The constraints contain some dependence of
Rand d, in equation 4.14, but do not tell the optimisation the product of Rand d is the real
optimal value. This can lead to sub-optimal or infeasible solutions. To avoid these problems
the model should be written without dependence of the inputs. The problem is in this case
written in such a way it cannot be written without this dependence. Another formulation of
the problem is needed to solve this problem. The use of the auxiliary variable z(t) does not
give a good result, because all inputs have to be defined in one input and not in the same way
as in equation 2.3. Another Matlab function, which optimises to the variable z, but uses the
other inputs only to compute the constraints, can give a solution.

4.2 Model with a discrete input

4.2.1. Logical statements and system equations
To obtain independent variables a new model of valve 1 is chosen. Valve RI has one of the
next values: {O, 0.2, 0.4, 0.6, 0.8, I}. Valve R2 can have values between 0 and 1.

This assumption leads to the next constraint for RI.

[d\ =O]+-?[R[=0]

[dJ = I]+-? [RJ =0.2]

[d z = 1] +-? [R[= 0.4]

[d3 = I]+-? [R[= 0.6]

[d 4 = I]+-? [R[= 0.8]

[d5 =1]+-? [R[=1] [4.17]
[d5 = 1]~ [d4 = 1]/\ [d3 = 1]/\ [dz = 1]/\ [d[= 1]
[d4 =1]~[d3 =1]/\[dz = 1]/\ [dJ =1]
[d3 =1]~[d2 =1]/\[dJ =1]
[dz = 1]~ [d[= 1]
[dJ = 0] ~ [dz = 0]/\ [d3 = 0]/\ [d4 = 0]/\ [d5 = 0]

[d z = 0] ~ [d 3 = 0] /\ [d 4 = 0] /\ [d 5 = 0]

[d3 =0]~[d4 =0]/\[d5 =0]
[d4 = O]~ [d5 = 0]

In this model RI is modelled as a parallel circuit of different valves (see figure 4.2), with
logical constraints. These constraints determine the order of the valve parts to be opened.
They are given in equation 4.18.

23

I 0.2 I d1

I J
I 0.2 1 d2

I I
Rl

--"" I 0.2 I d3 I I ...

) 0.2 I <4
L J

0.2
d~

Figure 4.2: Schematic representation of R I .

When the constraints of equation 4.17 are written in inequalities it gives:
for the last 8 equations:
o ~ d = dl + dz + d3 + d4 + ds ~ 5

ds-d4~0

d4-d3~0

d
3

- dz ~ 0

dz -dl ~ 0

and according to the other equations R(t) can be written as:

R(t) = O.2(ds + d 4 + d3 + d z + dJ
To prove these equations a possible solution is given:

d 4 = 0 } => R(t) = 0.2d3 + 0.2dz + OAd, = 0.8

d3 =dz =d,=1 ds=O

[4.18]

[4.19]

[4.20]

This is a correct result and can be done for all different solutions. Therefore the equations give
a correct description of the logical constraints. These equations will be implemented in a
Matlab file and are the linear constraints for this problem.

For the optimisation problem also the move constraints have to be implemented. The move
constraints will only be implemented for valve two and the integer variables. To give RJ move
constraints would mean the value of RJ is not completely computed by the values of the
integer variables d.

The model is given by equation:

Xl =_l_(w(t)+kz~pgxz -0.2cl (d, +d2 +d3 +d4 +dJ~pgx, -c2R2-JpgXI)
p·A,

x2 =_1_(0.2c,(d, +dz +d3 +d4 +dJ~pgx, -kz~pgxJ p·A
2

[4.21]

X3 =_1_(c2R2~pgxI -k3~pgX3)
p·A3

24

The <I> and r matrices of the linearised model are given in appendix 7.
The input is defined as:

u(k) = [R2 w d[d2 d 3 d 4 d 5Y
The state is defined as:

x(k) = [x[X 2 x3Y

[4.22]

[4.23]

In comparison with the previous model, the <I>-matrix does not contain any mUltiplication
between the input variables. The different variables in the input are now independent, which
simplifies the optimisation.
The different variables in the input vector are independent, which is a great advantage in
comparison with the previous optimisation scheme. The different constraints, as used in the
relative optimisation problem, have changed. They will be described below.

4.2.2 Constraints for absolute optimisation
• The move constraints are defined as:

- me s u(k + 1) - u(k) s me

•

- me S u(k + 2) - u(k + 1) s me [4.24]

In this equation me is a column of the same size a u, which gives the values for the
move constraints. The move constraints are for a control and prediction horizon of
three defined in equation 4.25. The move constraints are in this equation only
implemented for the continuous variables as 11R2 and ~w. The discrete variables do not
contain move constraints.

-~2 +R2(k) 1 0 0 0 0 0 R2(k+l) M2 +R2(k)

-~w+w(k) 0 1 0 0 0 0 w(k+1) ~w+w(k)

-M2 -1 0 1 0 0 0 R2(k+2) M2 s s [4.25]
-~w 0 -1 0 1 0 0 w(k+2) ~w

-M2 0 0 -1 0 1 0 R2Ck+3) M2
-~w 0 0 0 -1 0 1 wCk+3) ~w

The constraints on the inputs are:

~I r~ d[1+
0 = d2 = 1 [4.26]

0 d 3 1

0 d 4 1

0 d 5 1

• The constraints on the outputs, the water heights in the three tanks can be derived from
equation 1.16. The lower bounds and upper bounds are the same as in the first
simulation, equation 4.14. This results in:

25

<1> 1 0 0 <1>
<1>2 <1>1 1 0 0 <1>2

lb- <1>m x(k+ljk).s:
<1>,"-11 <1>,"-21 <1>1 1 [u(k ~ 11 k) l" ub- <1>'" x(k+ljk)

<1>m+l <1>'"1 <1>m-l1 <1>21 <1>1 + 1([' u(k+mjk) <1>,"+1

p-m-l

<1>P <1>p-l1 <1>p-2r <1>p+l-'"1 <1>p-m1 + K L <1>ir <1>P
i=O

[4.27]

• Finally the constraints between the integer inputs are given by equation 4.28. They are
derived from equation 4.18. The first equation (of 4.18) is not needed, because all
integer inputs have a maximal value of 1, the sum is therefore always smaller or equal
to five.

-1 0 0 0 -1 1
d]

0

-1 0 0 -1 1 0
dz 0

:s; d3
:s; [4.28]

-1 0 -1 1 0 0 0

-1 -1 1 0 0 0
d4 0
dsJ

The discrete non-linear model is linearised in the Matlab program. Therefore these
constraints need to be written as a function of the linearised variables. The input is:

d] 1 d] 0

dz 1 dz 0

d3 = 1 and linearised d3 = 0 [4.29]

d4 0 d4 0

d5 0 d5 0

The only difference in the equation is for <4- d3, because d3 can have values 0 (open)
and -1 (closed) and <4 can have values 1 (open) and 0 (closed). So the values for open
and closed are not corresponding. The other equations do not give this problem,
because their values for open and closed are corresponding when the difference
between to following d/ s is computed.

The implementation is therefore:

-1 0 0 0 -1 1
d j

0

0 0 0 -1 1 0
dz 1

:s; d3
:s;

-1 0 -1 1 0 0 0

-1 -1 1 0 0 0
d4 0

[4.30]

d5

26

4.2.3 Results

Different simulations are done on this system. Two of them will be presented below.

The setpoint (xO+O.I, yO+O.1, zO) gives the next results.

0.9....--------,-------,---,----,----,---,

0.8

~ 0.75

.~
~ 0.7

~
'5 0.65 ..

0.61- .

0.55 , ,

0.5~_--' __ _____' __ ~ __ ~ __ --L __ --.J

o 5 10 15
time(s)

20 25 30

2

1.5

5 10 15 20 25

Figure 4.2: discrete input (first simulation) Figure 4.3: continuous inputs (first simulation)

error in setpoints (referentie-wel1<elijk)
0.14,----r---,----,---,----;::===il

0.12

_ 0.08
.s
g
" 0.06

0.04 - - -;- -- - - - - - - - ~ -- - -- - - --,-

0.02

time(s)

Figure 4.4: error in setpoints (first simulation)

As can be seen the discrete and the continuous inputs become constant, the error of water tank
1 and 2 tends to zero. Water tank three shows a descending error, the water height in this tank
is only controlled by the output of the continuous valve in water tank 1. This output is less
weighted than the others, so it is acceptable this error is relative large. The discrete input in
figure 4.2 shows a correct behaviour, it uses only the values specified with the constraints and
in equation 4. 17.Figure 4.3 shows the continuous inputs, for valve R2 the only constraints was
that it has values between 0 and 1, the result is therefore satisfying. For the water input no
constraints were used. These results are satisfying. To check whether the optimisation scheme
gives satisfying answers for different setpoints another problem is solved.

27

30

The setpoint (xO-O.l, yO+O.l, zO) gives the next results.

0.95 --1---:------;-··-1

0.9 --

0.85 --
-s
"-
.S
2 0.8 -
~
~
'fi 0.75 _

0.7 --

0.65 -

4 6 8 16
time(s)

Figure 4.5: Discrete inputs (second simulation)

error in setpoints (referentie-werkelijk)

--#:---- - -.--- ---:-------i-- ----.-- ---,------+-----
,. i :

-0.04 ------lI--~---l-----l
, , ,
, ______ -i- - - - - - ~ , , , ,

-0.02 ----

-0.06 -----i---------l-----i
I, , : '

-0.08 ----i-i----------,
-O.ll-...J"----'-_----'-_----'--_--'---_L.......~_~_~_~.......J

o 2 4 6 8 10 12 14 16 18 20
time(s)

Figure 4.7: Error in the setpoints (second simulation)

inputs

2.5

2

1.5

'~
0.5

o 5 10 15 20

Figure 4.6: other inputs (second simulation)

25 30

As can been seen from figure 4.5 the discrete input shows a chattering behaviour, it cannot
find an optimum. The optimum is somewhere between 0.6 end 0.8. Valve R2 does not reach a
constant value, because it shows also some chattering. The water input end up with a more
constant value, but sti11less than in the previous example. It was expected the water input and
the continuous valve would influence with their choices of values the capability to reach a
constant value for the discrete valve, but this does not happen. Using weighing filters and
implement a penalty on the last inputs can probably solve this.
The optimisation scheme can compute satisfying results, but the quality is dependent of the
chosen setpoint. The setpoints that are used do not ask much changes in the value. Larger
problems occur when the difference between the setpoints and the initial values increases.

28

Conclusions

Logical constraints can be rewritten into inequalities and used in an optimisation problem, as
was shown in paragraph 4.2. Mixed integer predictive control can use them in its
optimisation. With this routine MIPC is able to control discrete systems, but there are still
problems. Chattering occurs for many setpoints and large differences between initial values
and setpoints cannot be controlled successful. The use of weighing filters can probably solve
this.
The absolute optimisation scheme of MPC is tested for the discrete problem and gives rather
satisfying results, except the problem of chattering. A final error occurs as was mentioned in
chapter one.
The model with non-continuous inputs could not be controlled with the relative scheme of
MIPe. When the model is written without independence and the constraints are not overlying
this should give a correct result.

Recommendations

To make the implementation ofthe discrete inputs easier it is useful to test if the integer
values can also become larger than 1. If this is possible the discrete input can be given by
just one integer variable (d in the model) instead of five different integer variables.
The optimisation scheme is only successful tested for a model with discrete inputs. It must
be useful for ali different MLD systems; therefore it should be tested on a non-continuous
model.
The relative optimisation scheme is mostly used in standard MPC control. It is easier,
when linearised models are used, to construct the matrices and vectors for the constraints.
Further on the error in the last sample is smaller, as was mentioned in chapter 1. It is
therefore useful to test the relative optimisation scheme again, but with independent
inputs.
The use of weighing filters for the error and the input-changes should be tested. These
weighing matrices are given in chapter one as Q and R. Their values are not changed in
the current optimisation. Their values determine the importance of the error and the new
inputs in the optimisation. A larger weight of the input-changes gives smaller input
changes between the different samples, but the error is less important and can therefore
decrease.
Filters can be used when the prediction differs from the measurements. This error is due to
model mismatches, unmodelled phenomena and linearisation of the non-linear model. A
filter (i.e. model-based) should adapt the states of the model in such a way that they are
equal to the measured states.
The non-continuous model has to be rewritten without independence or in the
optimisation should be given that the product of Rand d is the parameter that has to be
optimised. This is possible when an auxiliary variable z is implemented as in chapter 2.
But the optimisation problem has to optimise z in this case, with constraints for Rand d.
This should be given in the optimisation scheme.

29

Literature

1. A. Bemporad, M. Morari, Control of systems integrating logic, dynamics and
constraints, Automatica 35 (1999),407-427

2. dr.ir. H.A. van Essen, Model Predictive Control

30

Appendix 1: List of symbols
This appendix gives all symbols used in this report. It contains the numbers, vectors and
matrices.

Table A1.1 gives the numbers that are used in this report. The values of constant parameters
used in this report are given in the last column.
Symbol Explanation Dimension Value

Numbers
k Sample -
I Counting number -
p Length of the prediction -

horizon
m Length of the control horizon - m:::;,p

Xi Statement - e.g. true/false

e Small number, often machine - e.g. 1e-16 ..
preCISIOn

d Integer value - o or 1

8 Integer value - o or 1

p Density kg/mj le3
A Surface mL 0.1
k Constant valve value (kg.m)112 0.055

e Scaling value of the valves (kg.m)112 0.06

R Normalised valve-value - Between 0 and 1
w Water input kg/s
g Constant of gravity m/sL 9.81
Table Al.l: Numbers

The vectors and their explanation are given in table A1.2. For the vectors no dimensions and
values are given, because the size, dimension and values are dependent of the problem.
Vectors Explanation
x State
y Measured output
u Input
r Reference
e Tracking error
G Gradient-column
c Coiumn with constraints together with matrix C
lb Lowerbound
ub Upperbound
me Column with values for the move-constraints
Ss Vector with all different states
? Vector over the whole prediction horizon

Ss,LJu=O Vector with all different states for L1u=O
s(k+l) Vector at sample k predicted l steps ahead.
s(k+llk) Estimation of the vector s(k+l).
Table A 1.2: Vectors

31

Matrices Explanation
<I> Matrix which gives the relation between the new state and the current state

r Matrix which gives the relation between the new state and the input

C Matrix which gives the relation between the measured output and the state
D Matrix which gives the relation between the measured output and the input
Q Matrix with weights for the relevance of the output deviations
R Matrix with weights for the actions of the manipulated variables
y Prediction matrix
H Hessian-matrix
C Matrix with constraints together with column c

- -Table A1.3 Matnces

There are no dimensions and values given for these matrices. The size, the dimension and the
values are dependent of the problem.

32

Appendix 2: Constraints for piecewise linear system

-1 -1 -1 0 0 0 0 0 -1
1 1 1 0 0 0 0 0 1

ml-MI 0 0 0 0 0 BI Al -MI

0 m2 -M2 0 0 0 0 B2 A2 -M2

0 0 m3 -M3 0 0 0 B3 A3 -M3

MI 0 0 0 0 0 -BI -AI 2MI

0 M2 0 0 0 0 -B2 -A2 2M2
0 0 M3 0 0 0 -B3 -A3 2M3

-MI 0 0 1 0 0 0 0 0

0 -M2 0 l 0,(1) J 0 1 0 l z, (I)] 0 0 0

0 0 -M3
<52 (t) +

0 0 1
Z2 (t) ~

0
u(t) +

0
x(t) +

0

0 0
<53 (t) -1 0 0

Z3 (t)
0 0 0 ml

0 m2 0 0 -1 0 0 0 0

0 0 m3 0 0 -1 0 0 0

-ml 0 0 1 0 0 BI Al -ml
0 -m2 0 0 1 0 B2 A2 -m2
0 0 -m3 0 0 1 B3 A3 -m3

MI 0 0 -1 0 0 -BI -AI MI

0 M2 0 0 -1 0 -B2 -A2 M2
0 0 M3 0 0 -1 -B3 -A3 M3

33

Appendix 3: Determination of the parameters

Time constants
The parameters of the system have to be determined, because they influence the time constant
ofthe water tanks. A time constant of the tanks between 5 and 30 seconds is desired. To
compute this some simulations are done.
In these simulations the water tank, whose time constant is determined, is completely filled
and the inputs and the other water heights are set to zero. These simulations give the time
constant for a completely filled water tank without external disturbances.
The figures show the behaviour of the different water tanks. The time constant is equal to the
gradient of the \vater height-time curve.

time constant of tank 1
0.6i-;---;-;---:----:---;-----:----;====;l

:E
.~ 0.3
.<::
~
Q)

~

0.1

5 10 15 20 25 30
time(s)

Figure l:Time constant of water tank one.

35 40 45

The time constant of water tank one is 8 seconds. Water tanks two and three show the same
behaviour. This is correct, because both water tanks are filled with the same amount of water
form tank one. The valves are namely both completely opened.

time constant of tank 2
0.6 i ---:---;----:-----:-----:;===;l

0.5 , ; , 'L........_......l-j
, , , , , , , , , , , ,
, , , ,

0.4
__________ , ____________ J __________ _

, , , ,
\

i 0.3 '~ ; : ,

i :~: : :
0.2 .. : " .. : ; : ,

! '''< , I ,

: ... ,"-'....., ,

': (~~;~~T-:~t5~=t-=, _
o 10 20 30 40

time(s)

Figure 2:Time constant of water tank two.

50 60

34

When water tank two is filled, this water tank gives also water to tank one and therefore the
water height in water tank one and three increases. Water tank one is in comparison with tank
three sooner empty, because it can loose more water by the two controllable valves. Water
tank one returns some water to tank two, which results in a larger time constant for tank 2 in
comparison with the first water taille This difference in time is mostly due to the different
values of the valves, so less water can leave tank two. The time constant is 21 seconds.

0.4 -

:E
.~ 0.3 - -
.<:::

Q;

~
0.2 -----

o
o 10

time constant of tank 3

______ '- ______ -'_ _ ____ L _______ , _______ ~ _______ , _______ oJ _____ _

'. , .'
~,

20 30 40

, J I F I

J • .1... . .• 1...

50 60 70 80 90
time(s)

Figure 3 :Time constant of water tank three.

100

Water tank three does not fill any of the other tanks, so they will stay empty. The time
constant of tank three is 14 seconds. It is faster than tank two, because it is not filled anymore.

To achieve these results the next parameters were used:

Parameter Value
k2 0.055 (kg·m)IIL

k3 0.055 (kg·m)IIL

CI 0.06 (kg'm)IIL

C2 0.06 (kg·mtL

Al 0.1 m""
A2 0.1 mL

A3 0.1 mL

w o m~/s
Table 1: used parameters for calculating the time constants

Initial values
The initial value has to be a stable point. To achieve this, all differential equations should be
equal to zero. There are more variables than equations, so some parameters can be chosen.
The surfaces do not influence the derivative of the water height. They are all chosen to 0.1 m2.
The other necessary values are the water heights and the values of the inputs (both valves and
water input). The constant parameters and the initial values are given in table 2 and 3. These
values will be used in the optimisation problem.

35

Parameter Symbol Value
Constant valve k2 0.055 (kg·m)lIL
values k3 0.055 (kg·m)l!L
Scaling value CI 0.06 (kg·m)lIL
controllable valves C2 0.06 (kg·m)l!L
Surface Al 0.1 mL

A2 0.1 mL

A3 0.1 mL

Table 2: The constant parameters of the system.

.L .L .1..1. v,", .L uJ.&...L.LL .~~

Controllable RIO 0.6
valve values R20 0.55
Water input Wo 3.852 kgls
Water height XIO O.5m

X20 0.59m
X30 0.5m

. " Table 3: The mltJaI values ofthe system .

36

Appendix 4: Reliability of the linearised and discrete linearised model

Linearised model
To check whether the linearisation gives a correct behaviour the non-linear model and the
linearised model are simulated in Matlab. For a given input u the behaviour of the system is
given in figure 1. As can be seen the linearised system gives a good approximation for the
non-linear model.

non-linear(-) and linearised system behm';our (-)
0.26

0.24

0.22

0.2

0.18 The input was defined as:

0.16

0.14

0.12

0.1

n=[0.5; 1.4857; 1; 1; 1; 0;0]';
y=[0.5; 1.4857; 1; 1; 1; 1;1]';
upk=[n;n;n;n;n;y;y;y;y;y;y;y;n;n;n;
n;n;n;n;n]; xpkO=[0.25; 0.1071;
0.0744];

0.08

0.06
0 2 4 6 8 10 12 14 16 18 20

Figure 1: Comparison of the non-linear and linearised system

In this case only the value of the discrete valve was changed, when the continuous, discrete
valves and the water input are changed the approximation of the linearised model is less
exact, as can be seen in figure 2.

non-linear(-) and linearised system behalhour (-)
0.26

0.24

0.22

0.2

0.18

0.16

The inputs were in this case:
n=[0.5; 1.4857; 1; 1; 1; 0;0]';

Y=[O 7· 1· 1· 1· 1· 1·1]'· . , , , , , , ,
0.14

upk=[n·n·n·n·n·y·y·y·y·y·y·y·n·n· , , , , , , , , , , , , , ,
0.12

0.1

0.08

0.06
0 2 4 6 8 10 12 14 16 18 20

Figure 2: Comparison of the non-linear and linearised system

n;n;n;n;n;n];
xpkO=[0.25; 0.1071; 0.0744];

37

Discrete linearised model
To check whether the discretisation gives a correct behaviour the non-linear model and the
discrete linearised model are simulated in Matlab. The behaviour of the system and is
discretisation is given in figure 3. As can be seen the discrete linearised system gives a good
approximation for the non-linear model.

non-linear (-) and discrete linearised system beha>iour (--)

2 4 6 8 10 12 14 16 18 20
time

The input was defined as:
n=[0.5; 1,4857; 1; 1; 1; 0;0]';
y=[0.5; 1,4857; 1; 1; 1; 1;1]';
upk=[n;n;n;n;n;y;y;y;y;y;y;y;n;n;n;n;

n'n'n'n]' , " ,
xpkO=[0.25; 0.1071; 0.0744];

Figure 3: Comparison ofthe non-linear and discrete linearised system

In this case only the value of the discrete valve was changed, when the continuous, discrete
valves and the water input are changed the approximation of the discrete model is less exact,
just as in the case of the linearised model.

0.26

0.24

0.22

0.2

I 0.18

:E
.[jl' 0.16
.f
" ~ 0.14

0.12

0.1

0.08

0.06
a 2

non-linear (-) and discrete linearised system beha>iour (--)

4 6 8 10 12 14 16 18 20
time

The inputs are in this case:
n=[0.5; 1.4857; 1; 1; 1; 0;0]';
y=[0 7' l' l' l' l' 1'1]" . , , , , , , ,
upk=[n'n'n'n'n'y'y'y'Y'y'y'y'n'n'n'n' , , , , , , , , , , , , , , , ,

n'n'n'n]' , " ,
xpkO=[0.25; 0.1071; 0.0744];

Figure 4: Comparison of the non-linear and discrete linearised system

The approximation is still not worse, but is less than the previous one. The discrete linear
system and the linearised system only give a good approximation if the values are near the
linearisation point. These changes are larger and therefore the error is larger than in the
previous example. The first five seconds of the setpoint are stable; this can be seen in both the
non-linear and the discrete and linearised curves. The error of the discrete and linearised
curves increases when the setpoint uses an instable point. The error decreases if the stable
point is reached again.

38

)

0.1

Appendix 5: Results of the model with non-continuous inputs

The optimisation of this model is not successful, as can be seen in the next figures. From each
simulation the error, the inputs and the setpoints, in comparison with the behaviour of the
different water tanks are given.

At first an optimisation is done with all constraints. This gives the next results.

error in setpoints (referentie-werkelijk)

inputs

141

12r

10

0··
8

I -0.1
6

4

-0.3 ---
2

2 3 4 5 6 7 8 0
0 2 4 5 8 9 10 10

time (s)

Figure 1: The error in the setpoints Figure 2: The inputs

setpoints
0.5

---------/~"~,-----;-
\, ,-
\

0.45

0.4 \
\ .'

/.
0.351--------~"-------~---f-

0.3

0.25·· -

le",11
0.2 reference le\€1 1

le",12
- reference le\€1 2

0.15 le",13

0.1
0

reference level 3

._._ !. L ... _ •. ----L-- ••. '-'-.... ,,*"'::.:....:.::.; .::::r::• - ~ - .-
1 2 3 4 5 6 8 9 10

Figure 3: The setpoints fOi this optimisation

The optimisation gives infeasible from sample 7. This can be seen in the figures. The
optimisation was not able to solve the problem, without becoming infeasible. The integer
values are not seen as integers anymore and can get every value. In figure two it can be seen
that the values of the valves are no longer made in steps of 0.2. Especially the end steps show
more deviations. The logical constraints give therefore problems. This can be due to the move
constraints on the integer values that are used in the optimisation or to the logical constraints
itself. Exclusion of one of these constraints gives the same result, therefore the optimisation is
also computed without logical constraints and without move constraints on the integer values
and it gives:

39

error in setpoints (referentie-werkelijk) inputs
0.15'1~1-1-1-I-T-T-F~==il 3

...
tank 2
tank 1 ~

- tank 3 0.1 /.r···'
1- valve 1 J

valve 2 I water input
::f';\

0.051----I-~--+-_+----i---+--+--+--+____l

2.5

,{

1/
o . -, '-. -.-~

.--
2

g
Q) -0.051----1--1--+---'-' ",.-+~,c~,c,__+_IJ .-. -j-----i---t--+----i

-0.1 f---J--J---+--+-'+--+-+-+--+----l

1.5

I' --

-~::I ~ --,-------,--1-----,-1 ~i [~~ll---'----'I
o 10 20 30 40 50 60 70 80 90 100

timers)

Figure 4: Error (no logical constraints)

0.5r~-----....,
--·lel.€ll

0.45

0.4

reference lel.€l 1
lel.€12

- reference lel.€l 2
lel.€13
reference lel.€l 3

setpoints

0.35r--------;:===-::-----------

0.2

0.15 /

0 .. 1 .. ___ L_ _I -

o 10 20 30 40 50 60 70 80 90 100

Figure 6: Setpoints and behaviour (no logical constraints)

0.5
o

.- I

10

.........

20 30

. I··········

40 50 60 70

Figure 5: Inputs (no logical constraints)

... ...

I

I
80 90

This optimisation tenninates successful. The error tends for the first water tank to zero; the
second one shows a larger error. The valves are used in the optimisation problem, and show
some satisfying result, although the maximal value is not correct. This error is due to the
exclusion of the constraints on the valves. From these results it can be concluded that there are
problems with the implementation of the logical constraints.

40

100

Appendix 6: The <l> and r matrices of the model with non-continuous inputs

o

<P= o

o

- _1-c1 dlO.J pgxlO - _1~c2d 20.J pgXlO
1 _l~cIR!O.J pgxlO _l-czRzo-J pgxlO pAl pAl pAl pAl pAl

r= 1 C]dlO -J pgXlO 0 0 -l-cIRIO.J pgXlO 0
pAz pA2

0 1 c2d20 .J pgxlO 0 0 _1-c2Rzo .J pgXIO
pA3 pA3

40

Appendix 7: The <I> and r matrices of the model with a discrete input

- _l-cz ~ pgxlO
pAl pAl

0.2 .r;;g;:;
-~·Cl pgxlO

PI

0.2 ~
--Cl pgxlO

pAl

0 0.2 .[Pi;:: 0.2 ~ f= 0 --c l pgxlO --c l pgxlo
pAz pAz

_1-C2 ~ pgxlO 0 0 0
pA3

1 g k
2Al ~pgxzo 2

o

_ 1 g k

2A2 ~pgxzo Z

o

o

0.2 .[Pi;::
--Cl pgxlO

pAl
0.2 .[Pi;:: --c l pgxlO
pAz

0

__ 1_ g k

2A3 ~ pgx30 3

0.2 ~
--Cl pgxlO

pAl
0.2 .[Pi;::

--Cl pgxlO
pAl

0.2 ~ --c l pgxlO
pAz

0.2 .[Pi;:: --c l pgxlO
pAz

0 0

41

	Voorblad
	Contents
	Introduction
	1. Model predictive control
	2. Mixed logical dynamical systems
	3. Model with three water tanks
	4. Mixed integer predictive control
	Conclusions
	Literature
	Appendices
	Appendix 1
	Appendix 2
	Appendix 3
	Appendix 4
	Appendix 5
	Appendix 6
	Appendix 7

