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Harmonic and refined extraction methods for the

singular value problem, with applications in least

squares problems

Michiel E. Hochstenbach∗

December 17, 2002

Abstract. For the accurate approximation of the minimal singular triple (singular value
and left and right singular vector), we may use two separate search spaces, one for the left,
and one for the right singular vector. In Lanczos bidiagonalization, for example, such search
spaces are constructed. In [3], the author proposes a Jacobi–Davidson type method for the
singular value problem, where solutions to certain correction equations are used to expand
the search spaces.

As noted in [3], the standard Galerkin subspace extraction works well for the computation
of large singular triples, but may lead to unsatisfactory approximations to small and interior
triples. To overcome this problem for the smallest triples, we propose three harmonic and a
refined approach. All methods are derived in a number of different ways. Two of these methods
can also be applied when we are interested in interior singular triples. Theoretical results as
well as numerical experiments indicate that the results of the alternative extraction processes
are often better than the standard approach. We show that when Lanczos bidiagonalization
is used to approximate the smallest singular triples, the standard, harmonic, and refined
extraction methods are all essentially equivalent. This gives more insight in the success of the
use of Lanczos bidiagonalization to find the smallest singular triples.

Finally, we present a novel method for the least squares problem, the success of which is
based on a good extraction process for the smallest singular triples. The truncated SVD is
also discussed in this context.

Key words: SVD, singular value problem, subspace method, subspace extraction, two-sided
approach, harmonic extraction, refined extraction, Rayleigh quotient, Lanczos bidiagonaliza-
tion, Saad’s theorem, least squares problem, truncated SVD.

AMS subject classification: 65F15, 65F50, (65F35, 93E24).

1 Introduction

We study subspace methods for the computation of some singular triples (i.e., singular values
and their corresponding singular left and right vectors) for large sparse matrices. The methods
we consider are two-sided, i.e., they work with two search spaces: a search space U for the left
singular vector, and a search space V for the right singular vector.

In short, such a subspace method works as follows. We start with given search subspaces from
which approximations to the singular triples are computed, this is called the subspace extraction.
Then we expand the subspaces by new directions, the subspace expansion. The idea is that as
the search subspaces grow, the approximations will converge to a singular triple of the original
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problem. In order to keep computation costs low, we usually do not expand the search spaces
to the whole space. If the process does not converge in a certain number of iterations, then the
method is restarted with a few selected approximations as the basis for new search spaces. If one
or more singular triples have been detected, and we want to find other triples, we can deflation
techniques to avoid finding the same triple again.

A well known example of a two-sided subspace method for the singular value problem is the
(Golub–Kahan–)Lanczos bidiagonalization ([1], see also [2, p. 495]). A recent method, JDSVD,
based on Jacobi–Davidson type expansion techniques, is introduced in [3]. Besides a new subspace
expansion process, some new nonstandard extraction techniques are suggested there. In this paper
we analyze these, and other alternative extractions in more detail.

Let us first introduce some notations. Let A be a real (large sparse) m×n matrix with singular
value decomposition (SVD) A = XΣY T and singular values

0 ≤ σmin = σp ≤ σp−1 ≤ · · · ≤ σ2 ≤ σ1 = σmax,

where p := min{m, n}. The assumption that A is real is made for convenience only, the adaptations
for complex A are not difficult. Denote the left and right singular vectors by xj (1 ≤ j ≤ m) and
yj (1 ≤ j ≤ n), respectively. For later use, we also introduce a second labeling for the singular
values:

σ−1 ≤ σ−2 ≤ · · · ≤ σ−p+1 ≤ σ−p, (1.1)

so that, if σmin > 0,
σ−j(A) = σ−1

j (A+),

where A+ is the pseudoinverse of A. (Such a labeling is also used for eigenvalues in [7]; one of
its benefits is the matrix size independency of the indices of the smallest values. This facilitates
the formulation of results for those values.) By ‖ · ‖ we denote the Euclidean norm, while κ(A)
is the condition number of A. For a subspace U , let PU denote the orthogonal projection onto U ;
U denotes a “search matrix” whose columns form an orthonormal basis for U . We write N (A)
for the nullspace of A, and ej for the jth canonical vector. For a positive definite matrix B, the
B-inner product is defined by

(x, y)B := yT Bx.

We denote the situation where (x, y)B = 0 as x ⊥B y.
This paper has been organized as follows. Section 2 recalls the standard subspace extraction

and some of its properties from [3], and presents a theorem like Saad’s theorem on Rayleigh–
Ritz approximations, that gives insight in the strength and weakness of the standard extraction.
Section 3 explores three variants of harmonic extraction, based on certain Galerkin conditions
on the inverse of the matrix. In Section 4, we propose a refined extraction method. Section 5
discusses the Rayleigh quotient for the singular value problem. We discuss the possibilities for
interior singular values in Section 6, and those for nonsquare or singular matrices in Section 7. In
Section 8, we study the extraction methods for the special case of the Lanczos bidiagonalization,
and show that all extraction methods for the smallest singular triples are essentially equivalent.
The application of the methods to the least squares problem and the truncated SVD is the subject
of Section 9. Numerical experiments are presented in Section 10, and some conclusions are collected
in Section 11.

2 Standard extraction

Given a left search space U and a right search space V , we would like to determine an approximate
left singular vector u ∈ U and an approximate right singular vector v ∈ V . Throughout the paper,
we assume that both AV and AT U are of full rank. (When they are not, the search spaces U or
V contain a singular vector corresponding to the singular value 0.)
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Given (possibly different) approximations θ and η to the same singular value, and approximate
left and right singular vectors u and v, the residual r is defined as

r =
[

r1

r2

]
=

[
Av − θu
AT u − ηv

]
.

These approximate values and vectors are determined by a double Galerkin condition as follows.
Write u = Uc and v = V d, where it is understood that c, d �= 0. The standard extraction process
is now derived from one of the two following equivalent conditions:

(i)
{

AV d − θUc ⊥ U ,
AT Uc − ηV d ⊥ V .

(ii)
{

UT AV d = θc,
V T AT Uc = ηd.

Here, (i) can be regarded as the standard Galerkin conditions for the singular value problem; the
word “standard” reflects the fact that we choose the test spaces (on the right hand side of (i))
equal to the search spaces. Choosing the scaling ‖c‖ = ‖d‖ = 1, we see from (ii) that c and d are
left and right singular vectors of

H := UTAV

with singular value θ = η; stated differently: u = Uc and v = V d are left and right singular vectors
of A with singular value θ = η with respect to the subspaces U and V . Note that in this extraction
process we have θ = η, for some other methods in Section 3 and 4 this will not be the case.

Definition 2.1 U and V are invariant singular subspaces if

AV ⊂ U and ATU ⊂ V .

In [3], the following argument is given why this H is optimal in the following sense. Given U
and V , define the residual matrices as

R1(K) := AV − UK and R2(L) := ATU − V L. (2.1)

When U and V are invariant singular subspaces, then, with H = UT AV , we have R1(H) =
R2(HT ) = 0. When U and V are not invariant, we may be interested in the H that minimizes
‖R1(K)‖ and ‖R2(LT )‖. The following theorem from [3] states that in both cases the minimizing
matrix is (also) given by H = UT AV .

Theorem 2.2 [3, Theorem 4.1] For given m × k matrix U and n × k matrix V , let H = UTAV .
(a) If the columns of U are orthonormal, then for all k × k matrices K we have ‖R1(H)‖ ≤
‖R1(K)‖. Moreover, H is unique with respect to the Frobenius norm: ‖R1(H)‖F ≤ ‖R1(K)‖F

with equality only when K = H.
(b) If the columns of V are orthonormal, then HT = V TATU minimizes the norm of R2(L), and
HT is unique with respect to the Frobenius norm.

In two-sided subspace methods for the singular value problem, we construct increasing se-
quences

Uk ⊂ Uk+1 and Vk ⊂ Vk+1.

Because of Theorem 2.2, it is a natural idea to take the k singular values θ
(k)
k ≤ · · · ≤ θ

(k)
1 of

Hk := UT
k AVk as approximations to the singular values of A. Then the following theorem from

[3] states that all θ
(k)
j converge monotonically increasing to the σj . (As usual, by “asymptotic

convergence” in the context of subspace methods, we mean the convergence behavior of these
methods in a situation where we have a (very) good approximation to an eigenpair, rather than
the situation where the dimension of the subspace goes to infinity.) Moreover, we have elegant
error bounds that can be proved using Weyl’s monotonicity theorem. We will sometimes omit the
index k for convenience.
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Theorem 2.3 [3, Theorem 4.3]

(a) For fixed j ≤ p, and k ≥ j, the θ
(k)
j converge monotonically (up)to σj :

θ
(k)
j ≤ θ

(k+1)
j ≤ σj .

(b) For each j = 1, . . . , k, there exist singular values σj′ of A which can be put in one-one
correspondence with the singular values θj of H in such a way that

|σj′ − θj | ≤ max {‖R1(H)‖, ‖R2(HT )‖}.

Moreover,
k∑

j=1

(σj′ − θj)2 ≤ ‖R1(H)‖2
F +

∥∥R2(HT )
∥∥2

F
.

Two remarks regarding this theorem are in place. First, as also noticed in [3], the standard
extraction leads to monotonic convergence for the largest singular value (part (a)), but it can
imply irregular behavior for the smallest singular value.

Second, if the norms of the residual matrices R1(H) and R2(HT ) are small, then the largest
singular values of H must be good approximations to the largest singular values of A (part (b)).
The smallest singular values of H are not necessarily good approximations to the small singular
values of A. So H will tend to be a better approximation to the “top” of the singular spectrum
of A than to the “bottom”. See also Section 9.2.

Now, we present another result that sheds more light on the standard extraction: a theorem
that expresses the quality of the approximate singular vectors produced by this extraction in terms
of the quality of the search spaces. For the Hermitian eigenvalue problem, such a result is proved
by Saad (see [8, p. 136]). This result can be extended to non-Hermitian matrices ([11, p. 286]).
We first give a new short proof of Saad’s result in terms of orthogonal projections, before we prove
a similar result for the singular value problem along the same lines.

Let Pu denote the orthogonal projection onto span(u). Note that because u ∈ U , the projections
satisfy

PUPu = PuPU = Pu.

Suppose that we have a search space U for the Hermitian eigenproblem. The Rayleigh–Ritz process
for the eigenvalue problem Bx = λx (see, for instance, [7]) ensures that

PUBPUPu = θPu. (2.2)

Theorem 2.4 (Saad, [8, p. 136]) Suppose that B is a Hermitian matrix with eigenpair (λ, x).
Let (θ, u) be the Ritz pair (with respect to the search space U), for which θ is the Ritz value closest
to λ. Then

sin(u, x) ≤
√

1 +
γ2

δ2
sin(U , x),

where
γ = ‖PU(B − λI)(I − PU )‖,
δ = minθj �=θ |θj − λ|,

where θj ranges over all Ritz values not equal to θ.

Proof: We start with
x = Pux + (PU − Pu)x + (I − PU )x.

Apply PU (B − λI) on both sides, and use (2.2) to get

0 = (θ − λ)Pux + PU (B − λI)(PU − Pu)x + PU (B − λI)(I − PU )x, (2.3)
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so

(PU − Pu)(B − λI)(PU − Pu)x + Pu ((θ − λ) + (B − λI)(PU − Pu)) x = −PU (B − λI)(I − PU )x.

Taking the square of the norms and using Pythagoras’ theorem leads to

δ2 ‖(PU − Pu)x‖2 ≤ ‖(PU − Pu)(B − λI)(PU − Pu)x‖2 ≤ γ2 ‖(I − PU )x‖2.

Since ‖(I − PU )x‖ = sin(U , x) and ‖(I − Pu)x‖ = sin(u, x), the result now follows from

‖(I − Pu)x‖2 = ‖(I − PU )x‖2 + ‖(PU − Pu)x‖2.

�

For the singular value problem, the standard extraction gives

PUAPVPv = θPu and PVAT PUPu = θPv.

We are now in a position to prove a similar result for the standard extraction for the singular
value problem.

Theorem 2.5 (cf. Theorem 2.4) Let (σ, x, y) be a singular triple of A, and (θ, u, v) be the approx-
imate triple (derived with the standard extraction with respect to the search spaces U and V), for
which θ is the value closest to σ. Then

max{sin(u, x), sin(v, y)} ≤
√

1 + 2
γ̃2

δ̃2
max{sin(U , x), sin(V , y)},

where
γ̃ = max{‖PUA(I − PV)‖, ‖(I − PU )APV)‖},
δ̃ =

{
minθj �=θ |θj − σ| when H is square,
min(minθj �=θ |θj − σ|, σ) when H is nonsquare,

where θj ranges over all approximate singular values of H not equal to θ.

Proof: The proof follows the same line as the proof of Theorem 2.4, where we take for B the
augmented matrix [

0 A
AT 0

]
, (2.4)

and make the following other substitutions in the proof of Theorem 2.4: replace

x by
[

x
y

]
, PU by

[
PU 0
0 PV

]
, and Pu by

[
Pu 0
0 Pv

]
.

One may check that we get (cf. (2.3))

0 = (θ − σ)
[

Pux
Pvy

]
+

[
PU 0
0 PV

] [ −σI A
AT −σI

] [
PU − Pu 0

0 PV − Pv

] [
x
y

]
+

[
PU 0
0 PV

] [ −σI A
AT −σI

] [
I − PU 0

0 I − PV

] [
x
y

]
.

Since the last term on the right-hand side can be written as[
0 PUA(I − PV)

(I − PU )AT PV 0

] [
(I − PU )x
(I − PV)y

]
,

the norm of this term is bounded by
√

2 γ̃ max{‖(I − PU )x‖, ‖(I − PV)y‖}.
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Furthermore, the smallest singular value of[
PU − Pu 0

0 PV − Pv

] [ −σI A
AT −σI

] [
PU − Pu 0

0 PV − Pv

]
is δ̃. The result now follows in the same way as in the proof of Theorem 2.4. �

The theorem states that when ∠(U , x) → 0 and ∠(V , y) → 0, the standard extraction gives
good Ritz vectors, unless the singular values of H are poorly separated (δ̃ ≈ 0). In fact, δ̃ becomes
0 in case of double singular values of H , see also Example 7.1. The phenomenon of poorly separated
Ritz values is also encountered in the Rayleigh–Ritz method for eigenvalue problem; it is often not
very serious: we may just continue with the subspace method (by expanding the search spaces),
at the next step the singular values of H may be well separated.

A more serious problem of the standard extraction is that the theorem does not predict which
singular triple is the best: it is a problem of selection. In [3], the following example is given.
Suppose that u =

∑m
j=1 γjxj and v =

∑n
j=1 δjyj are approximate singular vectors of unit length;

then θ = uTAv =
∑p

j=1 γjδjσj . (We may assume θ is nonnegative; otherwise, take −u instead of
u.) Now suppose that θ ≈ σ1, in the sense that σ2 < θ < σ1, and that σ1 − θ is (much) smaller
than θ − σ2. Then we conclude that γ1 ≈ 1 and δ1 ≈ 1, so u and v are good approximations to
x1 and y1. But when θ ≈ σp, u and v are not necessarily good approximations to xp and yp. For
example, u could have a large component of xp−1 and a small component of x1, and v could have
a large component of yp−2 and a small component of y1. In conclusion, when we search for the
largest singular value, it is asymptotically safe to select the largest singular triple of H , but for
the smallest triple it is not safe to select the smallest approximate triple. See also Example 7.1.

Failure to select the best approximate vectors is especially dangerous when we use restarts. At
the moment of restart, selection of bad approximate singular vectors may spoil the whole process.

3 Harmonic extractions

As seen in the previous section, the standard extraction process is satisfactory in the quest for
the largest singular values, but the approximations to the smallest singular values often display a
irregular convergence (see also [3]).

Here and in the next section we assume that A is nonsingular (which implies that A
is square);

we will treat the general case in Section 7. Based on the observation that the smallest singular
values of A are the largest ones of A−1, it was suggested in [3] to consider modified Galerkin
conditions on A−T and A−1. Here we work out this idea in detail.

The following are equivalent:

(i)

{
A−T V d̃ − η̃−1Uc̃ ⊥ Ũ ,

A−1Uc̃ − θ̃−1V d̃ ⊥ Ṽ.

(ii)

{
η̃ ŨT A−T V d̃ = ŨT Uc̃,

θ̃ Ṽ T A−1Uc̃ = Ṽ T V d̃.

The idea is now to choose the test spaces Ũ and Ṽ in such a way, that we do not have to work with
the inverse of the (large sparse) matrices A and AT . Some terminology: in line with nomenclature
for the Rayleigh–Ritz procedure, ũ := Uc̃ and ṽ := V d̃ are called left and right harmonic singular
vectors, θ̃ and η̃ harmonic singular values, and (θ̃, η̃, ũ, ṽ) a harmonic singular tuple. We remark
that, similar to the harmonic Ritz values for the eigenvalue problem, the harmonic Ritz values
may be ∞, see Example 7.1, and Section 5 for a way to overcome this difficulty.

Now we can make the following four choices for (Ũ , Ṽ):
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• (AV , ATU) gives the standard extraction of Section 2.

• (AATU , ATU) leads to the U-harmonic extraction, see Section 3.1.

• (AV , ATAV) is the V-harmonic extraction to be discussed in Section 3.1.

• (AATU , ATAV) gives the double harmonic extraction, examined in Section 3.2.

3.1 U- and V-harmonic extraction

In this subsection we only treat the V-harmonic extraction, the U-harmonic extraction is derived
by interchanging the roles of U and V , and those of A and AT . The following are equivalent:

(i)

{
A−T V d̃ − η̃−1Uc̃ ⊥ AV ,

A−1Uc̃ − θ̃−1V d̃ ⊥ ATAV .

(ii)

{
AV d̃ − θ̃U c̃ ⊥ AV ,

AT Uc̃ − η̃V d̃ ⊥ V .

(iii)

{
V T ATAV d̃ = θ̃V T AT Uc̃,

V T AT Uc̃ = η̃d̃.

Here, (i) expresses that the V-harmonic method arises from Galerkin conditions on A−1 and A−T

with respect to modified test spaces. Item (ii) gives a derivation in terms of Galerkin conditions
on A and AT , but with different test spaces, compared with the standard extraction of Section 2.
From (iii), we see that V T ATAV d̃ = (θ̃η̃)d̃, that is, (θ̃η̃, ṽ) is a Ritz pair of ATA with respect to
the search space V . This is just the well-known Raleigh–Ritz approach on ATA. The “secret”,
however, is in the formation of the vector c̃, and hence the approximate left singular vector ũ. We
have c̃ = H−T d̃, up to scaling (see Section 7 for the case that H is nonsquare or singular). Since
H−T can be considered as a projected A−T , this suggests that the vector ũ = UH−T d̃ may be a
much better approximation to the left singular vector than the “usual” approximation Aṽ = AV d̃.
The following lemma substantiates this.

Lemma 3.1 Suppose that v is an approximation to the “smallest” right singular vector ymin.
Then, denoting ε := tan(v, ymin), we have

κ(A)−1ε ≤ tan(A−T v, xmin) ≤ ε ≤ tan(Av, xmin) ≤ κ(A)ε,

where the inequalities are sharp.

Proof: Write v = ymin + εe, where e ⊥ ymin and ‖e‖ = 1. Note that tan(v, ymin) = ε. Then for
Av = σminxmin + εAe, we have tan(Av, xmin) = εσ−1

min‖Ae‖, from which the last two inequalities
follow (sharp if e = yp−1 and σmin = σp−1, respectively e = ymax). Since A−T v = σ−1

minxmin +
εA−T e, we have tan(A−T v, xmin) = εσmin‖A−T e‖, from which we get the first two inequalities
(sharp in the same circumstances as above). �

Concluding from the lemma, it would be ideal, given an approximate right vector ṽ, to take
A−T ṽ as approximate left vector. In practice, the action with A−T is often too expensive, but
H−T is a, much cheaper, projected approximation to A−T . Numerical experiments (see Section 10)
confirm that ũ = UH−T d̃ may be a much more accurate than AV d̃.

Since the (θ̃η̃)j are Ritz values of ATA with respect to the subspace V , we can invoke well-known
results. We label the values in two different ways (cf. (1.1)):

(θ̃η̃)k ≤ · · · ≤ (θ̃η̃)1 and (θ̃η̃)−1 ≤ · · · ≤ (θ̃η̃)−k.

Theorem 3.2 Let RV = ATAV − V (V T ATAV ) = (I − V V T )ATAV . Then:
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(a) for fixed j ≤ p, and k ≥ j, the ((θη)(k)
j )2 converge monotonically (up)to σ2

j :

((θη)(k)
j )2 ≤ ((θη)(k+1)

j )2 ≤ σ2
j ;

the ((θη)(k)
−j )2 converge monotonically (down)to σ2

−j:

σ2
−j ≤ ((θη)(k+1)

−j )2 ≤ ((θη)(k)
−j )2;

(b) for each j = 1, . . . , k, there exist singular values σj′ of A which can be put in one-one
correspondence with the (θη)j in such a way that

|(θ̃η̃)j − σ2
j′ | ≤ ‖RV ‖ and

k∑
j=1

((θ̃η̃)j − σ2
j′)

2 ≤ ‖RV ‖2
F ;

(c) let (θη, v) be the Ritz pair of ATA where θη is the Ritz value closest to σ2. Then

sin(v, y) ≤
√

1 +
γ2

V

δ2
V

sin(V , y),

where
γV = ‖PV(ATA − σ2I)(I − PV )‖,
δV = min(θη)j �=θη |(θη)j − σ2|.

Proof: For (a) and (b), apply [7, Theorems 11.5.1 and 11.5.2] to ATA and AAT . Part (c) is a
corollary to Theorem 2.4, when we take B = ATA. �

3.2 Double harmonic extraction

We now give a number of possible derivations for the double harmonic extraction. The following
are equivalent:

(i)

{
A−T V d̃ − η̃−1Uc̃ ⊥ AATU ,

A−1Uc̃ − θ̃−1V d̃ ⊥ ATAV .

(ii)

{
A−T V d̃ − η̃−1Uc̃ ⊥AAT U ,

A−1Uc̃ − θ̃−1V d̃ ⊥ATA V .

(iii)

{
A−T Ṽ c̃ − θ̃−1Ũ d̃ ⊥ Ũ = AV ,

A−1Ũ d̃ − η̃−1Ṽ c̃ ⊥ Ṽ = ATU .

(iv)

{
AV d̃ − θ̃U c̃ ⊥ AV ,

AT Uc̃ − η̃V d̃ ⊥ ATU .

(v)

{
η̃UT AV d̃ = UT AAT Uc̃,

θ̃V T AT Uc̃ = V T ATAV d̃.

Here, (i) states that the double harmonic method arises from Galerkin conditions on A−1 and
A−T with respect to modified test spaces. Item (ii) formulates the result with respect to the
standard search and test spaces, but with respect to a different inner product; note that both
(·, ·)ATA and (·, ·)AAT are inner products because of the assumption that A is nonsingular. Item
(iii) derives the approach from the situation where we take modified search and test spaces; as
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in the standard extraction, the test spaces are equal to the search spaces. This notation in item
is different from the other items (exchange of c̃ and d̃, and of θ̃ and η̃). The reason for this is
the following. The vectors ũ = Ũ d̃ = AV d̃ and ṽ = Ṽ d̃ = AT Uc̃ will tend to be deficient in the
direction of the smallest singular vectors. So it is better to do a “free” step of inverse iteration and
take ũ = A−T (AT Uc̃) = Uc̃ and ṽ = A−1(AV d̃) = V d̃ as approximate singular vectors. Similar
remarks for the harmonic vectors in the eigenvalue problem can be found in [5]. Item (iv) gives a
derivation in terms of Galerkin conditions on A and AT , but with respect to different test spaces.
Finally, (v) can be interpreted as: (θ̃−1 = η̃−1, ũ, ṽ) is a singular tuple of UT AV , where AT U and
AV are orthogonal, as the following analysis shows.

We introduce the QR decompositions

AV = QUGU and AT U = QT
V GV .

(We choose for the letter ‘G’, because the letter ‘R’ is already “overloaded”, and because GT
UGU

and GT
V GV are Choleski decompositions of V T ATAV and UT AAT U , respectively. We choose

for these subscripts since AV “lives in the U -space”, i.e., A maps right to left singular vectors.
Similarly, AT maps left to right singular vectors.) Note that GU and GV are nonsingular because
of the assumption that AV and AT U are of full rank. Then

QU = AV G−1
U and QV = AT UG−1

V

are orthogonal and span AV and ATU , respectively. Then characterization (v) can be written as{
η̃G−T

V UT AV G−1
U (GU d̃) = (GV c̃),

θ̃G−T
U V T AT UG−1

V (GV c̃) = (GU d̃).

When we normalize c̃ and d̃ such that ‖GV c̃‖ = ‖GU d̃‖ = 1, we see that GV c̃ and GU d̃ are left
and right singular vectors of

H̃−1 := QT
V A−1QU = G−T

V UT AV G−1
U = G−T

V HG−1
U

corresponding to singular value θ̃−1 = η̃−1. Analogously to (2.1), we define the residual matrices

R̃1(K) := A−1QU − QV K, R̃2(L) := A−T QV − QUL.

Then
R̃1(H̃−1) = (I − QV QT

V )A−1QU = (I − QV QT
V )V G−1

U ,

R̃2(H̃−T ) = (I − QUQT
U )A−T QV = (I − QUQT

U )UG−1
V .

Note that a multiplication by A−1 or A−T is not necessary to compute the residual matrices
(which, in practice, will not be done anyway). The following theorem can be proved applying
Theorem 2.2 to A−1 instead of A. Informally, it states that H̃−1 can be considered as the best
approximation to A−1 over AV and ATU .

Theorem 3.3 For given m × k matrix QU and n × k matrix QV with orthogonal columns, let
H̃−1 = QT

VA−1QU .
(a) For all k × k matrices K we have ‖R̃1(H̃−1)‖ ≤ ‖R̃1(K)‖. Moreover, H̃−1 is unique with
respect to the Frobenius norm: ‖R̃1(H̃−1)‖F ≤ ‖R̃1(K)‖F with equality only when K = H̃−1.
(b) H̃−T minimizes the norm of R̃2(L), and H̃−T is unique with respect to the Frobenius norm.

Since H̃−1 approximates A−1, we may take the singular values θ̃
(k)
−1 ≤ · · · ≤ θ̃

(k)
−k (notation:

cf. (1.1)) of
H̃k = GUH−1

k GT
V (3.1)

as approximations to the σj(A−1) = σ−j(A). By applying Theorem 2.3 to A−1, we get the
following result, which states that all θ̃

(k)
−j converge monotonically decreasing to the σ−j .

9



Theorem 3.4 (cf. Theorem 2.3).

(a) For fixed j ≤ p, and k ≥ j, the θ̃
(k)
−j converge monotonically (down)to σ−j:

σ−j ≤ θ̃
(k+1)
−j ≤ θ̃

(k)
−j .

(b) For each j = 1, . . . , k, there exist singular values σ−j′ of A which can be put in one-one
correspondence with the singular values θ̃−j of H̃ in such a way that

|σ−1
−j′ − θ̃−1

−j | ≤ max {‖R̃1(H̃−1)‖, ‖R̃2(H̃−T )‖}.
Moreover,

k∑
j=1

(σ−1
−j′ − θ̃−1

−j )2 ≤ ‖R̃1(H̃−1)‖2
F + ‖R̃2(H̃−T )‖2

F .

The previous two theorems indicate that the double harmonic approach indeed has favorable
properties in the quest for the smallest singular triples. For instance, if the norms of the residual
matrices R̃1(H̃−1) and R̃2(H̃−T ) are small, then, since

|σ−1
−j′ − θ̃−1

−j | =
|σ−j′ − θ̃−j |

σ−j′ θ̃−j

,

the smallest singular values of H̃ must be good approximations to the small singular values of A.
So while H tends to approximate A well with respect to the largest singular values, H̃ tends to
approximate A well with respect to the smallest singular values. See also Section 9.2.

4 Refined extraction

The key idea in this section is that the “minimal” left and right singular vector of A minimize
‖AT x‖ and ‖Ay‖, respectively. When we have search spaces U and V , it is a natural idea to extract
those vectors that minimize the norm of the matrix and its transpose over the search spaces. This
approach amounts to computing two SVDs of tall skinny matrices AV and AT U . It is somewhat
similar to the refined extraction in the Ritz method in the eigenvalue problem (see, for instance
[11, p. 289]), in the sense that we look for the minimal singular vector in a search space; therefore
we choose the name refined extraction.

With û = Uĉ and v̂ = V d̂, the following are equivalent (remind that we assume in this section
that A is nonsingular):

(i)

⎧⎪⎨⎪⎩
θ̂ = min u ∈ U

‖u‖ = 1

‖AT u‖
η̂ = min v ∈ V

‖v‖ = 1

‖Av‖ with û, v̂, respectively, as minimizing argument,

(ii)

{ (
ATA

)−1
V̂ ĉ − θ̂−2V̂ ĉ ⊥ V̂ := ATU(

AAT
)−1

Û d̂ − η̂−2Û d̂ ⊥ Û := AV where θ̂−2 and η̂−2 are maximal,

(iii)

{
UT AAT Uĉ = θ̂2ĉ

V T ATAV d̂ = η̂2d̂
where θ̂2 and η̂2 are minimal.

Here, (i) expresses that û and û minimize the matrix norm over U and V . Item (ii) gives a
derivation in terms of a Galerkin condition on

(
ATA

)−1
and

(
AAT

)−1
. Item (iii) states that û

and v̂ are the “smallest” Ritz vectors of AAT and ATA with respect to U and V , respectively.
We call θ̂ and η̂ refined singular values, û and v̂ refined singular vectors, and (θ̂, η̂, û, v̂) a refined

singular tuple.
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A difference between the refined approach and the harmonic approaches is that the first leads
to only one approximate triple instead of k ones; however, this can easily be modified by computing
more than just one smallest singular value and corresponding vectors of AV and AT U , respectively.
We label these values in two different ways (cf. (1.1)):

θ̂ = θ̂−1 ≤ · · · ≤ θ̂−k and θ̂ = θ̂k ≤ · · · ≤ θ̂1,

and the η̂’s similarly. These approximations have the desirable property of monotonic convergence.

Theorem 4.1 Define RU = (I − UUT )AAT U . Then:

(a) for fixed j ≤ p, and k ≥ j, both θ̂
(k)
−j and η̂

(k)
−j converge monotonically (down)to σ−j:

σ−j ≤ θ̂
(k+1)
−j ≤ θ̂

(k)
−j and σ−j ≤ η̂

(k+1)
−j ≤ η̂

(k)
−j ;

both θ̂
(k)
j and η̂

(k)
j converge monotonically (up)to σj:

θ̂
(k)
j ≤ θ̂

(k+1)
j ≤ σj and η̂

(k)
j ≤ η̂

(k+1)
j ≤ σj ;

(b) for each j = 1, . . . , k, there exist singular values σj′ and σj′′ of A which can be put in one-one
correspondence with the θ̂j and η̂j in such a way that

|θ̂2
j − σ2

j′ | ≤ ‖RU‖ and
k∑

j=1

(θ̂2
j − σ2

j′)
2 ≤ ‖RU‖2

F ,

|η̂2
j − σ2

j′′ | ≤ ‖RV ‖ and
k∑

j=1

(η̂2
j − σ2

j′′ )
2 ≤ ‖RV ‖2

F ;

(c) sin(û, xmin) ≤
√

1 + γ2
U

δ2
U

sin(U , xmin) and sin(v̂, ymin) ≤
√

1 + γ2
V

δ2
V

sin(V , ymin),

where

γU = ‖PU(AAT − σ2
minI)(I − PU )‖, γV = ‖PV(ATA − σ2

minI)(I − PV)‖,
δU = |θ̂2

−2 − σ2
min|, δV = |η̂2

−2 − σ2
min|.

Proof: Follows from characterizations (i) or (iii), using the same techniques as in Theorem 3.2.
�

Advantages of this refined approach are good asymptotic vector extraction (σ2
min is an exterior

eigenvalue of ATA), and the fact that we have upper bounds for σmin. On the other hand, the
left and right singular vector are approximated completely independently. It may thus happen
that u ≈ x and v ≈ y are approximate vectors to singular vectors corresponding to different
singular values. In this case the Rayleigh quotient of the vectors (see Section 5) is meaningless as
approximate singular value.

Note that we can also formulate a result similar to part (c) of Theorem 4.1 for the largest
singular vectors. This also shows that the refined approach is equally useful for the largest singular
triples as for the smallest ones: just take the maximum instead of the minimum in characterization
(i) and (iii).

The next theorem gives some idea how fast the refined approach converges to the minimal
singular value. In particular, it shows that, since ∠(U , x) → 0 and ∠(V , y) → 0 as the search
spaces expand, convergence is guaranteed.

Theorem 4.2 (cf. [11, p. 290])

‖Av̂‖ ≤ σmin + sin(V , ymin)σmax√
1 − sin2(V , ymin)

, and ‖AT û‖ ≤ σmin + sin(U , xmin)σmax√
1 − sin2(U , xmin)

.
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Proof: We only prove the first statement, the proof of the second one being similar. Decompose
ymin = cV yV + sV fV , where yV := V V ∗ymin/‖V V ∗ymin‖ is the orthogonal projection of ymin onto
V , cV = cos(V , ymin), and sV = sin(V , ymin). Since AyV = (σminxmin − sV AfV )/cV , we have by
definition of a refined singular vector

‖Av̂‖ ≤ ‖AyV ‖ ≤ (σ + sV ‖A‖)/cV .

�

The next theorem gives a justification of the new methods: they retrieve singular triples that
are exactly present in U and V .

Theorem 4.3 Let (σ, x, y) be a singular triple of A with x = Uc and y = V d. Then (σ, σ, Uc, V d)
is both a harmonic and refined singular tuple.

Proof: This can be verified by calculating the left and right hand sides of (iii) of Section 3.1, (v)
of Section 3.2, and (iii) of Section 4. �

The standard extraction method in principle also finds singular triples that are exactly present
in the search spaces. However, it may have difficulties selecting them, see Example 7.1.

In the following table we summarize the properties of convergence of the different extraction
methods (Theorems 2.3, 3.2, 3.4, 4.1). A “+” stands for monotonic convergence. A “–” means
that we do not have monotonic convergence; as a result the convergence can in practice be irregular
and very slow.

Table 1: Properties of monotonic convergence of the extraction methods to σmax and σmin.

extraction σmax σmin

standard + –
U-, V-harmonic + +
double-harmonic – +
refined + +

The table suggests that to find the smallest singular triples, one can use all methods except
the standard extraction, while for the largest singular values one can use all methods except the
double-harmonic extraction. This appears to be a good rule of thumb indeed, see also Sections 10
and 11.

5 Rayleigh quotient for the singular value problem

In the harmonic Ritz approach for the eigenproblem, the harmonic Ritz value may be a bad
approximation to the eigenvalue (it can even be ∞), while the harmonic Ritz vector may be of
good quality; see, e.g., [10]. Therefore, it is advisable to discard the harmonic Ritz value and,
instead, approximate the eigenvalue by the Rayleigh quotient of the harmonic Ritz vector.

In our case, we also encounter the situation that while the harmonic vectors may be good, the
harmonic value can be bad, see also Example 7.1. Therefore, we propose to take the Rayleigh
quotient (in the sense of the singular value problem) of the left and right approximate singular
vector as an approximate singular vector.

Definition 5.1 For u, v �= 0, we define the Rayleigh quotient for the singular value problem of u
and v by

ρ(u, v) :=
uT Av

‖u‖ ‖v‖ .

This Rayleigh quotient has the following attractive property.
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Proposition 5.2 Let u = x + δf and v = y + εg be approximate singular vectors corresponding
to the singular value σ, where f ⊥ x and g ⊥ y are vectors of unit length. Then |ρ(u, v) − σ| =
O((δ + ε)2).

Proof: This follows directly from ρ(u, v) = (σ + δεfT Ag)/
√

(1 + δ2)(1 + ε2). �

In other words, if u and v are first order approximations to the singular vectors, their Rayleigh
quotient is a second order approximation to the singular value.

One may check that we have the expressions as in Table 2 for the Rayleigh quotient of approx-
imate vectors in the standard and harmonic approaches.

Table 2: Rayleigh quotients for the standard and harmonic extraction methods.

approach Rayleigh quotient of approximate vectors
standard θ = η
V-harmonic η̃

double-harmonic
‖AV d‖2

θ̃
=

‖AT Uc‖2

η̃
=

‖AV d‖‖AT Uc‖√
θ̃η̃

So for the standard and harmonic methods we can obtain the Rayleigh quotient of the approx-
imate singular vectors at little (double-harmonic approach) or no (standard, U-, and V-harmonic
approaches) additional cost. Of course, we can also take the Rayleigh quotient in the refined ex-
traction process. For complex matrices, we should scale u and v in such a way that their Rayleigh
quotient is real and nonnegative.

6 Interior singular values

The extraction processes introduced in Section 3 and 4 are tailored for the smallest (and, with
exception of the double-harmonic approach, also useful for the largest) singular triples. Now we
study the situation where we are interested in interior singular values (and corresponding vectors)
near a target τ ≥ 0. We present two methods that can be seen as generalizations of the double-
harmonic approach (Section 3.2) and the refined approach (Section 4). We will see that for τ = 0,
the methods in this section deduce to those of Sections 3 and 4.

For a Hermitian matrix B and a search space W , it is well known that instead of standard
Raleigh–Ritz, better results may be expected from the harmonic Ritz approach (see, e.g., [11,
p. 292])

WT (B − τI)2Wc = (θ̃ − τ)WT (B − τI)Wc,

where we are interested in the θ̃ closest to some (interior) target τ . When we take the augmented
matrix (2.4) for B, and “split up” W into a left and right space U and V—i.e., we take W =[

U 0
0 V

]
—then we get the harmonic extraction for target τ ≥ 0 for the singular value problem:

find the eigenpair(s) of the generalized symmetric eigenvalue problem[
UT AAT U + τ2Im −2τH

−2τHT V T ATAV + τ2In

] [
c̃

d̃

]
= (θ̃ − τ)

[ −τI H
HT −τI

] [
c̃

d̃

]
,

for which θ̃ is closest to τ . Here the matrix on the left hand side is positive semidefinite. Restated,
the problem is to find the smallest eigenpairs of[

UT AAT U −τH
−τHT V T ATAV

] [
c̃

d̃

]
= θ̃

[ −τI H
HT −τI

] [
c̃

d̃

]
. (6.1)

One may check that for τ → ∞ we get the standard Galerkin approach of Section 2, while τ = 0
gives the double-harmonic approach of Section 3.2.
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A refined method for the approximation of interior singular triples is the minimization over
ĉ, d̂ ∈ R

k, ‖ĉ‖ = ‖d̂‖ = 1 of∥∥∥∥[ −τIm A
AT −τIn

] [
Uĉ

V d̂

]∥∥∥∥ =
∥∥∥∥[ −τU AV

AT U −τV

] [
ĉ

d̂

]∥∥∥∥ , (6.2)

which amounts to the SVD of a tall skinny (m + n) × 2k matrix. For τ = 0, we get back the
refined approach of Section 4.

We note that both approaches may fail to produce approximations to both the left and right
singular vectors, since it is not guaranteed that the computed c̃, d̃, ĉ, and d̂ are nonzero. Suppose,
for example, that c̃ = 0 and d̃ �= 0. Then a possibility is to solve c̃ from HT c̃ = d̃ (as in the
V-harmonic method). See the next section for the case of a nonsquare or singular H .

7 Nonsquare or singular matrices

Most characterizations of the extraction processes given above use A−1 and A−T . Moreover,
in the U- and V-harmonic approach, we have to solve a system with H or HT . We now show
that no difficulties arise from a nonsquare or singular A, or from a singular H . We first show
that such a nonsquare or singular A gives no problems for the double-harmonic approach, using
characterizations (iv) or (v) of Section 3.2. Let

U ′ = (I − PN (AT ))U and V ′ = (I − PN (A))V. (7.1)

Notice that A′ := (I − PN (AT ))A(I − PN (A)) = A. By using characterization (iv) of the double-
harmonic method we obtain that {

AV d̃ − η̃U c̃ ⊥ AV ,

AT Uc̃ − θ̃V d̃ ⊥ ATU ,

if and only if {
A′V ′d̃ − η̃U ′c̃ ⊥ A′V ′,
(A′)T U ′c̃ − θ̃V ′d̃ ⊥ (A′)TU ′.

So for the double-harmonic approach we may assume without loss of generality that A is nonsin-
gular. Another way to see this is via item (v) in Section 3.2: since we assumed that AV and AT U
are of full rank, we see that nonsquare or singular A form no difficulty.

Though characterization (ii) of the refined approach (see Section 4) is suitable only for non-
singular matrices, it can be seen from the items (i) and (iii) that nonsquare or singular A give no
problems.

In the U- and V-harmonic method, we have to solve a system of the form Hd̃ = c̃ or HT c̃ = d̃.
Independent of the properties of A, the matrix H may be singular. In this circumstance, the
systems involving H or HT do not have a unique solution. This is precisely the situation where
infinite harmonic Ritz values may occur in the U- and V-harmonic method, see (iii) in Section 3.1.

A possibility is then to solve the small system in a least squares sense, that is, take the
pseudoinverse: d̃ = H+c̃ or c̃ = (HT )+d̃. However, these vectors may be zero, in that case the U-
and V-harmonic approaches fail to give an approximation to one of the two singular vectors. In
numerical experiments, however, we have not encountered this situation.

We mention that for nonsquare or singular matrices, the theorems in Sections 3 and 4 still
hold, as far as the nonzero singular values are concerned.

The following examples illustrate some properties of the extraction methods.

Example 7.1 Take A = diag(1, 2, 3), and suppose that we try to find an approximation to the
smallest singular triple of A from the search spaces U = span(e1, e3), and V = span(e1, e2). First
we consider the standard extraction: the singular triples of H = diag(1, 0) lead to approximate
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singular triples (θ, u, v) = (0, e3, e2) and (1, e1, e1). So, although the standard extraction finds
the smallest triple of A, it is not safe to take the smallest (0, e3, e2) as an approximation to the
smallest triple of A. Both the U-harmonic and V-harmonic approach have to deal with a singular
H . As discussed, we could enlarge U and V (by for instance the residual vectors r1 and r2) to avoid
the singularity, or take the pseudoinverse for the systems involving H or HT . The latter option
gives (θ, η, u, v) = (1, 1, e1, e1) for both the U- and V-harmonic approach. The double-harmonic
approach finds the tuples (θ, η, u, v) = (1, 1, e1, e1) and (∞,∞, e3, e2). Here it is safe to take the
smallest tuple. (We can get rid of the infinite harmonic value by taking the Rayleigh quotient
of e3 and e2: this gives the approximate value 0. This is an example where it can be seen that
the Rayleigh quotients often make more sense than the harmonic values.) Finally, the refined
approach gives the correct solution (θ, u, v) = (1, e1, e1). The conclusion is that in this example,
the standard approach is the only one having difficulties to determine the “smallest” singular
vectors that are present in the search spaces.

Example 7.2 Let A be as in Example 7.1, and let U = V = span(e2, (e1 + e3)/
√

2). Then
H = diag(2, 2) has a double singular value and the standard extraction does not know which
approximate vectors to take. The other methods do know how to decide: for target τ = 0, all
three harmonic approaches and the refined approach take (u, v) = (e2, e2) as approximate vectors
with approximate singular value θ = η = 2. Also for target τ = 2, the double-harmonic and
refined method (see Section 6) yield (2, e2, e2) as approximate triple.

8 Lanczos bidiagonalization

We now study the different extraction methods in the context of Lanczos bidiagonalization. After
k steps of Lanczos bidiagonalization with starting vector v1 we have the relations [2, p. 495]:{

AVk = UkBk,k,
AT Uk = Vk+1B

T
k+1,k,

where Bk,k and BT
k+1,k are a k × k upper, and a (k + 1)× k lower bidiagonal matrix, respectively.

This implies that the standard extraction process (see Section 2) takes the singular triples of

UT
k AVk = Bk,k

as approximations to the singular triples of A. The V-harmonic method (see Section 3.2, charac-
terization (iii)) reduces to {

BT
k,kBk,kd̃ = θ̃BT

k,k c̃,

BT
k,k c̃ = η̃d̃.

Here Bk,k is nonsingular due to the assumption that AV and AT U are of full rank. Hence, one
may check that the V-harmonic approach also takes the singular triples of Bk,k as approximate
singular triples. Similar remarks can be made for the U-harmonic method.

Item (v) of the double-harmonic approach (Section 4) deduces to{
η̃Bk,kd̃ = Bk,k+1B

T
k+1,k c̃,

θ̃BT
k,k c̃ = BT

k,kBk,kd̃.

Again we may assume that Bk,k is nonsingular. Then Bk,kd̃ = θ̃c̃ and Bk,k+1B
T
k+1,k c̃ = (θ̃η̃)c̃.

Therefore, c̃ is a left singular vector of Bk,k+1. When Bk,k+1 and Bk,k do not differ much (as will
be true when U and V are nearly invariant singular subspaces), c̃ is close to a left singular vector
of Bk,k, and hence d̃ is close to a right left singular vector of Bk,k.

The refined approach considers⎧⎪⎨⎪⎩
min c ∈ R

k

‖c‖ = 1

‖AT Ukc‖ = min c ∈ R
k

‖c‖ = 1

‖BT
k+1,kc‖,

min d ∈ R
k

‖d‖ = 1

‖AVkd‖ = min d ∈ R
k

‖d‖ = 1

‖Bk,kd‖,
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to which the smallest (left and right, respectively) singular vectors of Bk,k+1 and Bk,k are the
solutions.

We conclude that in Lanczos bidiagonalization (a two-sided subspace method where we choose
a specific subspace expansion), all extraction processes do essentially the same: approximating
singular triples of A by those of Bk,k or Bk,k+1. Since the new extraction processes in this paper
are often good for the minimal singular triple, the standard extraction is also fine in this case.
This may be seen as an explanation why Lanczos bidiagonalization is, besides for the largest
singular values, also successful for the approximation of the smallest singular triples. For other
two-sided subspace methods, such as JDSVD, the extraction processes may differ much, see also
the numerical experiments.

Finally, for completeness, we give the extraction processes of Section 6 for interior singular
values in the case of Lanczos bidiagonalization. The double harmonic approach attempts to
determine (the “smallest”) eigenpairs of[

Bk,k+1B
T
k+1,k −τBk,k

−τBk,k BT
k,kBk,k

] [
c̃

d̃

]
= θ̃

[ −τIk Bk,k

BT
k,k −τIk

] [
c̃

d̃

]
.

The refined extraction for target τ ≥ 0 considers

min
c, d ∈ R

k

‖c‖ = ‖d‖ = 1

∥∥∥∥[
AVkd − τUkc
AUT

k c − τVkd

]∥∥∥∥ = min
c, d ∈ R

k

‖c‖ = ‖d‖ = 1

∥∥∥∥[
Bk,kd − τc

BT
k+1,kc − τIk+1,kd

]∥∥∥∥ ,

where Ik+1,k is the identity with an extra (k + 1)th zero row. We conclude that in Lanczos
bidiagonalization, the extraction methods for the smallest singular triples are all more or less
equivalent, but the extraction methods for interior singular triples differ.

9 Applications

In this section, we study two applications where the new extraction processes can be used: the
least squares problem and the truncated SVD.

9.1 The least squares problem

The least squares problem
min

v
‖b − Av‖,

with minimal norm solution
A+b =

∑
σj �=0

σ−1
j (xT

j b)yj, (9.1)

has often been successfully attacked by methods based on Lanczos bidiagonalization. For example,
LSQR [6] chooses u1 = b/β, where β = ‖b‖, and forms Uk and Vk such that AT Uk = VkBT

k,k and
AVk = Uk+1Bk+1,k. Suppose we look for a solution v ∈ Vk, say v = Vkd. Then

‖b − Av‖ = ‖βUk+1e1 − AVkd‖ = ‖βUk+1e1 − Uk+1Bk+1,kd‖ = ‖βe1 − Bk+1,kd‖,
where e1 is the first unit vector in R

k+1. Now LSQR takes the approximation

v = βVkB+
k+1,ke1. (9.2)

For other two-sided SVD methods, such as JDSVD [3], we can use a similar idea, although in
general, we will not have short recurrences as in LSQR. Let Ũ a test space, yet to be determined,
and let [ Ũ Ũ⊥ ] form an orthogonal basis. For ease omit the index k. Then, again with βu1 = b
and v = V d we get

‖b − Av‖ =

∥∥∥∥∥
[

ŨT (βUe1 − AV d)
ŨT
⊥ (βUe1 − AV d)

]∥∥∥∥∥ .
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Now we neglect the second part ‖ŨT
⊥(βUe1 − AV d)‖, this is equivalent to requiring

b − Av ⊥ Ũ .

The minimal norm solution to mind ‖βŨT Ue1 − ŨT AV d‖ leads to

ṽ = βV (ŨT AV )+ŨT Ue1.

To get a good solution, V (ŨT AV )+ŨT should be a good approximation to A+. Since a pseudoin-
verse is mainly determined by its smallest singular values and vectors, we realize that the extraction
of those small singular triples from the search spaces U and V is crucial. We have already seen
that the choice Ũ = U (leading to v = βV H+e1) is often not satisfactory for the smallest sin-
gular triples. The choice Ũ = AV , as in the V-harmonic and double-harmonic approaches, is
more promising. With this choice, we have d = β(V T AT AV )−1V T AT Ue1 = β(AV )+Ue1, so
d is the least squares solution to mind ‖βUe1 − AV d‖. Then v = βV (AV )+Ue1. For Lanczos
bidiagonalization, this gives v = βVkB+

k,ke1, which resembles the LSQR solution (9.2).
Since AV and HT = V T AT U are already computed in the V-harmonic and double-harmonic

methods, these approaches can therefore also be useful for least square problems: they may give
an approximate solution of the least squares problem at low additional costs during the process.

As already mentioned, methods such as JDSVD may need restarts and deflation from time to
time. When we would like to use these methods for the least squares problem, special care has to
be taken when the maximum dimension of the search space has been reached (restart), or when
a singular triple has been found (deflation). With restarts, we have to ensure that b = βu1 ∈ U .
Therefore, we restart with the span of the best (say) l − 1 left vectors in U , together with u1 as
the new left search space U (what “the best” means, depends on the extraction method). For
the new right search space V , we take the span of the best l − 1 right vectors in V , together
with V (AV )+Ue1, the minimal norm solution to minv∈V ‖b − Av‖. Since we include the best
approximation so far to the least squares problem in the new search space V , we get monotonic
convergence for the least squares solution, that is,

‖b − Avk+1‖ ≤ ‖b − Avk‖.

This is trivial when we expand the search space V , but by restarting in the this way, it is also
valid at restarts.

Now consider deflation. Suppose we have detected a singular triple (σ, x, y), where σ �= 0. By
decomposing

A = (I − xxT )A(I − yyT ) + σxyT and b = (I − xxT )b + (xxT )b,

we get
min

v
‖b − Av‖2 = min

v
‖(I − xxT )(b − A(I − yyT )v)‖2 + |xT b − σyT v|2.

So we may conclude that the (minimal norm) solution v has a component σ−1xT b in the direction
of y. This may also be seen from (9.1). With ṽ = (I − yyT )v, we are left with a deflated least
squares problem

min
ṽ⊥y

‖(I − xxT )(b − Aṽ)‖.

Hence, if a triple has been found, we restart with the best l− 1 left vectors in U and (I −xxT )b as
the new U . (In this case, “the best” means the best vectors to find the next singular triple.) For
the new V , we take the best l − 1 right vectors in V , together with (I − yyT )v, where, as before,
v = V (AV )+Ue1 is the current best approximation to the least squares problem. Of course, this
procedure can be repeated when more singular triples are found. See Section 10 for numerical
experiments.
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9.2 The truncated SVD

We may also use the standard and double-harmonic methods to give an approximation to the
truncated SVD of A. The solution to

min
rank(B)=k

‖A − B‖

is given by B = Ak :=
∑k

j=1 σjxjy
T
j (unique if σk is simple). Analogously, the solution to

min
rank(B)=k

‖A+ − B‖

is given by B = A−k :=
∑k

j=1 σ−jx−jy
T
−j , where the sum is over nonzero singular values of A

(unique if σ−k is simple).
In view of the discussed extraction processes, we expect that when Uk and Vk are search spaces

for the largest triples,
PUk

APVk
= UkUT

k AVkV T
k = UkHkV T

k

may be a reasonable approximation to Ak. In [9], the authors use the Lanczos bidiagonalization to
approximate Ak by UkBk,kV T

k . Although the Lanczos process has in principle short recurrences,
(some) reorthogonalization of the vectors appears to be necessary [9].

Now consider the situation that Uk and Vk are search spaces for the smallest triples. Then
from (3.1), we know that H̃ = GUH−1GT

V can be viewed as a projected approximation to A,
which attempts to approximate the smallest portion of the singular spectrum well. Hence, as a
reasonable approximation to A−k, we may take

UkH̃kV T
k = UkGUH−1

k GT
V V T

k .

See Section 10 for numerical experiments.

10 Numerical experiments

The following experiments were carried out in Matlab. For all experiments where the random
generator is used, we first put the “seed” to 0 by the command “rand(’seed’,0)”, so that our
results are reproducible.

Experiment 10.1 Up to rounding errors, it is not a loss of generality to consider diagonal ma-
trices [3]. For the first example we take A = diag(1 : 100). We build up four-dimensional search
spaces U and V to find the minimal singular triple. The first basis vector of the left search space
U is u1 = e1 + εUwU , where wU is a random vector of unit length. We complement U by three
random vectors. The right search space V is formed in a similar way: take v1 = e1 + εV wV , and
add three random vectors.

We consider two cases. For the first we take εU = 10−3 and εV = 10−1. This means that the
left search space is good, while the right search space is not very accurate. It appears that

∠(U , e1) ≈ 3.5 · 10−3 and ∠(V , e1) ≈ 3.0 · 10−1,

these angles also give the best possible approximate vectors in U and V . For the second case we
take εU = εV = 10−3, in other words: left and right search spaces of good quality. In this case

∠(U , e1) ≈ 3.5 · 10−3 and ∠(V , e1) ≈ 3.2 · 10−3.

Table 3 gives the results of the 5 different extraction processes. We display the error in the
approximate vectors u and v, and the error in the approximate value ρ, the Rayleigh quotient of
u and v.
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Table 3: The 5 different extraction processes for the minimal singular triple of A = diag(1 : 100). Column
2 to 4 are for εU = 10−3 and εV = 10−1, while column 5 to 7 represent εU = εV = 10−3.

εU = 10−3, εV = 10−1 εU = 10−3, εV = 10−3

method ∠(u, e1) ∠(v, e1) |σmin − ρ| ∠(u, e1) ∠(v, e1) |σmin − ρ|
standard 1.9e − 1 8.0e − 1 2.8e − 1 4.0e − 3 1.1e − 2 2.5e − 5
U-harmonic 3.5e − 3 7.6e − 1 2.7e − 1 3.5e − 3 1.0e − 2 2.6e − 5
V-harmonic 1.1e − 2 3.1e − 1 2.3e − 2 4.4e − 3 3.3e − 3 6.8e − 5
double-harmonic 3.6e − 3 3.1e − 1 4.4e − 2 3.5e − 3 3.3e − 3 2.3e − 7
refined 3.5e − 3 3.1e − 1 4.8e − 2 3.5e − 3 3.3e − 3 8.1e − 7

Almost all errors of the new methods are smaller than those of the standard approach. More-
over, the new approaches are almost optimal in most cases, by which we mean that the ex-
tracted vectors are almost the best possible ones, given the search spaces. In view of the factors√

1 + 2 γ̃2

δ̃2 ≈ 1.4 for both the U- and V-harmonic approach (see Theorem 3.2), and
√

1 + γ2

δ2 ≈ 11
for the standard method (see Theorem 2.5), we already could suspect that the harmonic ap-
proaches would be superior. We mention that in the V-harmonic method, the approximate left
vector ũ = UH−T d̃ is indeed much better that Aṽ (cf. Lemma 3.1 and discussion). Similar remarks
hold for the U-harmonic method.

Experiment 10.2 For the remaining experiments, we use JDSVD, the Jacobi–Davidson type
method for the singular value problem [3]. Unless mentioned otherwise, we set the following
parameters for JDSVD. The dimension of the search spaces is at most 20, after which we restart
with the best 10 vectors (remember that the meaning of “the best” depends on the extraction
method). Recall from [3] that the JDSVD correction equation is of the form[

Im − uũT

ũT u 0
0 In − vṽT

ṽT v

][ −ζIm A
AT −ζIn

] [
Im − uuT 0

0 In − vvT

] [
s
t

]
= −

[
Av − ρu
AT u − ρv

]
.

Here u and v are the current approximate vectors, ũ and ṽ are the test vectors (depending on the
extraction method; for example, in the V-harmonic approach we have ũ = Av, ṽ = v), and we solve
for orthogonal updates s ⊥ u and t ⊥ v. On the right hand side of the correction equation, we
take the Rayleigh quotient ρ(u, v) as approximate singular value. In the beginning, the shift ζ in
the left hand side of the correction equation is taken to be the target τ . The reason for this is that
the Rayleigh quotient ρ is not likely to be accurate at that stage. So initially, the method behaves
as an inexact inverse iteration with target τ . When we are close to convergence, in the sense
that ‖r‖ < 0.01, we take the shift ζ equal to the Rayleigh quotient ρ. Then the methods works
as an inexact Rayleigh quotient iteration. We solve the correction equation (the so-called “inner
iteration”) approximately, by 10 steps of unpreconditioned GMRES. (In practice, it advisable to
use a preconditioner if one is available.) We continue with the method until ‖r‖ < 1e − 6.

We take the 1850×712 matrix well1850 from the Matrix Market [4], with σmin ≈ 1.6·10−2. We
perform 70 steps of JDSVD with double-harmonic extraction and target τ = 0 to find the smallest
singular triple. The starting vectors u1 and v1 are the vector of all ones. For the (20-dimensional)
search spaces after 70 steps of the method, it appears that

∠(U , x) = 4.9 · 10−3 and ∠(V , y) = 3.8 · 10−3.

With these search spaces, we test the different extraction processes, see the first four columns of
Table 4.

We see that the standard approach fails completely, apparently due to the selection of the
wrong triple (a situation similar to that in Example 7.1). The new extraction methods perform
reasonably well.

In the last three columns of Table 4, we give the number of outer iterations it takes before
JDSVD with the specific extraction method has detected the smallest singular triple. For column
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Table 4: The 5 different extraction processes for the minimal singular triple of well1850. Column 2 to 4
are the extraction results for the 20-dimensional search spaces produced after 70 steps of JDSVD. The last three
columns give the number of outer steps needed for the computation of the smallest singular triple, with 10, 20, and
30 steps of GMRES to solve the correction equations, respectively.

method ∠(u, e1) ∠(v, e1) |σmin − ρ| GMRES10 GMRES20 GMRES30

standard 1.6e + 0 1.6e + 0 1.0e − 2 > 200 67 41
U-harmonic 1.0e − 2 8.0e − 3 8.7e − 7 155 72 41
V-harmonic 1.2e − 2 6.7e − 3 2.1e − 7 171 67 41
double-harmonic 1.2e − 2 1.1e − 2 1.3e − 6 97 48 34
refined 1.0e − 2 6.7e − 3 8.9e − 7 97 51 36

5, we use 10 steps of GMRES, for column 6 we perform 20 steps, and for the last column 30
steps to solve the correction equations. It appears that the less accurate we solve the correction
equation (which is, of course, cheaper), the more advantageous the new extraction methods are,
especially the double-harmonic and refined approach.

Experiment 10.3 Next, for A = diag(1 : 100), we perform 100 (outer) steps of JDSVD with
each of the extraction processes, and count how many singular triples we find. See Table 5. For
the second and third column we take target τ = 0 (i.e., we look for the smallest singular triples),
for the fourth and fifth column τ = 50.1 (interior triples closest to 50.1), and for the last two
columns τ = 105 and τ = ∞ (largest triples).

Table 5: The number of singular triples found within 100 outer iterations by the 5 different extraction
processes for A = diag(1 : 100). Columns 2 and 3 are for τ = 0 (minimal singular triples), respectively with no fix
and fix = 0.01. Column 4 and 5 represent τ = 50.1 (interior singular triples), with 10 and 20 steps of GMRES,
respectively, while for the last two columns τ = 105 and τ = ∞ (largest singular triples).

τ = 0 τ = 50.1 τ = 105 τ = ∞
method no fix fix GMRES10 GMRES20

standard 1 2 – 3 20 20
U-harmonic 1 4 – 3 17 20
V-harmonic 3 3 – 3 17 20
double-harmonic 3 7 1 4 20 –
refined 5 7 2 8 19 21

The “no fix” in the second column means that we take the shift ζ in the left hand side of the
correction equation equal to the Rayleigh quotient from the beginning. For the results of column 3
through 6 we fix the target in the left hand side of the correction equation until ‖r‖ < 0.01. As can
be seen from the second and third column, and as already has been suggested in Experiment 10.2,
a “fix” gives better results than “no fix”. Except for column 5, all correction equations are solved
by 10 steps of unpreconditioned GMRES.

We see that for small and interior triples the U- and V-harmonic, and especially the double-
harmonic and refined are superior compared with the standard approach. For the largest triples
all methods are fine, with the exception that the double-harmonic needs a target τ < ∞.

Experiment 10.4 In Figure 1 we compare the quality of extraction of the standard (a) and
double-harmonic (b) method during the search for the smallest singular triple in Experiment 10.3.
We plot ∠(U , e1) (solid), ∠(u, e1) (dashed), ∠(V , e1) (dots), and ∠(v, e1) (dash-dot).

In the double-harmonic approach (b), in every step ∠(u, e1) ≈ ∠(U , e1) and ∠(v, e1) ≈ ∠(V , e1),
so this extraction process is almost optimal. We might say that the extraction is as good as the
search spaces allow. In the standard extraction (a), the extraction is often good, but sometimes
bad. In the expansion step (solving the correction equation), it is then unlikely to get a reasonable
update, this can be regarded as the loss of one outer iteration. But what is worse: if we restart
in a situation of bad extraction with few vectors, we may throw away the best part of the search
space.
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Figure 1: The extraction results of the standard (a) and double-harmonic approach (b) for the computation
of the smallest singular triple of A = diag(1 : 100).
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Figure 2: JDSVD with double-harmonic approach versus JD with the harmonic Ritz approach (a), and
JDSVD with refined extraction versus JD with refined Ritz (b) for the computation of the smallest singular triples
of A = diag(1 : 100).

Experiment 10.5 Next, we compare JDSVD with Jacobi–Davidson (JD) to compute the small-
est singular triples. We compare these methods with two different extraction processes. For
Figure 2(a), we use JD with the harmonic Ritz approach (see, for instance, [11, p. 292]) to com-
pute the eigenpairs of the augmented matrix (2.4) closest to target τ = 0. Recall (for instance,
[3]) that finding an eigenpair of the augmented matrix gives full information on a singular triple
of A, and vice versa. For JDSVD, we take the double-harmonic extraction method. All correction
equations (JD and JDSVD) are solved approximately by 5 steps of GMRES. As the initial vectors
we take v1 random and u1 = Av1.

For Figure 2(b), JD uses the refined Ritz approach (see, for instance, [11, p. 289]), while
JDSVD uses the refined Ritz approach of Section 4.

From Figure 2, it is clear that JDSVD easily beats JD with both extraction methods. A partly
explanation of this fact could be that JD sees σmin and −σmin as two different eigenvalues of the
augmented matrix. JDSVD avoids this “doubling”.

Experiment 10.6 Now we illustrate the use the new extraction methods may have in producing
approximate solutions to least squares problems with a simple example. Suppose we are interested
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Figure 3: The error and residual norm of the least squares solution produced by the V-harmonic (a) and
double-harmonic approach (b) during the computation of the three smallest singular triples of A = diag(1 : 100).
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Figure 4: JDSVD with standard (a) and double-harmonic (b) to approximate the truncated SVDs A3 (a)
and A−3 (b) of A = diag(1 : 100).

in the problem
min

v
‖b − Av‖,

where A = diag(1 : 100) and b is the vector of unit length with all entries equal. For Figure 3,
we run JDSVD with V-harmonic (a) and double-harmonic extraction (b) with target τ = 0 and
starting vectors u1 = v1 = b.

Depicted are the residual norm ‖b − Av‖ and the error ‖A−1b − v‖. The numbers on the
horizontal axis (except the number 1) indicate that at that iteration step, a singular triple is
detected. We see that the errors decrease rapidly in the beginning; afterwards the convergence is
slower but for the residual norm still monotonic, as predicted in Section 9.1. In particular, the
true error seems to behave even more favorable than the residual norm.

Experiment 10.7 Finally, we illustrate the use of the extraction methods for the approximation
of truncated SVDs. We run JDSVD to compute the three largest (a), respectively smallest (b)
singular triples of A = diag(1 : 100). The starting vectors u1 and v1 are the vector of all ones, the
target τ is 0 for (a) and ∞ for (b).

In Figure 4(a), we depict the error in the truncated SVD ‖PU3APV3 − A3‖ (here A3 =∑100
j=98 jeje

T
j , and U3 and V3 are the best three-dimensional part of U and V), and the error
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in the “projected” truncated SVD ‖UT
3 AV3 − diag(98 : 100)‖. For Figure 4(b), we give the er-

ror in the truncated SVD ‖PU3APV3 − A−3‖ and the error in the “projected” truncated SVD
‖UT

3 AV3H − diag(1 : 3)‖ (b). The numbers (except the number 3) on the horizontal axis in Fig-
ure 4 indicate the detection of a singular triple. For the “top” truncated SVD (a), the convergence
corresponds, not surprisingly, with the detection of the singular triples.

11 Conclusions

For the accurate approximation of the minimal singular triple, we may use two separate subspaces.
With respect to the subspace expansion, the Jacobi–Davidson SVD (inexact scaled RQI) is a
competitor to Lanczos bidiagonalization when a (good) preconditioner is available, see [3].

With respect to the subspace extraction, the standard approach (via H = UT AV ) is fine for
large singular triples, while for small and interior triples, the harmonic or refined approaches are
more recommended. For the extraction of the smallest singular triple in Lanczos bidiagonalization
we have seen that the standard, harmonic and refined approach are essentially equivalent.

Based on the theory and supported by numerical experiments, we can do the following recom-
mendations:

• for the largest singular triples, we can choose any extraction method, except the double-
harmonic (although this method may also perform well if we have a target τ < ∞); the
standard extraction is preferable because it is the cheapest;

• for interior singular triples we opt for the double-harmonic or refined approach;

• for the smallest singular triples we suggest any method except the standard; the double-
harmonic and refined approach seem to be the most promising.

The V-harmonic and double-harmonic method can also serve to give an approximate solution to
a least squares problem; the standard and double-harmonic method can approximate the truncated
SVDs.

Matlab codes of JDSVD with incorporated extraction methods are available from the author
on request.
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