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Samenvatting

In dit verslag wordt de ontwikkeling van een ILC regelaar voor het regelen van een mensenarm
uitgelegd. Het doel van dit project is om hemiplegiepatienten te helpen rehabiliteren.

Hemiplegie is een aandoening waarbij patienten (gedeeltelijk) verlamd zijn aan een kant van
hun lichaam. Een nieuwe techniek voor rehabilitatie van dergelijke patienten wordt ontwikkeld.
Deze techniek maakt gebruik van functional electrical stimulation (FES) om de verlamde arm te be-
wegen. Functional electrical stimulation betekent dat spieren elektrisch worden gestimuleerd zodat
de resulterende beweging functioneel is. Deze techniek zal worden gebruikt om hemiplegiepa-
tienten te helpen met het doen van bewegingen die ze zelf niet kunnen, zodat ze de oefening
krijgen die ze nodig hebben om te rehabiliteren.

Voor de ontwikkeling van dit regelsysteem, is een model van een mensenarm gemaakt. Metin-
gen in het tijddomein laten zien dat een correct model nietlineair is. In het frequentiedomein
echter blijkt dat het gedrag van spieren ook gemodelleerd kan worden met een tweede orde kri-
tisch gedempt linear model. Dit model gebruikt de recruitment van de spier als ingang. Dit is
een nietlineaire algebraïsche functie van de werkelijke input, de pulsbreedte. Als dit spiermodel
wordt gecombineerd met de massatraagheid van de arm ontstaat een vierde-orde model.

De bandbreedte die gehaald kan worden door een feedback regelaar wordt begrens door de
snelheid van de spierdynamica. Omdat spieren vrij langzaam reageren, zal ook het geregelde
systeem vrij traag zijn. Hierdoor zal een systeem geregeld met alleen een feedback regelaar niet
erg nauwkeurig zijn.

Voor deze toepassing zullen de bewegingen steeds herhaald worden. Een regelschema waar-
bij gebruik wordt gemaakt van iterative learning control (ILC) kan daardoor toegepast worden.
ILC regelaars maken gebruik van kennis van de vorige keren om de output van de regelaar te
verbeteren. Dit maakt het mogelijk om bewegingen met steeds toenemende nauwkeurigheid te
regelen. Een P-type ILC regelaar gebruik makend van zero-phase filters zal worden gebruikt.
Deze regelaar is zodanig afgesteld dat hij erg robuust is voor veranderingen in de gain van het
systeem. Vooral deze veranderingen zijn van belang, omdat deze voorkomen als gevolg van ver-
moeiing. Een andere bron van afwijkingen zijn verstoringen. ILC regelaars kunnen alleen fouten
tegengaan die ook in vorige keren voorkwamen. Daarom moet bij het afstellen van de regelaar er
voor worden gezorgd dat hij afwijkingen veroorzaakt door verstoringen niet zal proberen tegen
te gaan. Deze twee problemen worden opgelost door de ILC regelaar niet te snel te laten con-
vergeren, de anticausale tijdstap die wordt gebruikt iets te verhogen en de afsnijfrequentie te
verlagen.

Het uiteindelijke regelsysteem is getest met een experiment op een toepassing zoals die ook
gebruikt gaat worden voor hemiplegiepatienten. De toepassing van de ILC regelaar zorgde voor
een vermindering van de volgfout met ongeveer een factor 4 ten opzichte van alleen een feedback
regelaar. Dit maakt de toepassing succesvol.
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Abstract

In this report the design of an ILC controller suitable for control of a human arm is explained.
The goal of this project is to help hemiplegic patients in their rehabilitation.

Hemiplegia is a condition where patients have a (partial) paralysis of one side of the body. A
new technique for their rehabilitation will be developed. This technique makes use of functional
electrical stimulation (FES) to move a paralysed arm. Functional electrical stimulation means that
muscles are being provided with electrical stimulation so that at the very time of stimulation the
muscle contraction has a functional purpose. This technique will be applied to assist hemiplegic
patients in doing movements they cannot do on their own, giving these patients the practice they
need to rehabilitate.

For the purpose of designing this control system, a model of a human arm is made. Measure-
ments in the time domain show that the model of a human arm is in reality highly nonlinear.
However, in literature frequency domain measurements show that the frequency domain be-
haviour of a muscle can be modelled by linear second order critically damped dynamics. These
models use the muscle recruitment as input, this is a nonlinear function of the real input variable.
Combining the muscle model with the inertia they move gives a fourth order model.

The achievable bandwidth of a feedback controller applied to this system is limited by the
speed of the muscle dynamics. Since these dynamics are quite slow, the controlled system will be
quite slow as well. A system controlled only using a feedback controller will therefore not be very
accurate.

Since for this application repeated movements will be made. A control scheme making use of
iterative learning control (ILC) can be applied. ILC makes use of knowledge from previous trials
to improve the controller output. This makes it possible to control the movement with increasing
accuracy. A P-type ILC controller making use of zero-phase filtering is tuned for this purpose.
While tuning the ILC controller, special care has been taken to make the controller very robust for
changes in the plant gain. These changes are of great importance, because these are the changes
that are expected due to fatigue. Another source of errors are disturbances. ILC controllers cannot
counteract errors that were not present in previous trials. Therefore, when tuning the controller,
it must be taken into account that the ILC controller leaves out the error caused by disturbances
as much as possible. These two problems are counteracted by lowering the convergence speed
of the ILC controller, slightly overdoing the noncausal time shift and using a conservative cut-off
frequency for the low-pass filter.

The designed control system was tested in practice by doing an experiment is similar to what
hemiplegic patients will have to do. The ILC controller combined with the feedback controller
gives an improvement in tracking accuracy of about a factor 4 compared with only a feedback
controller. This makes the application very successful.
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Chapter 1

Introduction

1.1 Motivation

Improvements in stroke rehabilitation can increase life quality of thousands of people every year.
In the United Kingdom, about 100 000 strokes occur every year [6] and in The Netherlands this
number is about 41 000. Of the people going into rehabilitation treatment after a stroke, 85 %
regain their ability to walk. Whereas at the moment only 14 % of the people going into rehabili-
tation regain useful control over their upper limbs [7]. A likely cause of this, is that patients are
much less forced to keep trying to use their disabled arm compared with the disabled leg.

A new project using functional electrical stimulation (FES) to help hemiplegic patients move
their disabled arm is started. This makes it possible for patients to exercise movements they can
not yet do on their own. Scientific research provides evidence that this method will lead to an
improvement in muscle function for hemiplegic patients. When successful, this method will
enhance recovery methods and can improve the life of many people.

1.2 Aims and scope

In this report, the use of iterative learning control (ILC) for controlling a human arm doing repeti-
tive movements using FES is investigated. This method of control makes use of information from
previous trials to improve the input in the next trial. This makes it possible to control repeated
movements with increasing accuracy.

The goal of ILC is not to get a working system, it is implemented to increase tracking perfor-
mance. Consequently, for ILC to be successful not only should the controlled system be stable,
the error should also decrease significantly.

1.3 Contents of this report

First the basics of FES will be explained. This is followed by a chapter on modelling a human
arm. Here, the behaviour of muscles under electrical stimulation will be explained. After that,
the control algorithm and its tuning will be explained. It will be explained how changes in the
parameters of the controller effect the performance and robustness of the system. The last chapter
of the main text will deal with simulations and experimental results.

1



2 CHAPTER 1. INTRODUCTION

In the appendix of this report a more advanced model is explained. This will provide some in-
sight in the differences between the simulations and the experiments. When properly identified,
this model also allows for the design of a better controller, possibly improving the performance.



Chapter 2

Functional Electrical Stimulation

In this project use will be made of so called functional electrical stimulation (FES) to actuate a
human arm. As this is not a common subject in mechanical engineering, this chapter will deal
with some basics on the purpose and application of this technique.

When a person has a stroke, a blood clot blocks a blood vessel inside the brain. As a result
of this, a part of the brain will no longer receive fresh blood and the connecting nerve fibres in
this part will die. This can result in a (partial) paralysis of one side of the body, in medical terms
called hemiplegia. It is impossible for the damaged nerve fibers to re-grow, however it is possible
to make new connections inside the brain. These new connections are made all the time. In this
way humans learn new skills. To learn these new skills, practice and feedback are essential. For
hemiplegic patients it is very hard to get practice, because they have hardly any mobility in their
limbs. This is where FES will find its use. The patients will be asked to perform a movement
with their arm and will be assisted in this using FES. By themselves they would not be able to do
the movement and consequently they would not be able to train their brain. With FES they will
be able to do the movement and new nerve fibre connections should be the result of this. The
purpose of the project is that hemiplegic patients relearn to use their arm in this way.

Functional electrical stimulation means that muscles are being provided with electrical stimu-
lation so that at the very time of stimulation the muscle contraction has a functional purpose. For
this project it means that hemiplegic patients will get electrodes on their upper arm. Using these
electrodes a controlled voltage will be supplied to the disabled muscles, in this case the triceps.
This voltage serves instead of the voltage supplied by the brain and nerves, making it possible to
control the movement of the arm using a computer system to provide the input voltage. Patients
that were not able to do certain movements by themselves, because of defective nerve control, can
be assisted in this using FES.

The voltage that will be put on the arm will not be a smooth signal. It will consist of a series
of pulses with fixed time intervals and having a fixed amplitude. The width of these pulses can be
varied. It is up to the controller to control the width of the pulses in such a way that the movement
of the arm is as desired. The remainder of this report will explain how such a controller is de-
signed. Before it is possible to design such a controller, a model of a human arm is needed. This
model must in some sense give the same behaviour as a real human arm. In the next chapter
this model and the process of making this model will be explained.
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Chapter 3

Modelling a Human Arm

The first step in making a controller is always making a model of the system. In this case the
system to be controlled is a human arm actuated by electric pulses.
The real human arm is expected to give highly nonlinear behaviour, mainly due to the nonlinear
nature of the muscle forces. As a result, the easiest method for model identification, frequency
response measurement using an input signal with a broad band of frequencies, can not be used to
identify the system. Other problems include unpredictable reflex forces and the fact that muscles
generate forces in one direction only. A noise input would cause the arm to stretch and after that,
no more movement is possible.
In this chapter a rather simple model, useful for control design, is going to be made. In appendix
A a more detailed model is explained. This more complex model finds its use in explaining the
differences between the simulations done with the model from this chapter and the experiments.
Also, when properly identified, this model can be used to improve the controller and performance
can be increased.

3.1 General description of the test rig

The main components of the test rig are a robotic arm, a computer, a stimulation device, a pro-
jector and a chair. The patient is asked to sit on the chair, keeping his body in a fixed position.
His arm is strapped to the robotic arm. The patient is then asked to follow a certain trajectory,
typically a stretching movement. The desired movement is projected on a moving plane above
the hand, and crosshairs fixed at the hand should follow a red dot moving on the trajectory.

The robotic arm has multiple uses. It makes sure that the patient can move his forearm only
in the horizontal plane. Also, the motors on the robotic arm are controlled such that the patient
cannot deviate too much from the projected trajectory. It acts as a kinematic constraint, keeping
the arm from moving off the trajectory, but it does not help the movement in the direction of the
trajectory. A third function of the robotic arm is to provide a resistance force such that the training
can be made more difficult when it is becoming too easy. The robot is also used to measure the
position of the hand. Goniometers attached to the joints of the robot measure the angle and from
this the position of the patients hand can be calculated. Force and torque sensors are attached to
grip for the hand. These sensors can measure the force and torque in all six degrees of freedom.
The robot is constructed to be as light as possible using carbon fiber as it’s main material and
aluminium for the joints. Furthermore, electrical motors and a control system are used to actively

5



6 CHAPTER 3. MODELLING A HUMAN ARM

neutralise the forces needed to move the robot. This makes the inertia felt when moving the robot
feel extremely light.

For moving the patient’s arm, a stimulation device is connected to electrodes on the patient’s
arm. This stimulation device is connected to a computer. This computer also knows the position
of the moving red dot and the position of the hand and will be used to calculate the error signal
and control the input to the stimulation device.

3.2 Modelling muscles

The main difference between designing a controller for a human arm and a robot is the differ-
ence in the actuators. Usually for robot control the actuators are electric motors. A human arm
however is actuated by muscles. This difference requires some explanation on the behaviour of
muscles.
Usually a human arm is controlled by electrical signals sent by the brain through the nerve system
to the muscles. For this project the muscles are stimulated by electrodes connected to a computer
system. When patients are not completely paralized, it will be assumed that the human stimula-
tion is intended to help in performing its task better, so no real problems are expected because of
this. A muscle model involving only the effects of external stimulation must under this hypothe-
sis be sufficient. All experiments in this report are done on normals, keeping their arm neutral.
Since hemiplegic patients don’t have much control over their muscles this will be most realistic.

Muscle models can be divided into two classes. Models that use the physical contractile mech-
anism of muscles as a basis and models that are based on input-output measurements. For con-
trol design the second type of model will be sufficient. These models are simpeler and they can be
quite accurate. Models of the input-output type are often based on the work of Archibald Vivian
Hill [4] and called Hill models.
In this chapter a simplified version of an input-output model will be used. In appendix A a more
complicated and more general version will be explained.

The model derived in this chapter is simplified to the essential characteristics needed to de-
sign a controller. A Hill model consisting of a series connection of nonlinear algebraic functions
and linear dynamics will be used as a basis. The nonlinear function describing the dependency
of the output force with varying muscle length and speed will be neglected.
Neglecting all changes caused by varying the arm position makes it possible to identify the com-
plete muscle model isometrically, i.e. without movement. This allows for a fast and relatively
easy identification process. All dynamics and the nonlinear variation of output force with varying
pulse width will be included in the model.

The muscle model will consist of a nonlinear function describing the steady state muscle
force and linear second order critically damped activation dynamics. This will give a rather crude
estimation of the real muscle force and substantial errors can be expected. The model will not be
used to make accurate predictions of the output force, but rather to design a control system. For
this the dynamics are of most importance. The muscle model can mathematically be expressed
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Figure 3.1: Measured isometric output force of a stimulated human arm using a pulse width of
0.250 ms between 4 and 20 seconds and zero stimulation at other times. The force is measured
at the hand and the stimulation is applied at the triceps.

as:

F (t) = c · t · e−λt × r (u (t))

The × symbol is used to denote a convolution.
r (u) is the recruitment; c is a constant.

(3.1)

An example of an isometric muscle force measurement is given in figure 3.1. This figure
shows a typical step response of a muscle.

The step behaviour consists of a relatively fast increase in force, followed by a drop in force
and then a slow increase in force. The drop in force is caused by a reflex contraction of the biceps.
If the stimulation would be on for a longer period, a decrease of the force, starting after about 20
to 30 seconds, can be expected. After a minute of stimulation the output force can be expected to
be about halved.

It is impossible to accurately describe this behaviour with a second order critically damped
linear model. In literature [1], the frequency response is measured by stimulating isolated mus-
cles in anesthetized cats with pulses of which the widths vary in time according to a sinusoid,
while measuring the output force. Doing this while varying the frequencies makes it possible to
directly measure the frequency response. From these experiments on various muscles it is clear
that a linear second order critically damped system, i.e. two poles at the same location, can quite
accurately describe the variations in amplitude and phase with varying frequency.
Doing this experiment ourselves is impractical. Problems with fatigue and measurement accu-
racy would cause such a measurement to take a very long time and probably still be much less
accurate. For the measurements on cats it was possible to anesthetize them cut some nerves to
be able to stimulate a specific muscles. Therefore, rather than measuring this, it is assumed that
the frequency response of a human triceps can also be modelled in this way. The location of the
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Figure 3.2: Recruitment curve measured using a two way ramp response and a time shift. The
smooth line is a fit to the measurement.

pole will be estimated in a different way.

A function describing the steady state isometric muscle force, normalised at one for the max-
imum force, for varying pulse widths is called a recruitment curve (figure 3.2). Knowing this
function is essential when making a good controller. The standard method for measuring this
function is to apply a series of step responses varying in intensity, wait for a fixed time to let
the dynamics settle, and then average the output force over some time [2]. This is a very simple
method, but because this function should be measured before each session a faster method is
proposed.
A triangular input signal ranging from zero pulse width to 0.3 ms will be applied to the triceps.
While doing this, the arm is held in a fixed position and the force is measured at the hand. To ac-
count for the dynamics, rather than doing a deconvolution with the second order system, a simple
time shift is used such that the measured force when increasing the pulse width equals the force
when decreasing the pulse width. A real deconvolution is mathematically more accurate, but is
not practical. Because the muscle dynamics resemble a low pass filter, the inverted dynamics will
amplify a lot of noise. Filtering out all this distortion gave a less accurate representation of the
recruitment curve than when only a simple time shift is used. This method makes it possible
to accurately measure the recruitment curve using only one 10 second measurement. The time
shift used also characterizes the pole location of the dynamics.
This method makes a great improvement over the conventional method. It is much faster, and
probably more accurate as well. Inaccuracies caused by patients shifting position and fatigue give
much less difficulties when this method is applied.

For making figure 3.2 a time shift of 0.85 seconds was used. This implies that the pole loca-
tion of the frequency response can be expected to be around 1.17 Hz. This is slightly slower than
the values found for cat muscles [1]. To be on the safe side when designing the controller, for this
the pole location is put at 1 Hz.

The force provided by the muscle is used to move a system of masses. Accurately modelling
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this is very difficult. If done properly, the robot, its control system, the upper arm and the brain’s
control system for the upper arm should be included. To simplify this, it is assumed that the
inertias of the robotic arm are accurately neutralised and are therefore practically nonexistent in
the input output behaviour.
The upper arm is still a problem. Modelling the brain’s control system would be impractical.
Therefore it is assumed that this system is perfect, i.e. all effects of movement of the fore arm
are counteracted in such a way that it has no net effect on the movement of the upper arm. This
makes the location of the elbow a simple time varying signal. The intended rotational speeds are
relatively small. This makes it possible to neglect centrifugal forces and model the complete in-
ertia as a simple 1

ms2 . The movement of the upper arm will now act as a time varying disturbance.

Combining the transfer function for the muscle dynamics with the mass transfer function
gives a fourth order system.

H (s) =
c

ms2
(

1
λs + 1

)2 (3.2)

The input for this system is the muscle recruitment which is a nonlinear function of the pulse
width.

Fatigue is not implemented in this model. The reason for this is that the fatigue-dynamics act
on a larger time scale than a single experiment. Hence, the amount of fatigue is almost constant
during an experiment. When experiments last longer than 20 seconds fatigue will play a role.
This is observed as a decreased muscle force when the same stimulation is applied. Fatigue can
thus be modelled by adapting the gain of the transfer function. Fatigue is hard to predict because
it is not known what happens before and in between experiments. Therefore it should be made
sure that the controller is robust for changes in the gain of the plant.





Chapter 4

Control

4.1 Objectives

From a practical point of view, the control objectives are relatively easy to satisfy. There is no real
need for very accurate tracking to get the desired training of the hemiplegic patients. Any move-
ment that resembles the intended movement will do for this purpose. However, if the movement
is more accurate, more advanced applications can be used.

In this report the use of an ILC controller is investigated. This seems to be an obvious choice
since the reference trajectories are being repeated numerous times for the training. In practice
this can make the designing process much more difficult. Some difficulties can be especially
apparent when making an ILC controller. For example the nonlinearity of the human arm makes
it much more difficult to use a lot of ILC algorithms. Because of fatigue, the arm will not reset to
the original state (the amount of fatigue is also a state). The model of the arm is time varying in
an unknown way, i.e. repeating the same measurement can give substantial variations in output.
The errors can also be expected to have a substantial nonrepeatable part. Variations in the muscle
model due to fatigue and human interaction limit the accuracy achievable by an ILC controller.
The main objective is to design a control system making use of ILC that works when practically
applied.

4.2 Structure of the controller

The controller will consist of two parts, a feedback controller and a learning feedforward con-
troller. This setup should make it possible to give reasonable tracking in the first trials, and
increasingly accurate tracking when the learning controller learns the correct input signal. This
makes it possible to use a relatively low bandwidth for the feedback controller without sacrificing
a lot of tracking accuracy.

Key in designing a successful controller will be robustness. Muscle behaviour is not very pre-
dictable. The muscle model can be expected to differ from trial to trial. Also, the control system
has to be robust for unmodelled nonlinearities in the muscle behaviour and fatigue. The learning
controller should be able to cope well with nonrepeatable disturbances.

Inside the feedback loop the inverse of the recruitment curve is used. This will make the

11



12 CHAPTER 4. CONTROL

combination of the inverse recruitment curve and the real arm a much more linear system. When
the mass of the systems for convenience is assumed to be equal to c, the transfer function equals:

H (s) =
1

s2( 1
2πs + 1)2

(4.1)

Off course, in practice the mass will not equal 1. A simple change in the gain of the feedback
controller can make up for this. Hence, this difference will, mutatis mutandis, not influence the
accuracy of the designed control system. A system like this is suitable to be controlled using a
PD controller combined with a low-pass filter. The achievable bandwidth is limited by the pole
location of the muscle dynamics. Since these are located around 1 Hz, the bandwidth will be well
under 1 Hz.

The ILC controller will directly change the reference signal. This, as will be shown, makes it
possible to make a robust, simple and fast converging ILC controller. The model that will be used
will be far from accurate. Therefore strict model based ILC algorithms will not be suitable.

4.3 Optimization

4.3.1 Feedback controller

For the feedback loop, a PD controller in combination with a low-pass filter will be used. The
speed of the muscle dynamics will be a limit for the achievable bandwidth of such a controller,
the open loop phase of the plant will drop here from -180 to -360. Since the muscle dynamics
have a timescale varying with the amount of stimulation [5], it seems sensible to make sure that
the bandwidth of the controller is well below the slowest possible timescale of the muscle dynam-
ics. Failing to satisfy this criterion can destabilize the controller.

Tuning a PD+low-pass feedback controller is relatively easy. In this case the steps to be taken
are: choose a safe bandwidth, choose the PD zero location below this bandwidth, choose the low-
pass pole location above this bandwidth, tune the controller gain to get the chosen bandwidth.

It is attempted to put the bandwidth at 0.2 Hz. A higher bandwidth can be achieved, but
this will go at the expense of robustness. Since the trajectory will be rather slow varying and the
controller will be combined with an ILC controller, a higher bandwidth will hardly improve the
tracking accuracy.

The next step is choosing the pole location of the controller. Usually, putting the controller
gain a factor 3 below the bandwidth gives a good tradeoff between noise amplification and phase
margin. In this case, it is attempted to make a controller that is very robust for changes in the
gain of the plant, so the controller pole is placed at 0.04 Hz. This extra robustness is needed
because of inaccurate modelling of the nonlinearities and fatigue.

In practice, noise is not much of a problem, a low pass-cut-off frequency of 3 Hz will do. This
is well above the attempted bandwidth, a broad region of phase margin is created. This makes
the controlled system very stable for changes in open-loop gain.
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Figure 4.1: The open loop response of the plant and the controlled plant.

The last step in tuning the controller is setting the gain. In figure 4.1 the frequency response
of both the original system and the controlled system are plotted.

4.3.2 ILC controller

A P-type iterative learning controller with a noncausal time shift and zero phase low-pass filtering
will be implemented in the control design. For this, three values have to be tuned.
A good ILC controller will converge fast, is highly robust for plant changes and will also work well
in the presence of nonrepeatable disturbances and noise. Keeping these three aspects in mind,
an ILC controller will be tuned.

The ILC output will be added to the error signal that goes into the feedback controller. This
setup is very suitable for P-type ILC controllers. In the part of the bode plot where the closed
loop response is close to 1 (0 dB), a P-type ILC controller with an amplification of 1, ILCk+1 =
ILCk + ek, will approximate deadbeat control.
This makes it possible to get very good convergence rates using a very simple ILC law. However,
such a simple ILC law will not be stable. The error only decreases where the closed loop sensi-
tivity is under 0 dB and increases where the sensitivity is over 0 dB. From the bode sensitivity
integral it is known that the area of the sensitivity under 0 dB equals the area where the sensitivity
is over 0 dB. For ILC it is not necessary to comply with the Bode sensitivity integral. An ILC law
does not need to be causal.

Two changes to this simple ILC law are proposed. The first is to add a simple time shift.
The second change is to lower the P-gain of the ILC controller. The new ILC law becomes:
ILCk+1 (t) = ILCk (t) + αek (t + T )
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Figure 4.2: Convergence of ILC controllers

The convergence criterion can be derived in the following way.

ek+1 = r − yk+1

= r − CH
1+CH × (r + ILCk+1)

= r − CH
1+CH × (r + ILCk + αek (t + T ))

= r − CH
1+CH × (r + ILCk)− CH

1+CH × αek (t + T )

= ek − CH
1+CH αejωT × ek (t)

=
(
1− CH

1+CH αejωT
)
× ek (t)

(4.2)

The × symbol is used to denote a convolution.
The symbol e is used both for denoting the mathematical constant (when
used with a power) and the error signal (when used with a subscript).

From this, it can be concluded that the error decreases where
∣∣∣1− CH

1+CH αejωT
∣∣∣ < 1. A plot

of this criterion can be found in figure 4.2, this plot uses the plant and controller from figure 4.1.
Obviously, the small time shift makes it possible to get convergence up to a higher frequency

and decrease the diverging peak. The bode sensitivity integral is no longer limiting. Chang-
ing the gain will decrease the amount of convergence for low frequencies and also increases the
frequency region for which the ILC controller converges. A combination of the two almost elim-
inates divergence and gives convergence up to a high frequency.

The ILC law is not yet stable. Though hard to see in figure 4.2, the controller still diverges
slightly for high frequencies. The obvious solution is to filter out all high frequency components.
This way they can’t diverge. This measure also reduces the amount of noise and disturbances
that end up in the ILC controller output. The new ILC law becomes:

ILCk+1 = Q× (ILCk + αek (t + T ))

The × symbol is again used to denote a convolution.
(4.3)
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Figure 4.3: Convergence of the ILC controller. The thick line is the convergence criterion in
the frequency domain, values greater than 1 will cause instabilities. The thin line gives the
remaining part of the error, a value of 0 means that the error for that frequency will eventually
completely disappear, a value of one means that there is no change in error at all for those
frequencies.

Adding a low-pass filter Q changes the stability criterion to:
∣∣∣Q−Q CH

1+CH αejωT
∣∣∣ < 1 (proof

can be found in appendix C).

The low-pass filter will be noncausal making it possible to filter out frequencies without caus-
ing phase lag by filtering in two directions. A fourth order zero-phase butterworth filter with a
cut-off frequency of 0.4 Hz is used. The convergence criterion can be found in figure 4.3.

The ILC law is now stable. The thin line in figure 4.3 shows how much of the error remains
once the ILC controller is fully converged. For low frequencies this error is virtually nonexisting,
for high frequencies the error completely remains.
Some characteristics of this control system will be explained in the next sections.

4.4 Robustness

A very important aspect for this ILC controller is that it should be robust for changes in the sys-
tem. Increasing the amount of fatigue is equivalent to lowering the gain. It is particularly hard
to predict the amount of fatigue. Hence the control system should be robust for changes in the
plant gain.

For the feedback controller a change in the system gain can cause instability in one way only.
Lowering the system gain, i.e. increasing fatigue, will not destabilize the feedback loop. D action
in the feedback controller and damping in the arm will make sure that there always is some phase
margin at low frequencies.
Increasing the gain of the system can destabilize the feedback loop (figure 4.4). This increase
in system gain can for example be caused by tuning a controller on a fatigued arm, taking a
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Figure 4.4: Convergence of the ILC controller. The left figure shows what can happen if the
open loop gain is higher than expected. The peak of the sensitivity is very high, but because
the low-pass filter filters out this frequency, the ILC controller is still stable. The performance
of the feedback controller would be very bad. Because of this high peak there would be a lot of
vibrations. The right figure shows what happens if the open loop gain is lower than expected.
The peak of the sensitivity decreases, but shifted below the cut-off frequency of the low-pass
filter. This gives an ILC controller that is on the verge of stability while having a very stable
(but slow) feedback loop.

break and using the controller on a fresh arm. Another way for this to happen is by changing
the position of the electrodes to a better place where the muscle force is greater with the same
stimulation. The obvious solution is to decrease the gain of the controller, this will once again
give a stable controller. To make sure the negative consequences of a bad controller are limited,
the maximum pulse width should be limited.

The ILC controller can be destabilized as well (figure 4.4). However, an increase in system
gain is not likely to be the cause of this. Increasing the gain will lower the sensitivity for low fre-
quencies and shift its peak to a higher frequency. This means that the low-pass filter will still filter
out the unstable frequencies. On the verge of stability, the peak of the sensitivity has a maximum
of infinity. No low-pass filter can counteract this and in theory this can destabilize the ILC loop.
In practice such a feedback controller will never be used. It will give very bad performance and
a decrease in the feedback controller gain will solve this problem. Because a very steep low-pass
filter is used, any reasonable high bandwidth feedback system will work.
A more likely cause of instability of the ILC controller is a decrease in open loop gain. This will
cause the sensitivity at low frequencies to increase. The peak will probably be lower in magni-
tude, but more worrying, it will shift to a lower frequency. If the decrease in gain is sufficient, the
peak can be sufficiently below the cut-off frequency of the low-pass filter. The time shift needed
to properly decrease the peak at low frequencies is larger. All this amounts to the possibility of
an unstable ILC controller when the achieved bandwidth is much lower than intended. The ILC
controller can be made more robust for this by lowering the cut-off frequency and by using a
higher than optimal time-shift. Both measures can deteriorate the nominal performance of the
ILC law. Obviously, when tuning the feedback controller, care should be taken that the bandwidth
is sufficiently high. When this is done, no problems with the ILC controller are expected.

Off course, changes in the pole location of the muscle dynamics can also destabilize the con-
trol system. However, no evidence is found that the pole location will change in time. The pole
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Figure 4.5: Simulated RMS errors using different ILC controllers. Thin line: an ILC controller
using maximum convergence throughout; Thick line: the learning gain is changed from 1 to
0.3 after the first trial; Dashed line: the learning gain is changed from 1 to 0.05 after the first
trial The noise added is about 1 % of the total movement and the slow disturbance about 50
%.

location will change as a function of the amount of stimulation. Higher stimulation levels will
cause the pole to shift to a lower frequency. Using a bandwidth well below the lowest pole location
to be expected makes the control system robust for this. Because the pole location doesn’t change
in time, gain changes are the most likely cause of instability for a control system that used to
work. The ratio in plant gain between a high-gain system and a low-gain system that are both on
the verge of stability is about a factor 20. This difference is much greater than can be expected to
occur in practice.

4.5 Disturbances

A sizeable part of the error is expected to be caused by changing disturbances. When patients
are also actively tracking the path themselves, differences in their activity can be expected. Also,
variations in the position of the shoulder will cause disturbances.

Usually, a very fast converging ILC controller will be favourable, but when the error mainly
consists of disturbances that will not be present in the next iteration, this is no longer the case.
Deadbeat ILC control will try to fully counteract the error from the last iteration. When distur-
bances causing this error are no longer present, such an ILC controller will give an increase in
error. Therefore, a lower convergence rate can give better performance. For the first iteration,
the error is expected to be mainly caused by the tracking of the reference. Therefore, maximum
convergence speed will be used in this trial. Afterwards, increasing amounts of fatigue will cause
repeatable changes in the error profile, but disturbances are expected to form a large part of the
error.

In figure 4.5 the difference in error is shown between a fast converging controller, a slower
converging controller and a very slow converging controller. Obviously, the slower converging
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controllers give the smallest error. The difference between the two slower controllers is not as ob-
vious. Using the very low convergence rate doesn’t seem sensible. Similar improvements can be
expected by using the medium convergence rate. Increasing the convergence rate makes it possi-
ble for the ILC controller to counteract fatigue at greater speed. The ILC controller starting with 1
and afterwards using a learning gain of 0.3 seems to be a safe choice. After the main convergence
in the first step it is still able to converge in a few steps if the system changes. The greater part
of the nonrepeatable disturbance will not be counteracted by the ILC controller, giving close to
optimal disturbance rejection for an ILC controller.

Also important for disturbance rejection is the low-pass filter. High frequency noise and other
fast disturbances will almost completely be filtered out, leaving only low frequency disturbances
to disturb the ILC controller. This is particularly important when the ILC controller is combined
with a PD feedback controller. Such a controller will amplify noise which makes the controller
less usable when a lot of noise will be provided at the input by the ILC controller. The low-pass
is very steep and its cut-off frequency is located at 0.4 Hz making noise coming from the ILC
controller virtually nonexisting.



Chapter 5

Results

In theory, the ILC algorithm has very convenient properties. The real test will be the performance
in practice. From simulations without disturbances and fatigue, it is clear that the ILC controller
can potentially increase the performance of the feedback loop by a factor 100. This would in prac-
tice leave an error that is too small to accurately measure. Simulations with disturbances show
that disturbances have little influence on the convergence of the ILC controller, but since ILC is
only intended to counteract repeatable errors, the error caused by the disturbances still remains.
In these simulations some nonlinear properties of the system are not involved in the computa-
tions. This makes it particularly interesting if the algorithm will still perform as predicted.

5.1 Experiments

The final test for the ILC controller is a practical experiment doing an exercise similar to what
hemiplegic patients will have to do. The test subject in this case was not hemiplegic. He was
attempting to not actively move his arm. To make even more sure that the patient is not influ-
encing the results, experiments are done with and without the patient looking at the movement.
The attempted movement is a slow stretching movement of the arm. Only the triceps are being
stimulated. To keep the person on the track the robot is proving forces as necessary in normal
direction. The result of such an experiment is depicted in figure 5.1.

Obviously the ILC controller gives a significant improvement over the feedback controller
(the first trial shows the performance of the feedback controller). The sudden increase in error
in the third trial cannot be explained from the simulation results. But knowing that one of the
electrodes came loose partly during this trial gives sufficient explanation for this. After the fifth
trial this problem is solved and the ILC controller again converges to a very small error. Since the
convergence rate is lowered after the first trial, the convergence is quite a bit slower now. Also
interesting to see is the change of the amount of stimulation between trials. In figure 5.1 the RMS
of the stimulation pulse width is depicted. It is clear that an increasing amount of stimulation
is needed to keep following the trajectory. This clearly indicates a significant increase in fatigue
during the experiment, especially when the influence of this change on the muscle recruitment
is taken into account.

The main difference between this experiment and the practical application is that the patient
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Figure 5.1: The average error as recorded during an experiment.
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Figure 5.2: The average stimulation used to follow the trajectory.

performing the test had full use of his arm and was not using it. When a disabled person will
have to do the test, he is asked to actively try to follow the trajectory. When the patients help
changes significantly between trials, this can even have a negative influence on the performance
of the ILC controller.



Chapter 6

Conclusions and Recommendations

A new project making use of FES to control the movement of paralysed human arms is started.
For the control of this movement the use of an ILC controller to control the repeated movements
was investigated.

A human arm was modelled with fourth order linear dynamics. When making a feedback
controller for this system, the reaction speed of the muscles is limiting for the achievable band-
width. Hence, the accuracy of this system is limited by the slow muscle dynamics.

A hybrid ILC-feedback control system has been designed using a PD + low-pass feedback
controller and a P-type ILC controller. The ILC controller uses the measured error from the last
trial to update the trajectory in such a way that the next error is expected to be smaller. A non-
causal time shift of the error and a low-pass filter were used to improve stability and performance.

The stability of the control system for variations in the system due to mainly muscle fatigue is
investigated and the controller was designed to be robust for these changes. It was found that ex-
cessive fatigue can destabilize the ILC controller. Lowering the cut-off frequency of the low-pass
filter and increasing the non-causal time shift increases robustness for this.
Also analysed was the effect of disturbances. A fast converging ILC controller amplifies distur-
bances. Therefore, a trade-off needs to be made.

When the ILC controller was put into practice, a significant decrease in tracking error was
achieved, making ILC successful. At first, the tracking error was a few centimeters when tracking
a dot moving on a plane. After convergence of the ILC controller, the tracking error is only a few
millimeters.

It seems sensible to focus future research on making a better model of the arm, making
it possible to make a nonlinear feedback controller. Tuning the controller on a model taking
into account the variations of output force with different positions presumedly gives an increase
in overall performance. Simulations show that the current ILC controller makes it possible to
virtually eliminate the complete repeatable part of the error. It is therefore not likely that a more
complex ILC law will give a substantial increase in performance. Some improvement in tracking
might be possible by adapting the feedback controller to the current amount of fatigue. This
can for example be done by using an adaptive feedback controller, or by updating the gain of the
controller in between trials.
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Appendix A

Extended Model

A more accurate model can make it possible to make a better control system. Also, knowledge
of the differences between simulations and reality makes it possible to understand and predict
where and why the outcome differs. In general, the more complicated a model is, the more com-
plicated and time consuming it is to identify and to tune a controller for it. Therefore, if it is
possible to get satisfying performance using a simple model, this is preferable. However, only
proper knowledge of the physical situation makes it possible to choose the most suitable model.

A.1 Muscles

In this chapter a generalized version of a Hill model will be explained. Also, a more complex
geometry will be taken into account. A method to identify this system will also be explained.
Finally, a way to improve the controller using this knowledge will be suggested. A trade-off be-
tween identification speed and accuracy must be made. The accuracy achieved in the simulations
is sufficient to use for the intended rehabilitation training. More accurate control can make it
possible to use this technology for more complicated purposes.

The muscle model in the main text is a so called isometric model. It is the same regardless
of the current geometry. A Hill model does take the changing geometry into account. It can
give a force dependent on the muscle length and muscle contraction speed. These forces can be
described by nonlinear functions, i.e. they are equivalent to nonlinear springs and dampers. The
force of the active part can change with position as well. The force the muscle provides due to the
stimulation depends not only on the level of stimulation, but also on the position and the speed
of contraction.
In a standard Hill model, the passive force is described by nonlinear springs and dampers. The
active force is described by a multiplication of the isometric model and two nonlinear functions.
One is a function of muscle length and the other of muscle contraction speed.
The muscle length and speed are unknown quantities in our setup. It will be assumed that the
length of the triceps can be estimated by a function with of only the muscle angle. When this
relation is nonlinear, the speed of contraction will, according to the chain rule, be a function of
both the angular velocity of the elbow and the joint angle. Therefore, when this relationship is
unknown, it doesn’t make much sense to treat these functions separately. The nonlinear spring
and damper will be combined into one nonlinear function and the active muscle length and
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muscle velocity functions will also be combined into one function. This gives a more general
version of the Hill model, since the assumption that these functions were respectively parallel
and in series no longer has to be satisfied. The identification process will be more difficult now,
because instead of one-dimensional unknown functions, two-dimensional functions have to be
identified.
In a mathematical format, the muscle force can be expressed as:

F (t) = fp

(
θ, θ̇

)
+ fa

(
θ, θ̇

)
·
(
te−λt × r (u (t))

)

The × symbol is used to denote a convolution.
r (r) is the muscle recruitment;
fp and fa are nonlinear functions describing respectively the active and passive muscle forces.

(A.1)

A.2 Lagrange

Not only the muscle model used was very simple. The mass geometry was simplified to a single
point mass. In this section, using a Lagrange approach, more complicated dynamic equations
will be derived.

A.2.1 Kinematics

Before deriving the dynamic equations, a kinematic description must be made. When the fore-
arm is properly constrained, i.e. the arm and elbow can only move in the horizontal plane and
the rotation of the hand is fixed as well, and the shoulder position is fixed, only two degrees of
freedom are left. As coordinates describing this geometry, the rotation of the upper arm around
the vertical axis and the difference in rotation between the forearm and upper arm around the
vertical axis are used. These coordinates will respectively be called θ1 and θ2.

Using the Lagrange technique, the first step in deriving the dynamic equations is to calculate
the kinetic energy. Due to the constraints, the arm can be seen as a two-link planar arm. As-
suming the centers of mass are located on the axes of the forearm and upper arm, these centers
won’t move due to rotation around these axes. The full mass distribution of the arm can now be
described using: the mass of the upper arm mu with its center at distance ru from the vertical
axis through the shoulder; the rotational inertia Iu of the upper arm around the center of mass;
the mass of the forearm mf with its center at distance rf from the elbow; the rotational inertia of
the forearm If around the vertical axis and the center of mass; and finally the rotational inertia Ie

associated with rotating (not bending, difference between α and β in figure A.1) the elbow. The
kinetic energy can, using these symbols, be expressed as:

T = 1
2muv2

cm,u + 1
2ωuIuωu + 1

2mfv2
cm,f + 1

2ωfIfωf + 1
2ωeIeωe

= 1
2

(
Iu + mur2

u + If + mfr2
f + mf

(
L2

u + 2Lurf cos θ2
))

θ̇2
1+

1
2

(
If + mfr2

f

)
θ̇2
2 +

(
If + mf

(
r2
f + Lurf cos θ2

))
θ̇1θ̇2 + 1

2Ieα̇
2

(A.2)

α, The rotation of the elbow, must be a function of the coordinates and is in particular a
function of θ2. This function can be found in appendix B.1.
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Figure A.1: Geometry of the arm. α: elbow orientation angle; β: elbow bend angle

A.2.2 Forces

The next step is defining the muscle forces. On the shoulder there will be a force due to its ro-
tation and rotational speed, this is the so called passive muscle force. This force will be in the
direction of θ1. On the elbow there will also be a passive muscle force and in addition an active
muscle force. It is possible to define these forces as being in the direction of θ2 and using the
constraints to counteract the force in the other directions. It will be assumed that it is advanta-
geous to take this force in the direction of the elbow bend β, this replicates the physical situation
better. It is hoped, that by doing this, the identified functions will be simpeler. Appendix B.2
deals with calculating this angle using θ2. The forces applied by the robotic arm at the hand can
be measured and will also be included in the dynamic equations. Fx And Fy are the forces at the
hand in respectively the right and forward direction.
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A.2.3 Lagrange

All forces and inertias are now defined. Using the fundamental holonomic form of Lagrange’s
equation [3], dynamic equations can be derived. Doing this gives the following equations.

first :





(
Iu + mur2

u + If + mfr2
f + mfL2

u + 2mfLurf cos (θ2)
)

θ̈1

+
(
If + mfr2

f + mfLurf cos (θ2)
)

θ̈2 −mfLurf sin (θ2)
(
2θ̇1θ̇2 + θ̇2

2

)

= (−Lu sin θ1 − Lf sin (θ1 + θ2))Fx + (−Lu cos θ1 − Lf cos (θ1 + θ2))Fy + Fθ1

second :





(
If + mfr2

f + mfLurf cos θ2

)
θ̈1 +

(
If + mfr2

f + Ie

(
∂α(θ2)

∂θ2

)2
)

θ̈2

+(mfLurf sin (θ2)) θ̇2
1 +

(
Ie

∂α(θ2)
∂θ2

· ∂2α(θ2)
∂θ2

2

)
θ̇2
2

= Lf sin (θ1 + θ2) Fx + Lf cos (θ1 + θ2) Fy −

√√√√√
(

1−
(

hs
Lu

)2
)

sin2 θ2

1−
(

1−
(

hs
Lu

)2
)

cos2 θ2

Fβ

(A.3)

In these equations, Fθ1 and Fβ represent the force due to the shoulder and elbow muscles.
Fθ1 Will not be controlled and does not involve additional dynamics, the force is simply a function
of the shoulder rotation θ1 and the rotational velocity. Fβ On the other hand is constituted of a
passive part and an active part, having dynamics depending on the stimulation input.

A.2.4 Full model

The complete model consists of a combination of A.1 and A.3. Substituting A.1 for Fβ and the
passive part of A.1 for Fθ1 gives a fourth order nonlinear system. When all mass-parameters and
functions describing the muscle behaviour are identified, this model can be used to predict the
motion of the arm for any given stimulation input.

A.3 Identification

Even though the format of the dynamic equations is known, the identification is not a straight-
forward process. It is possible to use the model from the main text to simplify the identification
process. The model in the main text already provides a recruitment curve and linear dynamics
for the muscle. Using this, only the mass parameters and the nonlinear functions fp (for the
shoulder and the elbow) and fa (for the elbow) have to be identified. Approximating these func-
tions by determining its value at fixed grid-points and estimating the values in between these
points by bilinear interpolation makes it possible to describe nearly any function with reasonable
accuracy. Doing this, gives a model that, though having nonlinear dynamics, is completely linear
in its parameters.

This characteristic makes it possible to efficiently fit these dynamic equations to measure-
ments using a least squares fit. Doing this involves solving a set of linear equations which is
a simple task using MATLAB. Moving the arm around while stimulating the muscle and mea-
suring the force at the hand gives measurement data. Trying to make the dynamic equations fit
at every measurement point gives an overdetermined system of equations. The solution giving
the least squared error, gives the solution of maximum likelyhood. A MATLAB function doing
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this was written but not yet successfully tested in practice. This code reduces noise and finds
gridpoints where no measurement data is a available by minimizing a combination of the least
squares error and the squared difference between adjoining gridpoints. This should give a more
smooth and better usable estimation of the nonlinear muscle functions.

A.4 Controller improvement

The model from this chapter can directly be used to improve on the controller used in the main
text. The nonlinear muscle function fa describes the change of output force for changing posi-
tions and speeds. When it is known how the output force changes, the reciproque of this function
can be inserted in the closed loop. This should have as a result that a certain error will result in
the same output force at all positions. This makes it possible to tune a better feedback controller
because the stability is much less depending on the position. Improvements in the feedback loop
directly improve the performance of the ILC controller as well. It is now also possible to tune a
new ILC law. When the bandwidth of the feedback controller increases, the cutoff frequency of
the ILC low-pass can be increased. The time shift needed for optimal convergence will be lower.
Obviously, overall performance should increase.

A.4.1 Discussion

Though the performance of the control system is expected to improve, it is not clear whether this
means a practical improvement. To arrive at the increased performance, more measurements
have to be performed every time the system is used. This brings about a less convenient usage
of the system. Moreover, when the identified functions turn out to be inaccurate, due to e.g.
disturbances during the identification process, the performance can actually deteriorate.
Since the simple control system already gave good performance, there is, from a practical point
of view, no real need for a more complicated better performing control system.
Another use for this model can be to explain peculiarities of the system. Knowing where the
differences between simulation and practice arise makes it possible to explain these differences
and helps to draw sensible conclusions from simulation results.





Appendix B

Arm Geometry

B.1 Elbow orientation

To calculate the elbow orientation angle (α in figure A.1), the axis around which the elbow bends
must first be calculated. This axis is perpendicular to both the forearm and the upper arm. If the
directions of the forearm and the upper arm are known, the direction of the axis can be calculated
using a vector cross product.

a = f × u = det




x y z
fx fy fz

ux uy uz




= det




x y z
cos (θ1 + θ2) sin (θ1 + θ2) 0
−re cos (θ1) −re sin (θ1) hs




= hs sin (θ1 + θ2)x− hs cos (θ1 + θ2)y+
−re sin (θ1) cos (θ1 + θ2) + re cos (θ1) sin (θ1 + θ2) z

= hs sin (θ1 + θ2)x− hs cos (θ1 + θ2)y + re sin (θ2) z

(B.1)

To get the required angle α from this, the length of the vector will be adjusted to unit length.
After this, the inner product with the vertical unit vector will be calculated. This will give the sine
of the required angle.

â = hs sin(θ1+θ2)x−hs cos(θ1+θ2)y+re sin(θ2)z√
(hs sin(θ1+θ2))2+(−hs cos(θ1+θ2))2+(re sin(θ2))2

= hs sin(θ1+θ2)x−hs cos(θ1+θ2)y+re sin(θ2)z√
h2

s+r2
e sin2(θ2)

(B.2)

α = arcsin (â · z) = arcsin


 re sin (θ2)√

h2
s + r2

e sin2 (θ2)


 (B.3)

From the geometry of the arm, it could already be expected that the angle would only depend
on θ2. A rotation around the shoulder joint does not change the angle of the elbow.

To calculate the dynamics of the arm, the first and second derivative of the angle α with
respect to θ2 are needed as well.

dα
dθ2

= rehs cos (θ2)
h2

s + r2
e sin2 (θ2)

(B.4)
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and

d2α
dθ2

2

= −rehs sin (θ2)
h2

s + r2
e + r2

e cos2 (θ2)(
h2

s + r2
e sin2 (θ2)

)2 (B.5)

and their multiple

dα
dθ2

d2α
dθ2

2

= −1
2r2

eh
2
s sin (2θ2)

h2
s + r2

e + r2
e cos2 (θ2)(

h2
s + r2

e sin2 (θ2)
)3 (B.6)

B.2 Elbow bend

Calculating the elbow bend angle β in figure A.1 can be done quite fast. The shoulder, elbow and
hand form three points of a triangle. All lengths of this triangle are known: the length of the
upper arm Lu, the length of the forearm, Lf and the distance between the shoulder and the hand
which is a function of the generalized coordinates (B.7).

Lhand =
√

L2
u + L2

f + 2Lf

√
L2

u − h2
s cos θ2 (B.7)

Now, using the cosine rule, the following function for the elbow bend angle β can be derived.

β = arccos


−

√
1−

(
hs

Lu

)2

cos θ2


 (B.8)

For deriving the dynamic equations, the derivative of β with respect to θ2 will be used as well.

∂β

∂θ2
= −

√√√√√√√

(
1−

(
hs
Lu

)2
)

sin2 θ2

1−
(

1−
(

hs
Lu

)2
)

cos2 θ2

(B.9)



Appendix C

ILC Convergence

Convergence to small error is the main reason ILC is used. It is therefore very important to
know if the ILC controller converges, i.e. if the ILC controller is stable, and to what error it will
converge.

The following is used as a starting point for a derivation of the convergence criterion for the
ILC controller.

ILCk+1 (t) = Q× ILCk + Q× α · errork (t + T )
ILCk+1 (ω) = Q · ILCk + Q · α · ejωT errork

yk = CH
1 + CH ILCk + CH

1 + CH r

errork = r − CH
1 + CH ILCk − CH

1 + CH r

C.1 Derivation

The derivation of the convergence criterion consists mainly of two steps. First a few iterations
of the ILC controller are elaborated. Then, from this result, a general formula is found. For
this general formula a convergence criterion is found. The derivation is done for a P-type ILC
controller with time shift T and filter Q, but can easily be generalised to any linear ILC law
satisfying the following format: ILCk+1 = TILCILCk +Terrorerrork with linear filters TILC and
Terror.
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The first step is:

ILCk+1 = QILCk + QejωT
(
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(C.1)

This can be generalised as follows:

ILCn =
(
Q−QejωT CH

1+CH

)n
ILC0 +

n−1∑
i=0

(
Q−QejωT CH

1+CH

)i
QejωT 1

1+CH r

=
(
Q−QejωT CH

1+CH

)n
ILC0 +

1−(Q−QejωT CH
1+CH )n

1−(Q−QejωT CH
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(C.2)

The equation C.2 converges to a fixed value when:
∣∣∣∣Q

(
1− ejωT CH

1 + CH

)∣∣∣∣ < 1 (C.3)

Hence, the ILC controller is stable if criterion C.3 is satisfied.

C.2 Limit values

Stability is not the only criterion the ILC controller has to satisfy. It is also interesting to see what
performance the ILC controller can achieve. For this, the final error is calculated. To do this, first
the final value of the ILC output is calculated.

ILC∞ = lim
n→∞ ILCn =

1

1−
(
Q−QαejωT CH

1+CH

)QαejωT r − CH

1 + CH
QαejωT r (C.4)

Now the following final error follows:

error∞ =

(
1−

CH
1+CH QαejωT

1−Q + CH
1+CH QαejωT

)
r +

CH

1 + CH

(
CH

1 + CH
QαejωT − 1

)
r (C.5)
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