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On some Bessel-function integrals arising in a 

telecommunication problem 

by 

J. Boersma and P.J. de Doelder 

1. Introduction 

The present note deals with the evaluation of ~~e following Bessel-function 

integrals: 

<Xl 

du , r 
J 

m = 2,3 , (1.1 ) J 
o o 

where u1 ' u2 are the first and second zeros of the Bessel function JO(u), 

i.e., u1 = 2.4048, u2 = 5.5201 to four decimal places; 

<Xl m <Xl m 

J !l J 0 ('.1) J 0 (ur) 
du , f 

u JO(u)JO(ur) 
du , 

J (2 2) 2 2 2 2 2 
0 

u - v 1 0 (u - v 1) (u - v 2) 
m= 1,3, (1. 2) 

(1 .3) 

00 m <Xl m 

f 
u J 1 (u)JO(ur) 

du , f 
u J 1 (u)J

O
(ur) 

du , 
(2 2) 2 2 2 2 2 

0 u - v 1 0 
(u -v

1
) (u -v

2
) 

m = 2,4 , 

where 0 < r < 1 and v
1

, v2 are ~~e first and second zeros of the function 

feu) = Jo(u)Yo(ur) - JO(ur)YO(u). The notation f in (1.2) and (1.3) denotes 

that the Cauchy principal value of the integral is to be taken. The inte

grals abov~ were encountered by Mr. S. Worm (Eindhoven University of 

Te=hnology, Department of Electrical Engineering, Group ET) in his research 

on satellite antennas. The integrals (1.1) with J~(U) replaced by J~(U) and 

u1 ' u2 being zeros of J 1 (u), w~re studied before by Dorr [lJ. Dorr's inte

grals came up in the mathematical analysis of elastically supported, thick 

circular plates. 

Tr.e integrals (1.1) are spe~ia: cases of the general integral 

00 

(1.4) f 
o 

[;l 2 
x J

O 
(xl 

--~----------- dx 
222 2 

(x - a ) (x - b ) 
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where a and b are real. Likewise, we introduce the integrals 

(1. 5) 

00 m 

K (a,bj r) f 
x JO(x)JO(rx) 

dx, = m 2 2 2 2 
0 

(x - a ) (x - b ) 

00 m 

f 
x J 1 (x)JO(rx) 

L (a,bj r) = dx, 
m 222 2 

0 
(x - a ) (x - b ) 

(1.6) 

with real a and b, and 0 ~ r ~ 1, which contain the integrals (1.2) and 

(1.3) as special cases. In section 2, I (a,b) is expressed in terms of the 
2 m 

Hilbert transforms H{JO(x)} and H{J~(x) sgn(x)}. Likewise, Km(a,bjr) with 

m = 1,3, and L (a,bjr) wi~~ m = 2,4, can be expressed in terms of the 
m 

Hilbert transforms H{Jo(x)JO(rx) sgn(x)} and H{[x[J 1 (x)JO(rx)}, respectively. 

These Hilbert transforms are evaluated in section 3. Final results for 

I (a,b) when m = 0,1,2,3j for K (a,bjr) when m = 1,3j for L (a,bjr) when m m m 
m = 2,4j and for Worm's integrals (1.1)-(1.3) are presented in section 4. It 

is found that I1 and I3 are expressible in terms of Bessel functions J and 

Yj IO and =2 can be expressed in terms of a generalized hypergeooetric func

tion of the type 2F _. Section 5 deals wi th some extensions invcl ving t...'1e 
J 2 2 

Hilbert transforms H{J (x)} and H{J (x) sgn(x)} where n = 0,1,2, •••• In the 
n n 2 2 

Appendix it is shown that the Hilbert transforms H{JO(x)} and H{JO(x) sgn(x)} 

can be expressed as integrals of the complete elliptic integral Kj a table 

of such integrals was compiled by Glasser [7J. 

2. Reduction of I , K , L to Hilbert transforms m m m 

Starting from the partial fraction decomposition 

(2.1) 

we have 

(2.2) 1 
IO(a,b) = -a-2-_-b-2-

[ 

1 1 l 
2 2 - 2 2 

x -a x -bj 

~] 
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~ 
00 

1 2 1 1 - f J (x) (-----)dx 
a 0 x-a x+a 

o 

co 2 

f 
JO (x) 
---dx x-a 

1 

00 l 1 2 1 1 - f J (x) (-----)dx 
bOO x-b x+b J 

00 2 

f 
JO (x) 
--dx 
x-b 

In the same manner we establish 

(2.3) 

(2.4) 

(2.5) 

co 2 ex> 2 

f 
JO (x) sgn (x) 1 
......;;.----- dx - ---:----::--

x-a 2(a2_b2) 

i J 0 (x) sgn (x) 

J x-b dx, 

co 2 

-00 

00 2 

f 
J G (x) 
---dx x-o 

t 
JO (x) sgn(x) 
--:;.---- dx -

x-a 2 (a2_b2) f
oo J~ (xi sgn (x) 

x-b dx. 
-('() 

In the above results it is understood that a ~ b. Thus for m = 0,1,2,3, 

I (a,b) has been expressed in terms of the two Hilbert transforms m 

(2.6) 

(2.7) 

-1 = -
7T 

2 
H{JO(x)sgn(x)} 

where y is real. 

co 2 

f 
JO (x) 
--dx 
x-y 

1 
co 2 

f 
JO (x) sgn(x) 

x-y = -
7T 

dx, 

Likewise, we express K (a,bir) with m = 1,3, and I, (a,bir) with m = 2,4, in 
m m 

terms of ~~e Hilbert transforms H{JO(x)JO(rx)sgn(x)} and H{lx 1J1 (xiJO(rx)}, 

respectively, viz., 

co 
JO(x )JO(rx)sgn(x) 

(2.8) Kl (a,bir) 
1 

f dx = 
2(a 2 _ b 2) x-a 

-0> 

co 
JO(x)JO(rx)sgn(x) 1 f dx , 

2(a 
2 _ b 2) x-b 

-co 
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00 

2 

f 
JO(x)JO(rx)sgn(x) 

(2.9) K
3

(a,b;r) a 
dx = 

2(a2 _b2) x-a 
-00 

00 

b
2 

f 
JO(x)JO(rx)sgn(x) 

dx , 
2(a2 _b2) x-b 

-00 

00 

Ix lJ 1 (x)JO(rx) 
(2.10) L2 (a,bir) 

1 f dx = 
2(a2 _b2) x-a 

_00 

00 

Ix lJ
1 

(x)JO(rx) 1 f dx, 
2(a2 _b2) x-b 

_00 

00 

Ix lJ 1 (x)JO(rx) 2 

f (2.11) L4 (a,b; r) 
a 

dx = 
2(a 2 . 2) x-a 

-0 
_00 

00 

IxlJ 1 (x)JO(::::x) b
2 

f ax 
2(a 2 _b2) x-b 

_00 

The pertaining Hilbert transforms are determined in the next section. 

3. Evaluation of Hilbert transforms 

Consider first the Hilbert transform HiJO(px)JO(qxlsgn(x)} where 0 $ p ~ q, 

q # O. We start from the contour integral 

(3.1) 

c 

(1) 

f 
J 0 (pz) HO (qz) 
-..;;.--...;;...--- dz = 0 

z-y 

where the contour C consists of the real axis with a se."Ci-circ1.\lar indenta-

tion I z - y I = 0 above y, and a closing semi-circle I z I = R -+ "" in the upper 

half-plane. It is understood that arg z = ~ along ~~e negative real axis. 

F th ... . b h ' f ( ) d"'" " .c . . (1) ( , . t rom e asymp\:.o .... ~c e av~or 0 J 0 pz an '-I,e EanKe_ J..t:n:::t~on ~iO qZ J ~ 

is easily found that the contribution of the se~i-circle !zl = R vanishes as 

R -+ 00. The contribution of the semi-circle I z - y I = c ter,ds to 

. ( ) (1) ) 1: 0 ., '3 1) d - ~~ J O py HO (qy as u -+ • Thus by taJung ... imits in \. as R -+ co an 

o -+ 0, we find 



(3.2) 
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00 (1) 

f 
J 0 (px) HO (qx) 
-...,;;.---.;;..--- dx = 

x-y 
-00 

We now take real and imaginary parts of (3.2). Reme~~er that for x > 0, 

(3.3) 

cf. Watson [2, eq. 3.62(5)J. Thus we find 

(3.4) 1 

(3.5) 1 

_00 

00 

f 
J 0 (px) J 0 (qx) sgn (x) dx 

x-y 
-00 

J 0 (py) J 0 (qy) sgn (y) , 

valid for 0 ~ p ~ q, q ~ O. The present results are in accordance with the 

well-known reciprocity relation (cf. [3, form. 15.1(1) ,(2)J) 

(3.6) H{f(x)} = g(y) - H{g(x)} = - f(y) . 

The result (3.4) can also be derived from WatsO!1 [2, eq. 13.53(4)J, viz., 

00 

(3.7) 

00 

I 
XJo(pX)Jo(qx) 1 J JO(px)JO(qx)sgn(x) 

2 2 dx=2 x-r dx 
o x - r 

-00 

1 'J' )H(l), ) = 2rr~ Qtpr 0 \qr , 

valid for 1m r > O. Taking the limit r ~ v real, we have according to 

Plemelj's formulae [4J 

(3.8) 1. 
+-

2 

from which ~~e result (3.4) is obvious. 
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Starting from (3.4) we readily find the Hilbert transforms 

(3.9) 

(3.10) 

= {-Jo~rY)Yo(IYI) 
-JO(y)YO(rly l ) r ~ 1 , 

as needed in the evaluation of the integrals I l , !3' K1 , K3 of section 2. It 

is remarked that reciprocal Hilbert transforms may be estabiished by use of 

(3.6). The same remark applies to ~ll further Hilbert transforms evaluated in 

this section. 

Next we differentiate (3.4) with respect to p or q, thus leading to 

(3.11) 

(3.12) 

valid for 0 ~ p < q. As a special case we have 

o ~ r < 1 , 
(3.13) 

r > 1 

this result is needed in the evaluation of the integrals L2 , L4 of section 2. 

Notice that (3.11), (3.12) can be rewritten as 

(3.14) 

CD 

7T 
I J 1 (pX)Jo(qx)sgn(x)dx + y H{J 1 (pX)Jo(qx)sgn(x)} , 

1 = -

(3.15) 

CD 

1 I J
O

(pX)J 1 (qx)sgn(x)dx + y H(Jo(px J 1 (qx)sgn(x)} . = -
'7T 

Then, by use of the auxiliary integral [2, ~q. 13.42(9)J 

CD 

r 0 b < a , 
(3.16) f J O(at)J1 (bt)dt = 1/(2b) b " = a 

I 
0 l lib b > a · , 
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we establish two additional Hilbert transforms 

(3.17) 

(3.18) 

J 1 (py) YO (q I y I ) , 

2 
= - nqy - J O(PY)Y 1 (q ly l )sgn(y) 

valid for 0 ~ p ~ q. These transforms become identical when p = q, because 

of the Wronskian relation [2, eq. 3.63(12)J 

(3.19) 

Setting p = q in (3.14) and (3.15) 1 we may proceed backwards to obtain 

(3.21) 

or equivalently 

(3.22) 

This result may be interpreted as the average of w~e limits of the trans

forms (3.11) and (3.12) when p + q. In the same manner we may determine the 

Hilbert transform (3.13) when r = 1, viz., 

(3.23) 

Consider next tile Hilbert transform H{J;(x)}, as needed in the evaluation of 

the integrals I O' 12 of section 2. Referring to Luke [5, eqs. 13.4.6(12), 

(13) J we have 

(3.24 ) H{J~ (x) } 
1 
n 

ex> 2 

f JO(x) dx = 

x-y 

n"/2 
2 ( - j HO(2y cos e)de 
'IT 

o 

\Y'here H'O denotes Struve's function of order zero. The derivation of (3.24) 
2 goes back to Dorr [1J who proceeded as follows. Replace JO(x) by the inte-

gral representation [2, eq. 2.6(1) ] 

'} 

(3.25) J(j(x) = 

and interchange the order of inte';rration, thus leading to 



- 8 -

00 ? IT/2 00 JO(2I x l 1 
f 

JCi (x) 2 
r f 

cos e) 
(3.26) --dx =- de dx . 

IT x-y 2 x-y IT 
-00 0 _00 

Here the inner integral may be found from [3, form. 15.3(13)J, viz. , 

00 

(3.27) 1 
IT f 

J 0 ( 21 x 1 cos e) dx = 
x-y 

- sgn(y)H
O

(2Iyl cos e) = - HO(2y cos e) 

-00 

-
since HO is an odd function of its argument. As a check, the result (3.27) 

has also been derived from Watson [2, eq. 13.51(7)J. By inserting (3.27) 

into (3.26), the result (3.24) is precisely recovered. 

Starting from the series representation of HO (cf. [2, eq. 10.4(2) J) 

00 

(3.28) I 
n=O 

we have through a term-by-term integration 

IT/2 
2n+1 

IT/2 

J 
00 n 

f (3.29) H
O

(2y cos 6)de I (-1) :i (cos e)2n+1 de 
3 3 

0 r.=O r(n+'2)r(n+'2) 0 

00 ( .) n 2n+1 
r (i) r (2) y 

00 (1) (1) (_/)n 
I -.1. Y 1 n! L n n = = 3 3 2- 3 2r3 (~) 333 n! 

n=O r (n +'2)r (n +'2) r (n +"';j") n=O ('2) n('2) n('2) n ... 2 

where we used the notation (?ochhammer's symbol) 

(a) = a(CL+1) ••• (CL+n-l) , n = 1,2,3, ..• 
n (a) 0 = 1 • 

The final result in (3.29) ~s immediately recognized as a generalized hyper

geometric function of the type 2F3; for ~e general definition of pFq see 

[6, Sec. 4.1J. Thus we find 

(3.30) 1 
= -

00 2 

f 
JO(x) dx = 
x-y 

-00 

IT/2 

-n
2 J 

o 

H
O

(2y cos e)d6 

8 [1 , 1 ; _y2j 
= - ~ 2F

3 ~ ~ ~ 
IT 2 ' 2 ' 2 
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We have tried to simplify the 2F3-function by expressing it as a product of 

series F with smaller parameters p and q. However, a search through the 
p q 

list in [6, Sec. 4.3J was not successful. 

As a check we shall now re-derive (3.30) in two alternative ways. 

In the first procedure we start from 

co 2 co co 

(3.31) 
J JO(x) 

J J~ (x) dx (± i) J 
Hs (x-z) 

ds --dx = e 
x-z 

-co -co 0 

co co 

J 
±isz 

J 
2 +isx 

dx = ±i e ds JO(x)e 

0 -co 

co co 

± 2i J ±isz 
J 

2 > 0 = e ds JO(x)cos(sx)dx Im z < . 
0 0 

Let z ~ y real, then by addition of the two results in (3.31 ) we obtain 

co 2 co co 

(3.32) 
f JO(x) 

- 2 r sin(sy)ds 
J 

2 --dx = JO(x)cos(sx)dx x-y J 
-co 0 0 

? 
Thus the Hilbert transform of JO(x) has been expressed as a successive 

Fourier cosine and Fourier sine transform. From [3, form. 1.12(21)J we quote 

(3.33) 

co 

f J~ (x) cos (sx) dx 

o 

o < s < 2 , 

2 < s < co 

By means of [6, eq. 3.4(6)J the Legendre function p_! can be expressed in 

terms of a hypergeometric function F, viz., 

(3.34) 

Inserting (3.33) and (3.34) into (3.32) we find 

(3.35) 

co 2 
1 J o (x) dx = 

J x-y 

2 

- f F ( ! d ; 1 ; 1-! s 
2

) sin ( sy) ds 

o -00 

1 

= - 2 J FQ.!;1;1-s 2)sin(2sy)dS . 

o 
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The latter integral is evaluated through series-expansion of sin(2sy) and 

term-by-term integration, yielding 

(3.36) 

1 

- 2 J F(LL1;1-s
2
)sin(2sy)ds 

o 

= - 2 L 
n=O 

00 

= L 
n=O 

00 

L 
n=O 

00 

= I 
n=O 

1 
(_1)n(2y)2n+1 f 

(2n + 1) ! 
2 2n+1 

F(!,!;l;l-s )s ds 

o 

( _ 1 ) n ( 2::l) 2n + 1 
1 

J F (L L 1; t) (1 - t) n dt 
(2n + 1) ! 

0 

(_1)n(2::l)2n+l r (1) f(n + 1) 
F(LLn+2;1) 

(2n + 1) ! r (n + 2) 

(_1)n(2'l)2n+l r (1) r (n + 1) r (n + 2) r (n + 1) 

(2n + 1) ! r (n + 2) 3 3 
r(n+"2)r(n+"2) 

where we used [6, eqs. 2.4(2), 2.8(46)J. The final series in (3.36) can be 

rewritten as 

(3.37) L 
n=O 

(_1)n(2y) 2n+l 

22n n! (l2) 
. n 

in accordance with (3.30). 

n! n! .§::l. [1 , 1 ; _y2j 
1T 2F 3 3 3 3 

- - - I 
2 ' 2 ' 2 ) 

Our second approach uses Mellin transforms. From [3, form. 6.8(33)J we quote 

(3.38) 2 
M{JO(x)} O<Res<l. 

Then by means of the inversion formula for Mellin transforms [3, form. 

6.1(1)J we arrive at the integral representation 

(3.39) 
2 

JO(x) 

c+ioo 

f 
c-ioo 

s-l 2 r(1-s)rqs) 
3 r (1 - !s) 

According to [3, form. 15.2(29)J we have 

-s I xl ds, o < c < 1 



(3.40) 
1 = -'IT 
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00 

f 
-s 

_I x_l_ dx = 
x-y 

Combining (3.39) and (3.40) we find 

(3.41) sgn(y) 
2'ITi 

c+ioo 

J 
c-ioo 

-s - tan(!s'IT)sgn(y) lyl , o < Re s < 1 . 

The latter integral can be evaluated by closing the integration path by an 

infinite semi-circle to the left. The integrand has simple poles at 

s = - 2n- 1, n = 0,1,2, ..• , inside the contour. By means of the residue 

theorem we obtain 

(3.42) 
00 -2n-2 

2 
H{JO(x)} = - sgn(y) 2 r(2n+2)r(-n- !) (_l) 1y12n+1 

r3(n+l) 'IT 
I 

n=O 

2-2n-2 (2n + 1) ! 

3 3 r (n +"2) 

= -

= 
[ 

2] 8 1 , 1 ; -y 

~ 2F
3 l l l 

'IT 2 ' 2 ' 2 

2 

2n 
y 

in accordance with (3.30). 

Yet another (formal) derivation of (3.30) uses the theory of Meijer's G

function. From [6, eq. 5.6(56) J we have 

(3.43) 

The Hilbert transform of this G-function is given in [3, form. 15.3(61)J, 

viz. , 

(3.44) H{J~ (x) } -! 22 [ 2 1T sgn(y) G35 y 
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The result in [3, form. 15.3(61)J is stated under the condition p+q < 2 (m+n) 

for the original G
mn

. Strictly speaking this condition is not fulfilled for 
pq 

G~;. Using the series-definition [6, eq. 5.3(5)J of ~~e G-function, we find 

from (3.44) 

(3.45) H{J~(x)} 

[ 
2] 8 1 , 1 ; -y 

~ 2F
3 1. 1. 1. 

1T 2'2'2 

'. [1 , 1 , ! ; _y2] 
3F

4 3 3 3 1 
2'2'2'2 

so in spite of the condition p+q < 2 (m+n) being violated, the correct result 

is recovered. 

4. Final results for I , K , L and Worm's integrals 
m m m 

By means of the Hilbert transforms H{J;(x)sgn(x)} and H{J;(x)} as given in 

(3.10) and (3.30), we now determine the integral I (a,b) as defined by 
m 

(1.4), for m = 0,1,2,3. The results presented below pertain to I (a,b) when 
m 

a ~ b. Then I (a,a) is found by taking limits as b + a. 
m 

Case m = O. From (2.2) we derive 

(4.1) 

then 

(4.2) 

IO (a,b) = 4 

lim IO (a,b) 
b-+a 

[ 

( 2) 
1 , 1 ; -a I 

2F 3l2. 1. 2. j'-
2 ' 2 ' 2 

( 
2)J 1 1 . -b 

2F 3 ~ , 1. 2.' j 
2 ' 2 ' 2 

, a ~ b , 



Case m 1. From (2.3) we find 
=;;;.;;..~-..::... 

(4.3) 11 (a,b) = 

then 

(4.4) 11 (a,a) 

Case m = 2. From (2.4) we derive 

(4.5) 

then 

(4.6) 

12 (a,b) = 
4 

__ 2 _d la2 
na da l 

Case m = 3. From (2.5) we find 

(4.7) 

then 

(4.8) 

I~(a,b) 
.j 

I
3

(a,a) 

- 13 -

a :F b , 

[
1 I 1 ; -a 2] 

2
F

3 l l l 
2 ' 2 I 2 

[
1 , 1 ; -b

2]J 
2

F
3 l l l 
12'2'2 , 

a :F b , 

2F 3; 3 3' = [
1 , 1 . -a 2]1 

l"2'"2'"2 J 

4 1 , 2 ; -a 

[ 
21 - - F 1T23lll 

2'2'2 ) 

a :F b , 

Worm's integrals (1.1) correspond to the special cases ::;n\l.l1 ,u1), I m(u 1 ,u2) 

where m = 2,3. The results for m = 3 simplify b~cause of J O(u1) J O(u 2) = 0; 

furthermore, we employ the Wronskian relation [2, eq. 3.63(12)J 
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(4.9) 

In this manner we find for Worm's integrals; 

(4.10) 
4 [1 , 2 i -U;1 
1T 2F3 3 3 3 

2'2'2 J 

(4.11) 

(4.12) o . 

It is remarked that the present results hold for any zero u1 or any pair of 

zeros u1 ,u2 of JO(u). 

The 2F3-series in (4.10) and (4.11) were numerically evaluated by mr. A. 

Baayens & dr.ir. J.K.M. Jansen, thus leading to the numerical values 

(4.13) 0.010883 441 

where u
1

, u2 stand for the first and second zeros of JO(u). 

Cor~ider next the integrals K (a,bir) I m = 1,3, and L (a,bir), m = 2,4, as 
m m 

defined by (1.5) and (1.6). In section 2 these integrals were shown to be 

expressible in terms of the Hilbert transforms H{~O(x)JO(rx)sgn(x)} and 

H{lx1J1 (x)JO(rx)}. The latter transforms were evaluated in section 3, see 

(3.9) and (3.13). The results presented below pertain to K (a,bir), L (a,bir) m m 
when a ~ b. Then K (a,air), L (a,air) are found by taking limits as b ~ a. m m . . 
Throughout it is understood that 0 ~ r < 1, a~though the case r = 1 might be 

handled as well by use of (3.23) instead of (3.13). 

Case of K1 • From (2.8) we derive 

(4.14) Kl (a,b;r ; = 

then 



(4.15) Kl (a,air) 
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lim K1 (a,bir) 
b-+a 

Case of K
3

. From (2.9) we find 

(4.16) K
3

(a,b;r) = 

then 

(4.17) 

a F b , 

= ~ [ I a I J 0 (ar) y 1 ( I a I ) + ar J 1 (ar) YO ( I a I) - 2 J 0 (ar) YO ( I a I ) ] • 

Case of L
2

• From (2.10) we derive 

(4.18) L2 (a,bjr) = a F b , 

then 

(4.!9) 

Case of L4 . From (2.11) we find 

(4.20 ) L
4

(a,bir) = 

then 

(4.21 ) 
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Worm's integrals (1.2) and (1.3) correspond to the special cases Km(v1,v1;r), 

K
m

(v
1
,v

2
;r) and L

m
(v1,v1;r), L

m
(v

1
,v2;r), respectively. Hence, explicit 

results for Worm's integrals can be obtained from (4.14)-(4.21) by substitu-

tion of a VI' b = v 2. No further simplification of these results can be 

achieved, as it is only known that vI' v 2 are zeros of the function 

feu) = JO(u)YO(ur) - JO(ur)YO(u). 

5. Evaluation of H{J 2 (x)sgn(x)} and H{J 2 (x)} 
n n 

2 2 
The results (3.10), (3.30) for H{Jo(x)sgn(x)} and H{JO(x)} can easily be 

extended to the Hilbert transforms H{J2 (x)sgn(x)} and H{J 2 (x)} where 
n n 

n = 0,1,2, .•.. The derivation runs along the same lines as in section 3. 

Thus we find as an extension of (3.10), 

(5.1 ) H{J
2

(x)sgn(x)} = 
n 7T 

00 2 1 I n (x) sgn(x) 

J x-y dx 
-00 

with the reciprocal transform 

(5.2) H{J (Ix l )y (Ix i )} n n 
1 = -
7T 

00 

f 
J (Ixl)y (Ixl) 

n n dx = 
x-y 

-00 

2 
J (y) sgn (y) 

n 

The extension of (3.30) is found to be 

(5.3) H{J~(x)} = ! f
oo J~ (x) dx = _.-;;.8y,,--_ [1, 1 ; _y2J 

x - y 2 2 2F 3 3 3 3 
_00 1T (4n - 1) 2 ' 2 + n , 2' - n 

To derive the latter result we start from the integral representation 

[2, eq. 2.6(3)] 

(5.4) 

then 

2 
J (x) = 

n 
= 2 (_l)n 

7T 

7T/2 

J 
o 

Jo(2lxl cos 6) cos(2n6)d6 , 



- 17 -

7T/2 00 

JO(2 Ix l cos 
H{J2 (x) } 2 

J f 
9) 

(5.5) =- (-1) n cos(2n9)d9 dx 
n 2 x-y 

7T 
0 _00 

7T/2 
2 
7T 

(-1) n J cos(2n9)HO(2y cos 9)d9 

0 

by means of (3.27). The latter integral is evaluated by term-by-term integra

tion of the series expansion (3.28) for HO' employing the in~egral [6, eq. 

1.5.1 (30)] 

7T/2 

(5.6) J 
2H1 cos ( 2n9) (cos 9) de 7T r(2t+2) =---2t+2 3 3 

2 r ("2 + t + n) r ("2 + 9, - n) o 

as an auxiliary result. As a check the Hilbert transform (5.3) has also been 

derived by each of the alternative approaches of section 3. 

Appendix 

The Legendre function p_! occurring in (3.33) is expressible in terms of a 

complete elliptic integral K of the first kind [6, p.174], viz., 

(Ai) P 1 (cos 9) =.£ K(sin !9) • 
-2 7T 

Starting from (3.32) and (3.33), "lie make the substitution !s2_1 

s = 2 cos !e, leading to 

(A2) 

00 2 

f JO(x) dx = 
x-y 

-00 

= 

= 

2 

- J P _! ns
2 

- 1) sin (sy) ds 

o 
7T 

J P _! (cos 9) sin(2y cos !e) 

0 

7T 
2 

J iT 
K(sin ! e) sin(2y cos !e) 

0 

Setting u = sin !e, we find by means of (3.30), 

sin !e de 

sin !e de 

cos e, 

. 
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(A3) 
[

1 , 1 ; _y2j 

2y 2F3 ill 
2 ' 2 ' 2 

The present result is not contained in Glasser's table [7J of integrals of 

the complete elliptic integral K. By expansion of (A3) in a'power-series in 

y, we obtain 

1 
00 

(-1) n 

J (M) L (2y)2n+1 2 n 
(2n + 1) ~ 

K (u) (1 - u) u du 
n=O 

0 

00 ( 1 ) (1) ( 2) n 
2y L n n -;t 

n=O (i) (i) (i) n~ 

2 n 2 n 2 n 

By equating corresponding powers of y, we are led to 

1 

(AS) J 
2 n K (u) (1 - u) u du = 

o 

The latter result can also be obtained as a special case of [7, form. I (23) J. 

A direct derivation of (AS) proceeds by replacing K(u) by its hypergeometric

series representation followed by a term-by-term integration. The result (AS) 

holds generally for n > -1, where n is not necessarily an integer. 

A furthe~.result is found by differentiation of (A3) with respect to y: 

(A6) 

1 

f K(U)cOs(2y(1-u2)!)udU= 

o 

This result does not appear in Glasser's list [7J either. 

Next we shall evaluate the Hilbert transform H{J~(xjsgn(x)} by the same pro

cedure. Similar to (3.31) we have 

(A7) 

00 2 

J 
JO (x) sgn(x) 

x-z 

00 00 

dx J J~ (x) sgn (x) dx (:t i) J 
Hs(x-z)d e s 

-00 -00 0 

00 00 

J 
±isz 

J 
2 fisx 

± i e ds JO(x)sgn(x)e dx 

0 -00 
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00 00 

= 2 J e±isz ds J J~(X) sin(sx)dx , Imz~a. 

a a 

Let Z + Y real, then by addition of the two results in (A7) we obtain 

(AB) 

00 2 00 

f Ja (x) sgn(x) dx -- 2 J 
cos(sy)ds 

x-y 
_00 a 

00 

f J;(X) sin(sx)dx 

a 

The inner integral is obtainable from Watson [2, eq. 13.46(4), (5) with ~ = !J 

or from [3, form. 2.12(27)J (here the minus sign in front of the second result 

for s > 2 is incorrect and should be omitted) : 

(A9) 

00 

J J~(X) sin(sx)dx 

a 

a < S < 2 , 

s > 2 . 

Both functions can be expressed in terms of the complete elliptic integral K 

according to (A1) and [6, eq. 3.13(B)J, 

(Ala) -n/2 -n Q_!(cOSh n) = 2e K(e). 

Thus combining (AB) and (A9), we make the substitutions 1 - ~s2 = cos 8, 

s = 2 sin ~8, and !s2 - 1 = cosh n, s = 2 cosh ~11, leading to 

00 2 

f 
Ja (x) sgn(x) dx 

(All) 
x-y 

2 

J 
2 = P_~(l- is ) cos(sy)ds 

a 
11" 

= f p_!(cos 8) cos(2y sin 

a 

00 

2 
J 

2 
+- Q-l (~s -1) cos(sy)ds 

11" 

2 

!8) cos !8 d8 

00 

+ ~ J 
a 

Q 1 (cosh 11) cos(2ycosh !n) sinh !ndn 
-2 
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1T 

= ~ f K(sin !e) cos (2y sin !e) cos !e de 

o 

4 
+-

1T 

r -n -n/2 I K(e ) cos(2y cosh An) sinh in e dn . 
J 

o 

In the latter integrals we set u = sin !e and u 

means of (3.10) we find 

= e -n respectively, then by 

(A12) 

1 

f K(u) cos(2yu)du 

o 

Here the second integral can be simplified by applying Gauss' transformation 

[8, form. 164.02J: 

(A13) K(u) = !U + (1- t 2) !JK(t) It/here u = 1 - (1 - t 2) ! 
1 ... (1 - t 2) ! 

By making the latter substitution, we have t 

(A14) 

1 

; J 
o 

( 
l+u\ 1-u 

K(u) cos y-!-) -u- du 
u 

. 1 ~ 

f 
2 ! ~ 2 (1 - t 2) • =! ![1 + (1 - t ) JK(t) cos(~) 

- 1 - (1 - t
2) ! o 

1 
( 

= j 
o 

2v dt 
K (t) cos (-=t) t 

Inserting (A14) into (A12), we arrive at the elegant result 

(A15) 

1 

J K(u) cos (2yu) du + 

o 

1 
r 2v du 

J 
K (u) cos (.;:A..) 

u u 

2 
- : JC(y)YO( /Y/) 

o 

The present result can also be found in a mo~e direct ma~ner by use of Okui 

[9, form. 2.5(1)J, yielding 
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1 
co -K(!S) , o < S < 2 , 

J 
2 IT 

(A16) J
O 

(x) sin(sx)dx = 

0 2. K(~) , s > 2 , 
lTS S 

which can be shown to be equivalent to (A9) , though it is of course much 

simpler. The result (A15) does not appear in Glasser's list [7J. It does not 

seem possible to separately evaluate the integrals in (A15). On the other 

hand, by rewriting (A15) as 

(A17) 

1 

J K (u) cos (yu) du + 

o 1 

it is easily recognized as the inverse of the Fourier transform [9, form. 

2.7(1)J 

(A18) 

co 

; J (-lT42)JO(~Y) YO(h) cos(yu)dy 

o 

o < u < 1 , 

u > 1 • 

In the same manner one may evaluate the Hilbert transform H{JO(x)YO(lxl)} 

obtainable from (3.5) . . Similar to (3.31) and (3.32) we find 

co co 00 

(A19) f 
JO(x)YO(lxl) 

dx = - 2 J sin(sy)ds J JO(x)YO(x) cos(sx)dx 
x-y 

-00 0 0 

= 1rJ~(y)sgn(y) 

y > 0 , 

Here the inner Fourier cosine transform can be obtained from (Al8). Thus we 

are led to the following companion result of (Al5) , 

(A20) 

1 

J K(u) sin(2yu)du + 

o 

1 

I K (u) sin (~) du 
u u 

o 

lT
2 

2 ""4 J 0 (y) sgn (y) 

The result (A20) is again recognized as the inverse of the Fourier sine 

transform (Al6) due to Okui [9J. 

As a final remark, Glasser's list [7J of integrals of K could almost trivially 

be extended by inverses of the Fourier transform results as compiled by Okui 

[9J. 
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