

Modifications of the 1968 version of AUTOMATH

Citation for published version (APA):
Bruijn, de, N. G. (1976). Modifications of the 1968 version of AUTOMATH. (Eindhoven University of Technology
: Dept of Mathematics : memorandum; Vol. 7614). Technische Hogeschool Eindhoven.

Document status and date:
Published: 01/01/1976

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/d2b4fc58-f788-4f26-9314-9eb82ee578c4

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Mathematics

Memorandum 1976-14.

Issued December 1976.

Modifications of the 1968 version of AUTOMATH

by

N.G. de Bruijn.

University of Technology

Department of Mathematics

PO Box 513, Eindhoven

The Netherlands,

.\.'hJV

- 1 -

Modifications of the 1968 version of AUTOMATH.

by N.G. de Bruijn.

1. Introduction. The 1968 version of AUTOMATH (AUT-68 for short) has been

explained in several reports.

We quote [IJ,[2J for informal papers, mainly concentrating on the use

of the language, to [5J for a more formal definition, and to [4J for its

place within a certain family of languages.

As to that family it should be mentioned that one family member,

AUT-QE, made itself quite popular, since it provides a first-order theory

which nevertheless can deal adequately with sets and predicates.

The first use that was made of AUT-68 could treat propositions by

means of a type called "bool", the members of which are to be interpreted

as propositions. This puts us in a position to quantify over predicates,

and to enj oy .the power of a higher order theory wi thou t having it in the

language itself. The strength of such a theory is that we are able to define

equality and to prove some of its basic properties instead of having to take

them as primitive notion and axioms, respectively.

The preference developed later for AUT-QE (which L.S.Jutting selected

for the translation of Landau's "Grundlagen") was, however, not so much

based on comtempt for a theory that seemed to be stronger than necessary

for the purpose of.talking ordinary mathematics. The real reason was that

the use of "booltf in AUT-68 had a practical drawback: in almost every other

line we had to make transitions like the one from TRUE(nonempty(TRUE(b)) to

TRUE (b) (see section 4 below). This made texts in AUT-68 about twice as' long

as the corresponding texts in AUT-QE. An example of an AUT-68 text were

this drawback is manifest, in spite of an efficient abbreviation system, is

presented in [3J.

Nevertheless it would be a pity if AUT-68, simple and powerful as it is,

would be discarded because of such a minor inconvenience. It seems worthwhile

to try to get around it either by better use of the language or by slight ex

tensions or modifications. At present, the author has no sU~6estion in the di

rection of better use of AUT-68, and concentrates on extension of that

language. The extensions produce something that gets remarkably close':to J.

Zucker's AUT-IT (see[6J).

;,.. 2 -

2. Notation. We use the colon for typing. If A has category B we write

A :. B (in [5] this was written as AE B). And abstractors are written

as [x : A] (instead of [x,A] in older papers).

3. Use of two different I-expressions. AUT-68 has just one I-expression, viz.

type. If f : F : ~ then there are two interpretations : In the "object -

interpretation" f stands for an object, F for a type of objects (example

f is the number 8, 'If stands.for"numbertl
). In the "proof-interpretation"

f stands for a proof, F stands for the thing that is proved by f.

It does not do much harm to use different I-expressions, viz. ~

and ~, where f : F : type is used in cases of object-interpretat~ob,

and f : F : prop is used in cases of proof-interpretation. We of course

have to forbid that an F with F : type is substituted for a prop-variable.

(i.e. an x with x : ~) and vice versa. It has the disadvantage that we

can no longer write things which are intended for both interpretations

simultaneously, and, on the other hand, the advantage that we can write

axioms for the proof - interpretation case without stating things on ob

jects that we did not intend to state for objects, and vice versa, (e.g.

it is possible to write the double negation; axiom with prop in such a

way that it turns into the axiom for Hilbert's epsilon operator i~ prop

is replaced by ~). On the whole,the advantage wins frdm the disadvant

age, even so much so, that we are tempted to look around for use of further

I-expressions, to be used for the description of things we would not like

to refer to as either objects or proofs.We shall not do this in this note.

The use of ~ and ~ 1S decribed in full in [5J. Since its in

fluence on the language properties is so minuscule, no attempt has been

made to invent separate names for the ~ & prop-versions of AUT-68 and

AUT-QE.

4. Use of "bool". There is a very strong relation between a proposition

and the class of its proofs. We can even decide never to mention propo

sitions, but just their proof classes. (This is succesful in AUT-QE, where

I-expression like [x : AJ prop can be used for the typing of predicates,

a possibility we do not have in AUT-68).

But if we want or have to make use of names for propositions along

with names for their proof classes, we have to have a way to pass from

one to the other and vice versa. First we create a 2-expression "bool",

and for every b with b : bool we .create its proof class. Let us call that

one TRUE(b) (a better name might be PROOF(b», so TRUE(b) : prop. Converse

ly, for every B with B : proE we have to have a proposition of which B is

- 3 -

the proof class. Let us call it nonempty (B) (a slightly more suggestive

name would be "nonemptyness (B)"). If·we have a proof for the nonemptyness

of the proof class B we want to be able to say that we have a proof for B

and vice versa. This gives riseto the following setup (the numbers on the

left will be used for reference in this note).

- bool: = PN type

2

I:RUE

=

3 b =

bool

PN prop

4 B = prop

5 B non empty = PN bool

6 B

I~x
=

7 u =:

B

PN TRUE(nonempty(B»

8 B

I:x 2

=
9 v =

TRUE(nonempty(B»

PN B

For every logical entity we get two identifiers by means of which it is

operated. As an example, we take the conjunction of two propositions. If b l :

: boo1, b2 : bool we can define and(b
1

,b2) (and(b l ,b2) : bool) and next intro

duce AND(b
1
,b2), defined as TRUE(and(b 1,b

2
». Or, we might start from AND(b l ,

b2) : prop and introduce and(b
1
,b2) as nonempty(AND(b

1
,b2». For various

reasons, we want to have both forms available, and to switch from "andlt to

ItAND" whenever necessary. It is even worse: we also want to have the arguments

in both forms: If BI : prop and B2 : prop we want to define a conjunction of

BI and B2, which can be done by

=: AND(nonempty(B
t
),nonemptY(B2»'

and we want to get to and fro from CONJ to AND.

5. An easy notation. The following notation for "TRUE" and "nonempty"

is easy to handle in handwritten texts. If an expression K satisfies K : prop

we write l instead of nonempty(K), if L satisfies L : boo1 we write ~ instead

of TRUE(L). This saves identifiers, and makes texts more readable. We can write

CONJ(B
1

, B2) as and(~~~) ~ (. The axioms axl and ax2 of section 4 express

that if we have someth~ng)'in B(where B : prop) then we have something in,!,
~

and vice versa.

- 4 -

Note: The -+ and + are suggested by a certain format to write AUTOMATH in,

where we write 1n three columns, and the expressions of degree i are

written in the i-th coulmn from the right (i=1,2,3; see[4J).

6. A language extension. Let us extend the language by taking "bool",

"TRUE", "nonemptyll (or -+ and) as primitive constants of the language,

to be operated in the way we intend. This language extension is not very

revolutionary, since every correct book in that language becomes a correct

book in AUT-68 just by adding lines 1,2,3,4,5 (of section 4) at the top.

But let us extend the language a little further by adding new cases

of definitional equivalence. We proclaim that

(i) If B prop then B is defini tionally equivalent to }.,
--jo.

bool then b is definitionally equivalent to b.
~

(ii) if b
+-

Let us denote this extended language by AUT 68+.

First we remark that the identification of B with B produces about
t-

the same things as the axioms axl and ax2 of section 4.~It is just easier.

In AUT 68 we write, e.g.,

and

whereas

and

p =
q =

r =

q :::

we write

p

q

r

s

=

=

=

· B ..
axl (B ,p) B

<I.-....,.

· B. · ~
-7

ax2(B,r) · B ·
in AUT 68+

p

r

: B

: B
~

: B.

In most cases we would not spend a line for writing q

course.

= p or S = r, of

If b is }. (b : bool, B : prop) then rule (i) implies identification of ~

to ~, Le. to b. This does not yet imply rule (U), for on the basis of (i)t

alont:! we cannot say that every b is definitonally equivalent to some B.
r

- 5 -

That fact is a direct consequence of rule (ii). 50 note that, once (i)

has been accepted, rule (ii) says nothing new apart from saying that every

b (with b : bool) can be written as ! with some B : prop.

7. Lack of symmetry. Note that the symmetry between type and prop in the

~ & prop-version of AUT-68 is' lost in AUT-68+. In fact we have a first

order language in the sense of type and a higher order language in the

sense of prop. Admittedly, we are not allowed to quantify over prop (Le.

Ex : ~Jis forbiden), but we can quantify over bool (even over things

like [x : X][y : Y]bool) and we can get up and down from boo I to prop by

means of -+ and + (this .quantification facility is present in AUT-68 too,

with the axioms of section 5, but in AUT-68+ it is much easier).

This kind of quantification has no feature like the type inclusion

of AUT-QE. If, in AUT-QE, A : Lx: : X]prop, we may also write A : prop.

In AUT-6S+ the equivalent of "[x: X]prop" is "[x: X]bool", and this

is definitely not the same thing as "boo I" itself.

8. Other form of AUT-68+. Referring to the way of writing in columns

(cf. the end of section 5) we might play the following trick: If 5 has

the form [x] : Xt] ••• [x
n

: XnJbool we agree that we shift lines like

s : 5 one column to the right, replacing bool by prop. That is, instead

of

s

we write

s [x]:X1J ••• [x :X Jprop n n--

and in such case the first column has to be left open: s is not the

category of anything! There is an exception : if n = 0 we admit things

in the first column: Note that in AUT 68+ s: bool implies ~ : prop,

and ~ can be the category of something~ (In our interpretation, the

things u with u : s. are proofs for s).
~

The advantage in this formulation over the one of section 6 is that

the operators -+ and + disar ,'"'Y entirely. That is, we do not only identify

Band B, but also B andB. - ...
L~t us call this new version AUT-68++.

9. Relation with AUT-TI. Needless to say, we can express the rules of AUT 68++

without using AUT-68+ as an intermediate stage. Doing so, we notice that in

AUT-68++ a certain kind of quantification over prop-expressions is allowed.

- 6 -

If in AUT-6S++ we forbid this kind of quantifications, we get a language

(let us call it AUT-6S++~) that is weaker but still very manageable. Actually

it is equivalent to a fragment of Zucker's AUT-IT[6J.

10. Alternative formulation of AUT-6S+. Instead of shifting lines s :[x
l

: Xl]'"

.•• [x : X Jbool one place to the right, we might decide to get a similar effect
n.n

by shifting lines u : B (with B : prop) one place to the left. That means that

proofs become 4-expressions, and a 4-expression u is admitted only if

cat(cat(u» = bool where cat(bool) =~. If this formulation quantification

over a 3-expression b is allowed, provided that cat(b) = bool. Now prop is no

longer used, the only I-expression is

References:

[IJ N.G. de Bruijn: The mathematical language AUTOMATH, its usage and

some of its extensions, Symposium on Automatic Demonstration, IRIA,

Versailles, Dec. 1968. (Lecture Notes in Mathematics, Vol. 125,

Springer Verlag, pp. 29-61, 1970).

[2] N.G. de Bruijn: AUTOMATH, a language for mathematics. A series of

lectures by N.G. de Bruijn, at the Seminaire de mathematiques

superieurs, Universite de Montreal, June 1971. Les Presses de

l'Universite de Montreal, 1973. Lecture Notes prepared by B.Fawcett.

[3J N.G. de Bruijn: Some abbreviations in the input language for AUTOMATH.

(Notitie 15, Department of Mathematics, T.H. Eindhoven, Apr. 1972).

[4J N:G. de Bruijn: A framework for the description of a number of numbers

of the AUTOMATH family. (Internal Report, Department of Mathematics,

T.H. Eindhoven, June 1974).

[5J D.T. van Daalen: ~~scription of AUTOMATH and some of its language

theory. Proceedings of the Symposium APLASM. Vol. I, ed. P.Braffort,

Orsay, France (Dec. 1973).

[6J J.Zucker: Formalization of classical mathematics in AUTOMATH.

Actes of che International Logic Colloquium, Clermont-Ferrand,

July 1975.

