

EMDABS : design and formal specification of a datamodel for
a clinical research database system
Citation for published version (APA):
Pfaffenhoefer, F. M., Cluitmans, P. J. M., & Kuipers, H. M. (1991). EMDABS : design and formal specification of
a datamodel for a clinical research database system. (EUT report. E, Fac. of Electrical Engineering; Vol. 91-E-
250). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/54f2e031-d111-41bd-8230-cf0a05a020cb

- - -- - -- --
- =~

- --:-- - - .-

_> _ ,,« __ -, - - ~ :: ~ ~.;:--~o:=~=",:-~_--: -
- - - - ~-::;- ---:- -~-- --::-.,.-= - ~ -

----- - -
------- -: .- -- -

EMDABS: Design and Formal
Specification of a Datamodel
for a Clinical Research
Database System

by
F.M. Pfaffenh6fer
P.J.M. Cluitmans
H.M. Kuipers

EUT Report 91-E-250
ISBN 90-6144-250-8

ISSN 0167- 9708

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Faculty of Electrical Engineering

Eindhoven The Netherlands

Coden: TEUEDE

EMDABS : Design and Formal Specification of a

Datamodel for a Clinical Research Database System

by

F.M. Pfaffenhofer

P.J.M. Cluitmans
H.M. Kuipers

EUT Report 91-E-250

ISBN 90-6144-250-8

Eindhoven

January 1991

Thi.s report was submitted in partial fulfilment of the requirements for the degree of Master

of nectrical Engineering at the Eindhoven University of Technology, The Netherlands.

The work was carried out from May 1990 until December 1990 under responsibility of

Professor J.E. W. Beneken, Ph.D., at the Division of Medical Electrical Engineering,

Eindhoven University of Technology, under supervision of P J.M. Cluitmans, Ph.D., and II. M.

Kuipers.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

EMDABS: design and formal specification of a datamodel for
a clinical research database system / by F.M. Pfaffenhofer,
P.J.M. Cluitmans and H.M.Kuipers. - Eindhoven: Eindhoven
University of Technology, Faculty of Electrical Engineering. - Fig.
(EUT report, ISSN 0167-9708; 91-[-250)
Met lit. opg., reg.
ISBN 90-6144-250-8
NUGI 832
Tretw.: medische informatiesystemen.

III

SUMMARY

In 1985 the division of Medical Electrical Engineering (M.E.E.) started with the development

of a clinical research database system called EMDABS (Electrophysiologic Monitoring

DAtabase System) that should store the large amounts of data collected during neuro

electrophysiologic monitoring sessions. This system should make research on this information

much easier and should support different clinical monitoring equipment and computer

hardware. The database system is developed in the first place for the servo-anesthesia research

group of M.E.E. that performs research on automation in anesthesia, but it will be developed

in such a way that it is also useful for other neuro-electrophysiologic research.

A datamodel of this database system is needed to specify what information will be stored in

the database, what datastructures exist and which constraints (semantics) are forced on the

data. A partial datamodel was developed that left the time related information collected during

a monitoring session unspecified. This report describes the development of a time related

data model which is highly flexible and contains all the time related information needed such

as equipment settings, information on collected raw data, data derived from raw data and

events that took place during a monitoring session. The datamodel is recorded with a formal

mathematical technique that is very useful for the recording of these datamodels (especially

for the recording of semantics) and a description of this method is given. The formal

specification of the total datamodel is presented and also described in this report.

IV

CONTENTS

1. Introduction 1

2. EMDABS : a clinical database system 3

2.1 A short introduction to database systems 3

2.1.1 What is a database system? 3

2.1.2 A relational database system 5

2.1.3 A semantic relational database system 6

2.1.4 The datamodel of a semantic relational database system 7

2.2 An historic review of EMDABS 8

2.3 System requirements of EMDABS 9

3. Semantic relational database concepts and their formal specification in a datamodel 11

3.1 Entities and attributes 11

3.2 Tupletype and tuple constraints 12

3.3 Table, tabletype and table constraints 13

3.4 Database characterisation and database type 14

3.5 Unique identification and keys 15

3.6 Database constraints, subset requirements and foreign keys 16

3.7 Diagrams 18

3.8 Operations on tables 19

3.9 Pascal-like notation of the previous concepts 20

4. Designing a clinical research database 24

4.1 Introduction 24

4.2 Problem analysis 24

4.3 Data analysis 25

4.4 Guidelines to a good datamodel 26

5. The subject-session datamodel

5.1 Introduction

5.2 Sessions and study's

5.3 A short description of the remaining subject-session datamodel

6. The time-datamodel

6.1 Introduction

6.2 The events module

6.2.1 Event categories

6.2.2 The event list

6.2.3 The datamodel of the events module

6.3 Equipment and equipment settings

6.3.1 The subject-session datastructure of equipment settings

6.3.2 A compact structure for equipment settings

6.4 The montage and electrodes

6.5 The measured physiologic parameters

6.5.1 Raw physiologic data

6.5.2 Data derived from raw physiologic data

6.6 The complete time-datamodel

6.7 The complete datamodel of EMDABS

7. Conclusions and recommendations

Appendix A : Mathematical terms

Appendix B : The formal specification of the datamodel

References

v

29

29

29

31

36

36

36

36

38

40

45

45

47

50

52

52

54

57

59

61

63

66

97

1

1. INTRODUCTION

The intensity of medical research in our Western Society has grown considerably over the last

few decades. Medical knowledge and technological possibilities are still growing and will

continue to grow as long as the demands of our society do not change drastically. The use

of microtechnology in medical science is one example of the technological improvement that

has been made. In the field of neuro-electrophysiologic research a lot has changed as a result

of the technological improvements. Many of these developments deal with the automation and

monitoring of vital signs [Cluitmans, 1990].

The amount of information that can be recorded and is needed for neuro-electrophysiologic

research is enormous. As an example we mention the data that arises from the monitoring of

raw EEG signals that can go on for hours. Apart from the information that results from the

monitoring of vital signs there is a lot of other information that is needed for neuro

electrophysiologic research. One could for example think of the medical history of subjects

that are incorporated in this research, information about the events that occurred during a

monitoring session, what sort of equipment was used and how it was adjusted etc.

This large amount of information needed for neuro-electrophysiologic research causes

problems for the actual research on this information. To extract the right pieces of information

from this large pile of data requires a database system which will make research much easier

and surveyable. The accessibility of the information can be highly increased, no piles of

papers are needed and the retrieval of information is much faster done by machine than by

humans.

Such a database system was required by a multi-institutional neuro-electrophysiologic research

group with clinical partners in the Netherlands and the United States [Theisen et aI., 1986].

The system should provide for differences in clinical monitoring equipment and computer

hardware and should be convenient and easy to use with only minimal computer knowledge.

A form of standardized storage of information is necessary to facilitate sharing of data not

2

only among specialists, but also among institutions.

The development of this database system started in 1985 at the division of Medical Electrical

Engineering of the Eindhoven Technical University. This database system was called

EMDABS (Electrophysiologic Monitoring DAtabase System) and is a relational system.

EMDABS is developed in the first place for the servo-anesthesia research group of this

division but it should also be useful for other neuro-electrophysiologic research. The servo

anesthesia project deals with the development of automation in anesthesia [C1uitmans, 1990]

and one of the objectives of this project is the neurophysiological monitoring of anesthetic

depth. Research on anesthetic depth incorporates the analysis of EEG signals in combination

with Evoked Potentials (EP), the similarity between different levels of anesthetic depth and

sleep patterns and the analysis of the raw EEG signal.

The information collected by this research group during monitoring sessions served as a

starting-point in the development of EMDABS. An initial implementation was made in the

database management system (DBMS) dBASE III but limitations of dBASE III forced a

transfer to the DBMS Oracle [van Herwijnen, 1988]. Limitations in the EMDABS datamodel

made a new design of a datamodel necessary. This data model specifies which information will

he stored in the database, which datastructures exist and what constraints are forced on the

data and it is recorded with a formal technique that was developed at the Eindhoven

University Ide Brock, 1989; Korlaar, 1985; Remmen, 1982].

A partial datamodel was developed which left the time dependent and related information

unspecified. This report concerns the design and formal specification of the datamodel and

implementation of the table structure in the DBMS Oracle. The time related information

includes events recorded with the ERDA (Event Recording and Data Acquisition) system I de

long, 1986], equipment usage and adjustments, drug administrations, information about raw

monitoring data, data extracted from raw monitoring data etc.

3

2. EMDABS: A CLINICAL DATABASE SYSTEM

In this chapter we will give an historic overview of the development of the clinical database

system EMDABS, but first some general concepts of database systems are explained. In

chapter 3 a more extensive description is given of semantic relational database concepts and

their formal specification.

2.1 A short introduction to database systems

2.1.1 What is a database system?

It is still not possible to give a definition of the term database system that is widely accepted.

It seems that every authority on database systems has his own definition of this term and

although these definitions are much alike they do tend to lead to confusion. Some writers for

example distinguish between the terms' data' and 'information' while others treat them as

synonyms. We can use 'data' to refer to the values physically recorded in the database and

'information' to refer to the meaning of these values as understood by the user. A reason for

not distinguishing between the two terms is that they are essentially similar and it is dearer

to make the distinction explicit, where relevant, instead of relying on a somewhat arbitrary

differentiation between the two. Also the concepts in relation to a database system have

differing descriptions. We have chosen some definitions that will give a clear and useful

picture of the general concepts.

[Date, 1986] refers to a database system as a computerized recordkeeping system; a system

whose overall purpose is to maintain information and to make that information available. This

information can be any information that has some significance to the individual or

organization the system is intended to serve. In figure 1 we see a simplified picture of a

database system which shows four major components: data, hardware, software and users.

Database systems can be either multi-user or single-user.

4

D
D
D

Database management system

Database

--------..... 'c-- --+-~

-- -~

Figure 1 Simplified picture oj a database system

A database is the centre of a database system and it is a collection of stored operational data

used by the application systems of some enterprise which can be a single individual, a large

corporation etc. and it is simply used as a convenient generic term. We use the term

, operational data' to distinguish it from input-data, output-data, work queues, temporary

results or any purely transient information (information that lasts for a short time only). Input

data may become part of the operational data, but is not initially a part of the database itself.

Output-data is data that may be derived from the operational data and this is also not a part

of the database itself. The hardware consists of secondary storage volumes on which the

database physically resides, together with the associated I/O devices, device controllers etc.

As we can see in figure 1, there is a large layer of software between the physical database

and the users of the system. We call this the DBMS (DataBase Management System). The

DBMS provides the facilities for creating files (or tables), updating data, inserting data,

retrieving data etc. and handles all requests from users for access to the database. The DBMS

can thus be seen as a shell that makes the user unaware of the hardware details of the

5

database. It also controls what part of the data a user may have access to, so each user has

its own view on the data stored in the database.

Many of the systems provide a built-in user-interface which the end-user can use to access

the database. In most cases however the user will access the database via a special application

program which is written by an application programmer. An application program can make

data-retrieval, data-deletion and data-creation much easier and adjusts it to the user.

Confusion arises when we introduce the term information system. Is a database system not

an information system? Yes, but an information system can be much more than that. An

information system for example includes full documentation of all procedures and actions

which must be taken to get a working application that serves its purpose. Some discord exists

about what exactly belongs to the database system and what to the information system but

it is clear that there is a distinction between the two [Date, 1986; Hilderink, 1990].

2.1.2 A relational database system

Most database systems developed these days are relational and almost all current database

research is based on the relational concept. Other systems such as the hierarchic and the

networkmodel exist and we can distinguish the different systems from each other according

to the datastructures they present to the user and the operators they provide to manipulate

these structures. The hierarchic and network system will not be discussed because they are

beyond the scope of this project.

A relational system is a system in which:

1. the data is perceived by the user as tables (and nothing but tables); and

2. the operators at the users disposal are operators that generate new tables from old.

For example there will be one operator to extract a column of a given table. This

can be regarded as a table itself [Date, 1986]

6

A table consists of information elements which have a certain relation to each other. There

will also exist relations between the various tables. An example of a relation between the

information elements of a database is given in figure 2. This table represents a list of patients

in a hospital and each element contains a piece of information about a patient. A row in a

table can be called a record or a tuple (several other terms exist). All elements in a row are

thus related to one patient.

PATIENT

Name

J. Smith

S. Jones

address city date of birth

Boschdijk 3 Eindhoven 09-12-1960

Herenplein 2A Geldrop 24-04-1951

Figure 2 Example of a patient table

bloodtype

o
A

When it is possible to record and guard the various relations on database level then we

may speak of a relational database. So besides for creating tables the DBMS must also

provide facilities for simuitanuously recording relations between tables. If, on the other

hand, we need application software to do so, we will have to call it a relational database

system. It is much more desirable to have a system that records these relations on database

level, where they belong, than to have to use application software. In practice however,

most DBMS's provide very little facilities to record relations on database level although

the possibilities in new versions are growing rapidly.

7

2.1.3 A semantic relational database system

In the previous section we have seen what a relational database system is and that it has

the possibility to retain various relations between tables or the information elements of a

table. Most relational database systems however, 'have only a very limited understanding

of what the data in the database means' [Date, 1986]. We would like to be able to

incorporate the semantics, the meaning of the data in the database, into the database

system. It would then be possible for the database system to recognize that two columns,

each extracted from a different table, cannot be joined (see chapter 3.8) because their

values are semantically different, although the values both might be numeric values.

In the case of a relational database system where the emphasis lies on the meaning of the

data we may speak of a semantic relational database system. In practice this will require

the use of application software to record and guard the constraints we have set over the

data. Of course we would like to do this on database level instead of having to use

application software, just like with all the relations.

2.1.4 The datamodel of a semantic relational database

A datamodel is used to specify which information will be stored in the database, it will

show the structures (relations) of the information and the constraints on the information.

The datamodel is our basis for an implementation of a database(system). The datamodel is

independent of differences in hardware or relational DBMS's.

The constraints on the data are also recorded in the datamodel and we therefore use a

formal technique to define our datamodel which is very useful for semantic relational

datamodels (see chapter 3).

8

2.2 An historic review of EMDABS

In 1985 a first beginning was made with the development of a multi-institutional research

database for electrophysiologic monitoring of the nervous system. The collaboration of

neuro-electrophysiologic research groups from different institutions required a database

system that would enable the exchange of high quality information [Theisen et aI., 1986].

This database system would also make research much easier on the large amounts of

information collected during a monitoring session. This database system was called

EMDABS (Electrophysiologic Monitoring DAtabase System) and the development of this

database system was primarily done at the division of Medical Electrical Engineering.

A first implementation of EMDABS was based upon dBASE III, an existing DBMS. After

some time, limitations of the dBASE III DBMS became clear: in dBASE III a maximum

of only fifteen files could simultaneously be opened which was clearly not enough for

even the initial datamodel already contained twenty tables [Theisen et aI., 1986]. In figure

3 we see the data structure of the first implementation. Because of this and other

limitations of dBASE III it was decided not to use this system any more. A larger DBMS

was then selected that could handle a large database and could be used on a personal

computer and Oracle seemed to be a useful DBMS that could handle the database system

in mind (there is also a mainframe version of Oracle). The database implemented in

dBASE III was therefore converted to an Oracle version.

With the further development of the database system on Oracle more problems arose, not

concerning any limitations of the Oracle DBMS, but which dealt with limitations in the

EMDABS datamodel. At that moment it became more and more clear what information

was going to be stored in the database and what sort of relations existed between the

various kinds of information. It was realized that the existing datamodel was far too

simple and that the development of such a datamodel and the database system following

from that was highly underestimated. At this point a new start was made with the design

of a new complete datamodel.

9

l STLDIES J s..a..eCTS

1 key:study _ code
lei- WId ~.dIota

key. tUI_c:oa.

[

l "","ONS
kllily. studY_code. fIlb_code. sessiorLn

1
jEVENTS 1!IVENT1

-LATlc::l\I ECG PAlCVP ~sl
[, GAS SATU-,[ARTERIAL EEG TEMPJ AN6J...YSIS RATION PF£S&..AE

L L I I I
;.;.;~·············1:·········~···········:t·······

VENT ECG EP
EVENTS GAS ART PRESS EEG

SAT PIVeM' TEM>

Figure 3 Datastructure implemented in dBASE III

In may 1990 when the M. Sc. project described in this report started, a partial datamodel had

been designed which left the time-dependent information unspecified. In this project we will

develop a datamodel for this time-related information, the time-datamodel, which will be

specified by a formal technique.

2.3 System requirements of EMDABS

There have been some changes concerning the system requirements since the beginning of

the EMDABS project. The database system was meant to be multi-institutional, which

requires a form of standardized storage of information to facilitate sharing data among

institutions. The database system that is now being developed will in the first place be used

by the servo-anesthesia research group of the division of Medical Electrical Engineering. The

10

information that can be collected in the database however, is more general so that the

database system can also be used for other neuro-electrophysiologic research.

The writing of an application program for creating a user-interface that is easy to use will be

of great importance. One could for example think of pre-defined questions that can be used

to extract information from the database. The main objective at this moment however, is to

develop a database system that will make research for the servo-anesthesia group much easier.

The database system must therefore have facilities to store large amounts of data including

for example the adjustments of equipment, data from arterial bloodpressure, evoked potentials

(EP) and the description of real-time events. This may cause hardware problems, but hardware

facilities are improving rapidly.

Because of the fact that we want to use the database system for research purposes this will

force some heavy constraints on the data in the database. Data integrity has to be controlled

and the meaning of the data is of great importance. We want to instruct the database system

on the meaning of the data it has stored in its database, so what we are developing is a

semantic relational database system. The DBMS Oracle only provides application software

to record and guard the constraints on the data and it is not yet possible to do this on database

level.

This project is concerned only with the development of the time-datamodel on a database

level so we are in fact developing a semantic relational database and we will as such refer

to it in the rest of this report.

3. SEMANTIC RELATIONAL DATABASE CONCEPTS AND THEIR

FORMAL SPECIFICATION IN A DATAMODEL

11

In this chapter we will discuss the concepts of semantic relational databases and we will

specify them using a formal algebraic technique which will also be used in the formal

specification of the datamodel (we will use a pascal-like notation that is equivalent to the

more mathematical notation). In appendix A some algebraic terms are defined that will be

used in the formal specification. This formal technique is especially useful to record the

semantics of the data in our datamodel. This will be done by means of various constraints.

By using this formal method we are able to specify the data model in a clear and elegant way.

The formal method was developed at the division of Mathematics and Informatics of the

Eindhoven University of technology and is described in [de Brock, 1985; de Brock 1989;

Korlaar, 1989].

3.1 Entities and attributes

We can distinguish relevant objects within our information system or database system.

Possible relevant objects to a hospital are: patient, physician, nurse, treatment etc. Relevant

objects to the servo-anesthesia research group are, for example: equipment, monitoring

session, study, institution. These relevant objects are called entities and each entity is

characterized by a set of relevant attributes. Relevant attributes to a patient are, for example:

name, address, bloodtype etc. And to a monitoring session: session number, begintime,

endtime etc.

A regular set function g which has the set of entities of an information system as its domain

and the sets of attributes of these entities as second coordinates is called the database

skeleton.

12

Example:

g = {(article; {code, name, orderaddress}),

(order ; {number, date, supplier, amount}),

(supplier; {number, name, address})}

For each of the relevant attributes we state what values they may have. We call this an object

characterisation. An object characterisation of an entity E belonging to a database skeleton

g is a regular set function over g(E). The conditions that the values of separate attributes must

meet are called the attribute constraints.

For example, let g(E)={number, date, supplier, amount}. An object characterisation F of E

might be:

F = {(number; [1..100000]),

(date; [19000101..20991231]),

(supplier; chs(15»,

(amount; [1.. 100000])}

3.2 Tupletype and tuple constraints

We have seen that an object characterisation specifies what values the various attributes can

have. We will define a tupletype to specify what combination of attribute values are possible

for a certain object. A tupletype of an entity E is a non-empty subset of the generalized

product of an object characterisation. IT we have an object characterisation F and a tupletype

T we can formally write this down as:

T = { tit E II(F) A CCt) }

where CCt) contains the tuple constraints and an element of T is called a tuple. The tuple

13

constraints are the conditions each combination of attribute values within a tuple must meet.

However, this may not lead to T=0.If we take the object characterisation F of the previous

example we might specify a tupletype T as:

T = {t I t E lIeF) A t(supplier)='candy factory' => t(amount»5000 }

3.3 Table, tabletype and table constraints

We all know what a table looks like (see fig. 2) but we will now give a formal specification

of a table. If A is a set then:

D is a table over A = D is a set of functions over A.

This definition implies that every subset of a tupletype is a table. We now define the term

tabletype as the set of tables that are interesting to us. Say T is a tupletype then we define

a tabletype as:

IT is a tabletype of T = IT = {D I D ~ T A CC(D) }

where CC(D) contains the table constraints. These constraints specify which conditions the

combinations of tuples within a table must satisfy. Again this may not lead to IT=0, but IT

will contain the empty set (table is empty). If there are no constraints at all then all subsets

of the tupletype are useful tables. We give an example that uses the tupletype specified in the

previous example:

IT = {D I D ~ T A "If ~s ED: t(number) .. s(number) v t=s }

We will see later in this chapter that the table constraint used here is a special kind of

constraint, namely a key. We can also say that IT is a tabletype over A, where A=g(E).

14

3.4 Database characterisation and database type

In section 3.1 we defined a database skeleton. Now suppose we have the following database

skeleton:

We can now specify the set of possible object occurrences by means of a tupletype and the

set of possible tables by means of a tabletype. Analogously we will define a database type

to designate what combinations of tables actually can occur. Formally we will write this down

analogous to the object characterisation and tupletype:

DK is a database characterisation to a database skeleton _ Dk is a regular set function over

dom(g) and Vp E DK : kzP is a tabletype over g(ktp).

An element of a database characterisation is called a database snapshot. We define a database

type, also known as a database universe, as a non-empty subset of the generalized product of

a database characterisation. More formally:

Let DK be a database characterisation. Then the database type DT belonging to DK is:

DT = { X I X E II(DK) A DC(X) }

where DC(X) contains the database constraints. These constraints are the conditions which

the combinations of tables within a database snapshot must satisfy. Again this may not lead

to DT=0.

In the following example the previous formal definitions are used to specify a small database

type. This database type is not meant to look like a regular database but is used to give some

insight in the previous definitions. We will not use any constraints in order to keep the

example simple.

g = {(supplier; {name, city}), (order; {supplier, amount})}

F-supp = {(name; {'Jones', 'Smith', 'Blake'}), (city; {'London'})}

F-ord = {(supplier; {'Jones', Smith', 'Blake'}), (amount; {lOO, 1000})}

15

T-supp = IT(F-supp) = {('Jones' ; 'London'), (,Smith' ; 'London'), ('Blake' ; 'London')}

T-ord = IT(F-ord) = {('Jones' ; 100), ('Jones' ; 1000), ('Smith' ; 100), ('Smith' ; 1000),

('Blake' ; 100), ('Blake' ; 1000)}

TT-supp = {D I D ~ T-supp } =

{ 0, {('Jones' ; 'London')}, {('Smith' ; 'London')}, {('Blake' ; 'London')},

{('Jones' ; 'London'), ('Smith' ; 'London')}, }

TT-ord = {D I D ~ T-ord } =
{ 0, {('Jones' ; 100)}, {('Jones' ; 1000)}, {('Jones' ; 100), ('Jones' ; 1000)},

{('Jones' ; 100), (,Smith' ; 100)}, }

DK-store = {(supplier; TT-supp), (order; TT-ord)}

DT-store = IT(DK-store) =

{{(supplier; {('Jones' ; London)}), (order; {('Jones' ; 100)})}.

{(supplier; {(,Jones' ; London)}), (order; {('Smith' ; 100)})},

{(supplier; {('Smith' ; London)}), (order; {('Blake' ; lOOO)})},

{(supplier; 0), (order; 0)}, }

3.5 Unique identification and keys

We do not only want to store the information in a database, we also want to be able to

retrieve it. To do this we need some sort of addressing mechanism. We can address a table

by its name, but how can we address a specific tuple within that table? To do this we will

need an attribute or attributes that will uniquely identify a tuple within a table. This implies

16

that each tuple within a table must have values for these uniquely identifying (in short

notation: u.i) attributes that differ from the other tuples within the same table. Formally:

if A and B are sets and D is a table over A then:

B is u.i within D '0' t,s ED: t t B=s t B => t=s.

We call B a key of a tabletype IT if B is u.i. within each element of IT. If, on top of that,

no other real subset of B is a key of IT then we may call B a minimal key of IT. More

formally:

If A is a set and IT is a tabletype over A then:

B is a key of IT B is a set and '0' D E TI : B is u.i. within D.

B is a minimal key of IT B is a key of IT and '0' C ,;: D :

C is a key of IT => C=B.

The condition that a set B has to be a key of a tabletype IT can be recorded as a table

constraint within the tabletype IT.

3.6 Database constraints, subset requirements and foreign keys

Database constraints can connect different tables with each other. The most important class

of connect conditions are called the subset requirements. There are a lot of different subset

requirements so we will take a look at some of their subclasses.

- The standard form of a subset requirement is sometimes called a referential integrity

constraint. We can formally specify this constraint as:

If D\ and D2 are tables over A and B, and A' !; A and B' !; B are sets then:

D\ It A' !; D21t B' 00 h is a subset requirement. (1)

17

where h is a bijective function from A' to B' that indicates which attribute of A'

corresponds with which attribute in B'. A longer formulation of this subset requirement is:

{ t t A' I t E 01 } ~ { soh I s E 02 }

When B' is a key within the 02 table then we call A' a foreign key. 1n the case that A and

B are equal then h is the identical function and can be omitted. We then get 01 It A' ~

02 It B' as our subset requirement.

- A stronger subset requirement arises when the subset requirement works both ways. We

then get:

01 It A' = 02 It B' 00 h is a stronger subset requirement. (2)

The same remarks which apply to the first subset requirement also apply to the second.

- Another sort of subset requirement is an extension of the first two. It specifies, by means

of tuple constraints, for which part of the table the requirement must hold. Such a subset

requirement could well be:

01 It A' = { t 0 hit E 02 A CCt) }

where CCt) contains the tuple constraints.

- The last form of subset requirements we will discuss are actually not database constraints.

If the table indices 01 and 02 are the same for one of the above subset requirements, then

we call this an internal subset requirement. This subset requirement however, can be

recorded as a table constraint and therefore cannot be called a database constraint.

18

3.7 Diagrams

With the recording of subset requirements we formally connect tuples from one table to tuples

of another table. We can show these various subset requirements in a diagram to get a

compact picture of the datastructure in the datamodel. In figure 4 we see an example of such

a diagram. We will now discuss the meaning of the several symbols used in the diagram.

A box in the diagram represents a table and within a box, printed in capital letters, we find

the name of the table and the minimal key within a table is written in small print below it.

Between the tables there are connection symbols that represent the subset requirements. The

connection between table DMSION and table SPECIALIST for example, represents a subset

requirement of form (1). The dotted line tells us that a tuple within the table that is connected

to the dotted line, can belong to a tuple within the table on the other side of the connection

and a solid line indicates that a tuple within the table connected to the solid line must belong

to a tuple within the table on the other side of the connection.

N PATIENT DIVISIO
dlv_numb er paCnumber

I
-

SPECIALIST PAT_HISTORY
spec_number pat_number

Figure 4 An example of a diagram

A tripod means many and just one line means one to indicate many-to-one (1), one-to-one (2)

etc. relations. If a tripod is used or just one line depends on the set of attributes the subset

requirement refers to. If this set is a key within the table we use one line which corresponds

19

with a one-to-... relation and if the set is not a key then we use the tripod, which corresponds

with a many-to-... relation.

The relation between the SPECIAUST table and DIVISION table might for example mean

that every specialist belongs to a certain division (div _number will be a foreign key within

the specialist table), but not every division has to have its own specialist(s). So every

div _number in the specialist table must occur in the division table (the division must exist),

but not every div _number in the division table may occur in the specialist table.

3.8 Operations on tables

We now know that the information of a relational database system is recorded in tables, so

retrieval of this information mostly comes down to the manipUlation of tables. Because of the

fact that we have defined a table as a set, all known set operations are also applicable to

tables. In addition to these operations we define the operation join which is used to join two

(or more) tables. Formally:

Let D\ and D2 be tables then:

D\ ... D2 = { t\ U t2 I t\ E D\ 1\ t2 E D2 1\ t\ and t2 are joinable}

What is meant by joinable is defined in appendix A. So if Dj is a table over A and D2 a table

over B then is D\ ... D2 a table over A u B. Some other operations are:

a selection from a table D is specified by:

{t I tED 1\ CCt) }

where C(t) now specifies a selection criterium.

20

Let D be a table and A a subset of the attribute set of D. The table created by D It A has

slunk to a table over A which only contains the attributes we are interested in.

Let D1 and D2 be tables over the same attribute set A. Then the union, intersection and

difference of these two tables will again be tables.

3.9 Pascal-like notation of the previous concepts

In the formal specification of our datamodel we will use a pascal-like notation that is

equivalent to the more mathematical notation of the previous chapters but is more readable

and surveyable. We take a small exemplary database extracted from the EMDABS datamodel

to show the analogy between the two notations. The bold printed terms of the pascal-like

notation have the following meaning:

type : type specification

tatp : tabletype spec.

lulp : tupletype spec.

obcar : object characterisation

tuc : tuple constraints

keys: keys of a tabletype

dbcar : database characterisation

dbtp : database type spec.

endtype : end of type specification

endtatp : end of tabletype spec.

endtutp : end of tupletype spec.

endobcar : end of object characterisation

tac : table constraints

dac : database constraints

enddbcar : end of database characterisation

enddbtp : end of database spec.

We will first give a formal specification of the exemplary database in pascal-like notation

which will be followed by the equivalent mathematical notation. Names of tables, attributes

etc. denote the same for both notations.

type nr = [1..100 000];

string = array [1..80] of character;

body = {,HEAD','NECK','BREAST','ARM','LEG'};

tatp montage =

tutp T-mont =

obcar F-mont =

session_n

elec_code

placement

attachment

endobcar;

placements of electrodes within a session

: nr; session number

: string; electrode code

: string; placement of electrode

: string; means of attachment

tuc t(elec_code)='CUP30' => t(attachment)='GLUE'

endtutp;

tac 'V, ED: 3. ED: s(session_n)=t(session_n) 1\ t(attachment)='GLUE'

keys {{session_n,placement}}

endtatp;

tatp electrode ylace =

tutp T -elepl =

obcar F-elepl =

placement

bodypart

endobcar;

endtutp;

keys {{placement}}

endtatp;

: string;

: body;

possible electrode placements

electrode placement

bodypart on which the electrode is placed

21

22

dbtp emdabs =

dbcar DK-em =

mont

elepl

enddbcar;

: montage;

: electrode .Jllace;

dac X(mont) It {placement} ~ X(elepl) It {placement} "

V, E X(mon') : 3, E X(mon') : 3u E X(elepl) : s(session_n)=t(session_n) "

t(placement)=u(placement) "

u(bodypart)='lUEAJ)'

enddbtp;

endtype

The equivalent mathematical specification is:

nr = [1..100000];

body = {'HEAD' 'NECK' 'BREAST' 'ARM' 'LEG'}' , , " ,

F-mont = {(session_n ; nr) , (elec_code ; Chs(80» , (placement; Chs(80» ,

(attachment; Chs(80»};

F-elepl = {(placement; Chs(80» , (body part ; body)};

T-mont = {t I t E II(F-mont) " t(elec_code)='CUP30' = t(attachment)='GLUE'};

T-elepl = II(F-elepl)

montage = {D I D !;; T-mont /I. V s,' ED: «s(session_n)=t(session_n) /I.

s(p~acement)=t(placement» = s=t)

" V, ED: 3, ED: s(session_n)=t(session_n) "

t(attachment)='GLUE' };

electrode.Jllace = {D I D ~ T-elepl " V,,'ED: s(placement)=t(placement) = s=t};

DK-em = {(mont; montage),(elepl ; electrode-place)};

emdabs = {X I X E II(DK-em) " X(mont) It {placement) ~ X(elepl) It {placement}

" VsEX(mont): 3tEX(mont): 3UEX(elepl): s(session_n)=t(session_n)"

t(placement)=u(placement) "

u(bodypart)='HEAD'}.

23

24

4. DESIGNING A DATAMODEL FOR A CLINICAL RESEARCH

DATABASE SYSTEM

4.1 Introduction

Designing a datamodel for a database system is a difficult task. The actual successful

development of the database system depends on it. The ideal situation would be if a method

existed which took us step by step to the actual specification of a good datamodel. For the

development of administrative database systems there do exist some methods that guide you

through the process of design. Still, a lot will depend on the designer to develop a good

datamodel.

We are developing a clinical database system that will be used for research purposes and

there is unfortunately not much literature available on the subject of designing clinical

research database systems and in particular the design of the datamodel. At the time we

started with designing the time-datamodel, there already existed a partial datamodel and a

datamodelling experience of about five years. The experience acquired during those years

formed a base for a new approach in the development of the time-datamodel. In addition we

used relevant guidelines mentioned in [Date, 1986] and our common sense.

4.2 Problem analysis

The first step to be taken in the development of a database system or data model is the

problem analysis. We can analyze the problem by answering the following questions: what

kind of system does a future user need? What are the system requirements? Why is this

system needed? What is important to the users of the systems? What are the specific problems

of this system?

25

We will now answer these questions for the EMDABS database system as far as they are

related to the design of the datamodel. As we have already stated, EMDABS is a database

system that is going to be used for neuro-electrophysiologic research and in particular

research related to anesthetic depth [Cluitmans, 1990]. EMDABS will store the large

quantities of information that are needed for this research [Theisen et aI., 1986]. It will make

research on this information much easier, practical and surveyable. An event recording and

data acquisition system called ERDA [de Jong, 1986] already existed which collected

information during neuro-electrophysiologic monitoring sessions. The datamodel will therefore

depend on this recording technique for the data is already structured by this recording system.

The meaning of the data in the database is very important for it contains medical information

and the information will be used for research purposes. If we want to ensure data integrity,

checks must be made on the information as it is entered. We do not want a database filled

with contradictory data and nonsense.

As of the varied and unpredictable nature of research needs, our data model will be dictated

by a high degree of flexibility in integrating data during queries and by the accessibility of

data [Budd et aI., 1988] r Brower et aI., 1984]. Some practical query examples help to get

a clear picture of the possibilities that must reside in the data structure. Future extensions and

changes of our system should also be considered. One of the requirements stated that the

system is intended for research on anesthetic depth but should also be useful for other neuro

electrophysiologic research. Flexibility of our datamodel is therefore important.

4.3 Data analysis

This is the second step we take in the development of the datamodel. Again we can draw up

some questions that must be answered: what data will be stored in the database and what is

its meaning. What relations exist between the various kinds of data? What are the constraints

on the data? What will the data be used for? How is the data collected and what are the

consequences?

26

Data analysis is a difficult process as the data is often spread over a large amount of persons

and/or documentation. To be sure of having extracted all relevant information requires a lot

of interviews and a good interviewing technique. Asking a lot of (good) questions and

frequently feeding back information during design may prevent the design of a datamodel

which will be unable to serve its intended purpose. Fortunately, the information we needed

was available through one person. We will not discuss the data analysis of EMDABS here,

but it is worked up in chapter 6.

4.4 Guidelines to a good datamodel

Within the information we obtained with our data analysis we try to distinguish entities and

attributes as to specify a first preliminary database skeleton. An initial datastructure will

become clear, but this structure is not nearly definite. Now a lot of what has been said in this

chapter becomes important. All knowledge about the system we acquired with the help of our

problem and data analysis is needed for designing the datamodel. Apart from that we will

need some guidelines to help us with the development of a good datamodel.

Some general guidelines we have used in the design of our model are:

- minimize redundancy. We are dealing with large amounts of information that will need a

lot of storage space and redundancy is a waste of this space. More important are the

update, delete and insert anomalies that arise from redundancy. If some piece of

information exists within more than one table then we will have to be very careful with

updating, deletion and insertion of information for this could well lead to a violation of our

data integrity requirement. Information that should be exactly the same could now present

different values. The introduction of redundancy therefore requires additional checks to

insure that data integrity is not violated.

- In some cases however we cannot avoid redundancy because of the fact that it creates the

relations between the various tables. An example of this form of redundancy are the foreign

27

keys of the tables. We also accept redundancy if it leads to easier data retrieval, which

often means the addition of one redundant attribute to our table. The introduction of

redundancy however, must really be compensated by a considerable improvement of data

retrieval possibilities.

- Don't let the datastructure be too dependent on the present. For example, if there were only

two surgeons present during monitoring sessions in the past, don't make this rigid

assumption in your datamodel. It could weIl be possible that more surgeons will be present

in the near future. So again we stress the need for flexibility in our data model.

Keep your datamodel surveyable and neatly structured. If it is impossible to make your way

through the maze of tables and relations of your datamodel then there might be something

wrong. It will be very hard for possible naive end-users to get insight in the structure of

the stored data which will handicap fast and complete use of the database system. It is

possible to create too many tables and relations while a simpler compacter structure is

possible.

- Try to keep the tables in Boyce-Codd Normal Form (BCNF). We will give a definition of

BCNF that links up with the formal method described in chapter 3, but first we introduce

some other definitions [de Brock, 1989]. We call C incidental dependent of Bin D if and

only if each couple of elements of D that agrees upon B also agrees upon C (for agree see

appendix A). In a shorter notation we write this down as: B C in D. Do not confuse this

arrow with the implication arrow =}. Formally:

If A,B en C are sets and D is a table over A, then:

B C in D = 'If t,s ED: t r B=s r B -+ t r C=s r c.

The interesting cases are those where B ~ A and C ~ A (Formally we don't even need the

other cases while B C in D = (B n A) -+ (C n A) in D).

28

Analogous to incidental dependency we define structural dependency for a set of tables.

To distinguish this generalized term from the notation B -+ C in D for incidental

dependency we use the notation B ,. C in TT. Formally:

If A,B and C are sets and TT is a tabletype over A, then:

B ,. C in TT <0> 'Ito err: B -+ C in D.

The interesting cases are again those for which B ~ A and C ~ A. We can now define the

Boyce-Codd normal form:

If A is a set and TT is a tabletype over A, then:

TT is in BCNF <0> 'ltB!;A: 'ltaeA : (B,. {a} in TT A a'" B) '* B is a key ofTT.

Another requirement for a tabletype TT to be in BCNF is that it must also be in 1NF (first

normal form). INF states that every attribute value must be 'atomic'. What we mean here

is that an attribute is not allowed to contain a set of values. A problem arises when we use

strings as attribute values for a string can be regarded as a set of substrings. However, we

will regard a string as being atomic in our datamodel. This assumption has to be made in

practice and it won't cause any problems.

Why do we want to keep our tables in BCNF? If an attribute c is determined by a set of

attributes B in a tabletype TT (B ,. {c} A c'" B) and B is not a key of TT then this can

lead to update anomalies [Date, 1986]. We can say that c has an alternate key B, but B is

not a key within the table of attribute c.

The method we described in this chapter leaves a lot to be done by the designer itself. The

designer will need his own common sense to create a datamodel that satisfies the

requirements of a good data model and of the system.

29

5. THE SUBJECT-SESSION DATAMODEL

5.1 Introduction

Before we start with the actual design of the time-datamodel we will describe the partial

datamodel that already existed. This datamodel includes information about the monitoring

sessions, the subjects of the monitoring sessions, personnel present at the sessions etc. and

was designed by H. Kuipers of the division of M.E.E. We call this partial datamodel the

subject-session data model and its diagram is given in figure 5. The diagram technique used

here is almost the same as the one described in chapter 3. In figure 5 a connection between

two tables can only present a one-to-one relation or a one-to-many relation and nothing more

for it was not yet decided, at that moment, what exact diagram was going to be used.

The subject-session datamodel however, has changed during the development of the time

datamodel because of structures that are specified in the time-datamodel. The data model also

proved to be incomplete and some additional tables had to be created at subject-session level.

In this chapter we will only give an extensive explanation of those parts of the subject-session

datamodel that are related to the time-datamodel and a give a short description of the rest of

the model. A report is written, simultaneously with this report, by H. Kuipers on the design

of the subject-session datamodel and will contain a more elaborate description of this model.

5.2 Sessions and studies

A central entity in the total datamodel and thus in the subject-session datamodel is the

monitoring session. Our neuro-physiologic research is based upon these monitoring sessions

which can involve human subjects as well as animals. A unique session number is assigned

to each monitoring session, the attribute session_n, which is therefore the key within the table

SESSIONDATA (see fig 5). The table SESSIONDATA contains general information about

a monitoring session (subject, type of surgery etc.). Important to the time-datamodel are the

30

I. """"",TA .J 6l.B.LOOAT~ 1 r UU,...mloIoT ... S1\D..Mn)ATA .1 sn.o_OIFODATA 11, .lUJ_~T'" .1
Mv: <h.Q... Iwv. ~ ____ ~ • .-v

_ IWI<: -= ..._- - -- -......,,-- .. ---......
1 I r r 'Y r r r

l~,.·J Q.B.LOEMOGR)A T A 1[~~]I~Jl Sn.o'l'OA T A 11-"=:...1 1oey._0PU\O\.Q...~ key. atI_coxa Iwy. alUdy coc»

T 1 1 1
[6ESSICN>A T A

key. ~n

1 I I 1 1
I ~T' J [--...... -] [-] [-...... ... MAT~J [~]
~ *--_ -.._ ..,.. --.., ... -.... ~ -.." key: -.kInJl

J
I~I l SESS_STl.JX),It,TA l key: __ on 1\ study_code

1
I. FUeT""" .1 1..::g.::.1

___ TA

II.~".) II. -:-" .1 I.~".I key. f1.n:: ooc» -~- --.- --.- --.-
1

l
-...-....SlUlOo"oT ...

J I~I '"" -"""n.di' ___

~- ,l. l - .. ,e.,.. J I. -:::n-" il. --e..TDIo.TA

_ .. -" --~T"'1101 - -... ----- --- --- --- ---~-
SLB...ECT-!E.SSION DATA ~
------------- ----------- ---------- ----------- ------

T"'" OATA) I - = I I ~ I EVENTS _ ""_ ~ MT PWCVP _

Figure 5 The subject-session datastructure

attributes session_n, begin_time and end_time of which the last two attributes represent the

begin- and endtime of a session. Time is presented here as a long-integer time that consists

of an integer of nine numbers which uniquely identifies a timespot. The long-integer time can

be converted to the more readable standard date and time form.

Within a research project that uses the EMDABS system we can distinguish several studies

that contain a specific area of neuro-electrophysiologic research. An example could be a study

to investigate the effects of certain drugs on neurophysiological parameters performed as part

of the anesthetic depth project. The STUDYDATA table in figure 5 contains a short

description of each study included in EMDABS. A more extensive description of a each study

is found within table STUD _INFODATA. Each study is assigned with a unique (key) attribute

study_code.

31

A monitoring session can be used to acquire data for several studies and a study may include

several monitoring sessions. Which session belongs to which study can be found in the SESS

STUDDATA table. Such a table can be regarded as a relation between the SESSION and

STUDY table and we will call these tables coupling tables. A tuple within the SESS

STUDDATA table is uniquely identified by the attributes session_n and study_code.

Monitoring sessions can take place at a lot of different institutions. The INSTITUTION table

contains information on these institutions (name address etc.) and key within this table is

instcode, a unique code assigned to each institution. So table SESSION has a foreign key

instcode to denote the institution at which the session took place.

The last table that has a direct relation to the time-datamodel is lookup table DRUGDATA.

This table contains a long list of drugs (names, category etc.) which are each uniquely

identified hy the attribute drug_code. We call this table a lookup table because it contains a

long list of certain items that other tables will refer to and thus avoid redundancy. For

example, there will be no need to include a full description of a drug each time a table refers

to it. A lookup table is also used to force the user to make a choice out of this table when

data is inserted, instead of creating his own name for a drug. A lookup table therefore

enforces standardisation.

5.3 A short description of the remaining subject-session datamodel

We will now give a short description of the remaining tables in the subject-session datamodel

that have no direct relation to the time-datamodel.

SUBJ_IDDATA : This table contains personal information on the subjects of monitoring

sessions. The key within this table is sub_code, a unique subject code. The information of this

table will have to be protected for it contains confidential information (name, address etc.)

on subjects.

32

SUBJ _ HISTDATA : This table contains a general (medical) history of a subject and other

information that might be relevant. For example, when a subject is allergic to some drug we

can include it in this table. Key within this table is the set of attributes sub_code, line_nr and

entry_date. Sub_code represents the subject, line_nr identifies a line of text and entry-date

shows the date at which the text line was entered.

SUBJ_DEMOGRDATA: This table contains demographic information on each subject, like:

sex, bloodtype etc. Sub_code is the key within this table and as we have stated it represents

the subject.

SURGERYDATA : This lookup table contains a list of different types of surgery that have

been used in monitoring sessions. Each type of surgery is assigned with a unique code, the

surgery_code. This attribute is also a foreign key within the SESSIONDATA table.

STUD_INSTDATA : This coupling table specifies which institution participates in which

study. An institution may participate in several studies and a study may be performed by

several institutions (a collaboration of institutions is also possible). Key within this table is

therefore the set of attributes study_code and instcode. These are keys of the tables being

coupled.

GRANTS: This lookup table contains a list of grants that are used for the different studies.

Key within this table is the attribute grant_code.

STUD_GRANTDATA : This couple-table specifies which grant belongs to which study. A

grant may support several studies and a study may have several grants. Key within this table

is the set of attributes study_code and grant_code. Again the key within the couple-table

consists of the keys within the tables being coupled, as one would expect.

PRE_SESS_DRUGDATA : This table contains information about drugs that have been

administered to the subject before the monitoring session. Key within this table is the set of

attributes session_n and drug_code. Drug_code (foreign key) refers to the table DRUGDATA

33

and session n (foreign key) refers to the table SESSIONDATA.

PRE_SESS_GENERAL : This table contains general infonnation on a subject before a

monitoring session like, for example: heart rate, weight and length of the subject etc. Key

within this table is session_n which has a one-to-one relation with table SESSIONDATA. The

pre-session information belongs to one session only and a session has only one tuple with

general pre-session information.

PRE_SESS_BLDSERUM, PRE_SESS_HEMATOL and PRE_SESS_URINE : These three

tables contain specific information on a subject which is respectively the labresults on

bloodserum, urine and hematologic information of a subject. Session_n is the key within each

of these three tables and again this causes a one-to-one relation to exist between these three

tables and the SESSION table.

PERSONNEL : This lookup table is in fact a list of all the personnel (with name and

address) that have been present at monitoring sessions. Key within this table is the attribute

pers _code, a unique personnel code.

FUNCfIONS : This lookup table contains a list of possible functions that personnel attending

a monitoring session can have. Func _code is the key within this table.

SESS]ERSONNELDATA : This coupling table specifies what personnel attended each

session in what function and it only contains personnel that was needed in general for this

monitoring session (as distinct from personnel present for a study). Key within this table is

the attribute set session _ n, func code and pers _code which have the same meaning as

mentioned above.

SESS_PERS_STUDDATA : This coupling table specifies what personnel attended each

session in what function (function is related to the study for which a person is attending a

monitoring session) and for what study. Session_n, study_code, func_code and pers_code is

the key within this table. It may be possible that one person attends a session on behalf of

34

two different studies in two different function's and is also included in the

SESS]ERSONNELDATA table because that person was also needed in general for this

session.

SESS_INFODATA : This table contains more extensive information on the coupling of a

session and a study in order to keep the SESS _ STUDDATA table compact, which will lead

to a more convenient use of the SESS STUDDATA. In most cases we will only want to

know which session belongs to which study (see SESS_STUDDATA) and we won't need the

extra information. Key within the SESS_INFODATA table is the set session_n, study_code

and line_Of. Information is entered as lines of text and each line gets a number, which is why

we need the extra attribute line Of.

The part of the original datamodel we will now explain is merely an indication of how one

thought to develop the datastructure of the equipment adjustments and all other time-related

data rather than a well-considered datamodel. This part contains some serious flaws that will

be dealt with in chapter 6.

DRUGPUMPS : This lookup table contains a list of drugpumps (name, type etc.) that have

been used during monitoring sessions. A drugpump is uniquely identified by the attribute

drgpump _code.

SESS_DRUGDATA: This table contains information on drugs administered during a session

by drugpumps and for which study they were administered. Key within this table is the set

of attributes session _ n, studL code, drgpump _code. Other drug administrations are found at

timedata level (EVENTS).

SESS_GASDATA, SESS_ECGDATA, SESS]ADATA, SESS_EEGDATA,

SESS_ VENTDATA, SESS_SATDATA, SESS_BPDATA, SESS EPDATA AND

SESS_TEMPDATA : These tables are categorized according to the different physiological

parameters that may be measured during a monitoring session and contain the initial settings

of the equipment used in relation with these parameters, the equipment names and the study

35

for which these parameters are recorded. Adjustments made during a session are recorded at

timedata level. Key within these tables is the set session_n, study-code.

EVENTS: This is not a table but an information block that contains the events recorded with

ERDA [de Jong, 1986] during a monitoring session and which will be designed in chapter 6.

VENT, GAS, SAT; ECG, ART PRESS PNCVP; EP, EEG, TEMP : These three blocks

contain the equipment settings adjusted during a session, the coJlected raw physiologic data

and data derived from it. The structure however, is very global and has no real significance

as we will see in chapter 6.

36

6. THE TIME-DATAMODEL

6.1 Introduction

This chapter describes the design of the time-datamodel, but there are also some tables

introduced that actually belong at session-subject level but which were needed for the design

of the time-datamodel. The diagram technique we will use to show the datastructure of the

model is exactly the same as the one described in chapter 3. We will develop the time

datamodel step by step using the subject-session datamodel as a starting point and we will

describe this development in an informal way. The formal specification of the time-datamodel

can be found in appendix B that contains the formal specification of the total datamodel and

which will often be referred to. We will only describe the more complicated constraints of

the formal specification which we have marked with a eN' where n is a number and which

we will thus refer to. The other constraints in the specification need no further explanation.

The time-datamodel can roughly be separated in two modules: the events module recorded

with ERDA during a monitoring session and the information module related to the

automatically recorded physiologic parameters (also recorded by ERDA). We will first start

with the design of the events module.

6.2 The events module

6.2.1 Event categories

The datamodel of the events module will depend heavily on the recording system ERDA

(Event Recording and Data Acquisition) [de Jong, 1986] that records these events. It is

important that we know exactly what took place during an operation (= monitoring session),

for each event may influence the physiologic parameters which are automatically recorded and

their interpretation. Surgical actions like the incision of tissue, administration of drugs etc. or

37

shifting of the subject will therefore have to be recorded in an event list. The ERDA system

has changed since 1986 because of the knowledge acquired by the actual use of the system

during monitoring sessions and the events module is designed with respect to these changes.

The ERDA system is implemented on a IBM-compatible personal computer and events can

systematically be entered via the keyboard of the computer. One very important aspect of this

system is the recording of time that is coupled to these events. There are two time points that

are coupled to an event, one automatically registered by the computer and one entered

manually. The entry time of an event in the computer is automatically registered in a long

integer time (see chapter 5) and conventional time format (hh:mm:ss). The actual time the

event took place has to be entered manually in conventional time format. The recording

system couples this time to the event and also adds a long-integer representation of the event

time to it so that we now have four time labels coupled to an event. The user-interface of

ERDA is menu-driven and allows us to select one of the known events.

The ERDA system distinguishes several major categories in the events that will be recorded

on timedata level. These major categories are:

Drugs:

Fluids:

Two subcategories can be distinguished in drugs: drug concentrations

and drug administrations. During a monitoring session drugs can be

administered in three ways: continuously (drugpumps), intermittently

(injections, tablets) and in gas form. The concentration of the

administered drugs are also recorded and may change during a

session. It is also possible that the same drug is administered in

different ways.

The fluids that leave or enter the body are also recorded during a

monitoring session. The loss of blood, urine etc. is for example

recorded and the administration of glucose solution, ringer's solution,

saline etc. Samples may be taken from the fluids which leave the

body to be analyzed in a laboratory. The results from these analyses

38

Events:

will also be recorded on timedata level.

These are the operative actions that took place during a monitoring

session or events related to anesthesia. Some of these events are: start

of anesthesia, intubation, start operation, incision, closing wound,

movement, estimation of anesthetic depth etc. Later on in this chapter

we will see that the estimation of anesthetic depth does not really

belong in this category.

Commentary: We can use commentary to describe events that can't be categorized

according to the standard events known by the system. It is therefore

possible to enter text line by line and we use this for example, to

record commentary made by the anesthesiologist.

Artifacts: Something might happen during an operation which is known to

cause disturbances in one or more of the recorded physiologic

parameters and we call these events artifacts. A correct interpretation

of the measured parameters is only possible if we record these events

so there will be no need to guess for what might have caused the

disturbance. Some known artifacts are: electrosurgery, movements,

intederence from power supplies, eye blinking.

6.2.2 The event list

The output of the event recording system is written to a background memory and this

output is used to generate an event list so that we are able to read over everything that has

happened during a monitoring session. Each event is provided with a unique number that

makes the searching of these lists more convenient.

The recording format of the event list exists of a list of output lines, each line representing

39

an event and containing several different fields of which the first four fields are always

used for the recording of time. The first field represents the long-integer time at which the

event was entered, the second is the matching normal time form in hh:mm:ss. The third

field represents the long-integer time at which the event actually took place and the fourth

field is again the matching normal time form in hh:mm:ss.

The fifth field contains a code that specifies an event type or category; DC might for

example mean: continuous drug administration. The sixth field contains the unique event

number that allows us to exactly define the event that took place as well as the event type.

In the seventh field we find a description of the event that was menu-selected and it

usually contains a copy of the menu-line. In the case of a commentary event this field will

contain the entered text of the comment.

After the seventh field may follow another number of fields, but this depends upon the

event specified in this output line. We will now describe what additional fields belong to

what event type:

- Drug administration continuously and intermittently: drug number, unit number,

administered dose, cumulative dose.

- Drug administration gasses: drug number, unit number, administered dose.

- Drug concentrations : drug number, unit number, concentration.

- Fluids: unit number, administered/loosed dose, cumulative dose.

- Known artifacts and events: no additional fields.

- Estimation of anesthetic depth: estimation value.

Drug number and unit number are codes that represent a drug and a unit respectively. We

also mention that events which have been entered incorrectly are also recorded in the

event list while a correction is followed later. The incorrectly entered events have to be

stored in our database as well because of strict medical regulations. An example of a part

of an event list is given in figure 6.

40

EVENT LIST nr: 3; DATE & TIME: Thu Jul 06 12101:28 1989

Itime time Itime time I code I nr I event

@
615754899; 12;01:39; 615754899; 12:01:39;23;NLA not connected or inactive
615754900; 12101:40; 615754900; 12s01:40;23;current trigger type: NOG NIET GEINITIALISEERD
615754968; 12:02:48: 61575468 1; 91; ALFENTANIL ; 79; 1; 3500.00; 3500.00;
·*·CORRECTION***·
615755035; 12:03:55; 615754968; 12:02:48;
615755103; 12105;03; 615755103; 12:05:03;
615755110; 12105:10; 615755110; 12:05:10;
615755121; 12:05:21; 615755121; 12:05:21;
615755139; 12:05:39: 615755139; 12105:39;
615755343; 12109:03; 615754200: 11150100;
615755385; 12:09:45; 615754200; 11:50:00;
615755411; 12:10111; 615755411; 12:10:11;
615755406: 12:10;06; 615754200; 11:50:00;
615755418; 12:10;18; 615755418; 12:10:18;
615755419; 12:10:19; 615754200; 11;50:00;
615755430; 12:10130; 615754200; 11;50:00;
615755491; 12:11:31; 615755491; 12:11:31;
615755545; 12:12:25; 615755545; 12:12:25;

1; 91; ALPENTANIL ; 79; 1; 3.50; 3.50;
4; 16; IHeISIE ;

13; 21; SCHATTING ANESTH.DIEPTE; 4;
23; trigger off

7; 117; meting gestopt vanwege diathermie ;
1; 92; VECURONIUH ; 125; 1; 7.00; 7.00;
1; 99; PROPOPOL ; 0; 1; 70.00; 70.00;

23;trigger on;d;\eegdata\RI01pet.4
0; 78; ALPENTANIL ; 79; 4; 3750.00; 0;

23;trigger off
0; 79; VECURONIUH ; 125; 4; 3000.00; 0;
0; 80; PROPOPOL : 0: 10; 370.00; 0;

23:please enter depth of anesthesia
13; 21; SCHATTIHG ANESTH.DIEPTE; 4;

Figure 6 An example of a part of an event list

6.2.3 The datamodeI of the events module

The information found in an event list has to be stored in our database. The problems we

have to cope with are the following:

- The user has to be able to extract a complete survey of events that occurred during an

operation without much effort.

- The event list contains fields that have different meanings for different event types.

- Incorrect events must be stored as well.

- The values of doses, anesthetic depth and concentrations will be used in calculation

processes.

Because of the fact that the user has to be able to extract a complete survey of the events

from our database we create a table EVENTS (formal specification: see appendix B). This

table however, will not contain the additional fields that have more than one meaning, for

the number of additional fields vary for each event type and it would be difficult to force

constraints on these fields because of a difference in semantics. The fact that these fields

41

may be used for calculations also requires that we must be sure that the fields we use have

the same meaning. The diagram of the events module is given in figure 7.

We can only include the first seven fields of the events list in our EVENTS table. First we

remark that monitoring sessions can take place at the same time which will lead to event

lists containing equal long-integer times. We can uniquely identify an event if we know

the long-integer entry time of an event (it is impossible to enter two events in the

computer at the same time) and the session number, so we include these attributes as the

key within our table. We can't use the long-integer time at which the event took place to

uniquely identify a tuple, because events can take place at the same time (not unique) and

we can't use the conventional time form of the entry time because it specifies only time

and no date.

The first five attributes of the EVENTS table are: session_n and the four time fields

long_intime, intime, long_evtime, evtime in the same order as found in the event list.

session_n is a foreign key to the SESSIONDATA table and there is always an event list of

a session (Cll). The other attributes represent the event number (ev _number), event

description (event), event type description (eventtype) and correct entry or not (correct).

The event number is included because numbers are more convenient for searching

databases than text strings. The event type represents the different event categories we get

when we distinguish events according to the additional fields as seen in chapter 6.2.2. Two

relations between the EVENTS and SESSIONDATA table not shown in our figure 7 are

C9 and ClO. They specify that the long-integer begin and end time of a session recorded

in SESSIONDATA must also occur in the EVENTS table.

We will split up the information contained in the additional fields according to their

different meanings and create tables for them. The events which have no additional fields

are specified in the EVENTS table and need no additional tables.

The first table with the additional information is the DRUGEVENTS table. This table

contains the information on all drug administrations (including the gasses). The set of

42

SESSIOI\DA T A DRUGDA T A MEASLf£_ TYPE

'" '" '"
PROTOCOL

P'"otocol
estimation

VALIDITY
valid_code

Figure 7 Datastructure of the events

LAIJ'lES.L TS
Io'IO-ntme

MISIOI'Ln type_code

UNITS
LI1iLcode

attributes session_n and long_intime is a key within this table and also a foreign key to the

EVENTS table, of which the values of these key attributes are a subset (CI2). This is also

true for the following tables with additional information we will create. The other time

attributes and event number are not included because they are already specified in the

EVENTS table and not needed in this table (also true for other additional tables). The event

description and event type description (redundancy) however, are included so that the

information is readable without having to search the EVENTS table; we want to know how

which drug was administered. The correct attribute (redundancy) is included to avoid

mistakes. Otherwise we would have to look into the EVENTS table to make sure that the

information is correct.

The attributes that contain the additional information are specified in appendix B. The fact

that we have contained all drugevents in one table implies that the cumdose and cum_unit

attributes can have NULL (an empty entry) values in the case of gas administration, for a

cumulative dose has no meaning in this case (CI). The units in this table are contained in

43

separate attributes, for the numeric values in this table will be used for calculations. The drug

number in the event list is converted to a drug code which is a foreign key to the

DRUGDATA table of the subject-session datamodel. Constraint C2 specifies that the

cumulative doses of continuously and intermittently administered drugs have to increase in

time during a session, if the events have been entered correctly.

The DRUGCONC table contains all drug concentrations of the drugs that have been

administered during a monitoring session. Key within this table is of course again session _ n,

long)ntime. We remark that the same drug can be administered in different ways at different

times with different concentrations. The table is specified in appendix B and needs no further

explanation after the extensive explanation of the table DRUGEVENTS.

The FLUIDS table contains the additional information on fluids and the formal specification

is given in appendix B. The even/type attribute is left out because the event description

supplies the needed information. The cumamoun/ of a fluid must increase in time during a

session for the events that have been entered correctly (C3). The rest of the table needs no

further explanation.

We already stated in chapter 6.2.1 that the estimation of anesthetic depth would end up in a

different category and in fact it is now a category by itself. This table will need some further

explanation. During the monitoring session the anesthesiologist will give an estimation of the

anesthetic depth of the subject according to a previously arranged protocol. This estimation

will always be an integer and a protocol will state the meaning of this integer. Thus we

introduce the two tables ANEST_DEPTH and PROTOCOL that are specified in appendix B.

First we describe ANEST_DEPTH. The attributes session_n and long_intime are clear.

Estimation contains the estimation of anesthetic depth and protocol refers to the protocol that

has been used. The set of attributes protocol and estimation is a foreign key to the

PROTOCOL table. Because the anesthesiologist can only make an estimation of the anesthetic

depth of the subject he will also make a statement about the validity of his estimation. This

information is contained in the attribute valid _code which is a foreign key and refers to the

44

lookup-table VALIDITY that contains a list of possible statements that can be made about

the validity of information. Valid _code is the key within this table and the only other attribute

of this table is a description of the validity statement. We make use of a lookup table to make

sure that only standard validity statements with a clear meaning can be recorded.

The PROTOCOL table describes the protocols that have been used during the monitoring

sessions. This table contains the attributes protocol, estimation and description and for each

protocol a description is given for each estimation value of this protocol. The set of attributes

protocol and estimation uniquely identifies a tuple within the PROTOCOL table and the same

set of attributes in the ANEST_DEPTH table is therefore a foreign key to this table as we

have already stated.

In chapter 6.2.1 we stated that samples could be taken from the fluids that leave the body of

the subject and brought to be analyzed in a laboratory. The results of these analyses are also

included in our database and thus related to the fluids events. The table LABRESULTS

contains the results of the fluid analyses and we have used a special construction to record

them. We need this construction to solve the problem that it is impossible to foretell what

different kinds of analyses will be performed, which will differ for each fluid type, and what

analyzed quantities have been measured. On top of that an analysis of the same fluid, say

blood, may be extensive for one monitoring session but very brief for another session. It is

therefore impossible to split these analyses up in different tables or contain them in the usual

way in one table. We will have to use a special construction.

In this construction we use an attribute to specify what quantity is measured, an attribute to

specify the value resulting from the measurement and an attribute to specify the unit of the

quantity. To make sure that always the same representations for quantities and units is used

we need the lookup table MEASURE_TYPE and UNITS. The attribute presenting the

measured quantity is therefore a code (type _code which is a foreign key) that refers to the

MEASURE_TYPE table and the unit attribute is represented by unit _code which is a foreign

key to the UNITS table. MEASURE_TYPE contains all possible quantities that can be

measured, where type _code is the key within this table and description contains a description

45

of the analyzed quantity. The same holds for the UNITS table: unit_code is the key within

the table and description contains a description of the unit. These lookup tables are also

needed in the final subject-session model and are specified in the subject-session part of

appendix B.

In the formal specification we see that the value attribute can only contain numeric values

(attribute constraint) so that it can always be used for calculations. It is therefore impossible

to insert text (mistakenly or on purpose) into this field. What happens when the analyzed

quantity can only have a textual value, for example rhesus factor: + or - ? We can solve this

problem by converting the possible textual values to a numeric value. The unit _code will then

refer to the table UNITS that will give a description of these value(s) and what is actually

meant by them.

The other attributes of the lABRESULTS table are session_n and long_intime (foreign key)

which refer to the EVENTS table that specifies which fluid was analyzed. The key within this

table is session_n, long_intime and typeJode, for it uniquely identifies a measured quantity

of a fluid sample taken within a session.

6.3 Equipment and equipment settings

6.3.1 The subject-session datastructure of equipment settings

In section 5.3 we described a datastructure for equipment settings that was included in the

subject-session datamodel and we stated that this datastructure contained some serious flaws.

The idea behind this datastructure was to record the initial equipment settings at subject

session level and to record changes in settings at timedata level. The equipment and the

settings were to be split up in tables according to the different physiologic parameters they

recorded during monitoring sessions. So first a list was made up of all possible physiologic

parameters that could be recorded during a monitoring session, then for each parameter a list

of possible equipment used in relation to the monitoring of this parameter had to be made up

46

with all their adjustable quantities. As seen in figure 5 of section 5.2 this resulted in nine

tables, each containing the initial equipment settings for the recording of a specific

physiologic parameter. The tables included an equipment name attribute and attributes

representing the possible adjustable quantities and containing the initial set value. It was then

thought to be possible to list all the adjustable quantities of equipment used for the monitoring

of a specific parameter. For example EEG monitoring equipment would have adjustable

quantities like gain, filtering etc.

If we take a closer look at this intended datastructure its limitations will immediately become

clear: we can't predict what physiologic parameters will be monitored in the future and thus

new tables may have to be created in the future that contain the equipment settings of these

new parameters. It is also impossible to list all adjustable quantities of equipment used in

relation to the monitoring of a parameter. Different adjustable quantities might look the same,

such as filter 50-200 Hz and filter 100-250 Hz, but a distinction has to be made between these

small differences. The equipment used in relation to the monitoring of a parameter may

include totally different devices with totally different adjustable quantities. The inclusion of

all these adjustable quantities as attributes in our table would lead to very wide tables and a

lot of empty entries for each row that contains an equipment setting.

The retrieval of data from this datastructure presents some problems too. The initial settings

and the changes in settings are recorded in different tables and to retrieve an equipment

setting valid at some time point will require searching of two tables. The settings of a session

are split up over a large amount of tables which is not convenient in the case of data retrieval.

If the tables that contain the changes in equipment settings are the same as the initial settings

tables, except for one additional long-integer time attribute, then they will contain a lot of

empty entries. When only one quantity is adjusted then all the other quantity attributes will

be empty.

There still remains one other very important problem which has to be solved: how can we

distinguish between two devices that are exactly the same but which have both been used in

one monitoring session?

47

6.3.2 A compact structure for equipment settings

We will now develop a datastructure for equipment adjustments (see figure 8) that does give

us the flexibility we need and that will solve the problems presented in the previous chapter.

In the subject-session model, equipment is only referred to by name, which is not enough. It

is possible that the names of two different devices are the same and we also need a

description of the equipment used in monitoring sessions. We therefore create a lookup table

EQUIPMENT that contains a list of all the equipment used during monitoring sessions. Each

apparatus is assigned with a unique code (equip_code) and the other attributes contain the

name, the type and a description of the apparatus (see appendix B).

We are now able to refer to the different kinds of equipment that have been used during

sessions, but the problem of distinguishing between two of the same devices (the same

equip _code) used within the same session still exists. We solved this problem by creating a

new table EQUIPMENT_USE that specifies the usage of each device. When a specific device

is used in a session we assign it with a unique (key) usage number (use_n), so two devices

with the same equip _code will always end up with a different usage number. The attribute

equip _code in is a foreign key of the EQUIPMENT table and represents the device and we

only record equipment in the EQUIPMENT table when it has been used (C13). We will also

have to know in what session the equipment was used, so EQUIPMENT_USE contains the

attribute session_n which is a foreign key to the SESSIONDATA table. Equipment will

always be used during a session (C14).

Medical regulations and research purposes require the recording of the special institution code

or serial number of the used equipment, through which it will always be possible to retrace

an apparatus that has been used in a session and check if there is something wrong with it.

The code attached to the apparatus by the institution or when such a code is absent, the serial

number, will be contained in the attribute retrace Jade. The institution where the apparatus

is from, is specified by the attribute instcode which refers to the INSTITUTIONS table at

subject-session level.

48

INSTITUTIONS SESSIONDA T A

EQUIPMENT
11\

STLCl_USEDATA
study_code

use_n

SESS_STUDDATA

Figure 8 Datastructure of the equipment settings

Because of the fact that several studies may be performed during a monitoring session we

also want to know what equipment was used for what study. We therefore create the coupling

table STUD_USEDATA with attributes session_n study_code and use_n (see appendix B).

Session_n is redundant in this table but is convenient for data retrieval purposes. Equipment

that has not been used for any study in particular will get a special general study code 'aa-

000' reserved for these cases. The set of attributes session_n and study_code is a foreign key

to the SESS_STUDDATA table, but only if study_code is not the general code 'aa-OOO'

(CIS).

In section 6.3.1 we already stated that it was impossible to make a list of all the adjustable

quantities of all equipment that could possibly be used. This problem is yet another version

of the problem we had with the recording of laboratory analyses in section 6.2.3 and can thus

be solved. We will record all equipment settings in one table, the SETTINGS table. The first

attribute of this table specifies the apparatus by its unique usage number use _nand the next

attribute contains the long-integer time (set _time) of the setting. The adjustable quantity is

49

represented by a unique quantity code attribute (quant_code) which is a foreign key to the

lookup table ADJUST_QUANT that contains a list of all adjustable quantities specified for

each apparatus that has been used in the monitoring sessions. Quant _code is the key within

the ADJUST_QUANT table, equip _code represents the apparatus and the attribute description

contains a description of the adjustable quantity. The adjustable quantities are specified for

each apparatus to avoid confusion about the meaning of quantities of devices that might look

the same, but are in fact different.

We now return to the SETTINGS table. The set value of the adjustable quantity is recorded

in the attribute value and the matching unit is represented by unit _code, which is a foreign

key to the units table. The value attribute may contain only numeric values and unit_code has

the same function as described in section 6.2.3 in the LABRESULTS table. The key within

SETTINGS is the set of attributes use_n, set_time and adjust_code that uniquely identifies a

tuple within this table.

The datastructure developed here is very flexible and can contain a lot of different equipment.

We can include drugpumps (DRUGPUMPS table in subject-session model can be omitted)

in our EQUIPMENT table and record the connection of a drugpump to catheters in our

SETTINGS table. Catheters can be included in EQUIPMENT (retrace _code and instcode have

NULL values) and the site of the catheters can be recorded in SETTINGS. The value attribute

will always be numeric but the unit_code will specify the meaning of the numeric value. We

remark that not every apparatus is adjustable (no entries in tables ADmSTMENT and

ADJUST_QUANT) as denoted by the relations between the tables.

We have succeeded in designing a compact and flexible structure for the equipment settings.

The disadvantage of this structure lies in its readability. Numeric values are used even when

the setting is in fact a text string. We have to search the UNITS table to find the meaning of

such a numeric value.

50

6.4 The montage and electrodes

In this section we will design a part of the datamodel (see figure 9) that is typically

characteristic to a neuro-electrophysiologic datamodel. We can safely assume that there will

always be a montage of electrodes in neuro-electrophysiologic monitoring sessions (C16).

This montage is very important and will often be referred to by users of the database system.

It is possible to include the montage of a session in the SETTINGS table by regarding the

electrodes as equipment. Because of the fact that the SETTINGS table is difficult to read in

the case of non-numeric settings and because the montage is so important and will often be

referred to we will create separate tables to record the montage and all related information.

First we create two lookup tables to make sure that users won't invent names and descriptions

of their own but will use the standard described in the lookup tables. The first lookup table

ELECTRODE_PLACE contains a list of all possible placements of electrodes on a body

according to the standard 10-20 system. The attribute placement (key) represents a unique

placement on the body. The redundant attribute body part specifies on which part of the body

the placement is located and is included for convenient retrieval of electrode placements on

a bodypart.

The second lookup table ELECTRODES contains the types of electrodes that might be used

during a session. Each type of electrode is assigned with a unique (key) electrode code

(elec_code) and elec_type and brand specify the type and the brand of the electrode.

The MONTAGE table contains the actual montage of each monitoring session and which is

not liable to changes during a session. The attribute session_n (foreign key to

SESSIONDATA) specifies the session that the montage belongs to, elec_code (foreign key

to ELECTRODES) specifies the electrode that has been used, placement (foreign key to

ELECTRODE_PLACE) specifies the placement of the electrode and attachment indicates the

way of attachment to the body. A tuple is uniquely identified by session _nand placement and

the complete montage of a session is recorded by all tuples containing that specific session

number.

EQUIPMENT_USE <E- ...

SESSIONDA T A

ELECTRODES
elec_code

MONTAGE
session_n placement

CHANNELS
channel use_n

comecttime
imptime use_n

placement

Figure 9 Datastructure of the electrodes information

51

The electrodes of a montage are connected to the input channels of the monitoring equipment

and these connections will be recorded in table CHANNELS. The monitoring device to which

the electrodes are connected is denoted by use _ n, the usage number of the device. Each

channel of this device has its own number and we will use the attribute channel to record this

number. The connections can be changed during a session and therefore we add the attribute

connecltime to specify the long-integer connect time of the electrode. These three attributes

are also the key within this table. We can now specify the derivation (uni- or bipolar) and to

which electrode places the positive, negative and ground input of the channel are connected.

The attributes we add are respectively uni/bipolar, place ...pos, place_neg and ground. In the

case of a unipolar derivation the ground attribute will contain a NULL (empty) entry (C4).

The channel inputs have to be connected to different electrode places (CS, C6, C7).

The electrode impedances are checked during monitoring session to make sure that the

impedance is below some preset maximum value so that the parameter measurements are

reliable. The measurements of these electrode impedances are contained in table

ELECTRODE_IMP. A channel of one of the monitoring devices will be used for this

measurement and the attributes channel and use n specify the used channel and the

52

monitoring device. The attribute imptime is the long-integer time of measurement and we also

include the session number (session_n) in this table to make data retrieval more convenient.

Otherwise we would need use_n and the table EQUIPMENT_USE to retrieve the session

number, but by including session_n we can easily retrieve all the impedances that have been

measured during a monitoring session. The attribute placement contains the placement of the

measured electrode and together with session_n it forms a foreign key to the MONTAGE

table. The set of attributes session_n, imptime and placement is a key within the

ELECfRODE_IMP table and the set use_n, imptime and placement forms an alternative key

within this table. The other attributes specify the placement of the ground electrode (groumf),

the measured impedance (impedance) and the unit (unit). Session_n and ground form again

a foreign key to MONTAGE.

6.5 The measured physiologic parameters

6.5.1 Raw physiologic data

Most of the collected raw physiologic data is not fit for storage in a database because of the

enormous amount of samples that have been collected during a monitoring session which

would require too much memory to store. This raw data will therefore be stored on other

storage facilities. What we do include in our database is information on the collected raw

physiologic data and we include the data derived from the raw data after a form of

dataprocessing. The storage of derived data will be described in the next section.

The datastructure diagram of this part is given in figure 10.

The information on the collected raw physiologic data we want to store is recorded in table

RAW _FYSDATA. The raw data of each physiologic parameter collected during a session is

assigned a unique number which is contained in the attribute raw _n (key). We will now

describe the other attributes of this table one by one.

53

SESSlor-.oA T A

t-
EQUIPMENT _USE

'-it 'lI
SESS_STUDDATA VALIDITY

Figure 10 Datastructure of the collected and derived data

Dat Jade (foreign key) contains a code that refers to the table DATATYPES. It is a unique

code within the DATATYPES table and represents what type of data (EEG, ECG etc.) has

been monitored. The description attribute in the DATATYPES table describes the data type.

Begintime and endtime represent the long-integer times of the begin and end time of the

monitoring of the physiologic parameter and use_n (foreign key to EQUIPMENT_USE)

specifies the monitoring device that registered the data. Sample.freq represents the sample

frequency used by the monitoring device to sample the measured parameter and unit contains

the unit of the sample frequency. The sample frequency is included (redundant, recorded in

SETTINGS) for reasons described in the next section.

The session number (redundant, use_n implies a session number) is included again for more

convenient data retrieval. File refers to the file with the actual stored raw data, format

54

specifies the format in which the data is stored and medium refers to the medium on which

the raw data is stored.

6.5.2 Data derived from raw physiologic data

Raw physiologic data is often used as the starting-point in the research on this data. The raw

data will often undergo several steps of data processing to visualize the information contained

in the raw data. We can picture these steps of dataprocessing by a tree structure as seen in

figure 11. The root of the tree represents the original raw data, a tree branch represents some

form of dataprocessing and a node represents the derived processed data set. Each interval of

the originating data (parent node) can be used for data processing step (branch) and these

intervals may weJl overlap.

dataprocesslng

processed data set

dataprocesslng

processed data set

dataprocessing

• ,
,

original
raw data

'.

,
'.

Figure 11 Tree structure of dataprocessing steps

'.
".

Although the storage of processed data sets requires a lot of storage space, we will store the

processed data in our database as this is one of the purposes of the database system. Much

research will be performed on processed data and the database system has to make this

research much easier. The processed data sets can also be used as an input to application

55

programs that visualize the data on screen. The tree structure described above will also be

used in our table structure.

First we assign a unique number to each processed data set (proc _ n). Because of the large

amount of processed data we have to store, we need a data structure with economical use of

storage space. The table PROC_DATA that contains the actual processed data has therefore

only three attributes: the number of the processed data set (proc_n), the value of the x

coordinate (x_value) and the value of the y-coordinate (y_value). Processed data that consists

of more than two coordinates should first be converted to a two coordinate representation. The

key within this table is the set proc _ n, x _value. The units of the coordinates are recorded in

the PROC_INFODATA table that contains information on the processed data sets.

The processed data sets can now be stored with a minimum of storage space, but we need the

PROC_INFODATA table to record the infonnation on these processed data sets such as the

information contained in the tree structure of figure 11. Proc_n (a node in the tree structure,

with exception of the root) is the unique number assigned to a processed data set and is the

key within PROC_INFODATA. The attribute dat_code is again a foreign key to the

DATATYPES table and represents the type of data or curve of the processed data set. The

data set that proc _ n refers to, has been subjected to some kind of dataprocessing and we want

to record what data processing has been used. Each type of dataprocessing is assigned a unique

number, the dataprocessing number, and the attribute dataproc _n records this number which

refers to (foreign key) the DATAPROCESSING table.

The problem of recording the different types of dataprocessing is the same as the problem of

recording laboratory analyses and equipment settings: we can't predict the types of

dataprocessing that will be used and we can't predict their characteristics. We therefore create

the same datastructure we used for the other problems. The attribute dataproc _ n is the number

of the processed data set and the key within the DATAPROCESSING table, char _code is a

code for a characteristic of dataprocessing and value specifies the value of the characterisation

field. We remark that value may contain numeric values as well as strings and that a possible

56

unit will also be recorded in the value field. The values in this table will not be used for

calculations and are therefore allowed to have other values besides numeric values.

The char _code attribute of the DATAPROCESSING table is a foreign key to the lookup table

CHARACTERISTICS and is a key within this last table. The only other attribute (description)

of CHARACTERISTICS contains a description of the characterisation field.

Returning to our PROC_INFODATA table we will describe some other attributes that contain

information we need on the processed data. Valid _code is a foreign key to the VALIDITY

table and represents a statement on the validity of the processed data set. The processed data

may for example be unreliable because of artifacts that took place during that measurement

interval. X_unitcode and y_unitcode specify the units of the x-coordinate and y-coordinate

respectively of the x_value and y_value of the PROC_DATA table. Session_n is again

included for more convenient data retrieval.

The only information that still has to be stored in the PROC_INFODATA table is what

originating data and what interval of this originating data has been used for dataprocessing.

There are two possibilities: the originating data is raw data or the originating data is processed

data (the parent nodes in the tree structure). We add the attributes raw_n (foreign key to

RAW _ FYSDATA) to refer to the number of the original data (the root) and inproc _ n to refer

to the number of the originating data (a node, with exception of the root). So inproc_n

contains a number that must also occur in another tuple of this table, but here as the number

of a processed data set (this proc_n is parent node). If the originating data is raw data (the

root) then inproc_n will contain a NULL (empty) entry and we will thus know that the

originating was raw data. We remark that the relation between inproc _nand proc _ n (CB) is

called an internal subset requirement (see section 3.6).

The interval of the originating data that has been used for data processing is specified by the

attributes begin_int and end int that represent the begin and the end of the interval

57

respectively. They contain a numeric value and the unit of this value is recorded in the tuple

specified by inproc _nor when NULL, by raw _ n. The sample frequency in the

RAW _FYSDATA table is used to extract the time unit. The interval that has been used for

dataprocessing consists of values that can be converted to long-integer times which specify

the time interval of the collected raw data that was needed for this data processing (several

steps of data processing may have been used). This time interval is included so that we can

easily retrieve the events (especially artifacts) that occurred during this time interval. The

attributes that contain the long-integer begin and end time of the interval are respectively

begintime and endtime.

The last table of our datamodel we will discuss is the STUD_PROCDATA table. This

coupling table specifies what processed data set belongs to what study. The attributeproc_n

(foreign key to PROC_INFODATA) specifies the number of the processed data set,

study_code and session_n are the familiar study code and session number. Session_n is again

redundant but convenient for data retrieval purposes.

6.6 The complete time-data model

In the previous sections of this chapter we have described the time-datamodel step by step.

We can now give a complete diagram of the datastructure of the time related information (see

figure 12). As we have already mentioned this diagram also contains some tables that actually

belong at subject-session level but were created during the development of the time

datamodel.

The attribute constraints recorded in the formal specification of the time-datamodel are still

too global but will be worked out further in the near future. First it has to be decided what

coding will be used for the various codes in our model and secondly, a lot of these constraints

58

[)FU3[)ATA INSTITUTiONS

SLB...ECT
SESSION LEVEL

- - - ----?
TINEDATA

""""

.-!- '"

~~.''':' .
. :

. .

~'''''''''' : """"""" OOOQ.. .. wn. : """"'-lMIrNI --..n : --.n

:~ : Icrtg....r.t_
: --.....

-t-

.~. · .
: I...'8'aU..T8 :
: :
:-....~: · . · .

Figure 12 The datastructure of the time-datamodel

SESSlor-oATA +----~

l'

will depend upon the DBMS which is used and upon the user-interface. It is for example not

possible to show long lines of text on the users screen and the attribute constraints should

specify this. In the subject-session model that is also included in appendix B and that has

been designed by H. Kuipers we can see a further specification of these constraints. The

database constraints specified in appendix B represent the relations between the tables also

visualized in the diagrams of the datastructures.

59

6.7 The complete datamodel of EMDABS

In figure 13 we have coupled the diagram of the time-datamodel to the final subject-session

diagram which gives us a survey of the complete datastructure of EMDABS. The table boxes

contain the abbreviated table indices as specified in the database characterisation of appendix

B that contains the total formal specification. The subject-session datamodel contains some

changes with respect to the datamodel described in paragraph 5 which we will now discuss.

The tables PRE_SESS_GENERAL, PRE_SESS_BLDSERUM, PRE_SESS_HEMATOL and

PRE_SESS_URINE have been combined to one PRE_SESS_GENERAL table which has the

same construction as the LABRESULTS table. This construction is more flexible because we

can include any type of pre-session information. A time field that states the registration time

is also included in this table.

The table PRE_SESS_DRUGDATA has been changed to PRE_MEDICATION with the

addition of one time attribute that contains the administration time.

The tables SESS]ERSONNELDATA and SESS]ERS_STUDDATA have been combined

to one STUD]ERSONNEL table because of the introduction of the special 'aa-OOO'

study-code that states that the information is not study related but general.

60

I ab~codIt I--coct. ~ -..v_ClIo ..] • I __ !Z"~_I 1.U1y":I~-"1 l.-..rt~---I
t I t ~

I j t
I~I I~~-I i r.~ode J

STU> J I .. ~-I study _coc»

± i ± ±
L

SESS J _CWLn~_~J seSSlon_n f\.nc_~ por._cade

............. J f l
I~I I,..';"':!.. I I"",~-J lOOED l"'"'r ~" t)'r)e_~I- ~ f '*'-G..codoo Mhl..1!M

:
1- l. 1- .L

L ssn.o J stucty coc» -mJl

I-~I
" ...

~ : -_<Ode
....

I~~tl [·~c;,..1 I Eau I:
_;p_code I i i
± ± : r MONTAGE t I

EQUJS
~ HSSIOI'1_n placement

--St..e..ECT
SESSION LE

~II use_n J : VEL

TIMEDAT
7 ~

A i
l ...'."!~ I ¥I~ RAWFv ~~ "",-ht_ ~_CICIde ~_n. '"W n c:aroM:tl_ ___

'--
I ,

T • T ... r§ 1151
~I [. ~ .j

. .
. -- .

I: i I ± .L --.. - : __ ft_:

T
1-

[PRON [~I
~ ..

"'~ n
"-" <>'£v J ± ~ l Cln.-n -0->_" --.. - --~

IrnCcode

~=-J. ~~~...j

·······vel~~~I···
. ,

Figure 13 The complete datastructure of the EMDABS datamodel

61

7 CONCLUSIONS AND FUTURE WORK

In this report we have described the development of a datamodel of the time related

information that will be stored in EMDABS. The datamodel is flexible in the sense that it can

be used for all kinds of neuro-electrophysiologic research and probably even for other types

of clinical research. All the time-related information needed for this research can be recorded

in the time-data model and the retrieval of important information that is used often for research

purposes is possible without much effort. Five years after the start of the EMDABS project

there now exists a complete and good datamodel exactly specified by a convenient and

elegant formal mathematical technique.

This formal technique has proven to be very useful for the specification of the semantics of

the datamodel in the form of constraints. The attribute constraints however, will have to be

defined more strictly when more is known about the coding of several code attributes and the

facilities of the DBMS. A DBMS has few facilities to record the attribute constraints at

database level and a lot of time will be needed to write an application program that enforces

these constraints. It is possible that the large amount of information stored in the database and

the amount of constraints that has to be checked before data is stored may slow down the

system considerably although hardware facilities are still improving rapidly as well as DBMS

facilities.

The writing of a user-interface application program will take a lot of time and effort but a lot

of application programs written for other database systems already exist and it should be

possible to profit from the available experience and knowledge on this subject. We refer to

[Yao, 1989; Lutz, 1986) which might prove useful in the further development of the database

system.

The data that is collected and recorded by the ERDA system during the monitoring sessions

will have to be converted to a format that can be used by the data loader of Oracle.

A program that provides this conversion will be written shortly after this report. The ERDA

62

system itself will also have to be changed and adjusted to the datamodeI. It is easily possible

to implement the ERDA system in such a way that certain constraints on the data are already

enforced by this system so that EMDABS can waive the checking of these constraints.

This datamodel provides only for the storage of information used for research and not in the

storage of research results (often statistical information). The research results can be stored

in a separate module that may be designed later and added to the existing datamodel without

major changes. The design of a module with research results however, has a low priority.

The standard form of information storage is now specified by this datamodeI. The institutions

that will share information have to make use of this standard form of data storage otherwise

sharing of information will still present problems.

Additional information on the EMDABS project is available through P.J.M. Cluitmans of the

Division of Medical Electrical Engineering at the Eindhoven University of technology.

63

APPENDIX A : MATHEMATICAL TERMS

Some mathematical terms are defined which are used in the formal specification of semantic

relational database concepts. The definitions may be somewhat different from the definitions

that are usually known for these terms.

First some notations:

Z

R

xEA

N

o

=>

A

v

A!;;B

AUB

AnB

chs(n)

[m .. n]

vnc(n)

vng(n)

int(n)

NULL

the set of whole numbers.

the set of real numbers.

x is an element of set A.

= {t I t E Z At" 0 }.

the empty set.

for each element of A holds:.

there exists an element x of A for which holds:.

implies.

if and only if.

and.

or.

='rt.eA:XEB.

= {x I x E A v x E B }.

= {x I x E A A X E B }.

if n EN then chs(n) denotes the set of all rows of signs (=strings) that

exist of n signs maximally.

= {x I x E Z A msxsn }.

if n EN then vnc(n) denotes the set of all natural numbers that exist of

exactly n numbers (number E [0 .. 9]).

= [lOn
-1 •. lOn -1].

= [_(lOn _ l) .. lOn - 1).

an empty entry in a table.

64

We will assume the term ordered pair to be known. Notation: (x;y). Let p be an ordered pair

then we will denote the first and second coordinate of p respectively as k1P and kzP. Thus

p=(x;y) = k1P=x " kzP=Y.

We will define the well-known term function in a way that is very convenient to our purpose.

Definition :

f is a function f is a set of ordered pairs and V p,q E f : k1P .. k1q v p=q.

Example: f = {(nr;27), (name; 'Smith')

The domain and range of f is respectively denoted by dom(f) and mg(f).

Definition :

dom(f) = {k1P I p E f} and mg(f) = {kzP I p E f }.

Definition:

f is a function over A f is a function and dom(f)=A.

Let f be a function and X be a set. The restriction of f is denoted by f t X.

Definition: f t X = { P E f I k1P EX}.

Let V be a set of functions and X be a set. The projection of V on X is denoted by V It X.

Definition: V It X = { f t X I f E V }.

Let f and g be functions and A be a set.

Definitions:

f and g agree upon A f t A=g t A.

f and g are joinable f and g agree upon dom(f) n dom(f) (.... f U g is a function).

The composition of functions f and g is denoted by fog.

Definition: fog = { (x ; f(g(x») I x E dom(g) A g(x) E dom(f) }.

65

Let V be a set of functions and h be a function then we define a rename function or attribute

transformation has:

Definition: V 00 h = { f 0 h I f E V }.

Definitions:

F is a set function = F is a function and 'If p E F : kzP is a set.

F is a regular set function = F is a set function and F"i2! and 'If p E F : kzP"i2!.

Let F be a set function then IIF denotes the generalised product of F, so:

IIF = { f I f is a function and 'If P E f : kzP E F(kJp)}.

66

APPENDIX B : THE FORMAL SPECIFICATION OF THE DATAMODEL

type nr = [1..100000];

code_l = [10011110000 .. 19911119999];

date = [19000101..20991231];

ss_code = [vnc(3)-vnc(2)-vnc(4)];

!time = vnc(9);

code_2 = ['aa-01-00' . .'zz-12-31'];

time = ['00-00-00' . .'24-59-59');

body = {'head' 'neck' 'breast' 'arm' 'leg'}· , , , , ,

year-month-day

long-integer-time

personnel code

normal time form

drg = {'f.lg/hour' ,'mg/hour' ,'mllhour' ,'Jlg' ,'mg','ml', '%'};

con = {'mmol/l','mol!l','t.tg/l','mg/l'};

freq = {'Hz','KHz','MHz'};

imp = {'Q','KQ','MQ'};

pos = { tit ERA t~O };

tatp subLiddata =

tutp T -subi =

obcar F-subi =

sub code

entry date

last name

first name

initials

ss number

: code_l;

: date;

: chs(l5);

: chs(lO);

: chs(3);

: ss_code;

subject identification

begin of subject-session model

subject code

datum of entry

last name

first name

initials

social security number

med record : ['aOOOOO' . .'z99999'); medical registration nr.

endobcar;

endtutp;

keys {{sub_code}}

endtatp;

tatp subL demogrdata =

tutp T -subd =

obcar F-subd =

sub_code : code_I;

entry_date : date;

type : chs(15);

date_birth : date;

sex_mf : {'m' ,'w'};

handed_rl ° {'r' 'I' 'rl' 'Ir'}o · " , ,

bldgroup · {'O' 'A' 'B' 'AB'}' · ", ,
rhesusfac : {'+','-'};

endobcar;

tue t(entry_date) '" t(date_birth) 1\

demographic information

subject code

date of entry

subj -type: human or animal

date of birth

sex

left- right handed

blood type

rhesus factor

(t(type) .. 'human') = t(handed_rl) = NULL

endtutp;

keys {{sub_code}}

endtatp;

tatp subL histdata =

tutp T -subh =

obcar F-subh =

sub code

line nr

entry_date

info

endobcar;

endtutp;

: code_1;

: vnc(2);

: date;

: chs(72);

keys {{sub _code,line_nr,entry _date}}

endtatp;

additional medical information

subject code

line number

date of entry

text line

67

68

tatp surgery data '"

tutp T -surg '"

obear F-surg '"

surgery_code : ('aaaOO' . .'zzz99'];

description

endobear;

endtutp;

: chs(72);

keys { { surgery_code}}

endtatp;

tatp session data "

tutp T -sess =

obcar F-sess =

session_n

sub code

: nr;

surgery_code : ['aaaOO' . .'zzz99'];

instcode

start_date

end_date

slart time

end_time

endobear;

: [chs(3)-chs(3)J;

: date;

: date;

: /time;

: /time;

operation types

(mutiple types as well)

operation code

operation description

session information

session number

subject code

operation code

institution code

start date session

end date session

begintijdstip session

eindtijdstip session

tue t(start_date) s t(end_date) A t(slart_time) < t(end_time)

endtutp;

keys {{session_nn

endtatp;

tatp institutions =

tutp T-inst =

obear F-inst =

instcode

instname

instplace

endobear;

endtutp;

keys {{ instcode }}

endtatp;

tatp studydata =

tutp T -stud =

obear F-stud =

: [chs(3)-chs(3)];

: chs(30);

: chs(30);

institution information

institution code

institution name

location of institution

study information

study_code : ['aa-000' . .'zz-999']; study code

entry_date : date; date of entry

study title : chs(125); name of study

proLname : chs(72); name of overall organisation

69

pr_researcher : code_2;

se_researcher : code_2;

endobcar;

personnel code of 151 research manager

personnel code of 2nd research manager

tue (t(studLcode) = 'aa-OOO') = t(entrLdate) = NULL" t(studytitie) = 'general'

endtutp;

keys {{study_code}}

endtatp;

70

tatp grants =

tutp T -gran =

obcar F-gran =

grant_code

grant_inst

grant)nst_nr

title

endobcar;

endtutp;

: ['aaa-00' .. 'zzz-99'];

: chs(72);

: chs(40);

: chs(72);

keys {{grant_code}}

endtatp;

tatp stud)nfodata =

tutp T -stinf =

obcar F-stinf =

grants information

grant code

providing institution

grants disposal number

name of the grant

general study information

study-code : ['aa-00l' . .'zz-999']; study code

line nr : vnc(2); rule number

info : chs(72); text line

endobcar;

endtutp;

keys {{study-code,line_nr}}

endtatp;

tatp stud ~rantdata =

tutp T -stgra =

obcar F-stgra =

grant dividing information

study-code : ['aa-00l' . .'zz-999']; study code

grant_code : ['aaa-OO' . .'zzz-99']; grant code

endobcar;

endtutp;

keys {{study _ code,grant_ code}}

endtatp;

tatp stud_instdata =

tutp T -stins =

obcar F-stins =

which study on which institution

study-code : ['aa-001 ' . .'zz-999'); study code

instcode : [chs(3)-chs(3»); institution code

endobcar;

endtutp;

keys {{study-code,instcode}}

endtatp;

tatp personnel =

tutp T -pers =

obcar F-pers =

pers_code

name

instcode

endobcar;

endtutp;

keys {{pers _code}}

endtatp;

tatp functions =

tutp T-func =

obcar F-func =

func_code

func_name

description

endobcar;

endtutp;

: code_2;

: chs(35);

: [chs(3)-chs(3»);

: ['aaOO' . .'zz99');

: chs(35);

: chs(80):

keys {{func_code}}

endtatp;

personnel information

personnel code

name

institution code

function information

function code

function name

function description

71

72

tatp sess_infodata =

tutp T -sinf =

obcar F-sinf =

study_code

session n

line nr

keyword

info

endobcar;

endtutp;

general session information

: ['aa-OOO' . .'zz-999']; study code

: nr; session number

: vnc(2); line number

: chs(20); keyword to text line

: chs(72); text line

keys {{session_nr,study _code,line_nr}}

endtatp;

tatp sess Jlersonneldata =

tutp T -spers =

obcar F-spers =

personnel attending a session

studLcode : ['aa-OOO' . .'zz-999']; study code

session n : nr; session number

func code : ['aaOO' . .'zz99']; function code

pers _code : code _2; personnel code

endobcar;

endtutp;

keys {{session _ nr,studL code,func _ code,pers _code} }

endtatp;

tatp pre_medication =

tutp T-pmed =

obcar F-pmed =

session n : nr;

drug_code : ['aOOO' . .'z999'];

long)ntime : ltime;

adm date : date;

adm time : time;

med_type : chs(15);

dose : pos;

unit : drg;

cumdose : pos;

cum unit : {'Jlg','mg','g'};

endobcar;

pre-operative medication

session number

drug code

long-integer administration time

date of administration

time of administration

way of administration

administered dose

unit of dose

cumulative dose till now

unit

tuc (t(med_type) = 'continuously') => t(unit) = 'Ilg!hour' 1\

(t(med_type) = 'intermittently') => t(unit) E {'Ilg','mg'} 1\

(t(med_type) = 'gas') => t(unit) = '%' 1\ t(cumdose) = NULL 1\

t(cum_unit) = NULL

endtutp;

tac "'<os ED: (t(long)ntime) > s(long_intime) 1\ t r {med_type, drug_code} =

s r {med_type, drug_code}) => t(cumdose) > s(cumdose)

keys {{session_n,drug_ code,long_intime}}

endtatp;

73

74

tatp drugdata =

tutp T-drug =

obcar F-drug =

drug_code

generic_n

trade n1

trade n2

endobcar;

endtutp;

: ['aOOO' . .'z999'];

: chs(26);

: chs(16);

: chs(16);

keys {{ drug_code}}

endtatp;

tatp pre _ sessdata =

tutp T -psess =

obcar F-psess =

drug information

drug code

generic name

1 st brand name

2de brand name

pre-operative information (non-medical)

session n : nr; session number

type_code : ['aaaaOO' .. 'zzzz99']; code for measured quantity

long_intime : ltime; long-integer registration time

adm date : date; date of registration

adm time : time; registration time

value : real; value of measured quantity

unit code : chs(lO); unit code

endobcar;

endtutp;

keys {{session _n,type _ code,long_intime}}

endtatp;

tatp sess_studdata '"

tutp T -sstud =

obcar F-sstud =

which session for which study

study-code : ['aa-OOl' . .'zz-999']; study code

session n : nr; session number

endobcar;

endtutp;

keys {{study-code,session _ n} }

endtatp;

tatp measure_type =

tutp T -meast =

obcar F-meast =

type_code

description

endobcar;

endtutp;

keys {{type_code}}

endtatp;

tatp units =

tutp T-uni =

obcar F-uni =

unit code

description

endobcar;

endtutp;

keys {{unit_code}}

endtatp;

: chs(lO);

: chs(72);

: chs(lO);

: chs(72);

possible measurable quantities

(section 6.2.3)

code for measured quantity

description

units

(section 6.2.3)

code for unit

description

75

76

tatp events =

tutp T-eve =

obear F-eve =

session n : nr;

long_intime : ltime;

intime : time;

long_ evtime : ltime;

evtime : time;

ev _number : nr;

event : chs(72);

event_type : chs(72);

correct : {'y','n'};

endobear;

contains eventlist begin of tirne-datamodel

(section 6.2.3)

session number

long-integer time of entry event

entry time event

long-integer time of event

time of event

event number

description event

description eventtype

event correctly entered (='y') or not (='n')

tue t(long_intime) ;,: t(long_evtime) " t(intime) ;,: t(evtime)

endtutp;

keys {{session _n,long_intime}}

endtatp;

tatp drugevents =

tutp T -drev =

obcar F-drev =

session _ n : nr;

lonlLintime : !time;

event_type : chs(72);

event : chs(72);

drugevents

(section 6.2.3)

session number

long-integer time of entry event

drug administration

name of drug

: ['aOOO' . .'z999']; drugcode

: pos; administered dose

unit : drg; unit of dose

cumdose : pos; cumulative dose

: rllg','mg','g'}; unit of cum dose

77

cum_unit

correct : {'y','n'}; event correctly entered (='y') or not (='n')

endobcar;

tuc t(correct)='y' '* (t(dose)~O 1\ t(cumdose)~O);

t(event_type)='continuously' '* t(unit)='f.!g/hour';

t(event_type)='intermittently' '* t(unit) E {'Ilg','mg'};

Cl t(event_type)='gas' '* (t(unit)='%' 1\ t(cumdose)=NULL 1\

t(cum_unit)=NULL)

endtutp;

C2 tac "!,seD: (t(correct)='y' 1\ s(correct)='y' 1\ t(session_n)=s(session_n) 1\

t(longjntime) > s(longjntime) 1\ t r {event_type,event}=s r {event_type,event})

1\ t(event_type) .. 'gas' '* t(cumdose) > s(cumdose)

keys {{session_n,long_intime}}

endtatp;

78

tatp drugconc =

tutp T-druco =

obcar F-druco =

session n : nr;

long)ntime : ltime;

concentrations of administered drugs

(section 6.2.3)

session number

long-integer time of entry event

event

drug_code

eventtype

: chs(72); name of drug

: ['aOOO' .. 'z999']; drugcode

: chs(72); drug administration

concentration : pos\{O};

unit

correct

endobcar;

endtutp;

: con;

: {'y','n'};

keys {{session _ n,long_ intime }}

endtatp;

concentration

unit

event correctly entered (='y') or not (='n')

tatp fluids =
tutp T-flui =

obcar F-flui =

session n : nr;

long_intime : !time;

event : chs(72);

amount : pos;

unit : {'ml'};

cum amount : pos;

cum_unit : rml','l'};

fluid events

(section 6.2.3)

session number

long-integer time of entry event

fluid event

administeredlIiberated amount

unit of amount

cumulative amount

unit of cum amount

79

correct : {'y','n'}; event correctly entered (='y') or not (='n')

endobear;

tue t(correct)='y' '* t(cum amount) ;,: t(amount)

endtutp;

C3 tae V t,s ED: (t(correct='y' " s(correct)='y' " t(session_n)=s(session_n) "

t(long_intime) > s(long_intime) " t(event)=s(event» '*
t(cum amount) > s(cumamount)

keys {{session _ n,long_intime}}

endtatp;

80

tatp labresults =

tutp T-lab =

obcar F-lab =

session n : nr;

long_intime : ltime;

type_code : chs(lO);

value : R;

unit code : chs(10);

endobcar;

endtutp;

results of laboratory analyses of fluids

(section 6.2.3)

session n

long-integer time of entry event

code for measured quantity

value

unit code

keys {{session_n,long_intime,type_code}}

endtatp;

tatp anest_ depth =

tutp T -ande =

obcar F-ande =

session n : nr;

longjntime : !time;

estimation : N;

protocol : chs(72);

valid code : chs(lO);

correct : {'y','n'};

endobcar;

endtutp;

keys {{session_n,long_intime}}

endtatp;

estimation of anesthetic depth

(section 6.2.3)

session number

long-integer time of entry event

estimation of anesthetic depth

used protocol

code for validity estimation

event correctly entered (='y') or not (='n')

tatp validity =

tutp T -vali =

obcar T-vali =

valid_code : chs(lO);

description : chs(72);

endobcar;

endtutp;

keys {{ valid_code}}

endtatp;

tatp protocol

tutp T -prot =

obcar F-prot =

protocol : chs(72);

estimation : N;

description : chs(72);

endobcar;

endtutp;

keys {{protocol,estimation}}

endtatp;

validity statements on data

(section 6.2.3)

code for validity statement

statement description

anesthesia protocol

(section 6.2.3)

anesthetic depth protocol

estimation of anesthetic depth

description

81

82

tatp equipment =

tutp T-equ =

obcar F-equ =

equip_code : chs(lO);

equip_name : chs(72);

equip_type : chs(72);

description : chs(72);

endobcar;

endtutp;

keys { { equip_code}}

endtatp;

tatp equipment_use =

tutp T -equus =

obcar F-equus =

use_n

session n

equip_code

retrace_code

instcode

endobcar;

endtutp;

: nr;

: nr;

: chs(lO);

: chs(72);

: [chs(3)-chs(3)];

equipment

(section 6.3.2)

equipment code

equipment name

type of equipment

equipment description

equipment usage

(section 6.3.2)

usage number

session number

equipment code

equipment code of institution or serial number

institution code

keys {{use_n},{session_n,retrace_code,instcode}}

endtatp;

83

tatp stud _ usedata =

tutp T -stuse =

obcar F-stuse =

what equipment belongs to what study

(section 6.3.2)

study_code : ['aa-OOO'-'zz-999'); study code

session n : or; session number

use n : or; usage number

endobcar;

endtutp;

keys {{studLcode,use_n}}

endtatp;

tatp adjust_quant =

tutp T -adqua =

obcar F-adqua =

install code

description

equip_code

endobcar;

endtutp;

: chs(lO);

: chs(72);

: chs(lO);

keys {{install_code}}

endtatp;

adjustable equipment quantities

(session 6.3.2)

code for adjustable quantity

description of adjustable quantity

equipment code

84

tatp settings =

tutp T -sett =

o bear F -sett =

use n : nr;

set_time : !time;

quant_code : chs(lO);

value : R;

unit code : chs(lO)

endobcar;

endtutp;

keys {{use_n,set_time,quant_code}}

endtatp;

tatp electrode Jllace =

tutp T -elepl =

obear F-elepl =

placement

bodypart

endobcar;

endtutp;

keys {{placement}}

endtatp;

: chs(72);

: body;

equipment settingss

(section 6.3.2)

usage number of equipment

long-integer time of setting

code for adjustable quantity

set value

unit code

possible placements of an electrode

(section 6.4)

placement of electrode

bodypart on which electrode is attached

tatp electrodes =

tutp T -elec =

obcar F-elec =

elec_code

elec_type

brand

endobcar;

endtutp;

keys {{ elec _code}}

endtatp;

tatp montage =

tutp T -mont =
obcar F-mont =

: chs(lO);

: chs(72);

: chs(72);

session n : nr;

elec_code : chs(lO);

placement : chs(72);

attachment : chs(72);

endobcar;

endtutp;

keys {{session_n,placement}}

endtatp;

electrodes

(section 6.4)

electrode code

description of electrode type

brand of electrode

plaments of electrodes within a session

(section 6.4)

session number

electrode code

placement of electrode

way of attachment

85

86

tatp channels =

tutp T -chan =

obear F-chan =

channel : nr;

use n : nr;

connecttime : ltime;

uni/bipolair : {'uni','bi'};

place Jlos : chs(72);

place_neg : chs(72);

ground : chs(72);

endobcar;

channels (amplifiers)

(section 6.4)

channel number

usage number of equipment

long-integertime of connection

uni- or bipolar derivation

placement of electrode +

placement of electrode -

placement of neutral electrode (just bipolar)

C4 tue t(uni/bipolair)='uni' =* t(ground)=NULL;

C5 t(place Jlos) .. t(place _neg);

C6 t(place _neg) .. t(ground);

C7 t(place Jlos) .. t(ground)

endtutp;

keys {{ channel, use _ n,connecttime}}

endtatp;

tatp electrode_imp =

tutp T -elimp =

obear F-elimp =

channel

use n

session n

imptime

placement

ground

impedance

unit

endobcar;

: nr;

: nr;

: nr;

: Itime;

: chs(72);

: chs(72);

: pos ;

: imp;

tue t(placement) .. t(ground)

endtutp;

electrode impedance

(section 6.4)

channel used for measurement

usage number

session number

87

long-integer time of impedance measurement

placement of measured electrode

placement of neutral electrode

impedance of measured electrode

unit

keys {{ session_n,imptime,placement},{ use_n,imptime,placement}}

endtatp;

88

tatp raw jysdata =

tutp rawfy =

obear rawfy =

raw n : nr;

dat code : chs(lO);

begintime : !time;

end time : ltime;

use n : nr;

samplejreq : R;

unit : freq;

session n : nr;

file : chs(72);

format : chs(72);

medium : chs(72);

endobear;

tue t(begintime) < t(endtime)

endtutp;

keys {{raw_n}}

endtatp;

tatp datatypes =

tutp T -daty =

obear F-daty =

dat code : Chs(lO);

description : chs(72);

endobear;

endtutp;

keys {{ dat_ code}}

endtatp;

information on raw physiologic data

(section 6.5.1)

number of raw data

code for type of monitoring

long-integertime of start monitoring

long_integertime of end monitoring

usage number of monitoring equipment

sample frequency

unit of frequency

session number

reference to file with raw data

format code of data

medium on which file is stored

description of data types or curves

(section 6.5.1)

code for curve

description

tatp proc _data =

tutp proda =

obcar proda =

proc_n

x value

y_value

endobcar;

endtutp;

: nr;

:R;

: R;

keys {{proc_n,x_value}}

endtatp;

signal values

(section 6.5.2)

number of processed data

value of x-coordinate

value of y-coordinate

89

90

tatp proc _infodata =

tutp T -proin =

obcar F-proin =

proc_n : nr;

dat code : chs(lO);

dataproc _ n : nr;

valid code : chs(lO);

x unitcode : chs(10);

y _ unitcode : chs(lO);

inproc_n : nr;

begin_int : R;

end int : R;

begintime : \time;

endtime : \time;

raw_n : nr;

session n : nr;

endobcar;

tuc t(begin_int) < t(end_int)

endtutp;

information on derived (processed) data

(section 6.5.2)

number of processed data set

code for type of curve

number of data processing technique

code for validity processed data set

unit of x-coordinate

unit of y-coordinate

number of originating data set

begin of used interval

end of used interval

long-integer begin time of used interval

long-integer end time of used interval

number of original raw data

session number

C8 tac {t I tED A t(inproc_n) .. NULL }oo{(proc_n ; inproc_n)} S;; D It {proc_n}

keys {{proc _ n}}

endtatp;

tatp dataprocessing =

tutp T -dapro =

obcar F-dapro =

dataproc_n : nr;

char_code : chs(10);

value : chs(72);

endobcar;

endtutp;

keys {{ dataproc _ n,char _code}}

endtatp;

tatp characteristics =

tutp T -char =

obcar F-char =

char_code : chs(10);

description : chs(72);

endobcar;

endtutp;

keys { { char_code}}

endtatp;

tatp stud-procdata =

tutp T -stpro =

obcar F-stpro =

dataprocessing information

(section 6.5.2)

number of dataprocessing

code for characterisation field

value of characterisation field

characterisation fields

(section 6.5.2)

code for characterisation field

description

study information on processed data

(section 6.5.2)

studLcode

proc_n

session n

: ['aa-001 ' . .'zz-999']; study code

endobcar;

endtutp;

: nr;

: nr;

keys {{study _ code,proc _ n}}

endtatp;

number of processed data

session number

91

92

dbtp em dabs =

dbcar DK-em =

subi

subd

subh

surg

sess

inst

stud

gran

stinf

stgra

stins

pers

func

sinf

spers

sstud

pmed

psess

meast

drug

uni

eve

drev

flui

druco

lab

ande

prot

equ

: subLiddata;

: subL demogrdata;

: subL bistdata;

: surgerydata;

: sessiondata;

: institutions;

: studydata;

: grants;

: stud_infodata;

: stud~rantdata;

: stud Jnsdata;

: personnel;

: functions;

: sess_infodata;

: sessJlersonneldata;

: sess_studdata;

: pre_medication;

: pre-sessdata;

: measure_type;

: drugdata;

: units;

: events;

: drugevents;

: fluids;

: drugconc;

: labresults;

: anest_ depth;

: protocol;

: equipment;

elepl : electrode "'place;

equus : equipment_use;

stuse : stud _ usedata;

mont : montage;

elec : electrodes;

adqua : adjust _ quant;

sett : settings;

chan : channels;

elimp : electrode_imp;

proin : proc _infodata;

vali : validity;

proda : proc_data;

rawfy : raw jysdata;

dapro : dataprocessing;

stpro : stud"'procdata;

char : characteristics;

daty : datatypes;

enddbcar;

subject-session dac's dac X(subi) It {sub_code} = X(subd) It {sub_code};

X(subd) It {sub_code} = X(sess) It {sub_code};

X(subh) It {sub_code} k X(subd) It {sub_code};

X(sess) It {surgery_code} k X(surg) It {surgery_code};

X(sess) It {instcode} = X(inst) It {instcode};

X(stins) It {instcode} = X(inst) It {instcode};

X(stins) It {studLcode} = X(stud) Ii {studLcode};

X(stint) It {studLcode} k X(stud) It {study_code};

X(stgra) It {study_code} = X(stud) Ii {study_code};

X(stgra) It {grant_code} = X(gran) It {grant_code};

X(spers) It {study_code} = X(stud) It {study_code};

X(spers) It {func_code} = X(func) It {func_code};

X(spers) It {pers_code} = X(pers) It {pers_code};

93

94

{ t t {studLcode} I t E X(stud) " t(studLcode) ;< 'a-Ooo' }

= X(sstud) It {studLcode};

X(stud) It {pers_code} ~ X(pers) It {pers_code};

{ t t {session_n,studLcode} I t E X(spers) " t(studLcode) ;< 'a-OOO' }

= X(sstud) It {session_n,studLcode};

X(sint) It {session_n,study_code} ~ X(sstud) It {session_n,studLcode};

X(pmed) It {session_n} = X(sess) It {session_n};

X(pmed) It {drug_code} ~ X(drug) It {drug_code};

X(psess) It {session_n} = X(sess) It {session_n};

X(psess) It {type_code} C X(meast) It {type_code};

X(pmed) It {unit_code} ~ X(uni) It {unit_code};

X(psess) It {unit_code} ~ X(uni) It {unit_code};

V t E X(subd) : 3 u E X(subi) : t(type) ;< 'human' "

u(sub_code)=t(sub_code) => (u(ss_number)=NULL "

u(first_name)=NULL " u(initials)=NULL);

V tEX(subd): V uEX(subh): t(sub_code)=u(sub_code) =>

u(entrLdate) :. t(date_birth);

V t E X(subd) : VUE X(subi) : t(sub_code)=u(sub_code) =>

u(entry_date) :. t(date_birth); end of subject-session dac's

C9 X(sess) It {session_n,begintime} !:::: (X(eve) It {session_n,longJntime})

oo{ (session _ n;session _ n), (begintime; long_intime)};

CIO X(sess) It {session_n,endtime} !:::: (X(eve) It {session_n,long_intime})

oo{(session _ n;session _ n),(endtime;long_intime)};

Cll X(eve) It {session_n} = X(sess) It {session_n};

C12 X(drev) It {session_n,long_intime} !:::: X(eve) It {session_n,long_intime};

X(drev) It {drug_code} !:::: X(drug) It {drug_code};

X(flui) It {session_n,long_intime} !:::: X(eve) It {session_n,long_intime};

X(druco) It {session_n,long_intime} !:::: X(eve) It {session_n,long_intime};

X(druco) It {drug_code} !:::: X(drug) It {drugcode};

X(lab) It {session_n,long_intime} !:::: X(eve) It {session_n,long_intime};

X(lab) It {type_code} !:::: X(meast) It {type_code};

X(lab) It {unit_code} ~ X(uni) It {unit_code};

X(ande) It {session_n,long_intime} ~ X(eve) It {session_n,lonlLintime};

X(ande) It {protocol, estimation} !:;; X(prot) It {protocol, estimation};

X(ande) It {valid_code} !:;; X(vali) It {protocol};

C13 X(equus) It {equip_code) = X(equ) It {equip_code};

X(equus) It {instcode) !:;; X(inst) It {instcode};

C14 X(equus) It {session_n} = X(sess) It {session_n};

X(stuse) It {use_n} = X(equus) It {use_n};

X(stuse) It {session_n} = X(sess){session_n};

C15 { t t {session_n,studLcode} I t E X(stuse) " t(studLcode) .. 'aa-OOO'} =

X(sstud) It {session_n,studLcode};

X(mont) It {placement} !:;; X(elepl) It {placement};

C16 X(mont) It {session_n} = X(sess) It {session_n};

X(mont) It {elec_code} !:;; X(elec) It {elec_code};

X(adqua) It {equip_code} !:;; X(equ) It {equip_code};

X(sett) It {use_n} !:;; X(equus) It {use_n};

X(sett) It {install_code} ~ X(infi) It {install_code};

X(chan) It {use_n} !:;; X(equus) It {use_n};

95

X(chan) It {placeJlos} !:;; (X(elepl) It {placement})oo{(placeJlos;placement)};

X(chan) It {place_neg} !:;; (X(elepl) It {placement})oo{(place_neg;placement)};

{t t {ground} I t E X(chan) " t(ground) .. NULL} !:;; (X(elepl) It {placement})oo

{(ground;placement)};

X(elimp) It {use_n} !:;; X(equus) It {use_n};

X(elimp) It {placement,session_n} !:;; X(mont) It {placement,session_n};

X(elimp) It {ground,session_n} s;; (X(mont) It {placement,session_n})oo

{(ground;placement),(session _ n,session _ n)};

X(proin) It {x_unitcode} !:;; (X(uni) It {unit_code})oo{(x_unitcode;unit_code)};

X(proin) It {Lunitcode} !:;; (X(uni) It {unit_code})oo{(y_unitcode;unit_code)};

X(proin) It {raw_n} !:;; X(rawfy) It {raw_n};

X(proin) It {dat_code} !:;; X(daty) It {dal_code};

X(proin) It {sessioD_n} !:;; X(sess) It {session_n};

96

X(proin) It {dataproc_n} = X(dapro) It {dataproc_n};

X(proin) It {valid_code} ~ X(vali) It {valid_code};

X(proda) It {proc_n} = X(proin) It {proc_n};

X(rawfy) It {use_n} ~ X(equus) It {use_n};

X(rawfy) It {session_n} = X(sess) It {session_n};

X(rawfy) It {dat_code} ~ X(daty) It {dat_code};

X(dapro) It {char_code} ~ X(char) It {char_code};

X(stpro) It {proc_n} = X(proin) It {proc_n};

X(stpro) It {session_n} ~ X(sess) It {session_n};

X(stpro) It {studLcode,session_n} ~ X(sstud) It {studLcode,session_n};

enddbtp;

endtype.

97

REFERENCES

Brock, E.O. de (1989). De grondslagen van semantische databases (in Dutcb). Scboonhoven: Academic Service.

Brock, E.O. de (1985). Database systemen 1 (deel 1) (in Dutch). Syllabus 1985. Eindhoven Eindhoven

University of Technology, 1986. Dictaatnr. 2405.

Brock, E.O. de (1985). Database systemen 1 (deel 2) (in Dutch). Syllabus 1985. Eindhoven Eindhoven

University of Technology, 1986. Dictaatnr. 2407.

Brower, R.W. , Katen, HJ. ten, Meester, G.T. (1984). Problems and pitfalls in a clinical res""rcb dala

management system. Computer Programs in Biomedicine, Vol 19 (1984), p. 13-30.

Budd, J.R. , Warwick, W.J. , Wielenski, C.L. , Finkelstein, S.M. (1988). A medical Information Relational

Database System (MIRDS). Computers and Biomedical Researcb, vol 21 (1988), p. 419-433.

Cluitmans, P.J.M. (1990). Neurophysiological Monitoring of Anesthetic Depth. Eindhoven: Eindhoven University

of TechnOlogy. Ph.D. thesis.

Date, c.J. (1986). An introduction to Database Systems. Vol. I, 4th ed. Reading, Mass,: Addison-Wesley, 1986.

Herwijnen, G.J. van (1988). Het Converteren van een Kliniscbe Database van dBase III naar Oracle (in Dutch).

Eindhoven: Fac. Electrical Engineering, Eindhoven University of Technology, 1988. M.Sc. thesis.

Hilderink, H.G.M. (1990). Datamodellen in de gezondheidszorg (in DutCh). Verslag studiedag, Bunnik, 20 sept.

1990. onder redactie van H.G.M. Hilderink. VMBI Datamodelwerkgroep, pia RZI, Plotterweg 14, Amersfoorl.

long, P.G.M. de (1986). Ontwikkeling van een event recording module voor een event recording cn data

acquisition systeem (in Dutch). Eindhoven: Fac. Electrca1 Engineering, Eindhoven University of TeChnOlogy,

1986. M.Sc. thesis.

Kurlaar, A. (1989). Databasesystemen voor Bdk (in DutCh). Syllabus 1989. Eindhoven: Eindhoven University

of Technology, 1989. Dictaatnr. 2424.

Lutz, M.W. (1986). The design and evaluation of a methodology to generate programs whicb interface with a

98

medical database (automatic programming, query sytems). Duke University, 1986. Ph.D. thesis. University

Microfilms Publication No. AAC8700024.

Perry, J.T. , Lateer, J.G. (1989). Werken met ORACLE (translated from Englisch to Dutch). Amhem: Sybex,

1989.

Remmen, F. (1982). Databases: grondslagen voor de logische structuur (in Dutch). Den Haag: Academic Service,

1982.

Theisen, G.J. , Cluitmans, PJ.M. , Beneken, J.E.W. , Conlon, M. , Grundy, B.L. (1986). EMDABS: A Multi

institutional Research Database System for Electrophysiologic Monitoring ofthe Nervous System. In: MEDINFO

86: Proc. 5th Conf. on Medical Informatics, Washington, 26-30 Oct. 1986.Ed. by R. Salamon, B. Blum and

M. J/lrgensen. Amsterdam: Norlh-Holland, 1986. IF! P World Conference Series on Medical Informatics, vol.5.

P.565-567 (part 1).

Testa, M.A. , Simonson, D.C. (1985). The design and structure of clinical research information systems:

Implications for data retrieval and statistical analyses. In: Proc. 18th Hawati Int. Conf. on System Sciences,

Honolulu, 2-4 Jan. 1985. vol.3: Medical Information Processing. Ed. by T.M. Walker. North Hollywood, Cal.:

Western Periodicals, 1985. P.327-336. Processing, p. 327-336.

Yao, H.H. (1989). Extended Relational Operators for Statistical Data Manipulations in Medical Databases.

Computers and Biomedical Research, vol. 22 (1989), p. 516-531.

(222)

(223)

(224)

(225)

(226)

(227)

(228)

(229)

ISSN 0167-9708
Coden: TEUEDE

Jozwi ak, L ..
THE FULL-DECOMPOSITION OF SEQUENTIAL MACHINES WITH THE SEPARATE REALI2ATION
OF THE NEXT-STATE AND OUTPUT FUNCTIONS.
EUT Report 89-E-222. 1989. ISBN 9D-6144-222-2

J6zwi ak, L..
THE BIT FULL-DECOMPOSITION OF SEQUENTIAL MACHINES.
EUT Report 89-E-223. 1989. ISBN 90-6144-223-0

Book of abstracts of the first Benelux-Japan Workshop on Information and
Communication Theory, Eindhoven, The Netherlands, 3-5 September 1989.
Ed. by Han Vinck.
EUT Report ~224. 1989. ISBN 90-6144-224-9

Hoei~makers, M.Jo
A PO SIBILITY TO INCORPORATE SATURATION IN THE SIMPLE, GLOBAL MODEL
OF A SYNCHRONOUS MACHINE WITH RECTIFIER.
EUT Report 89-E-225. 1989. ISBN 90-6144-225-7

~x~~Ai' R.P. and E.M. van Veldhuizen, W.R. Rut~ers, L.H.Th. Riet;ens
MENTS ON INITIAL BEHAVIOUR OF CORONA GEN RATED WITH ELEC1R CAL

PULSES SUPERIMPOSED ON DC BIAS.
EUT Report 89-E-226. 1989. ISBN 90-6144-226-5

BastinQs, R.H.A.
TOWARO>lHE DEVELOPMENT OF AN INTELLIGENT ALARM SYSTEM
EUT Report 89-E-227. 1989. ISBN 90-6144-227-3

IN ANESTHESIA.

Hekker, J.J.
~ER ANIMATED GRAPHICS AS A TEACHING TOOL FOR THE ANESTHESIA MACHINE
SIMULATOR.
EUT Report 89-E-228. 1989. ISBN 90-6144-228-1

Oostrom, J.H.M. van
INTELLIGENT ALARMS IN ANESTHESIA: An implementation.
EUT Report 89-E-229. 1989. IS8N 90-6144-229-X

(230) Winter, M.R.M.
DrSTGN OF A UNIVERSAL PROTOCOL SUBSYSTEM ARCHITECTURE: Specification of
functions and services.

(231)

(232)

EUT Report 89-E-230. 1989. ISBN 90-6144-230-3

Schemmann, M.F.C. and H.C. ~~eT' J.J.M. Kwaspen, Th.G. van de Roer
MOUNTING AND DC TO 18 GHz C C ERISATION OF DOUBLE BARRIER RESONANT
TUNNELING DEVICES.
EUT Report 89-E-231. 1989. ISBN 50-6144-231-1

Sarma, A.O. and M.H.A.J. Herben
llATAACQUISITION AND SIGi.ALl'ROCESSING/ANALYSIS OF SCINTILLATION
FOR THE OLYMPUS PROPAGATION EXPER I MENT •
EUT Report 89-E-232. 1989. ISBN 90-6144-232-X

EVENTS

(233) Nederstigt, J.A.
DESIGN AND IMPLEMENTATION OF A SECOND PROTOTYPE OF THE INTELLIGENT ALARM
SYSTEM IN ANESTHESIA.

(234)

(235)

EUT Report 90-E-233. 1990. ISBN 90-6144-233-8

Phili~pens, E.H.J.
DESIG ING DEBUGGING TOOLS FOR SIMPLEXYS EXPERT SYSTEMS.
EUT Report 90-E -234. 1990. ISBN 90-6144 -234-6

Heffels, J.J.M.
A PATIENT SIMULATOR FOR AI<ESTHESIA TRAINING: A mechanical lung model and a
physiological software model.
EUT Report 90-E-235. 1990. ISBN 90-6144-235-4

(236) L~~~~,J.O.
~ BASED ADAPTIVE BLOOD PRESSURE CONTROL: A Simplexys expert system
application.
EUT Report 90-E-236. 1990. ISBN 90-6144-236-2

(237) Ren Qingchang
~DICTION ERROR METHOD FOR IDENTIFICATION OF A HEAT EXCHANGER.
EUr Report 90-E-237. 1990. ISBN 90-6144-237-0

Eindhoven University of Technology Research Reports
Faculty of Electrical Engineering

ISSN 0167-9708
Coden: TEUEDE

(238)

(239)

Lammers, J.D.
THE USE OF PETRI NET THEORY FOR SIMPLEXYS EXPERT SYSTEMS PROTOCOL CHECKING.
EUT Report 90-E-238. 1990. ISBN 90-6144-238-9

WREg, x.
p LlMINARY INVESTIGATIONS ON TACTILE PERCEPTIOI~ OF GRAPHICAL PATTERNS.
EUT Report 90-E-239. 1990. ISBN 90-6144-239-7

(240) Lutgens, J.M.A.
KNOWLEDGE BASE CORRECTNESS CHECKING FOR SIMPLEXYS EXPERT SYSTEMS.
EUT Eeport 90-E-240. 1990. ISBN 90-6144-240-0

(241) Brinker, A.C. den
A MEMBRANE MODEL FOR SPATIOTEMPDRAL COUPLING.
EUT Report 90-E-241. 1990. ISBN 90-6144-241-9

(242) Kwassen, J.J.M. and H.C. ~T~kON' J.I.M. Demartea~, Th.C. van de Roer
MicR WAVE NOISE M~A$UREME DOUBLE BARRiER RESONANT TUNNELlNG1iTODES.
EUT Report 9D-E-242. 1990. ISBN 90-6144-242-7

(243) Massee, P. and H.A.L.M. de Graaf, W.J.M. Balemans, H.G. Knoopers, H.H.J.
ten Kate --

(244)

PREDr5TCN OF AN EXPERIMENTAL (5-10 MWt) DISK MHO FACILITY AND PROSPECTS Of
COMMERCIAL (1000 MWt) MHO/STEAM SYSTEMS.
EUT Report 90-E-243. 1990. ISBN 90-6144-243-5

Klom~stra, Martin and Ton van den Boom, Ad Damen
A CO pARisON Of CLASSICAL AND MODE~DNTRDIII]'DESIGN: A case study.
EUT Report 90-E-244. 1990. ISBN 90-6144-244-3

(245) 8Nr~, P.H.G. van de
HE ACCURACY OF RADIOWAVE PROPAGATION MEASUREMENTS: Olympus propagation

(246)

experiment.
EUT Report 90-E-245. 1990. ISBN 90-6144-245-1

~asg~, P.J.L. de
Y THESIS METHOD fOR COMBINED OPTIMIZATION Of MULTIPLE ANTENNA PARAMETERS

AND ANTENNA PATTERN STRUCTURE.
EUT Report 90-E-246. 1990. ISBN 90-6144-246-X

(247) Jozwiak, L. and T. S~assova-Kwaaitaal
~DSITIONAL STAT ASSiGNMENT WiTH REUSE Of STANDARD DESIGNS: Using
counters as sub-machines and using the method of maximal adjacensies to
select the state chains and the state codes.

(248)

(249)

EUT Report 90-E-247. 1990. ISBN 90-6144-247-8

Hoei~makers, M.J. and J.M. Vleeshouwers
DERi~TioN AND VERifiCATION OF A MODEL OF THE SYNCHRONOUS MACHINE WITH
RECTIFIER WITH TWO DAMPER WINDINGS ON THE DIRECT AXIS.
EUT Report 90-E-248. 1990. ISBN 90-6144-248-6

Zhu, V.C. and A.C.P.M. Backx, P. E~khoff
MITLTIVARIABLE PROCESS lDE]iiTfICATI N FOR ROBUST CONTROL.
EUT Report 9l-E-249. 1991. ISBN 90-6144-249-4

(250) Pfaffenhofer, F.M. and P.J.M. Cluitmans, H.M. Kuipers
EMDABS: Design and formal specificatlon of a datamodel for a clinical
research database system.
EUT Report 91-E-250. 1991. ISBN 90-6144-250-8

	Summary
	Contents
	1. Introduction
	2. EMDABS : A clinical database system
	2.1 A short introduction to database system
	2.2 An historic review of EMDABS
	2.3 System requirements of EMDABS
	3. Semantic relational databse concepts and their formal specification in a datamodel
	3.1 Entities and attributes
	3.2 Tupletype and tuple constraints
	3.3 Table, tabletype and table constraints
	3.4 Databse characterization and database type
	3.5 Unique identification and keys
	3.6 Database constraints, subset requirements and foreign keys
	3.7 Diagrams
	3.8 Operations on tables
	3.9 Pascal-like notation of the previous concepts
	4. Designing a datamodel for a clinical research database system
	4.1 Introduction
	4.2 Problem analysis
	4.3 Data analysis
	4.4 Guidelines to a good datamodel
	5. The subject-session datamodel
	5.1 Introduction
	5.2 Sessions and studies
	5.3 A short description of the remaining subject-session datamodel
	6. The time-model
	6.1 Introduction
	6.2 The events module
	6.3 Equipment and equipment settings
	6.4 The montage and electrodes
	6.5 The measured physiologic parameters
	6.6 The complete time-data model
	6.7 The complete datamodel of EMDABS
	7. Conclusions and future work
	Appendix A : mathematical terms
	Appendix B : the formal specification of the datamodel
	References

