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Abstract

From the recurrence relations of the Jacobi polynomials we compute the
: ' § : i o
matrix entries of the differential operators-é% and X3z with respect to

the corresponding orthonormal bases of normalized Jacobi polynomials.
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Some notations

In this paper we consider the Hilbert spaces

- o 1 - 8

Xa,B = LZ(E 1,11, (1-x)" (1 +x) dx)

and the positive self-adjoint operators A in X
a,B a,B
Al o
A ,=-(1-x") — - ((B-a) - (a+B+2)x) —
a,B -2 dx
dx

where we take o and B larger than -1. The operator A has a discrete

o,B

spectrum {n(n+a+B +1) |n € N u {0}}. Its normalized eigenvectors are

the normalized Jacobi polynomials Réa,B)

R(oz,B) _|a+B+2n+1 T(n+!)T(n+a+B+1) ip(a,B)
n # H0FB+1 Th+o+1) T(m+BR+1) n

where

(a,8) -n" ! (a)“ a+n B+n
P (x) ‘= <) -0+
¥ a2 (1-0% (Q+nf \IE

(cf. [2], p. 209).

In our study of distribution spaces based on Jacobi polynomials, cf. [1], we

needed an estimation of the matrix entries (DR(a’B) . (a,B)) and
n a,B

denotes the inner product in the

((xD)R.g’B ,Réa’s))a 8 where (-,-)a 8

. 2 " d

Hilbert space Xa 8 and where D denotes the differential operator I= "
b4

Exact expressions for these matrix entries are not known. In this note we

present such expressions. Also we give estimates for the considered matrix

entries.



Results

In [2], p. 213, the following relations can be found

(1) pp{® . barargep OB n gL
W ¢ (a+1,B+1) i . ?
e express the polynomials Pn—l as finite combinations of the poly-
nomials Péa’B), k=0,1,2,...,n~1. So we write
n—-1
platl,B+1) _ ) Y(a,B) p{e,8)
n-1 k=0 n-1,k "k '

(a, B)
n,k

we use the following relations which can be derived from [2], p. 213

In order to compute the coefficients vy s, B0, Aisay b Gl iaill,

g (a+l,B+1) _ (a,B+1) (a+1,B+1)
(2.1) Pz cy Pz k. dz Pl_1

h (a,B+1) _ (a,B) (a,B+1)
(2.11) Pz =a, Pz + bl Pz-l

where

29 + o + B + 1 2 +a+p+2
2 tr*ra+p+rl’ ST 1 +a+BFr2?
N § +:Q d L+ B+ 1
0 L +a+B+1 2 (3 L +a+p +2°
So starting from P§a+l’8+l) we get c, Péa’8+]) + dz Pégtl’8+]) by (2.1)

and then by’ (2.ii) BBV o g (™8 4 p(BD)ang a1s0 by (2.1)

2 By t Foed
(ot 13891 )40 (a,B+1) (a+1,B8+1)
P % Bt Lyt #:dpq P

1 Poes , ete.



The sketched process terminates, because V : P(p,q) =1, It can be
Pyq>-1 0

described by the following directed graph.

bn bn—I bn-2 bn
> > -— - > -t
v b ¢ Y T
2 an-1 an- 3h-3 2
(3) A A AA o 58
7
= r'd
a Ca-1 €n-2 Sl €0
N A A A
— > P P d
dn dn—l dn—2 1

The graph (3) shows the following:

c, is multiplied by a, or b

L L

d, is multiplied by d or ¢

2 =1 =1

b, is multiplied by bl—l or a

2 2-1

every factor ends with some Ao

The above examinations yield the following result:

n
P§a+1,8+l) ‘= ( dﬁ e d it S Poek 0 Poepsl Zn- ) pig’ﬂ)
with the convention dn dn+l = ] and bn—p bn—p+1 = 1; equivalently
=g
(@*1,8+1) o (® (o, B)
(4) e w TR Td L.ed 0@ 0B C e B T EEER S
n 420 \k=g ™ n-k+1 "n-k n-k Qe el
Thus we find that
=g
(a,8) _ ©
LY ol ) @ ..od e booeeebya) .

k=0



A simple calculation yields

(2,B) _ ,_(y& T'(&+o+B+1)I(n+B+2) .

(o Yn,i?. vl T'(n+o+B+3) I (+a+l) (2Epokgit)
T K¢y 4oy D(k+at1)
T L 1D ey
Let Oéa,ﬁ) denote the Xa B—normalization factor for the Jacobi polynomials,
b4

(6) 0l@:B) _ (2k + o + B + | r(k+1)r(k+a+s+1))& .

I3 QO+ B+ T (k+o+1) T (k+B+1)

Then we obtain for the matrix of D with respect to the orthonormal basis

(a,B) =
(Rn )n=0 of xa

B
(0 if ¢ 2n, 2,n ¢ N u {0}
(7) (DR(G"B),R(Q’B)) = ¢ O(Q’B)
x 3 X, 8 4 —%—7 Y(O_l’lsi(n+a+8+l)
0201,3 n-1,
\ if =L L Je,a=lmie B,

With similar methods we next compute the matrix of the differential operator

(

xD with respect to (Rha’B)):ao. From [2], p.213, we obtain the following

identities:
(a,B) < 2 (n+a) (a=1,B) _ 2(n+1) (e B R
(I=x)B) ol B+ T 'n X) " m T o+ BT lotl -
and
(@,8) .y _ - 2(n+B) (a,8-1) 2(n+1) (a,8-1)
e o e R s TC ) + TR i Tl ek

Adding these relations, we obtain the following formula



1
2Zm+ o+ B+ 1

xPéa’B)(X) = [- (n+a)P£a-l’B)(X) + (n+1)Péf;l’B)(X) +

+ @D ) + @eypl®E ‘)<x)] .

Thus it follows that

(8) 2% () = J(arargs2) x2OTED () <
= % 22 : : I g : g I"" (n+a+])PI(1aQB+1)(x) 3 (n"'l)Péi;B.‘.l)(X) +

g (n+s+1)p(°‘” B)x) + ( +1)1=(°‘+l B) (x )]

With the relations (2.i) and (2.ii) we get

k
{o+l,8) _ s o ~ _(a,B)
P Lod .o dy e, BT
=0
and
k
(z,B+1) _ o = ~ _(a,B)
2=0
where
o ¥ 25 > + 8+ ) g - - 'j +a
aj j+a+B+1° j jrta+p+1’
e 2 +a + 8 + 1 3. = j +8
] j+a+B+1° j jra+p+1"’

Finally, substituting the above values in (8) we get for the 2-th coeffi-

cient, 0 £ £ < n, in the expression of (XD)P(G B)



n+ o+ B+ 2 n—-2-1 ' f(n¥a+i)' P(é;a+é+l)
: 2n + ¢ + B + 3 [(_1) rarl) [(n+a+p+2) T(L+at+l)

n-+1 " r(a+a+2)  T(2+atp+l)

el s (a+1) T(n+ta+B*+3) T (Lra+l)

+ (n+s+])'f2§::E;i;j'P§%;g:ET;5 (29+a+p+1) +

o FEE D G ] -
NETRTETRII P

- (-l)n-z+1’r(ﬁ+d+2)“+'f(n;é+éj]
T (2+a+2)  T(2+B+1)

T (2+a+B+1) a-2+1 T (a+a+2) T (n4p+2)
- d@emreen) TEEEOE (0™ TEER « T -

The (n=1)-th coefficient in (8) is given by

£n+a+'6+2
2n + & + B + 3

((n+l)an+1 + (n+l)cn+]) =n+ 1.

=121

Remark. If o = 8 = A = }, then the polynomials P

called Gegenbauer polynomials

(212)
) & n_ o (\-1,x-1)
Cn (x) A+52n Pn : (x) .

From the above computation we.obtain

—~1

n
(xD)Céi) =9 (4k+2x)c§£) + 2n céi)
k=0

n-1
(XD)Cégil =3 (4k+zx‘2)cééll * (2“+1)C§gll '
k=0

This result corresponds with the well-known formula

(29+q+p+l) +

(29+a+g+1) +

lead to the so-



@0 €M-cM) =acM + @-2e2130{M

n-2 °’
efs [2Fy pu 221}
Now for 0 < 2 < n+l we put
(@,8) _ Couqy T(tatBe1) [ n-i+1 T(atat2) , L))
©) Sal, g~ 12040841} T e (( 2 T(tFar1) © T(L#8+1)

Then the matrix of the operator (xD) with respect to (Réa,B)):=o is given by

4

0 if £ >n, ne IN u {0}
(10) (R ® z (8 {4 if L =m0 &by [0
(d., B)
e(a’s)'on if0<2<n and n e IN
{ n,% OZa,Bi
2

Above we have computed the explicit values of the matrix elements of the
operators D and (xD) with respect to each orthonormal basis (Réa’s)):=o.

The next step is the derivation of sufficiently sharp upper bounds for these

values. Therefore we need the following result.

(11) Lemma

Let c,d > 0. Then there exists a positive constant K.4?> 0 such that for
b4

all me IN

T (m+c) »

Proof

From [3] we take the following inequality:

Lolee , D(mtl) 1-s
Vaent %5 Osax) * P % Tlmay > @HE -



We proceed as follows. Let m ¢ IN. Then

[(m+c) _ T(m+c) T(m+l)
I'(m+d) F'(m+l) T(m+d) °

Moreover we have

ggz:?; = (m+c-1) ... (m+cf[c])‘r(?z;;{c]) L
< (mee-1) L[] pelel-t
and, also
M(at1) _ L s

Tlmd) . (ea=TY. ., (aed-1d]) Tlard~Td]] ~

1 \[d]
Fra=mm) @

1-d+[d] ‘

IA

Since
e-1\lc
(mre-1) €] - plel-ld] (l*'_'nT Ll
(m+d- a4 )14 (s ;‘d—'[d]>[d]
m

< (oyfel plel-fd]
we finally get

{:Ez:g% < (c)[c] m[c]-[d] mc—[c]-l (m+])_1-d+[d] <

< (c)[c] 2l—[d]+d mc—d .

The previous lemma gives rise to the following estimates

(12.1) lo(a,s)l A (2k + o + B + 1 T(k+1)T (k+a+B+1) : s
' k v O +B+1 T (k+a+1)T (k+8+1)



- 1) =

- ((roreen) G 1 Gorge 1 s Tkt 302 )* i
2% B (1 ok 1) (kv 8+2) (kb1 ) T (kb @b 2) T (K B#2)

4
(k+1))

IA

(k = [ (Qk+o+Be1) (k+a+l) (k+B+1)

K K
eIN u{0} LZMB.H(k+a+8+1)(k+a+8+2)(k+])} 1,001 ok B+2,B+1

‘ 4
: CQ,B(k+l)

(12.i5)  [ol®8) =1 2% (rarpe) (rot 82) (1) r(kmarzzr<1-<+fs+2))i &
i k (2k+a+B+1) (kror 1) (k#B*1)  T(k+#2)T(k+orf*3) ) =

=4
< Da B(k+1)

.

for some positive constant Da g
b4

(12.ii1) |y

(22+a+B+1) | -

(a,B)l 2 I(n+o+2) T (g+a+p+1)
n, % I'{n+a+B+3) T(2+a+!)

B T(k#ar1)) _
. (kzz (2k+a+8+2) ??E?3377) .

_ _'(n+B+2) T (f+a+B+3) |22 + o + B + 1 (g+atl)
I(n+a+B+3) T (2+a+2) (a*a+p+1)  (L+a+p+2)

S 2k+q + B F Z'P(k+a+2))
T\ &, T Erar T T(kFBEZ),

A { e (29+a+B+1) (2+a+1) } K .
leINE{O} (2+a+8+1) (L+a+B+2) [[ "B+1,a+B+] “a+p+l,atl

v (aen)~(OFD) (g gy BY { - (2kk++aa++81+ 2)} ’

keINu{0}
n
o=B
. kZz K“+1,8+1(k+‘)
n o+l B+1
k + 1] 2 .1 e
‘g Ea,B 2 (n + 1) (k + 1) 3 Ea,B(n et

k=2



- 11 -

. (ay B) [122+0+B8+1 | |2+0a+]1 | T(n+a+2) r(2+a+B+3)
(1249 [8,37%1 < davarprd) | Te+a*B+1 | 2+a*B+2] T(n*otB+3) [(L+a+2)

|22+0+B+1 || 2+B+1| T (n+B+2) r(g+a+p+3)
[o+a+B+1 ]| | L+a+R+2| T(n+a+BR+3)T(L+B+2) | =

: |28 +a+B+1 | | g+atl |
< }(n+a+p+2) [ sup ( , .
Lremu (0} |2+a+6+1||2+a+6+2|_

g + 1\B*!

— +
Ka+1,a+3+2 Ka+3+2,a+l (n -}

. ( | 20+a+8+1 | | L+8+1 ]| ) :

sup
LeNU {0} | 2+0+B+1| | 2+0+R+2 |

/

a+l
. x " u) ] L
B+1,0+B+2 a+B+2,B8+1 \n + 1,

< Fa B(n+l)

for some well-chosen positive constant F, g
2

With the estimates (a.13.i-iv) we find

'4

0 ifk2n
(a,B) ,(a,B)
(13) | OR SRy )a,BI < | 372
G E...ﬁ%;%l if0<k<n
%8 (1)
Here Ga,B > 0 is a constant dependent on Ca,B’ Da,B and Ea,B' Also
(0 if k>n
(14) |((XD)Réa’B),R£a’B))a 8| < {n . : ifk=n
8, B(n)3/2(k+1)-1/2 if0<k<n




- 12 -

References

(1] Eijndhoven, S.J.L. van, andJ. de Graaf, On distribution spaces based
on Jacobi polynomials. EUT Report 84-WSK-01, Eindhoven University

of Technology, March 1984.

[2] Magnus, W., F. Oberhettinger and R.P. Soni, Formulas and theorems for
the special functions of mathematical physics. 3e Edition,

Springer, Berlin, 1966.

[3] Mitrinoviec, D.S., Analytic inequalities. First edition, Springer,

Berlin, 1970.



