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A PARTIAL GEOMETRY pg(9, 8, 4)
W. HAEMERS* and J.H. van LINT
Dedicated to N.S. Mendelsohn on the occasion of his 65th birthday

We describe a construction of a partial geometry pg(9, 8, 4) based on binary words of
length 9 and PG(1, 8).

1. Introduction

A (finite) partial geometry S = (P, B, I) is an incidence structure with a
symmetric incidence relation satisfying the following axioms:

(i) Each line is incident with s+ 1 points (s = 1) and two distinct lines are
incident with at most one point.

(i)) Each point is incident with ¢+ 1 lines (t= i) and two distinct points are
incident with at most one line (here the second assertion is implied by (i)).

(iii) If x is a point and L a line, such that x ¥ L, then there are exactly a

(a=1).points x;, x,, . .., x, and « lines Ly, L, ..., L,suchthat x I LiIxIL
(i=1,2,..., a).
Although the numbers s, ¢ and a are called the parameters of the partial
geometry, we denote such a partial geometry by pg(s+ 1, ¢+ 1, a) because the
numbers in brackets correspond to the objects which are counted by (i), (ii) and
(iii).

We call the points x and y collinear if there is a line incident with x and y.
We denote this by x ~ y.

If S=pg(s+1,¢+1,a) then the corresponding graph I'(S) is defined as
follows. A vertex of I'(S) is a point of S and {x, y} is an edge iff x ~y. It is easy
to check that I'(S) is a strongly regular graph with parameters

n=(s+1)(st+a)a, k=sit+1), A=(Es-D+Ha=-1),
p=(0(+Da

and that the eigenvalues of the adjacency matrix of I’ (S) are s(z+1), s—a,
—t—1 of multiplicity 1, f:= st(s + 1)(¢ + 1)/a(s + 1+ 1— @) and n — f— 1 respec-
tively (cf. [1, 7]).

* Present address: Dr. Neher Laboratories, Leidschendam, The Netherlands.
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206 W. Haemers, J.H. van Lint

A partial geometry is called a proper partial geometry if 1<« <min{s, #}.
Until a few months ago the only known infinite classes of proper partial
geometries were those constructed using arcs in projective planes of order 2%
All these geometries have odd a. The only other known proper partial
geometry was pg(6, 6,2) constructed by Van Lint and Schrijver (cf. {6]) using
codes.

Subsequently Cohen constructed a pg(9, 8, 4) using group theory (cf. [2]). In
this note we describe a much simpler representation of such a geometry. These
two constructions inspired De Clerck, Dye and Thas (cf. [3]) to construct a new
infinite class of partial geometries pg(2*"~* + 1, 2*"1, 22""2) which is more or less
naturally embedded in projective geometries (e.g. pg(9, 8, 4) is associated with
a quadric in PG(7, 2)). The idea of this construction was generalized by Thas,
producing a method for constructing pg(3®"™ + 1, 3**7}, 2.3**"2) which works for
at least two (and probably for all) values of n (cf. {8]). At that point (early
1980) the geometry pg(6, 6, 2) was once again the only ‘sporadic’ proper partial
geometry. Quite recently (June 1980) Haemers constructed a second one,
namely pg(5, 18, 2) (cf. [5]).

2. Some lemmas

Partial geometries were introduced by Bose [1] to study large cliques in
strongly regular graphs. We first give a bound on the size of a (co-)clique which
is well known. For a proof using matrix techniques we refer to [4]. We give a
proof by a double counting method (which we have seen referred to as
Mendelsohn’s method). :

Lemma 1. Let G be a strongly regular graph with parameters n, k, A, n and let o
be the negative eigenvalue of the adjacency matrix of G, i.e. the negative root of
the equation x*+ (u — A)x +u — k =0. Let C be a coclique of size c. Then,

c=<-—no/(k — o)

and equality holds iff each vertex outside C is adjacent to kc/(n — c¢) vertices of
C.

Proof. Let x; be the number of vertices outside C which are adjacent to i
vertices of C. Then we have

Sxu=n—c, > ix=kec, z(é)x,=,u(§)
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kzcz

> <i— n_cc)zx,- = uc(c— 1)+ ke —
is nonnegative. This implies
w(c—D)+k—k*/(n—c)=0.
Write x:=—kc/(n — c¢). By use of k(k —A—=1)=p(n—k—1) we find
X+ -ADx+tp—k=<0,
hence o < x and both results follow. []
A strongly regular graph G with parameters n, k, A, p is called pseudo-

geometric if there are integers s, f, a such that a partial geometry S=pg(s+1,
t+ 1, ) would have a I'(S) with the parameters of G.

Lemma 2. If G is a pseudo-geometric strongly regular graph corresponding to the
parameters s, t, a, then for a clique L in G we have

[Ll=s+1,
and if equality holds, then every vertex not in L is adjacent to « vertices of L.
Pfoof. This follows from Lemma 1 applied to the complement of G O
The following lemma is known, but not well enough !

Lemma 3. Let G be a pseudo-geometric strongly regular graph corresponding to
the parameters s, t, a. Let & be a collection of\ cliques of G, each of size s+1,
such that

() | L] = (@ + 1)(st + a)/a,

(i) each edge of G is in at least one element of <.
Then the incidence structure with the vertices of G as points, the cliques of £ as
lines and inclusion as incidence is a pg(s + 1, t+1, a).

Proof. Since (*}")|.#| equals the number of edges of G, each edge is in exactly
one element of %. Since G is pseudo-geometric this implies that axioms (i)
and (ii) of a partial geometry are satisfied. The third axiom follows from
Lemma 2. []
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In our construction of a partial geometry pg(9, 8, 4) a function ¢ defined on
the 4-subsets of points of PG(L, 8) plays a central role.

Definition. Let PG(1, 8) be described in the usual way as Fg U {}. Define

. [abc + abd + acd + bcd\?
¢(“’b’c’d)'=< atbtctd )

First observe that ¢ depends only on the 4-tuple {a, b, ¢, d} and not on the
order of the elements. Furthermore

o(l+a,1+b1+c¢1+d)=1+e(a b, ¢, d),
pla, b7 ¢, d)=(¢(a, b, ¢, d)) ",
eolaa, ab, ac, ad)= ap(a, b,c,d) if a#0.

Since PSL(2, 8) is generated by the transformations x> x+ 1, x> 1/x, x> ax
we see that ¢ and PSL(2, 8) commute in the above sense.

Let V be the set of nine points of PG(1, 8). We can consider ¢ as a function
on (¥), i.e. the set of 4-subsets of V.

Lemma 4. For every x € V, the points of V\{x} and the blocks {X: ¢(X)= x}
form the 3-(8, 4, 1) design of points and planes of AG(3, 2).

Proof. W.l.o.g. we can take x = «. The definition of ¢ implies that the sets X =
{a, b, ¢, d} with ¢(X)= satisfy a+ b+ c+d =0, so they are the planes of
AG(3,2) in its representation as Fs. [

Corollary 5. ¢ has the following properties:
M) ¢(X)E X,
(i) ¢(X)=e(V\(X U{e(X)})),
(i) p(X)=0(Y) > [XNY[|€{0,2,4}.

Lemma 6. If A€ (3) and ¢a: VN\A— V\A is defined by oa(x):i=0(A U{x}),
then o3 = I.

Proof. Since PSL(2, 8) is 3-transitive on V we may take A ={0,1,}. Then
oa(x)=x%s0 3(x)=x. O

Corollary 7. If A€ (%), then A and the two orbits of 4 are a partition of V into
three 3-subsets.
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Lemma 8. If {A, B, C} is the partition determined by ¢a, then @p determines the
same partition.

Proof. Let x € C,ie., C = {x, a(x), ¢4(x)}. By (ii) of Corollary 5 and by Lemma

bl
6 we have gp(x) = p4(x)€ C, i.e., Cis an orbit of ¢5. [

3. Construction of pg(9, 8, 4)

We first construct a strongly regular graph G with parameters (135, 64, 28,
32). As vertices of G we consider all binary words of length 9 with weight 4 or
8. There are )+ ()= 135 such words. Two words are joined by an edge iff
their distance is 2 or 6. It is elementary to check that this yields the required
graph. In fact this description of the graph differs only slightly from the usual
description (using the quadratic form 2;.; xx;).

The difficulty in finding the corresponding partial geometry lies in the fact that
G has far too many cliques of size 9. These are of four types:

Type 1. The rows of (J.—I),, i.e., the nine words of weight 8.

Type 2. The rows of a matrix which has the form

0 11 11 1 1 1 1
1

1

1 -1 0

1

1

1

1 0 (J_I)4
1

There are 9 - (8)/2 = 315 of these.
Type 3. The rows of a matrix which has the form

J I 0
0 J I
I 01J

where all submatrices are 3 by 3. There are (§) - ) = 560 of these.
Type 4. The rows of a matrix of the form

((1—1)3 ] J).

There are (3) = 84 of these.
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The partial geometry which we wish to construct has 120 lines, so we have to
pick 120 out of 960 maximal cliques. We shall take the clique of Type 1, 63
cliques of Type 2, and 56 cliques of Type 3. It may be interesting for the reader
to know that the numbers of types of cliques led us to this choice and
subsequently the problem of finding a ‘natural’ way to pick the required subsets
led us to the lemmas of Section 2.

We identify the nine positions with the set V. There are 9 choices for the first
row of a matrix of type 2, depending on the position of the 0. If 0 is in position
x we shall take only those partitionings of the remainder into two 4-subsets
which correspond to the 3-design of Lemma 4. This yields 63 cliques of Type 2.
A clique of Type 3 is chosen only if the three 3-subsets of V' (used in forming
the matrix) are as in Corollary 7. This yields 2(3)/3 = 56 such cliques. The cliques
chosen above are defined to be the lines.

We now claim that we have constructed pg(9, 8, 4). By Lemma 3 it suffices to
show that every edge of G is in at least one of the lines. There are four cases to
distinguish.

Case 1. Two words of weight 8 are in the line of Type 1.

Case 2. A word of weight 8 and a word of weight 4 with distance 6 have
three 1’s in common. By Lemma 4 these three positions uniquely determine a
line of Type 2 containing this edge of G.

Case 3. Two words of weight 4 with distance 2 look like

0000

0000

S———’ |
X

11
11

—
D

1
1

O =
(w7 )

If ¢(X) € D the edge is in a line of Type 2 with the 0 of row 1 in position ¢(X)
and X as one of the 4-tuples. If ¢(X) = a, then ¢p(b)= q, i.e., a and b are in
the same class of the partition determined by D (Corollary 7). Hence the edge
in question is in a line of Type 3.

Case 4. Two words of weight 4 with distance 6 look like

001 111 000
001 000 111
abc D E

(i) Clearly there is a Type 2 line containing this edge if ¢ 5'(c) E1{a, b};

(i) Next, suppose that ¢5'(c) = g for some g € E. Then (iii) of Corollary 5
implies that ¢ £'(c) € D. Now if 95(g) = ¢p(c)isin E we are finished because then
we have a Type 3 line containing the edge in question. The same is true if
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¢e(c) € D. So it remains to check whether it is possible that ¢p(c) € {a, b} and
ee(c) € {a, b}. Assume that ¢p(c)= a. Then by (iii) of Corollary 5 we have
oe(c) = b. Let E ={g, h, i}. The partition determined by ¢p is {D, {g, c, a}, {b, h,
i}}. By Lemma 8 it follows that ¢, 5 3(g) € {a, c}. On the other hand ¢, 1, 3(8) =
ee(b) = 0%(c) = ¢F(c) € D, a contradiction. So the remaining possibility does
not occur and the proof is complete.

4. Remarks

The authors of [3] conjecture, and we agree, that the pg(9, 8,4) constructed
by Cohen, the one constructed in this paper and the one associated with the
hyperbolic quadric in PG(7, 2) are isomorphic. In fact they consider it likely
that pg(9, 8, 4) is unique. These questions are still open.

A nice feature of our description is that one immediately sees that PSL(2, 8)
is an automorphism group of the geometry which stabilizes a line. If the
conjecture above is true the full group should be A,.

Let us consider the dual of pg(9, 8, 4) (i.e., we interchange the roles of points
and lines). This is a pg(8,9,4) which has the nice property that it admits a
parallelism, that is the lines can be partitioned into parallel classes such that
Euclid’s axiom holds. Indeed, for each x € PG(1, 8) = V define

Co={Xe @) e(X)=x} U{V\{x}}.

Then it is straightforward to verify that the sets C, produce the required
partitioning of the points of pg(9, 8, 4), i.e., the lines of pg(8, 9, 4), into parallel
classes.

A rather small candidate for a new partial geometry is pg(5, 8,2) with 75
points and 120 lines. Since the geometry has 8 lines per point and the same
number of lines as pg(9, 8, 4) one might hope that such a pg(5, 8, 2) is a partial
subgeometry of the larger one which means that it is obtainable by deleting a
suitably chosen set of 60 points of pg(9, 8,4) (four on each line). The points
corresponding to four parallel classes in the dual geometry actually have the
property that there are four on each line. This construction does not work ! In
fact the whole idea has no chance because of the following theorem.

Theorem 9. Let S be a pg(9, 8,4) and let S’ be a pg(5, 8,2). Then S’ cannot be a
partial subgeometry of S.

Proof. Let A and A’ be the adjacency matrices of the graphs I'(S) and I'(S").
Then A has an eigenvalue 4 of multiplicity 84 and hence rank(A —4I)=51.If &'
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is a subgeometry of S, then A’ is a principal submatrix of A and this implies
that rank(A’'—4I)=<51.

From this it follows that A’ has an eigenvalue 4 of multiplicity at least 24 but
A’ does not have an eigenvalue 4 at all | Therefore S’ is not a subgeometry of
S. O

Department of Mathematics
Eindhoven University of Technology
Eindhoven, The Netherlands
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