

Computer based support in software production environments

Citation for published version (APA):
Trienekens, J. J. M., & Kusters, R. J. (1992). Computer based support in software production environments. In
The impact of computer supported technologies on information systems development : proceedings of the IFIP
WG 8.2 working conference, Minneapolis, Minnesota, USA, 14-17 June, 1992 / edited by Kenneth E. Kendall,
Kalle Lyytinen, Janice I. DeGross (pp. 315-330)

Document status and date:
Published: 01/01/1992

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/386d747b-8c5c-47c7-99d6-39cae71418cb

COMPUTER BASED SUPPORT IN SOFTWARE PRODUCTION ENVIRONMENTS

ABSTRACT
Computer based support in software production environments (SPEs) is an area of
increasing interest. Its main focus is on improving productivity and quality of software
production by means of computer based support technologies. However, no universal set of
these tools exist. It is a major problem for software producing organizations to select
computer based support technologies effectively. In this paper, a customer oriented
classification of production environments, taken from industrial production research is
adapted to software industry. Based on the characteristics of different types of software
production environments, guidelines are derived for the selection of computer based
support technologies.

1. INTRODUCTION

Software industry evolved in the late 80s with the emergence of Software Development
Environments (SDE), Software Engineering Environments (SEE) and Software Factories
(SF), [DaEF 87], [lEE 88], [Tay 88], [Per 88], [FeO 89]. These integrated software
production systems, which are to a high degree computer supported, are also denoted by
the term Software Production Environment (SPE) [TaTF 90]. SPEs are aimed at a more
industrial production of software [FeO 89], [Gen 91]. They cover the total support of the
software production process of an organization, by integrating computer based support
technologies for both technical and managerial production activities. As such, the
production of software is no longer limited to a craftsmanship engineering of single
products. With a properly designed SPE, organizations have the opportunity to produce
professional software products, satisfying high quality standards in due time, at acceptable
costs and in accordance with the varying demands of their customers.

Main components of SPEs are computer based support technologies (CBST). These
technologies cover different aspects of the software production process, such as product
design, management and control of the software process itself as well as reuse of previous
work.

Considering the market situation, there is currently a substantial reservoir of these
technologies. CBST are classified as CASE-tools (Computer Aided System Engineering
tools), 1-CASE-tools (Integrated CASE tools), IPSE-tools (Integrated Project Support
Environment tools), Process modelling tools, Repositories and Object Management
Systems, etcetera. Apparently, CBST are strongly fragmented and they differ significantly
with respect to functionality and degree of integration [NoN 89]. Each of these
technologies pretends to reduce repetitive and time consuming tasks and, implicitly, to
increase productivity and quality. However, in previous research it was shown that by an
arbitrary application of CBST these advantages cannot be gained (e.g.: [ChR 88], [TrvR
90]). Due to the absence of a single monolithic general purpose set of CBST for all
software production situations, careful selection and integration is of utmost importance to
ensure that CBST provide the required support. However, existing approaches for selection
and evaluation have several weaknesses. They are performed in too much detail [BaS 89],
they compare only some selected CBST from a particular class (e.g.: [WeHB 87] considers
only CASE-tools), or they are based on common and too generally formulated
requirements of the average software producing organisation [Zuc 89]. In current literature

no selection approaches can be found that are explicitly based on well defined software
production characteristics of the software producing organization itself.

In industrial production research much effort has already been spent on the
development of selection guidelines for computer based technologies [BeWW 90]. From
this research we know that selection of suitable technologies has to be based on a proper
design of the production environment. Further we know that there is no 'one best way' to
design production environments. In industrial production it is commonly accepted that de­
sign guidelines have to be derived from the customer orientation characteristics of the
organization [Sar 81]. Since customer orientation is a major topic in the software industry
we will in this paper adapt the customer orientation characteristics from industrial organi­
zations to software producing organizations. Consequently we will use them to derive
guidelines for the design of effective SPEs and the selection of appropriate computer based
support technologies.

2. LESSONS LEARNED FROM INDUSTRY

In industrial production, the customer orientation is characterized by the extent to which
the production processes are governed by the customer orders [Sar 81]. We call this the
customer dependency of the production process. Traditionally, two types of dependency
could be distinguished. Customers demanding fast delivery were supplied with standardized
products and customers with specific demands were presented with products designed to
order. If a customer demanded specific products to be delivered with a short leadtime, a
problem was encountered.

In order to satisfy this demand, a restructuring of the production process was
necessary. Instead of the production of unique products by assembling a large number of
specific components, more and more organizations assemble a range of customer specific
products on the basis of a limited number of standardized components. This shift is
represented in Figure 1, where the isolated pyramids represent the traditional product
structures, with components specific to the product reflected by their bottoms and the
(unique) client-specific end products by their tops. The hourglass figure shows the notion
of assembling a variety of end products using a limited number of components. The
limited number of components are reflected by the neck of the hourglass and the larger
number of client-specific end products by its top.
Key to the success of such an approach is the explicit reuse of standardized components
enabling a reduction of leadtime (for the customer) to be coupled with a client specific
design of the final product.

Any industrial organization is now able to choose its own niche within the
possibilities set out above. There are opportunities in the marketplace for organizations
specialized in the fast delivery of relatively cheap standard products, but also for
organizations who design expensive complex customer specific products as well as for
organizations choosing the intermediate 'hourglass' approach. It is only important that the
choice for such a niche be made clearly and that consequences arising from this choice are
recognized.

Similar pressures from the market place, as prompted by the changes in industrial
production, can be noted in the software market. In reaction to this, software production
can learn from the changes that were made in industrial production.

A B c D
D

Figure 1: Different product structures

As in industrial production, the key to these changes will be the way in which reuse
of previous work can be effected. Reuse of components of previous software systems as a
potential for improvement has already been recognized [Pri 90], [Sel 89]. This reuse of
previous work in software production is not restricted to the reuse of software product
components (e.g.: design components, code modules), it also concerns the reuse of product
references in the earlier phases of the life cycle (e.g.: domain analysis descriptions, concep­
tual data models), software process knowledge (e.g.: life cycle models) [BiP 89].

The customer dependency of production of software can be determined by the way
the life cycle is covered by the software producing organization. We will call the customer
dependency of the software production low when the software producing organization is
oriented at an entire software consumer market. As such the software producing
organization itself has already defined the main requirements and has already specified the
design of the software products in a generic way. Especially in the lower part of the life
cycle the production of software is based on assembling specific end products by reusing
standard components. See the 'low' customer dependency part of Figure 2.

An increasing customer dependency of the software production means that the
collaboration between software developers and customers increases. This will take place in
the upper phases (e.g.: requirements and design) of the life cycle. In these phases process
and product models are reused as an aid of reference. In the lower phases (e.g.:
construction and implementation) of the life cycle, components can be reused. However,
due to the increasing extent of customer dependency, adaption will be necessary. The
'moderate' customer dependency part of Figure 2 shows the interrelationship between
increasing customer dependency and life cycle coverage by reusing previous work.

The ultimate customer dependency in software production can be found in software
production situations where products are developed completely 'from scratch' and where

no previous work is reused. Again and again the software producing organization will
cover the life cycle phases (both upper and lower) in accordance with the specific
requirements and (technical) constraints of the customer organization. See the 'high'
customer dependency part in Figure 2.

RBQUIRBMHNTS

DESIGN

CONSTRUCTION

IMPLBMBNTATION

LOW MODERATE IDOH

CUSTOMER DBPBNDBNCY

Figure 2: Customer dependency and reuse in software production

We now have distinguished two related characteristics of software production, namely the
degree of customer dependency of the production process and the degree of reuse. These
characteristics will be used in section 4 to describe three major types of software producti­
on environments. However, to establish a clear view on software production itself, we ftrst
have to discuss the main categories of software production activities.

3. MAIN CATEGORIES OF ACTIVITIES IN SOFTWARE PRODUCTION

In software production, different related activities have to be distinguished (e.g.: [Boe 81]).
In this paper we discuss three main categories of activities which we will denote as the
product modelling category, the process modelling category and the category of managing
the reuse of previous work. These categories are summarized in Figure 3 and their content
will be discussed in the sections below. The product modelling category is the traditional
category of engineering activities, which is concerned with modelling the concepts relevant
to producing a software system or the WHAT that has to be done (e.g.: [You 89], [Pag
88]). In current software production research, more and more attention is given to the
process modelling category, which is concerned with the modelling of the software produc­
tion processes itself [Tul 88], [Per 89]. These modelling activities are concerned with the
HOW, the WHEN and the BY WHOM of the software production. As was also mentioned
above, there is a growing importance of the activities that are concerned with the reuse of

previous work in software production [BiR 87], [PrF 87]. We therefore consider managing
of the reuse of previous work as the third main category of activities.

3.1 Software Product Modelling
Software products are always developed by modelling the product in a number of life cycle
phases. A common grouping of product modelling activities into phases is: requirements,
design, construction and implementation. In each phase, different types of product models
are specified and in each phase the product models are interrelated with the models in the
previous and in the following phases. Therefore, the modelling of the product during the
life cycle has to be considered as passing different levels of abstraction by transforming
product models from one level to another. In product modelling, both formal and informal
methods may be used. In the upper phases of the life cycle, e.g.: requirements and design,
the product models are less formal and are less detailed than in the lower phases (construc­
tion and implementation and maintenance). On each abstraction, level the particular pro­
duct developer (requirements analyst, designer, constructer, builder) has to deal with
different specific development constraints (e.g.: from type organizational, conceptual or
technical). The ultimate product of the product modelling activities is an implemented and
operational software system.

3.2 Software Process Modelling
Producing software is more than producing a collection of product models. The flow of
work that has to be done by the various players in the production of software products also
has to be structured and controlled. Process modelling is a means to govern this flow of
work by modelling the software production processes itself. Software production processes
are captured in process models describing when, how and by whom specific modelling
activities (e.g.: in terms of roles and tasks) have to be performed. Since the synchroni­
zation of the resourcing of the product modelling activities is an important process mo­
delling issue, the modelling of software processes is principally interrelated with the
product modelling. Software process models are common to multiple life cycle phases and
serve as an assistant and guide to developers of different types through the life cycle.

In this paper we will distinguish two levels of abstraction in process modelling: the
modelling of the life cycle and the modelling of the software development activities.

On the life cycle level, process modelling is mainly concerned with the determination
of a life cycle strategy, in advance of the software production. Life cycle models have
been around for many years [Boe 88], [You 87]. They are highly abstract, static and
informal and they serve as global guidelines for project managers and developers to deliver
(sub)products within an agreed time. Main aspects of process modelling on this abstraction
level are: the phases of the life cycle which have to be passed, and the sequence in which
they have to be passed (e.g.: linear, incremental, evolutionary).

On the activity level, the modelling of processes is concerned with a more formal
specification of the detail and the variety of the software production activities [Tul 88],
[Per 89]. Activity models are complex because of the multitude of software process aspects
that have to be modelled (e.g.: roles/tasks, schedules, resource allocations, documents, con­
trol structures, etcetera). Due to the often extensive changing of the work in software pro­
duction, activity models are highly dynamic and often evolve during the production
processes [DeG 90].

3.3 Managing the reuse of previous work
During the life cycle many different products of the system being developed will be
delivered in several versions and configurations. In advanced software production envi­
ronments the reuse of this variety of previous work has to be managed. Production and
identification of reusable elements should be explicitly acknowledged and organized as a
separate task. Identified reusable elements have to be stored properly in integrated data
dictionaries which are currently known as repositories. Given the importance of reuse, and
taking into account recent research on reusable software libraries, e.g.: [Bur 87], [Pri 87],
we consider in this paper the most important function of a repository to be the mana­
gement of reusable elements. In such repositories, facilities are necessary to navigate be­
tween the reusable elements in order to locate and retrieve them easily, [BiP 89]. Full con­
sistency, completeness and high quality accurate specification of reusable elements are vital
for reuse but cannot always be gained in software production [Som 90]. Therefore we
distinguish, in the variety of reuse of previous work, two types of reusable elements:
product and process. On the one hand, we consider informal product references (e.g: do­
main analysis models, requirements specifications etc.) and formal product components
(e.g.: design specifications, interface descriptions, modules of code etc.). On the other
hand, we consider informal process references (e.g.: life cycle reference models) and
formal process structures (activity structure components, design knowledge). This is
reflected by a dotted line in Figure 3, in which also the three main categories of activities
in software production and their interrelationships are shown.

PRODUCf MODBI.LING

PROCBSS MODBI.LINO

MODBlJJNG OF RBQUIRBMBNTS, DESIGN, CONS11lUCTION

AND lMPLEMBNTATION

PRODUcr RBJII!Ili!NCBS AND COMPONENTS

I.JFBCYCLB RBFBRENCB MODELS AND ACilVII'Y S11lUCJ1lllBS

MODBlJJNG OF LIFBCYCLBS AND ACI1VII1ES

MANAGING Tim RBUSE

OF PREVIOUS WORK

Figure 3: Product modelling, process modelling and managing the reuse of previous work

4. CUSTOMER ORIENTATION IN SOFTWARE PRODUCTION ENVIRONMENTS

In section two of this paper we adapted the characteristics of customer orientation from
industrial production research, e.g.: the customer dependency and the extent of reuse of
previous work, to the software industry. As such we established a notion of customer
orientation for software producing organizations. We will now discuss three types of soft­
ware production environments by focusing on the three main categories of software
production activities. The three types of production environments were derived from a
commonly accepted classification of customer oriented production environments in indus­
trial research [Sar 81] where they are defined as:
- Selling Capacity;
- Engineer-to-order production;
- Assemble-to-order production.

4.1 Selling capacity
In this type of software production environment, purely software production capacity is
sold to the customer. Capacity sellers are sometimes called jobbers. Many software houses
largely behave like jobbers. These software production environments do not have typical
products in which they are specialized and they are not focused on reuse of previous work.
Their way of producing software varies with the strong differences in the software products
that they produce and is highly customer dependent, [TrvR 90]. The need for highly con­
sistent and accurate specifications of product and process models is strongly diminished by
the absence of reuse of previous work in this type of production environment.

With regard to product modelling, capacity sellers are used to operate with different
product modelling approaches in all life cycle phases. For instance, product modelling
approaches are customized with respect to the preferences of the participating customer or
with respect to the particular characteristics of the software application area at hand. As a
consequence the product models will differ with respect to formality, completeness and
consistency. This will hamper the automatic transformability of the product models from
one phase to another.

With regard to process modelling, the structure of the software production processes
of capacity sellers is, due to the extent of customer dependency, to a high degree unpre­
dictable. Accurate specification of activity structures will hardly be possible. As a
consequence, capacity sellers will mainly use global process models on the life cycle level.
In Figure 4 the main characteristics of capacity selling production environments are shown.

4.2 Engineer-to-order software production
In engineer-to-order software production, a software production environment is specialized
in the development of a range of software products aimed at specific application areas.
Requirements of the client· of the software product are restricted to this limited product
range, thus profiting from experience gathered in the area. This can be interpreted as a
partly (or moderate) 'customer dependent' coverage of the life cycle by the

software producing organization. In the requirements and the design phase of the life cycle,
previous product and process models will be reused as an aid of reference. In the life cycle
phases of construction as well as implementation, reusable product components and activity
structure components can be of use. However, due to the extent of customer dependency of
the production, adaption of reusable elements will often be necessary. This will hinder the

automatic transformation of product specifications and transformation from one phase to
another will be executed semi-automatically or manually.

Due to the customer dependency in this type of production environment, movement
down the life cycle will not necessarily be linear. Instead, various life cycle models will be
developed dynamically, reusing life cycle reference models from previous production
situations. The detailed process models on the activity level cannot be predefined
completely in advance; they will also evolve during software production. As a
consequence, activity structures from previous production situations have to be adapted
when reused. In Figure 4, the characteristics of engineer-to-order environments are
summarized.

4.3 Assemble-to-order software production
Assemble-to-order refers to a production environment where product variety is restricted to
a number of preselected families of products. The customer dependency of the software
production in this type of production environment is low, because the components are
market oriented developed (i.e.: generic) instead of customer dependent developed (i.e.:
specific). It will be clear that although emphasis in assemble-to-order software production
is on assembling components, the initial development of the software components is an
important engineering activity.

marucr
MODBLLING

l'll.OCBSS

MODBLLING

ASSBMBLB TO atDI!R

OONSmVC110N, I'IICI>UCmN

AND IMPUIMBNTATION SPBCS

SEMJ.AUl'OMAnc 1 AUl'OMAnc

DANSRmWILB SI'I!CIPICATIONS

l'llOOUcr OOMl'ONIINTS

---. ----- ----- ----- ----- ------
AC11VITY SDUCilliU!S

STAnc AC11VITY MmELS

ENGINBI!Il TO ORDER CAPAClTY SBUJNG

DESIGN, OONmUCI10N AND llllQtJIRI!MBNI, OONS11llJCl'10N

IMl'UINBNTATION SPBCIFICATIONS DBSIGN AND IMPUIMBNTATION SPI!CS

MANUAL I SI!MI-AVI'OMAnc MANUAL 'I'RANSIUMABl.B SPB:'S

'lRANSroJMABLE SI'I!CIPICATIONS

l'llOOUcr JU!III!Ili!NCB MOOm.S --
PIODUCI' OOMI'ONBNl'S --------------------------------- ---------------------------------

lJllll CYCJIIIJili!IBNCB MOOm.S

AC11VITY SDIJCruii!S

DYNAMIC AcnvtTY MOOm.S IJPBCYCJI MOOBLS

I..IPIICYaJI MOOBLS

Figure 4. Characteristics of software production environments

MANAGING

111BRBUSE

OPPIUMOUS

woax

In assemble-to-order production environments, the product and the process elements
to be reused can be considered as reusable building blocks that are ideally unchanged in
their use. With regard to the product modelling activities, assemble-to-order software
production environments are usually restricted to the lower phases of the life cycle, e.g.:

construction and implementation. Since the reusable product components are highly consis­
tent and accurately specified, in these lower phases of the life cycle, the transformability of
specifications from one phase to the other can to a large degree be semi-automatic or even
automatic, [Big 90].

Assemble-to-order software production environments are restricted to the lower life
cycle phases which are passed in a linear sequence. Therefore, no life cycle modelling
will take place. The process models on the activity level are linear and deterministic. These
static activity structures do not evolve during assembly and can be considered as reusable
components. In Figure 4 the characteristics of assemble-to-order production environments
are shown.

5. COMPUTER BASED SUPPORT TECHNOLOGIES FOR CUSTOMER
ORIENTED SOFTWARE PRODUCTION ENVIRONMENTS.

As stated before, there is no single 'best' production environment for all software
producing organizations. Software production environments have to be designed properly
according to their customer orientation characteristics. In this section we will present a
basis for the derivation of guidelines for the design of SPEs and the selection of computer
based support technologies for the three different types of software production environ­
ment. We will address three major classes of computer based support technologies by
describing in which way they support the main activities in software production. Conse­
quently, for each type of software production environment the appropriate technologies will
be discussed.

5.1 Computer Aided System Engineering (CASE) - tools
The term CASE tools focuses on individual tools providing functional support for specific
software product modelling activities within the life cycle of a software product, [Mar 89].
In this class of tools, upper CASE (e.g.: analysis or design tools) and lower CASE (e.g.:
4GL code generation, prototyping tools) can be distinguished. Individual CASE tools are
focused on product modelling during only one single phase of the life cycle [Ter 90].
Tools of this type are unrelated and as a consequence only isolated product specifications
are produced which are not automatic transformable to another phase of the life cycle.
Because of the absence of shared data by means of a central and integrated repository,
reuse of previous work will hardly be possible.

Considering the modelling of the processes, individual CASE tools will offer hardly
any flexible support. With regard to the life cycle level of process modelling, each of the
tools is restricted to one or two phases of the "freezed" waterfall life cycle model. Within a
phase, they prescribe a linear sequence of product modelling activities.

Considering the way CASE tools support de main activities in software production,
we conclude that various individual CASE tools can, in spite of their limitations, offer
sufficient computer based support with respect to the great variety of product modelling
activities in capacity selling production environments. However, the offered support in life
cycle modelling (restricted to single life cycle phases) will be hardly sufficient. Further we
state that the absence of a central dictionary is of minor importance in capacity selling
production environments because this type of production environment is not focused on
reuse. Considering the limitations of CASE tools, it will be clear that they do not offer
sufficient support in both engineer-to-order and assemble-to-order environments. In Figure
5 the support characteristics of CASE-tools are shown.

PRODUcr
MODBI..LINO

1-CASB TOOLS

JSOU.TilD lNTl!OllATBD l'IIODUcr
PRODUCf SPBaPICATIONS AROUND
!IPI!CIPICATIONS lll!l'OSlTOII.Y

MANUAL (SEMI-) Atrr0MA'l1C
mANSl'OIMABLB 'l1tANSOOilMABL
!IPI!CIPICATIONS SPBaPICATIONS

PRODucr COMI'ONBNTS

STA'l1C LIFB CYa..B
MODBLS AND AC11VITY
S'ltlUCTURBS

ftlOCBSS MODI!LLING
TOOLS

DYNAMIC
AC11VlTY
S111.UCJUJU!S

SINGU!LIFB
CYCLB PHASBS

'11GH'll.Y COUPU!D PHASBS JNTBGRA'11NG

STA'l1C
AC11VlTY
MCOl!LS
Wl11llN SlNGLB
PHASES

ALONG LIFBCYCLB PROJJ!Cl'
MANAGEMI!Nl'
ASPBCl'S

STA'l1C AC11VlTY MCOl!LS 11IROUGH 'IHB lJI1B
11lllOUGH LIFBCYQ.B CYCLB

BNGINBBR TO oaDBR CAPACITY SELLING _., _____ ~

Figure 5. Characteristics of computer based support technologies

5.2 Integrated CASE (I-CASE) tools

MANAGING 'IHB
llBUSB OP J.IRIMOUS
wou:

I-CASE tools are built up from a set of product modelling (CASE) tools around a reposito­
ry and as such they enable integration of product modelling activities across the life cycle
[Mar 89], [MeMN 90], [Ter 90]. In I-CASE tools, not only product reference models and
product components but also global life cycle reference models and linear activity struc­
tures models can be stored in one underlying repository. As stated before, we consider in
this paper the management of the reuse of this vast amount of product and process
elements which are generated all along the life cycle as the key task of this repository. As
such, a repository should also provide the functionality to identify and to locate reusable
elements across the life cycle. Since the tools in I-CASE share a repository, the various
product models are specified highly accurately and consistently in the particular language
of that repository. As a consequence, this will benefit the (semi-automatic and automatic)
transformation of product reference models and product component specifications from one
phase to another.

The main draw back of I-CASE tools is that they are based on the classical 'wa­
terfall' life cycle model. In I-CASE tools, the phases of this life cycle model are tightly
coupled. Within each phase, a linear sequence of activities is prescribed. Deviations from
the predefined standard life cycle model or modifications on the activity model will
interfere with the integrated support of the product modelling activities.

Considering the characteristics of I-CASE tools we conclude that these tools are
useful in both assemble-to-order and engineer-to-order software production environments.
The main reason is that in these two types of software production environments, as distinct
from capacity selling environments, reuse support and integrated support are of great
importance.

Assemble-to-order software production is focused on software production activities in
the lower cycle phases which are passed in a linear sequence. Within these phases software
production is focused on the reuse of both product and process components. I-CASE tools
offer this kind of support and, especially the lower, construction and implementation parts
of it, are a useful aid for assemble-to-order software production.

In engineer-to-order software production environments, product and process models
will be used as an aid of reference in the upper part of the life cycle.
In the lower parts of the life cycle, software production can consist for an important part of
adapting reusable product and process components. Considering the support characteristics
of I-CASE tools we conclude that, especially with regard to product modelling and reuse
of product components, tools of this class will be useful to engineer-to-order environments.
However, due to the necessity of dynamic process modelling in engineer-to-order
environments, I-CASE tools will be of little use with regard to process modelling. So
engineer-to-order software production needs complementary computer based support. In
Figure 5, the support characteristics of I-CASE tools are summarized.

5.3 Process modelling tools
Software process modelling is aiming at providing assistance and guidance to all people
involved in the software production process [MaGD 90]. Process modelling tools have
integrated functionalities to model the software production process itself as well as its
interrelations. An important aspect of process modelling tools is the support they offer to
the formal and detailed specification of dynamic activity structures [Tul 86]. These activity
structures, in which design knowledge is captured, can be considered as important reusable
elements in specific software production processes. In section 4.2 we concluded that
especially in engineer-to-order software production environments, life cycle models and
activity structures evolve during software production. As a consequence, the static and
linear process modelling support of respectivily CASE and I-CASE tools are of little use in
engineer-to-order software production. This type of software production has to consider
process modelling tools as a necessary and complementary support to CASE and I-CASE
tools, see Figure 5.

6. CONCLUSIONS

Software production environments within organizations have to deal with a huge
fragmentation of computer based support technologies. Obviously, there is not a single set
of computer based technologies available on the market which supports all the possible
activities in software production. Selection of CBST should be based on a proper
evaluation of the structure of the software production environment. However, there are no
guidelines for designing SPEs and selecting computer based support technologies.

In this paper we considered software production within organizations from the
perspective of customer orientation. We adapted characteristics of customer oriented
production from industrial production research to the software industry. Furthermore we
have elaborated a view on the main activities of software production and used this view as
a basis to present characteristics of three particular types of customer oriented software
production environments. The characteristics of those three types serve as a basis to derive
guidelines for the design of SPEs. Finally we presented the characteristics of computer
based support technologies so that they can be selected and applied effectively in the diffe­
rent types of software production environments.

We realize that in practice one will rarely find software production environments that
exactly conform to the descriptions given in this paper. The three types of software
production environments presented, are ideal types, i.e. extremes chosen for the sake of
clarifying the concepts introduced. However, it is our contention that, as in other
industries, the recognition of the niche in the market place that the organisation is aiming
at and the consequences this aim has for the software production processes, will provide
useful insights in the design of the software production environment and the selection of
appropriate computer based support technologies.

Further steps in this research are aimed at the validation of the proposed three
distinguished types of software production environments, their production activities and
tools, and their interrelationship.

7. ACKNOWLEDGEMENTS

The authors would like to thank prof. dr. T.M.A. Bemelmans and prof. dr. rr. J. C.
Wortmann for their helpful and inspiring comments.

[BaS 89]

[Bern 86]

[BeWW 90]

[BiP 89]

[BiR 87]

[Boe 81]

[Boe 88]

[Bur 87]

[ChR 88]

[DaEF 87]

8. REFERENCES.

Baram G., G. Steinberg, Selection criteria for analysis and design of CASE
Tools, ACM Software Engineering Notes, Vol. 14, no. 6, Oct. 1989.

Bemelmans T.M.A., "Bedrijfskundig ontwerpen van bestuurlijke informa­
tiesystemen", published in "Automatisering met een menselijk gezicht", in P.A.
Comelis, J.M. van Oorschot, Kluwer, Deventer, 1986.

Bertrand J.W.M., J.C. Wortmann, J. Wijngaard, Production Control, A Structural
and Design Oriented Approach, Elsevier, Amsterdam, 1990.

Biggerstaff T.J., A.J. Perlis, Introduction in Software reusability, Volume 1:
Concepts and Models, ACM Press, New York, 1989.

Biggerstaff T.J., C. Richter, "Reusability framework, Assessment and directions",
IEEE Software, pp. 41-49, March 1987.

Boehm B.W., "Software engineering economics", Englewood Cliffs, NJ, 1981.

Boehm B., A spiral model of software development and enhancement, Computer,
May 1988, pp 61-72.

Burton B.A. et al., The Reusable Software Library, IEEE Software, April 1987,
pp. 25-33.

Chikofsky E.J., B.L. Rubenstein, 'CASE: Reliability Engineering for Information
Systems', IEEE Software, March 1988, pp. 11-15.

Dart S.A., R.J. Ellison, P.H. Feiler, A.N. Habermann: Software Development
Environments, IEEE Computer, Vol. 20, No. 11, November 1987, pp. 18-28.

[DeG 90]

[Dow 86]

[FeO 89]

[Gen 91]

[lEE 88]

[LeT 87]

[Mar 89]

[MeMN 90]

[MaGD 90]

[NoN 89]

[Pag 88]

[Per 88]

[Per 89]

[PrF 87]

[Pri 90]

Deiters W ., V. Gruhn, Managing Software Processes in the Environment
MELMAC, ACM, Software Engineering Notes, Vol. 15, No.6, Dec. 1990.

Dawson M., ISTAR - An Integrated Project Support Environment, Proceedings
of ACM Sigsoft/Sigplan Software Engineering Symposium, Palo Alto,
California, Dec. 9-11, 1986, pp. 27-33.

Fernstrom C., L. Ohlsson, ESP - an Approach to Industrial Software Production.
In: "Software Engineering Environments - Research and Practice", ed. K.H.
Bennett, Ellis Horwood Books in Information Technology, 1989.

Genuchten van M., Towards a Software Factory, Thesis, June 1991, University
of Technology Eindhoven.

IEEE Transactions on Software Engineering, Special Issue on Software
Engineering Environments, IEEE Transactions on Software Engineering, Vol. 14,
No. 6, June 1988.

Lehman M.M., W.M. Turski, Essential properties of IPSEs, ACM Sigsoft
Software Engineering notes, Vol.12, No.1, Jan. 1987, pp. 52-55.

Martin J., CASE Tools Comparison & Review: The Definitive CASE Seminar,
Software Technology Seminars, December 1989- June 1900, James Martin
Productivity Series Library, 1989.

Mercurio V.J., B.F. Meyers, A.M. Nisbet, G. Radin, AD/Cycle strategy and
architecture, IBM systems journal, Vo1.29, No. 2, 1990.

Madhavji N.H.,V. Gruhn, W. Deiters and W. Schafer, Prism= Methodology and
Process-oriented Environment. In Proceedings of the 12th International
Conference on Software Engineering, Nice, France, March 1990.

Norman R.J., J.P. Nunamaker, Jr., CASE Productivity Perceptions of the
Software Engineering Professional, Comm. of the ACM, Vol. 32, Sept. 1989, pp
1102-1108.

Page-Jones M., Practical Guide to Structured Systems Design, 2nd edition,
Prentice Hall, 1988.

Perry D.E., G.E. Kaiser, Models of Software Development Environments,
Proceedings of the 1Oth International Conference on Software Engineering,
Singapore, April 1988, pp. 60-68.

Perry D.E., editor, Proceedings of the 5th international Software Process
Workshop, Kennebunkport, Maine, USA, September 1989.

Prieto Diaz R., P. Freeman, Classifying software for Reusability, IEEE Software,
Jan. 1987.

Prieto Diaz R., "Implementing faceted classifying for software reuse",
Proceedings of the International Conference on Software Engineering, pp. 300-
304, Nice, 1990.

[Sar 81]

[Sel 89]

[Som 90]

[Ter 90]

[TaTF 90]

[Tul 86]

[Tul 88]

[Tay 88]

[TrvR 90]

[WeHB 87]

[You 87]

[You 89]

[Zuc 89]

\

Sari J.F., The MPS and the Bill of Material go hand-in hand, Rischard C. Ling
Inc., 1981.

Selby R.W., "Quantitative studies of software reuse", in Software reusability,
Vol. 2, application and experience, editors Biggerstaff, T.J., Perlis A.J., ACM
Press, New York, 1989.

Sommerville I., DSCC components catalog tool for software reuse, University of
Lancaster, IEEE software, May 1990, pp. 72.

Terry B., D. Logee, Terminology for Software Engineering Environment (SEE)
and Computer-Aided Software Engineering (CASE), ACM SIGSOFT, Sofware
Engineering Notes Vol. 15, No. 2, April 1990.

Tardieu H., R. E. Thomas, C. Fernstrom, 0. Hesse, Proceedings of the Berlin
seminar on the Eureka Software Factory Project, Nov. 1990.

Tully C.J., Software Process Models and Iteration. In M. Dowson, editor,
"Iteration in the Software Process", Proceedings of the 3rd International Software
Process Workshop, Beckenbridge, Colorado, USA, November 1986.

Tully C., editor, Proceedings of 4th. International Software process Workshop,
ACM Software Engineering Notes, Vol. 14, No.4, June 1989.

Taylor R. et al, Foundations for the ARCADIA Environment Architecture. In
Proceedings of the 1988 ACM SIGSOFT SIGPLAN Software Engineering Sym­
posium on Practical Software Development Environments. pp. 1-13, Boston
M.A. 1988.

Trienekens J.J.M., A.J. van Reeken, Effectiviteit van workbenches, Sere
onderzoeksrapport 90/08, Software Engineering Research Centrum (SERC),
1990.

Weiderman N.H., A.N. Habermann, M.W. Borger, M.H. Klein, A Methodology
for Evaluating Environments, SigPlan Notices, January 1987, pp. 199-207.

Yourdon E., Managing the Systems Life Cycle, Yourdon Press, 1987.

Yourdon E., "Modem Structured Analysis", Yourdon Press, New York, 1989.

Zucconi L., Selecting a CASE-tool, ACM, Software Engineering Notes, Vol. 14,
no. 2, April 1989.

