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Approximation of structural optimization problems by means of 
designed numerical experiments* 

A . J . G .  Schoofs ,  M . B . M .  K l i n k  a n d  D .H .  van  C a m p e n  

Eindhoven University of Technology, The Netherlands 

A b s t r a c t  In this paper we describe an approach in which the 
Experimental Design Theory (EDT) (see Montgomery and Wiley 
1984; Kiefer and Wolfowitz 1959; Fedorov 1972) is used as a tool 
in building approximate analysis models to be applied in struc- 
tural optimization problems. This theory has been developed for 
the planning and analysis of comprehensive physical experiments 
in order to reduce the number of required experiments while pre- 
serving the amount of information that can be extracted from 
them. This situation is very similar to that of structural opti- 
mization, where the number of expensive finite element (FEM) 
analyses has to be minimized (Schools 1987). FEM computations 
can be regarded as numerical experiments, where the design vari- 
ables are treated as input quantities. All computable properties 
of the structure, such as weight, displacements, stresses, etc. can 
be regarded as response quantities of the numerical experiment. 
The approximating models will be derived for these responses by 
using regression techniques, and they can be substituted in the 
optimization problem for the definition of the objective and the 
constraint functions. The application of the proposed method is 
illustrated with two case studies. 

1 E x p e r i m e n t a l  de s ign  t h e o r y  

1.1 Regression model 

EDT consists of two main parts. The first part  concerns the 
planning of experiments and ends up with a list of experi- 
ments to be carried out. This list is called the experimental 
design (ED). In the second part  the experimental results are 
analysed and fitted to some mathematical  relationship: the 
regression model. 

We use the following notations: 
x is a column matrix,  
z_ is a stochastic variable, 

is an estimated variable. 
When a structure is determined by n design variables, 

denoted by the column, x, we may search for t functions 
describing the response quantities 

Yi = y j ( x ) '  j = l , . . . , t ,  (1) 

in a certain limited area according to the bounds of the design 
variables given by 

l z .~ i = l , . . . , n .  (2) ri  <-zi<- z '  

In the sequel we will consider only one response quantity, 
yj ,  and for brevity we omit the index j .  To find the relation 
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y = y(x) we assume a mathematical  model. Mostly a linear 
model will apply of the form 

y = fT(x)/3 +_e = f l l f l ( x )  + . . .  f lkfk(X) + e_, (3) 
where the components j31,. . .  , ~k of the column/3 are un- 
known parameters; the model is linear in the components of 
/3. The functions J l ( X ) , . . . ,  fk(x)  are the components of the 
column f(x) .  We can choose both linear and non-linear func- 
tions for them; in most cases, a polynomial is chosen for (3). 
The variable e__ accounts for the stochastic or deterministic 
model error that  is inherent in every model assumption. 

1.2 Parameter and response estimation 

An allowable point in the design variable space is charac- 
terized by specific values of all design variables within the 
bounds given by (2). The formulation of an ED implies the 
choice of a certain number, say N,  of such points. For a 
proper estimation of fli, i = 1 , . . . ,  k, see (3), the number N 
should exceed the number k. 

Now we assume that  somehow an ED has been deter- 
mined consisting of N points, represented by the sets of 
design variables X l , . . .  , x N. If  we analyse the structure 
at these points yielding the column of response quantities 

T Y = [YlY2. . .YN] , then by using a least-squares technique 
the unknown parameters /3  can be estimated from 

= ( x T x ) - I X T y ,  (4) 

where X is the ( N . k )  "design matrix",  which is given by 

X = [ f ( x l ) f ( x 2 ) . . .  f (xN)]  T . (5) 

Subsequently, for an arbitrary design point, x, within the 
bounds (2) the response variable can be estimated from the 
explicit approximation 

9(x) = fT(x)/3 • (6) 

It is our purpose to use regression models of the type of (6) 
to formulate and solve optimization problems. 

1.3 Use of sensitivities 

Differentiation of the mathematical  model (3) with respect 
to the design variable x i gives 
Oy _ ~ 0/1 + + ~k ~ + Oe 
Oz i 1-~x i . . .  - -  ~ z i ,  i =  l , . . . , n .  (7) 

In FEM-formulations such sensitivities of y can be efficiently 
computed and thus (7) can be used with advantage, together 
with (3), to estimate the parameters/3.  Furthermore, the ac- 
curacy of part ial  derivatives of the resulting regression models 
will then be increased, which is advantageous for use of the 
regression models in optimization algorithms. 
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1.4 Accuracy of the estimates 
A measure for the accuracy of/3 is the variance-co-variance 
matrix V(.~), which is defined as 

V(~) = E [ ( ~ - / 3 ) ( / ~  - / 3 )  T] = ( x T x ) - I a  2 , (8) 

where E is the expected value operator,  and ~r 2 is the variance 
of the response variable y. For the response estimator y(x) 
the variance Y~(x)]  is used as a measure for its accuracy. 
From (6) and (8) it follows: 

Y~(x)]  = fT (x ) ( zTx) - l f ( x )~r2 .  (9) 

1.5 Planning of the experiments 
The first part  of EDT concerns the determination of the list 
of experiments to be carried out, the experimental design 
(ED), in such a way that  model parameters and responses can 
accurately be estimated. For this purpose several, more or 
less classical methods are available (Montgomery 1984; Box 
et al. 1978). We will t reat  a relatively recently developed 
method: the optimal experimental design theory (see Kiefer 
and Wolfowitz 1959; Fedorov 1972). 

1.6 Optimal experimental design 
The formulation of an ED implies the choice of a certain num- 
ber, N, of points in the design variable space limited by the 
bounds given by (2). The objective in optimal experimental 
design is to determine these N points, in general, from a much 
larger set of so-called candidate points, in such a way that  
the variances of the estimated parameters, or the variance of 
the estimated response quantity, are minimized. 

1.7 Discrete levels of design variables 
In principle all real design variable values within the bounds 
are allowed for a candidate point. For the purpose of ef- 
ficiency, however, we only allow a very limited number of 
discrete values, called levels, of every design variable. 

The choice of the number of levels for a certain design 
variable depends on the order of the variable in the assumed 
mathematical  model [see (3)]. A linear effect" can be esti- 
mated by means of at least two levels. A quadratic effect 
needs at least three levels, and so on. For function types other 
than polynomial terms, for example trigonometric functions, 
similar considerations can be applied. 

1.8 The set of candidate points 
The set of candidate points is composed by choosing a rel- 
atively large number of discrete points. A quite commonly 
used set of candidate points comprises all possible combina- 
tions of the levels of the variables. This builds a so-called 
"complete" design. If the number of the design variables 
and/or  the number of levels increases, a complete design may 
be too large a set of candidate points. Classical experimental 
design methods (Montgomery 1984; Box et al. 1978) pro- 
vide methods to determine a fraction of the complete design, 
which can be used as a reasonable set of candidate points. 

1.9 Optimality criteria 
As mentioned above, experimental cJesigns can be evaluated, 
using the variances of the parameter  estimators V(fl) or the 
variance of the response estimator Y[~(x)] as a measure, see 

(11) and (12), respectively. In both cases the quality of the 
E D i s  a function of the matr ix ( x T x )  -1 and the objective 
is to determine that  ED among all possible N-point designs 
which makes ( x T x )  -1 minimal. However, the minimum of 
a matr ix is not a well-defined concept and a number of oper- 
ational criteria have been developed. The most important of 
these criteria are 
D-opt imal i ty :  minimize det(XT x )  -1 , (10) 

G-op t ima l i ty :  minimize the maximum 

response variance, (11) 

V-op t imal i ty :  minimize the average response 

variance. (12) 

Mitchell (1974) developed an efficient algorithm called 
DETMAX as the most popular in optimal experimental de- 
sign. The algorithm starts  with an initial ED. During each 
iteration step, the candidate point which results in the largest 
increase of det ( x T x )  is added to the design, and subse- 
quently the point which results in the smallest decrease of 
det ( x T x )  is removed from the design. The algorithm gen- 
erates high quality EDs at relatively low computing costs. 

Optimal experimental design is useful in those situations 
where classic designs are unsuitable or unavailable, that is 
when 
- the experimental region is irregularly shaped due to con- 
straints on the variables, 
- it is necessary to augment an existing design, 
- the number of levels of the variables varies considerably, 
- designs must be constructed for special models, i.e. other 
than polynomial models, 
- designs must be constructed for simultaneous observation 
of several responses. 

2 M o d e l  b u i l d i n g  

The building of all accurate regression model for a given sys- 
tem or structure is an iterative process. Initially the following 
questions must be resolved to some degree: 
- which variables play a role and what is their range of inter- 
est, 
- which form of functions f / (x) ,  see (3), may be suitable to 
describe the relationship searched for. 

A good strategy is to begin with moderate model de- 
mands, thus reducing the initial computing costs. The it- 
erative model building process is able to enhance models in 
a cost efficient way, see Fig. 1. 

At  the start  of each iteration step a model assumption of 
the type of (3) must be available. The iteration step then 
involves generation of an ED, collection of data, followed by 
estimation of the parameters from the collected data, and 
the evaluation of the model. Evaluation implies answering 
questions like 
- Is the model valid? 
- Are the estimated parameters accurate enough? 
- Are the response predictions accurate enough for all relevant 
values of x? 

If the results of the testing require further model improve- 
ment, it is necesary to perform another model building cycle 
consisting of experimental design, da ta  collection, parameter 
estimation, and retesting. 
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I START I 

I MODEL ASSUMPTION 

I EXPERIMENTAL DESIGN 

I OOL' CT, NG T.E DATA I 

I ESTI TION I 

I MODEL TESTING I 
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I¥. 
I F'NIS"ED 1 

Fig. 1. Scheme for model building 

3 C o m p u t e r  p r o g r a m  for  m o d e l  b u i l d i n g  a n d  op t i -  
m i z a t i o n  

Nagtegaal (1978) developed an interactive computer program 
called CADE (Computer Aided Design of Experiments). 
Apart  from experimental design, facilities for the analysis 
of experiments have also been implemented. For the exper- 
imental design part,  the core of the program ACED (Welch 
1985) has been used. In CADE the optimality criteria and 
algorithms of ACED have been generalized to the case of 
simultaneous observation of several response quantities. 

CADE has been coded in Fortran 77 and runs on Apollo 
D3000 work-stations, Vax systems and an Alliant FX40 com- 
puter. The program originally consisted of three main mod- 
ules, being model input, design of experiments and parameter 
estimation. 

In the model input module all kinds of linear models can 
be entered, stored in a file or read from a previously prepared 
file without the need for user supplied subroutines. 

The experimental design module offers the following fa- 
cilities. 
- Optimal design for a single and for several simultaneous 
responses. 
- Implementation of the D-, G- and V-optimality criteria. 
- Implementation of several optimization algorithms, includ- 
ing DETMAX. 
- Determination of the characteristics of user:supplied de- 
signs. 
- Augmentation of existing experimental designs. 
- Generation of some classical designs (fractional 2n-designs). 

Finally, the main characteristics of the parameter estima- 
tion module are as follows: 
- parameters can be selected by means of stepwise regression, 
backward elimination and forward selection; they can also 
selected "by hand"; 
- parameters can be protected against removal from the 
model; 

- parameters are estimated accurately by means of QR- 
decomposition, followed by an iterative refinement procedure. 

Recently, Klink (1991) added a fourth module to CADE. 
Using this module, several regression models can be com- 
posed to formulate an objective function and constraint func- 
tions defining a (structural) optimization problem. Subse- 
quently, the optimization problem is solved using CADE by 
means of an SQP algorithm. The second application in the 
next section illustrates this feature. 

4 A p p l i c a t i o n s  

The procedures described in the preceding sections have been 
applied to several mechanical engineering problems. In this 
section two applications are presented. 

4.1 Stress concentration problem 

Van Campen et al. (1990) applied the method to a stress 
concentration problem in a chain link of a continuous variable 
transmission system, see F i g .  2a. Each section of the chain 
contains a number of links of about 0.5 mm in thickness. The 
pins transmitt ing the driving force to conical discs are locked 
up by the links in subsequent sections of the chain. Only 
a symmetric loading case was considered, allowing us to use 
only one quarter of the link in the FEM model. Figure 2b 
shows the geometry of the link. The !oading fo r ce / ' / 2  is 134 
N. 

I 

. : (a) 

 ;YX. 

1o.o (b) 
Fig. 2. (a) View of the chain, (b) one quarter of the link 

In Fig. 2b three areas, A, B, and C are indicated with po- 
tentially high tensile stresses along the Contour of the link. 
The maximum tensile stresses are denoted by (r A , aB, and 
~rc, respectively, and the objective was to derive regression 
models for these quantities. The level of the stresses can be 
influenced by variation of the geometry parameters Zl,X2 
and z 3. Hence these parameters  were used as design vari- 
ables. 
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The design variables are subject to the constructive con- 
straints 

4 . 5 ~ x  1_~6.0, 0.0_~x 2_~0.6, 0.0~_x 3_~0.6. (13) 

Each design variable was varied on four levels. For the set 
of candidate points from which the experimental design had 
to be selected, all possible combinations of the levels were 
used resulting in 4×4×4 = 64 candidate points. For each 
stress area a mathematical model was assumed containing 11 
unknown parameters. One FEM analysis provides 4 observa- 
tions, namely one value of the stress and three values of its 
partial derivatives 

O~ i Oct i O~r i 
i =  A, B, C .  (14) 

(7i, Ox 1 ' Ox 2 ' Ox 3 ' 

Hence; a minimum of 3 (~ 11/4) F EM runs was required. The 
number of design points, N, was chosen as 5. These 5 points 
were selected from the 64 candidate points using the optimal 
experimental design module of CADE. 

The model fitting process resulted in the following regres- 
sion models for the three stress quantities: 

aA = 540.3 - 110.1x 1 + 7.7Xl 2 + 201.6x 2 + 10.5x 2 - 

-76.3x32 - 17.1XlX 2 - 3.0XlX2X 3 + 12.6xlx3, (15a) 

(r B = 870.9 - 199.3x 1 + 15.2Xl 2 - 263.6x 2 - 

-46.1x 2 + 41.2xix 3 + 3.1x12x2 - 7.0x12x3 , (15b) 

~C = 1311.6 - 335.9x I + 23.7Xl 2 + 44.2x 2 + 

+7.7x 2 - 392x32 - 0.9x12x2 + 6.0Xl x2 . (15c) 

In order to test the capability of the procedure one hun- 
dred test points were chosen in the design space at random. 
The FEM observations in these points were compared with 
the predictions of the models (15). Figure 3 shows the dis- 
tributions of the residuals. 

\ 

\ _  
-2 -1 0 1 2 3 4 

Percentage deviation 

Fig. 3. Distribution of residuals of 100 random test points for the 
approximations in the areas A, B, and C 

We may conclude that, based on as little as five FEM 
analyses (and using partial derivatives), regression models of 
good overall fit could be derived. 

4.2 Opt imiza t ion  o f  a child's car seat 

4.2.1 In troduct ion  

Figure 4 shows a child strapped in a child's ear seat; the seat 
in turn is fastened onto the back seat of the car. The child's 
seat and its suspension on the ear seat has to be designed 
such that, in the case of a crash, the child is protected as 
much as possible. 

Fig. 4. Child in a child's car seat 

4.2.2 Design variables 

In the present case study (Klink 1991), the design variables 
in Table 1 and Fig. 5 are relevant. 

Table 1. Design variables of the child's seat problem 

Xl 
x2 
x3 
x4 
x5 
x6 
x7 
x8 
x9 
Xl0 
Xll 
x12 

mass of child's seat 
moment of inertia of child's seat 
y-coordinate of center of gravity of child's seat 
z-coordinate of center of gravity of child's seat 
angular position of child's seat 
stiffness of contact of child's seat versus car seat 
hysteresis of the contact x 6 
stiffness of the car seat belt 
stiffness of the child's seat belt 
backlash child's seat belt 
juncture of shoulder segment of child's seat belt 
juncture of hip segment of child's seat belt 

Zc 

q 
.cg 

It  

Y 

Fig. 5. Definition of some design variables 

4.2.3 Crash s imula t ions  

Specifications for the design problem are extracted from 
the behaviour of, and the loads on a standardized child 
dummy, resulting from crash experiments. Because such ex- 
periments are very expensive and time-consuming, numerical 
crash simulations are applied. The crash simulation program 
MADYMO (1990) has been developed to analyse the response 
of the human body to a dynamic impact (Wismans 1988), and 
is well-suited to carry out the numerical crash simulations of 
the dummy in the child's seat. Figure 6 shows a sequence of 
situations during a specific crash simulation. 
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9 

o 
c5 

o 

iJ I 
U 

Fig. 6. Sequence of situations during a crash simulation (Courtesy 
of TNO Road-Vehicles Research Inst., Delft) 

4.2.4 Injury parameters 

Several simulation results can be applied as injury parame- 
ters. In this case study the following maximum (in the abso- 
lute sense) internal dummy loads during the simulation are 
used as injury parameters, see Table 2 and Fig. 7. 

Table 2. Injury parameters 

A1 the maximum 
S1 the maximum 
A2 the maximum 
$2 the maxamum 
M1 the maximum 
M2 the maximum 

axial force in the torso-neck joint J 
shear force in the torso-neck joint J 
axial force in the neck-head joint I 
shear force in the neck-head joint I 
bending moment in the torso-neck joint 
bending moment in the neck-head joint 

~T k-head joint 

o-neck joint 

Fig. 7. Internal dummy loads used as injury parameters 

4.2.5 Multi-objective funct ion 

In the design process the injury parameters have to be min- 
imized, and therefore they serve as separate objective func- 
tions for the optimization process. However, for a reasonable 
design the injury parameters have to be used as the compo- 
nents of a multi-criterion objective function. This is accom- 
plished in the following way. 

For each injury parameter an injury probability function 
is defined as (see also Fig. 8) 

Pi(qi) = [1 + exp(c~ i --/3iqi)] - 1  , i = 1 . . . . .  6. (16) 

The parameters a and /3 are thus chosen that the chance 
of injury at qi = qil is Pil ,  and at qi = qi2 is Pi2, where 
Pi2 = 1 - Pil.  A typical value of Pil is 25%. In other words 

1.0 

p,2 

Probability 
of injury 

Pil 

0.0 
qil qi2 Injury parameter qi 

Fig. 8. Injury probability function 

- if qi < qil the probability of injury < 25% and 
- if qi > qi2 the probability of injury > 75%. 

Using (16), the multi-criterion objective function is simply 
defined as 

6 

Fm = E p i ( q i ) .  (17) 
i=1 

4.2.6 Constraints 

In the optimization process the following constraints have to 
be applied. 

1. The acceleration of the dummy's chest is not allowed to 
exceed the 55 g-level for more than 3 ms. 
2. The position of the dummy's head has to stay within the 
bounds yc = 550 mm and Zc = 800 ram, see Fig. 5. 

4.2.7 Experimental design 

To solve the optimization problem, regression models were 
derived for the injury parameters and for the constraints, as 
functions of the design variables. For all these quantities the 
same first order model was assumed of the form 

qi(x) "~ flO -4-fllXl + . . .  + fl12x12 -4- 

+/313x 1 x 2 +. . . /378Xll  x12. (18) 

For such a model it is sufficient to vary all the design variables 
on two levels. The set of candidate points was composed of 
all possible combinations of the levels, giving a number of 212 
= 4096 candidate points. 

Because the program MADYMO has no facilities to com- 
pute sensitivities of the response quantities, we have to select 
a number of design points from the set of candidate points 
which is larger than the number of unknown parameters, here 
79 [see (18)]. It was decided to use 100 design points, defin- 
ing 100 simulations to be performed using MADYMO. The 
program CADE was used to finding an optimal set of 100 

• design points. 

4.2.8 Model fitting and "optimization 

After the simulations were carried out, the regression models 
were fitted using CADE. Next, the injury parameters were 
minimized as separate objective functions. The constraints 
always proved to be passive. Table 3 shows the optimization 
results. 

From Table 3' it can be seen that the first order regression 
models show considerable deviations from direct MADYMO 
results. Therefore it was decided to perform a second model 
building cycle, using quadratic regression models. 



Table 3. Single objective optima versus direct MADYMO results, 
using first order regression models 

Injury Single objective optima MADYMO results 
parameter 

A1 iN] 
S1 [N] 
A2 [N] 
Se IN] 
M1 [Nm] 
M2 [Nm] 

predicted by for the predicted 
regression models optimum point 

1246.00 
209.00 
719.00 
999.00 
44.00 

2.24 

1391.0 
260.0 
788.0 

1195.0 
55.0 
6.9 

4.2.9 Second model building cycle 

For a quadratic model the design variables have to be varied 
on (at least) three levels. Wi th  12 design variables a complete 
design would give a far too large set of candidate points. 
Therefore, using the results of the first model building cycle, 
six design variables were fixed on favourable values. The 
six variables which were still allowed to vary are (see Table 
1): x 2 ,x 3 ,x 4 , x  5 ,x 8 and x 9. Here, the following type of 
regression model was used: 

. . . .  f~ z 2 qi(x) ~0+~1x2+ +~6x9+~7~2+ . . .+  12 9+ 

+]313X2X 3 + . . .  "4- f~27X8X9 + f128X2X3 + . - -  "4- f~58X8 x2 .(19) 

The set of candidate points was now chosen a complete 36- 
design, giving 729 candidate points. Again using CADE, an 
optimal experimental design was selected consisting of 100 
design points. Next, in these points simulations were carried 
out using MADYMO. The subsequent model fitting and op- 
timization (by means of CADE) of the child's seat problem 
gave the results shown in Table 4. 

Table 4. Single objective optima versus direct MADYMO results, 
using quadratic regression models 

Injury Single objective optima MADYMO results 
parameter 

A1 [N] 
Sl [N] 
A2 [N] 
S2 [N] 
M1 [Nm] 
M2 [Nm] 

predicted by for the predicted 
regression models optimum point 

1380.0 
617.0 
771.0 

1146.0 
47.0 

7.3 

1364.0 
610.0 
780.0 

1150.0 
51.0 
7.6 

Comparing Tables 3 and 4 it can be concluded that  the 
quadratic models are much more accurate than the first order 
models. However, the need for quadratic models is somewhat 
more open to question if we consider the results of multi- 
objective optimization, see Table 5. 

Table 5. Comparison of initial and final designs in the first and 
the second model building cycle using the multi-objective function 

Injury Initial 
parameter design 

first cycle 
A1 [N] 1678 
S1 [N] 626 
A2 [N] 1009 
$2 IN] 1365 
M1 [Nm] 71 
M2 [Nm] 15 

Multi-objec- Initial Multi-objec- 
tive optimum design tive optimum 

first cycle second cycle second cycle 
1433.0 
548.0 
848.0 

1166.0 
53.0 

5.7 

1378 
767 
767 

1168 
51 
10 

1379 
540 
769 

1165 
51 
11 
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From Table 5 the following conclusions may be derived. 
- The final design in the second cycle is considerably improved 
compared to the initial design of the first cycle. 
- The improvement in the second cycle is almost accomplished 
at the beginning of that  cycle. Only the injury parameter 
S1 is substantially improved (767-*540) during the multi- 
objective optimization run. 
- The second cycle optimum is a moderate improvement com- 
pared to the first cycle optimum. 

5 C o n c l u s i o n s  

We described a method for deriving approximate analysis 
models as a substitute for time-consuming numerical analyses 
in solving structural optimization problems. Those analyses 
are regarded as numerical experiments from which data  is ex- 
tracted as input for the model building process by means of 
linear regression techniques. The resulting regression models 
can be used to define the objective function and the con- 
straint functions of the structural  optimization problem. Re- 
gression models and their use for solving an optimization 
problem are implemented in the program CADE. 

Due to the iterative character of the model building pro- 
cess, regression models can be created in a cost effective way. 

The proposed method has been tested and illustrated by 
two practical examples. The stress concentration problem is 
described by three design variables. Due to the application 
of sensitivities, accurate regression models could be derived 
from very few (five) FEM analyses. The child's ear seat prob- 
lem showed 12 design variables. Through the use of regression 
models an optimization problem could be defined and solved 
using the program CADE, whereas the crash simulation pro- 
gram MADYMO does not have optimization facilities such 
as computation of sensitivities. 
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