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Abstract. 

There doesn't exist a finite planar map with all edges having the same 

length, and each vertex on exactly 5 edges. 
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In troduc tion. 

At the 198!-meeting for discrete geometry in Oberwolfach, H. Harborth 

posed the following problem: Is it possible to put a finite set of match

sticks in the plane such that in each endpoint a constant number k of 

matches meet, and no two match-sticks overlap? Also if possible, what 

is the minimum number of match-sticks in such a configuration. He pro

ceeded to give minimal examples for k :::: 2 (fig.l) and k = 3 (fig.2) and 

a non minimal example for k = 4 (fig.3). 

fig.! fig.2 fig.3 

For k ~ 6 there exist no finite regular planar map of valency k by con

sequence of Euler's theorem: V - E + F = 2 where V :::: the number of ver

tices, E :::: the number of edges, F :::: the number of faces. 

For k :::: 5 there do exist finite regular maps, the smallest one is the 

graph of the icosahedron (fig.4), but it is not possible to draw it in 

such a way that all edges have the same length, 
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We will show that this is true for all finite planar graphs that are . 

regular of degree 5. 

Theorem. No finite planar map with straight edges of equal length exists 

that is a regular of degree 5. 

Proof. 

Let V denote the number of vertices, E the number of edges and F the 

number of faces of a planar map_ We then have Euler's relation: 

V-E+F=2. 

If, furthermore each point is on 5 edges then 

5V == 2E • 

Write F. for the number of faces with i sides, then 
1 

F=F3 +F4 +··· 

and 

2E == 3F 3 + 4F 4 + ••• • 

We may combine (2~, (3) and (4) to get 

F - 2F - 5F - 8F -345 6 20 • 

For any vertex v we define 

f.(v) = # i-gonal faces containing v , 
1 

f(v) 
f

3
(v) 

=-3- -

From (5) and (6) and 
f. (v) I _1_ 

1 
VEV 

I f (v) = 20 • 
v 

5£5 (v) 

5 

::: F. we obtain 
1 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

(7) 



.c , 
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From now on, we assume that the edges in the map all have the same 

length. A point is then surrounded by at most 4 triangles, and the 

only possibilities for a point v, making a positive contribution to 

I f(v) are 4 triangles + a tetragon, or a pentagon: 
v 

f(v) 4 
=< -

3 
1 

f(v) :0 3" 

We will show that the positive contribution is killed by the surrounding 

points, yielding I f(v) ~ 0 clearly a contradiction. 
v 

First we define a modified map: we add the diagonal in diamonds as in 

figure 5: thus producing 2 equilateral triangles. The effect upon L f(v) 

is as follows: 

U V

2 

VI v3 

fig.S 

£(v
l

) and f(v
2

) are increased 

1 
by 3"' f(v3) and f (v 4) 

v 

are increased by t + f; therefore each added diagonal produces an in-

crement of 4: 

I f (v) :: 20 + 4 x (# added diagonals) • 
v 

(8) 

After the addition of extra diagonals points are produced of valency 6 

and maybe 7, say v6 of valency 6, v7 of valency 7 and we have the relation 

2 x (# added diagonals) = v6 + 2v7 
(9) 
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together with (8) this gives: 

I f (v) - 2v 6 - 4v7 = 20 • 
VEV 

(IO) 

The contribution of points with valency 6 or 7 to the left hand side 

of this relation is negative, this shows we may limit us to the study 

of points that are in a pentagon, since all other points do not make 

a positive contribution. Let P denote the set of pentagonal faces, and 

uP the set of points contained in a pentagonal face. 

-Let f(v) = f(v) - 2(d(v) - 5) where d(v) is the degree of v, we then re-

write relation (10) as 

L -f(v) = 20 
V€V 

or, separating pentagonal points and non-pentagonal points: 

L f (v) + L f (v) = 20 • (II) 
V€V\uP V€up 

~ 

Since f(v) ~ 0 for v € V\uP we will now investigate 

L f(v) . 
w.uP 

Write: 

I f(v) = I L f(v) 

V€up PEP V€p f5 (v) • 

We will finish the proof by showing that 

L ~ 0 
v€p 

for all possible pentagons P. 
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f{v) 
Now the only way for v € P to have fS(v) > 0 is that v is surrounded 

by 4 triangles and a pentagon, in which case f(v) = t. 
f(v) In all other cases 
fS(v) 

A pentagon making a positive contribution must therefore have four ver-

tices of the first kind, this is clearly impossible, so we are finished. 


