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1. Introduction

Much research is being done in the field of atherosclerotic disease, a di­
sease which reveals itself as a stiffening and/or narrowing (stenosis) of
the arterial vessel. This may lead to partial or full occlusion of the
artery lumen and as a consequence to damaging of the tissues that are
supplied with blood by this particular vessel. Understanding of the fluid­
mechanical properties in both healthy and diseased arteries is of great
importance. This is firstly because there are many indications that the
genesis of artherosclerosis can be related to regions of distrubed flow like
those in bifurcations and bends (Caro et al. 1969, Stehbens 1975, Texon 1976
and Fry 1976). Secondly this is, because understanding of the changes in the
flow when stenoses occur may be used for diagnosing the disease in an early
stage. To that end the bloodflow velocities and wall displacements can now
routinely be obtained by means of ultra-sound Doppler anemometry (Hoeks et
al. 1981). A deeper understanding of the complex properties of bloodflow can
be obtained by experiments like in vitro velocity measurements (Laser­
Doppler anemometry) and by mathematical models. In vitro measurements in
models of arteries and artery bifurcations has been performed by several
investigators and particularly by Bharadvaj et al. (1982), Zarins et al.
(1983) and LoGerfo et al. (1981). Mathematical (i.e. numerical) analysis of
blood flow in several models of arterial vessels are reported intensively in
the last few years. Gosman et al. (1979) presented numerical solutions of
the three-dimensional steady flow in a round pipe with a sector shaped
obstacle and used a finite difference method. Wille (1981) used a finite
element method to analyse pulsatile pressure and velocity patterns inside an
axis symmetric stenosis model and later (1984) presented a finite element
formulation for three-dimensional steady flow in a model of the aortic
bifurcation. Two-dimensional but pulsating flow analysis in arterial
bifurcations are presented by Florian et.al. (1982).

In the present study a mathematical model for unsteady flow in a sim­
plified two-dimensional stenosis model is considered. Mathematical models of
blood flow can be obtained by the solution of the well known Navier-Stokes
equations. Only for very simple geometries these solutions may follow from
analytical calculations. In practice numerical approximation methods like
finite difference, discrete vortex or finite element methods are necessary.
When dealing with complex (three-dimensional) geometries at relatively low
Reynolds numbers (Re < 103), the finite element method is the most advanta­
geous because no complex interpolations to incorporate the boundary condi­
tions (see for instance Cebeci et al. 1981) or non-orthogonal body-fitted
coordinates (see for instance Gunton et al. 1983) are needed. However, be­
cause of the great amount of computing time and memory needed, the solution
of the fully three-dimensional unsteady Navier-Stokes equations for complex
geometries is very difficult yet. As a preparatory study, in the present pa­
per the attention is focused upon the unsteady Newtonian flow over a rec­
tangular step. The flow behaviour around a step has been the subject of many
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investigations. Numerically the studies of Thomas et al. (1981), Hackman et
al. (1984) (backward facing steps), Hughes et al. (1979), Leone et al.
(1981) and Yang et al. (1984) are closely related to the numerical part of
this study. Experimentally the reports of Goldstein et al. (1970), Denham et
al. (1974), Mullin et al. (1980), Sinha et al. (1981) and Armaly et al.
(1983) are valuable but only deal with backward facing steps.

In section 2 the used numerical method is treated. The finite element
equations are derived for a penalty function method and a extended quadratic
triangular element. Some attention is payed on time integration schemes that
may be used. As a check of the numerical procedure, also the results of some
testing examples are given. In section 3 the experimental method is treated
with special emphasis to the dataprocessing. In section 4 the results of as
well the numerical calculations as the experiments are presented and
compared. Finally in section 5 the results are discussed and compared with
those obtained from the literature. Some suggestions for further in­
vestigation are also given.
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2. Numerical method

2.1. General procedure

2.1.1. Finite element discretization of the two-dimensional time-dependent
Navier-Stokes equations.

The two-dimensional (20) Navier-Stokes equations are given by the momentum
equations together with the continuity equation (Batchelor, 1967):

ou· 2 OU' 2 00"
Q at1. + r QU)' ax: = Qf1.' + .r ~X:j=1 ) )=1 OXj-

30 2 oQu,
(IT + j~1 ~ = 0 i=1,2 (2.1)

Where Q denotes the density, ui the i-the component of the velocity, t the
time, f i the volume force per unit mass of fluid in the i-direction and 0ij
the Cauchy stress tensor. For a Newtonian fluid, the Cauchy stress tensor
reads:

rtU . au . 2 2 OU '
°i)' = -p6 i ), + n(ax~ + 3i7) - j n ,r

1
~

J 1. J= J
(2.2)

where p denotes the hydrostatic pressure, 6ij the Cronecker delta and n the
dynamic viscosity. In case the fluid is incompressible (i.e. Q = constant)
the equations reduce to:

au, 2 OU' 2
1 r 1. Qf' + rQ ot + Q u· ~ =

j=1 )
J

1. j=1

2 au,
r ~ = 0

j=1 )
(2.3)

The corresponding boundary conditions which specify the considered physical
problem and give rise to a unique solution of the problem may be a combina­
tion of prescribed velocities and stresses in two independent directions:

Uj or 0ijnj prescribed on boundary aQ for j = 1,2 (2.4)

Note that the pressure is not prescribed on the boundary and can only be
prescribed in an explicit way by means of the stress. To solve these equa­
tions the Galerkin finite element method is used. The standard method then
is to form a weak solution by multiplying equations (2.3) with testfunctions
vi (i=1,2) and q for the momentum and continuity equations respectively and
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integrating over the considered domain dQ:

AU· 2 au· a" 2 a oUi au·
I (~+ .r u· ~)VidQ = I {f· - ~ + r (~ [v(~ + ~)]}vidQ
Q J=1 J J Q 1 Xi j=1 J J 1

2 au·
I (j~1 ax~)q dQ = 0 i=1,2 (2.5)
Q

The testfunctions vi has to be one-time continuously differentiable and q
must be integrable. New symbols in the equations (2.5) are v = n/Q, denoted
as the kinematic viscosity and p = p/Q. For convenience in the remaining
text p is denoted as p. Finally integration by parts of the diffusion term
and the pressure derivative term in equation (2.5) yields to:

2 au· au· ov·
.r v(~ + ~)ax~}dQ
J=1 J 1 J

2 au·

Q
I [ ~x. q dQ = 0

j=1 J

2
+I r o··n·v·dr

r j=1 1J J 1
i=1,2

(2.6)

with 0ij = 0ij/P (Also 0ij is denoted as 0ij in the remaining text). To ap­
proximate the unknowns ui and p, the basisfunctions ~in and ~m (n = 1, ... ,N
and m = 1, ... ,M) are introduced according to:

ul:!
N

= r Uin ~in i=1,2
1 n=1

ph M
= r Pm ~m (2.7)

m=1

Usage of Galerkins method (i.e. vik = ~ik' k = 1, ... ,N and qk = ~k' k =
1, ... ,M) and substitution of the approximations (2.7) in equations (2.6)
leads to:

N 2 N o~in ocp· o~'k
I (r ftin lIlin ~ik)dQ + I [ r [ v(Uin ox:;- + ujn ~)~]dQ +
Q n=1 Q j=1 n=1 J 1 J

2 N N O~il M aCPik
+ I [ r ( r Ujnlll jn r Uil ~)~ik]dQ - I [ Pm~m ~ dQ =

Q j=1 n=1 1=1 J Q m=1 1

2 N acp .
-I r r uJ' n~ ~k dQ = 0
Q j=1 n=1 J

i=1,2

k=1, ... ,N

k=1, ... ,M

(2.8)
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This is a set of non-linear ordinary differential equations which can be
solved if ~in and ~m are prescribed. Before a description of these basis­
functions is given, the equations (2.8) are first written in matrix form.
Therefore the following matrices are defined:

1. The Mass matrix M (2Nx2N):

M= [:11 ~22] Mii - f ~ik~ildQ k = 1, ... ,N (2.9)kl -
Q

1 = 1, ... ,N
i = 1,2

2. The diffusion matrix 5 (2Nx2N) :

5=[5 11
5

12J s~I = f v
a~ik a~'l a~ik a~'l
(~ ~ (1 + 6i j) +~~ 6ij )dQ

521 522 Q J 1 J )

k=1, ... ,N
1=1, ... ,N

ij=1,2
(2.10)

3. The divergence matrix L(Mx2N) :

. a~'l
L~l = -J ~k ~ dQ

Q 1
k=1, ,M

l=1, ,N
i=1,2

(2.11)

4. The convection matrix N(Q) (2Nx2N):

The convective term is non linear and must be linearized in order to solve
the equations in an iterative procedure. If QV is denoted as the solution of
the previous iteration simple Picard iteration leads to:

with:

k=1, ,N

1=1, ,N
i=1,2

(2.12 )
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whereas Newton-Raphson iteration leads to:

with

N(Q)Q • J(Qv)Qv+1 _ N(Qv)Qv

J(Qv) = l-J 11 <!!V) J120!V~

J21(Qv) J22(Qv)J

,.. N v a~·

J~1 = K~l • 6ij + P~1 Uip 6 ax~P ~ik~jldQ k=1, IN

1=1, ,N
i=1,2
j=1,2

(2.13)

(See appendix 2.1)

5. The force vector f (2Nx1):

J f·tp'kdQ
Q 1 1

k=1, ... ,N

i=1,2
(2.14)

6. The boundary stress vector a (2Nx1):

k=1, ... ,N

i=1,2
(2.15)

Together with the definitions 1 to 6 the complete set of non-linearized
equations (2.7) may then be written as:

LQ = a (2.16)

2.1.2. The extended quadratic conforming triangular element.

When evaluating the matrices derived in the previous section not any finite
element approximation is applicable. The difficulty lies in the treatment of
the continuity equation. Of importance in this matter is the 50 called
Babuska-Brezzi condition stating that one cannot mix any velocity approxima­
tion with any pressure approximation (Fortin, 1981). An element satisfying
this condition is the extended quadratic conforming triangular element des­
cribed by Crouzeix and Raviart (1973) with 7 nodal points for the velocity
and 1 for the pressure. The velocity is approximated by a quadratic function
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• ~,lr'

o r. ~.t: ~....L
~..... ~I

2.

t

Fig. 2.1.: The extended quadratic conforming triangular element.

plus some third degree terms vanishing at the element boundary. The pressure
is approximated linearly by the pressure and its derivatives in the centroid
and hereby discontinuous over the boundary elements (see fig. 2.1).

If Ai(X) are the barycentric coordinates of a point x with respect to
the vertices of the element (i=1,2,3), the basisfunctions are defined as:

lp' = A' (2A·-1) + A1 A2A3 1 i i i 3
1 1 1

lp' = 4A1A2A3(1/Ai_3-3) 4 i i i 61
lp' = 27A 1A2A3 i=7

1

1/11 = 1
1/12 = x1-x1,7
1/13 = x2-x2,7 (2.17)

The approximations for velocity and pressure then read:

uJ:l =
1

7
r u· lp'n=1 ln ln

(2.18)

Substitution of the foregoing basisfunctions into the equations (2.9 to
2.15) completes the final set of equations (2.16). To carry out these sub­
stitutions integrals of the form:

J 'Y(x)dQ
Q

and

has to be computed, where 1 is an arbitrary function.
To perform these integrations the integrals are written as the sum of the
integrals over the elements according to:

61(x)dQ =
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1.

2

•
1

•
3

•
2

Fig. 2.2. Definition of the nodal point numbers on the element and line ele­
ment respectively.

where Me and Ne denote the number of elements and the number of boundary
elements (line-elements) respectively. As it is complicated or even impossi­
ble to carry out this integrations exactly, numerical integration rules
based upon Newton-Cotes formulas are used, which are exact for polynomals 1

of degree i 3 (Ciarlet, 1978) i.e.:

w- 7
f 1(}C) dQe = r wQi 'YiQe i=1

'Y(x)dre = ¥ 3
f r Wri l'
r e i=1 1

where lei denotes the absolute value of the ·volume" of the element and

U
for i=1,2,3

wQi = for i=4,5,6
for i=7

t: for i=1,2
wri =

for i=3
(see fig. 2.2) (2.19)

Together with the basisfunctions defined by equation (2.17) an error
estimate of O(h3) for the velocity and O(h2) for the pressure is expected
(Crouzeix-Raviart, 1973). The extended quadratic element with 17 unknowns
(14 velocities and 3 pressure parameters) may be modified by eliminating the
velocities and the pressure derivatives in the centroids. Then the number of
unknowns per element is reduced to 13. This is ofcourse advantageous with
respect to memory and computing time usage. To elucidate this elimination
process the discrete but not yet linearised Navier-Stokes equations are
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again considered:

M~ + 5~ + N(~)M + LTf = r+~
LM = 0

(2.20)

.
Next the velocity U is splitted in a part ~ containing the velocity para-.
meters in the vertices and midpoints of the sides of the element (length U:
2N - 2M/3) and a part Ue containing the velocity parameters in the centroids
(length ~c: 2M/3). Analougously the pressure parameters can be splitted in a
part f c containing the pressure values in the centroid (length M/3) and a
part f v containing the pressure derivative parameters (length 2M/3). After
the elimination process evaluated in appendix 2.2 equation (2.20) changes
into:

Mb +
. . .

i,Tp[5 + N(!!)]!! + = r + ~~
(2.21)

L !! = 0

with:

Ue = RO ~

T .
A = A11 + A12RO + ROA22RO A = M, 5, N

L = L11

~ = [IT RT]C ~ = £, ~o 0-

and:

RO
-1= -L22 L21

IO = I (2N-2M)x(2N-2M)

][ . ]A~ = [All A12 U A = M,5,N,L
A21 A22 _Uc (2.22)

The pressure derivatives can be recovered elementwise by means of:
.

f v = (LJ2)-1 [f:.c - (M22RO + 521 + N21 (U) + 522RO + N22 (U)RO}]U
(2.23)

(see appendix 2.2).
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2.1.3. Descretisation of the time derivative

Now the treatment of the time derivative terms in the discrete Navier­
Stokes equations (2.21) is focused.
They are approximated here by a finite difference a-method. Considering the
equation:

this approximation is defined by:

!!n+1 _ Un
t1t - = i a

with i a = a i n+1 + (1-a)in (2.24)

For a = 0 and a = 1 this scheme reduces to the Euler explicit and Euler im­
plicit method respectively, which are both O(t1t) accurate for linear equa­
tions. For a = 0.5 the scheme becomes the Crank-Nicolson scheme which is of
O(t1t2) accurate for linear equations.

To choose a a-value preferable for the solution of the Navier-Stokes
equations a closer look to time integrations for parabolic equations is
necessary. Therefore the following parabolic equation is considered:

n= A!! + i

with initial condition !!(to ) = Qo. (2.25)

Here A is assumed to be a NxN matrix with real coefficients only depending
on time. For convenience A is assumed to be non-defect, which means that A
has N linear independent eigenvectors. If A is a defect matrix the situation
is more complicated but the same properties of the time integrations con­
sidered here can be derived. In the former case, due to the N linear inde­
pendent eigenvectors a non-singular matrix S exists with complex coeffi­
cients defined by:

AS = 5/\ (2.26)

with /\ = diag(~1" ."~N} and ~1'.· "~N the N eigenvalues of A. The differen­
tial equation (2.25) but also its discretized approximation is now called
stable when a finite error £0 in the initial condition Qo results in a
finite error in !!(t), for any t. To evaluate this error propagation two
cases are considered:

1. !! is a solution of (2.25) with !!(to ) = Qo.
2. r is a solution of (2.25) with r(to) = Qo + £0 with £0 a small pertuba­

tion on Qo.
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If ~ is defined as ~ = ~ - ~ then ~ = A ~ and ~(tO) = ~. Besides, 5 is non­
singular and hence a vector n = s-T~ exists. This leads to the set of equa­
tions:

s~ = ASn

or

with initial value

(2.27)

As A is a diagonal matrix it may also be written as:

i=1, ... ,N

with solut.ion:

(2.28)

For stability the pertubations may not increase, hence a necessary condition
for stability is:

for any i (2.29)

Numerical time integration schemes of (2.25) generally lead to equations for
n of the form:

(2.30)

with G the so called amplification matrix and nn = n(tn). To require stabi­
lity of the numerical scheme it is necessary that I IGI I i 1 (with I IGI I for

N
instance the maximum norm defined as I IGI I = max '~1 IGijl).

To evaluate the stability of the a-method of timeJintegration equation
(2.24) is rewritten in the form:

or

[I - 86tA]nn+1 = [I + (1-8)6tA]nn (2.31)
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For stability it is necessary that

II [1 - 8l1tA]-1 [I + (1-8 )l1tA] II < 1

So for any Ai (i=1, ... ,N), the next equation must hold:

1+(1-8)A.l.!1t
Icl :: I 1-8A.l1t I < 1

.1
(2.32)

In fig. 2.3 the stability areas of Ail1t are given for the interval a i 8 i
1.

1

----.........-.-..-:.-:....:. • - - - _. ~:>

--......-------.---...;.....----+.--tv
- ':0 .c. J; .. , ~ I:" .,\. -~ ! _"'I • '!

A

Fig. 2.3: A: Stability regions of Ail1t for v = 0, 0.25, 0.5
B: Stability condition for Re(Al1t) as a function of 8.

For 0.5 i 8 i 1 the scheme appears to be stable for all Al1t. For a i 8 < 0.5
the scheme is conditionally stable. In case the eigenvalues are large a re­
lative small timestep l1t has to be choosen to ensure stability. In that case
integration with 8 > 0.5 is preferable. The amplificationfactor c is also
calculated as a function of Al1t for 8 = 0.5 and 8 = 1 respectively, the re­
sults of which are given in figures 2.4 and 2.5.
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------ ----.o--._-+--I c
."

..--­---,,,---'--'-
4,

Fig. 2.4: Lines of c = constant in the complex (X6t)-plane and amplification
factor c as a function of Re(X6t) for B = 0.5.

- ;v

,"

1

Fig. 2.5: Lines of c = constant in the complex (X6t)-plane and amplification
factor c as a function of Re(X6t) for B = 1.

From fig. 2.4 and 2.5 it is concluded that for B = 0.5 (Crank Nicolson) the
amplification tends to unity for Re(X6t) ~ 0 and tends to minus one for
Re(X6t) ~ -. whereas for B = 1.0 (Euler implicit) the amplification only
tends to unity only for Re(A6t) ~ o.
To indicate whether one method is preferable to the other the eigenvalues of
the system that has to be solved has to be known. In case these eigenvalues
(or some of them) are relatively high and the Crank-Nicolson scheme is used
a very slow damping of calculation errors or errors in the initial condition
is expected, in contrast to the Euler implicit scheme where this damping
will be very fast. When using a penalty function method as explained in the
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next section the largest eigenvalues are of order 1/£ while £ is a very
small parameter. Due to the small value of £ one may expect that consequent­
ly error's in the initial value will only damp very slowly when the Crank­
Nicolson scheme is used. Therefore, an implicit scheme may be preferable for
the first few time-steps.

2.1.4. Penalty formulation of the unsteady Navier-Stokes equations

After finite element discretisation the non-linearised unsteady
Navier-Stokes equations may generally be written in the form:

LQ =Q
(2.33)

Application of the a-method of time integration described in the previous
sections gives:

(2.34)

Direct solution of this set of equations has a great disadvantage because of
the zero-elements appearing on the principle diagonal of the coefficient ma­
trix, hence a partial pivoting procedure is demanded by which the bandstruc­
ture is disturbed resulting in not only a time consuming but also a memory
consuming procedure. This all is a consequence of the fact that the pressure
does not occur in the continuity equation. To overcome this difficulty, the
finite element method is not applied directly to the Navier-Stokes equations
(2.3) but to equations in which the continuity is perturbed and replaced by:

2 au·
r ~X' = -tp

j=1 OXj
(2.35)

where £, the penalty parameter, stands for a small (i.e. £p is small) para­
meter. This pertubation has no direct physical meaning but is a consequence
of the Lagrange multiplier method for constrained minimization problems,
where the Lagrange multiplier is observed to be the negative of the pressure
(Reddy, 1982). For the steady Navier-Stokes equations it is proved that the
solution of the penalty problem converges to the solution of the original
problem as £ approximates zero. Theoretical analysis by Reddy (1982) show
that for the steady Stokes equation a convergence order exists of 0(£-1)
while at least an order of 0(£-1/2) exists for the Navier-Stokes equation.
Numerical analysis showed a convergence rate of 1 for both cases (Reddy,
1982). The main advantage of the penalty method over the direct method is,
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that the pressure p is eliminated from the momentum equation. The pressure
is then obtained, after the perturbed momentum equation is solved, from the
velocity.

We now apply the penalty function method to the modified extended
quadratic element described in section 2.12. The continuity equation (eq.
2.21) then changes into:

with

(2.36)

substitution in the other equations of the set (2.21) yields:

MQ + ~S~~(Y).+ OLTM~1L]Q = i + ~
R.c = iMp L Q

Qc = RO Q

R.v = (L~2)-1[Ec - {M22RO t 521 + N21(~) + 522RO + N22(~)RO}]fr

(2.37)

Now the momentum equation and the continuity equation are uncoupled and no
partial pivoting is necessary. Also the number of unknow~s in the equations
to be solved are decreased. (Due to the diagonal matrix Mp' the pressure can
be obtained from the velocity by a simple matrix-vector multiplication).
Using the 8-method for time integration changes equation (2.37) into:

M + 86t[S+N(Qn+1) + ~LTM~1L]}Qn+1 = 6t(i8 + ~8) +

t {M - (1-8l6t[S+NCQn) + tLTM~1L}Qn

pnt1 l' -1 L~n+1= iMp-c

un+1 = R un+1
-c 0-

R.~ = (L~2)-1 [f~ - {ltM22Ro + 8[521+N21Qn+1) + 522RO + N22(Qn+1,RO]}Qn+1

-{It M22RO + (1-8)[5 21 + N21 CQn) + S22RO + N22CQn)Ro]}frn]
C2.38)

A main disadvantage of this method regards the penalty parameter E. Too
large values of this parameter leads to inaccurate results. However, too
small values cause a worsening of the condition of the coefficient matrix
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and hence difficulties with regard to the stability and convergence of the
time integration may be expected.

2.5. The final set of equations

Analogously to eq. (2.16) the non-linear convective term N(yn+1)yn+1 in eq.
(2.38) has to be linearized, before the equations can be solved. When the
timesteps are taken to be that small that one single Newton step is
sufficient to linearize the equations with the desired accuracy, the
linearization of the unsteady Navier-Stokes equations reduces to:

(2.39)

The complete linear set of equations then read:

M + 96t[S+j(_Un ) + 1£TM-1£]}Un+1 = 6t(F9+aV ) +
£ P - - -

+ {M - (1-9)6t[S+t£TMp1£]}~n - (1-2v)N(yn)~n

pn+1 = ~-1£un+1
-c £ p -

Un+1 = R un+1
-c 0-

E~ - (L~2)-1[I~ - {~t M22RO + 9[S21+N21(yn+1) + S22RO +

+ N22(yn+1)Ro]}~n+1+

-{~t M22RO + (1-9)[S21+N21(yn) + S22RO + N22(yn)RO]}~n

Finally, it is remarked that the pressure changes discontinous from
element to element. An estimation of the pressure in the vertices can be
obtained by averaging the values of all aligning elements in each vertex
(see fig. 2.6).
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Fig. 2.6 Averaging of the pressure.
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2.2. Testing examples

2.2.1. The steady Navier-Stokes equations

For steady solutions of the Navier-Stokes equations the penalty approach
(2.40) reduces to:

[s+j(~V) + lLTM-1L]~v+1 = L + ~ + N(~v)~ve: p

pV = -J,M-1i,uv
-c e: p -

uV = R UV
=c 0-

f~ = (L~2)-1[Lc - [S21 + N21(~v) + s22RO + N22~v)RO]~V
(2.42)

where vm denotes the maximum number of iterations. The iteration procedure
is terminated when I I~v - ~v-11 'max < e: (e: = 10-4). To evaluate the order of
accuracy the problem as depected in fig. 27 is analysed in which the body
forces are taken to be equal to:

f 1 = 3v cosxsiny

f 2 = -v sinxcosy

""" '-C'~;'):;'i1(.f)

,,: -~'lll')~0'J''11

11"... : CI

v 0'0

'v ~ -S·t'\.A'~

Fig. 2.7 Testing example time-independent equations.

(2.43)


