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Abstract

In future road vehicles an increase in electric power consumption will occur. To prevent an simi-
lar increase in fuel consumption, smart strategies for the generation, storage/retrieval, distribu-
tion and consumption of electric power are needed. This report considers a dual storage power
net, where a genarator is connected to a discrete switching device. This switch divides the electric
power to the battery or to a super capacitor. These two storage devices are connected through a
DC/DC converter. The optimization problem, which finds the minimal fuel consumption and
the switch position for a given trajectory, result in a Mixed Integer NonLinear Programming prob-
lem (MINLP).

Mixed Integer NonLinear Programming problems are difficult to solve for large numbers of vari-
ables, in particular for large numbers of discrete variables. This report deals with three MINLP
techniques, Branch and Bound (BNB), Outer Approximation (OA) and Generalized Benders De-
composition (GBD). These techniques are tested on a vehicle model, which uses a switch, a bat-
tery and a supercap to store electrical power.

The BNB technique is able to solve the MINLP problem for a certain problem size, whereas the
other techniques are not able to solve the problem within limited iteration and time. But even the
BNB technique requires a lot of iterations and time to solve larger problems.

Therefore other techniques, other implementations or solvers should be considered to solve large
MINLP problems.
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Chapter 1

Introduction

Present day consumers demand more performance, comfort and safety from a road vehicle. To
satisfy the consumers, future vehicles will be increasingly equipped with electronic devices. Such
devices are air conditioning or climate control, electronic windows, sound systems, electronic
steering, drive by wire, cruise control, driving assistance, stability programs et cetera. These elec-
tronics consume electric power. Over the past twenty years the electric power consumption in
standard road vehicles has increased approximately four percent every year. In the near future
even higher power demands are expected [1], [2].

To keep up with future power demands, the automobile industry has suggested new 42 V power
net topologies, which should replace the traditional 14 V, which are used currently [1], [2]. These
power nets will be able to meet the future demands, but this will coincide with an increase in
fuel consumption. Future vehicles have to meet strict requirements about exhaust emissions.
With the rising prices of fuel, costumers will demand fuel economic vehicles. Therefore smart
strategies for the generation, storage/retrieval, distribution and consumption of electric power
are needed. But the driver should not experience different vehicle behavior as a result of such
strategy. This implies that the available torque and power should be present when the driver
wants it.

In this report a vehicle power net is considered, where a generator is connected to a switching
device that divides the electric power between a super capacitor (supercap) and a battery. This
switch is discrete. The battery and the supercap are connected to a DC/DC converter.

When the speed trajectory of the car is known, the minimal fuel consumption can be calculated
using optimization. To solve this problem, a mixed integer nonlinear optimization routine is
needed.

The aim of this internship is to find available techniques and select the most suitable for the given
problem. This is done by implementation and testing these techniques in a Matlab environment.
Literature will provide existing techniques, these techniques will be adapted to be able to solve
the problem.

The remainder of this report is build up as follows: Chapter 2 describes the model of the ve-
hicle and the loads a vehicle is subjected to. Chapter 3 gives an overview of the mixed integer
nonlinear programming techniques. In Chapter 4 these techniques will be implemented and
compared. Chapter 5 will summarize the results of this research.



Chapter 2

The model

The strategy, discussed in this report, is focussed on the generation, storage/retrieval and distri-
bution of the electronic power. It considers an advanced dual storage net. In the next section the
vehicle model and the advanced dual storage net will be described.

2.1 The vehicle model

The advanced dual storage net consists of a generator, a battery, a supercap, a DC/DC converter
and an internal combustion engine (ICE). The power flow starts with the combustion of fuel.
The mechanical power is split in two directions: one part goes to the drive train (DT) and the
other part is used by a generator (GEN), which generates electrical power. The electrical power
is connected to a discrete switch (S). The power can be sent to the supercap (C) or to the battery
(B). The load (Load), the electric power that is needed, is connected to the battery. The supercap
and the battery are connected to a DC/DC converter (DC). A schematic drawing can be seen in
Figure 2.1.

p P P : :
» DT c c cs
fuel p s-F, p

—» |CE m_y, dc

» GEN

Load

Figure 2.1: Power flow in a dual storage power net



A supercap can be considered as a very large capacitor. A battery can operate between 20%
and 100% SOC (= State Of Charge, the relative energy level), while maintaining an acceptable
board net voltage, whereas a supercap can only be operated between 80% and 100% SOC. The
open cell voltage is linear with the energy level for the supercap. The open cell voltage of the bat-
tery is assumed to be linear between 20% and 100% SOC. The battery has a much bigger storage
capacity, but the losses of the supercap are much smaller, than the losses of the battery. These
losses will be assumed to be quadratic with the power. Therefore the losses will be less, when low
power is delivered for a long period of time, then a high power for a shorter period.

When the generator delivers high powers (mainly during deceleration phases), the energy will be
stored in the supercap. From there the energy will be transferred at a lower power through the
DC/DC converter to the battery or the load. With this strategy the energy losses will be reduced.

The model structure and the component models can be found in [4]. The report describes the
mathematical formulation of the model and its constraints. This report is summarized in Ap-
pendix A.

2.2 The optimization problem

The mechanical power needed for the drive train and the electric load will be prescribed. There-
fore the model can structured such that there will be three design variables: P.,, the power stored
in the supercap, Pys, the power stored in the battery and s, the position of the switch.

These three variables will be the input of the cost function. The output of the cost function will
reflect the fuel consumption, which has to be minimized.

The cost function becomes a high order polynomial. This polynomial is a smooth, nonlinear
function, which is most likely to be nonconvex. Because the cost function contains both con-
tinuous and discrete variables, the optimization problem becomes a NonLinear Mixed Integer
Programming problem:

min f(Pys, Pes, )
x?y

s.t. Az

Aeq@ =

N
SISy

e

(Pps, Pes) € R s € {0,1}"



Chapter 3

Mixed integer nonlinear programming
routines

This chapter describes three mixed integer nonlinear programming (MINLP) techniques: Branch
and Bound (BNB), Outer Approximation (OA) and Generalized Benders Decomposition (GBD).
The overview is restricted to solvers for convex MINLP. These techniques are used to solve the
nonlinear discrete optimization problem described in the previous Chapter. A unified overview
and derivation of the MINLP techniques can be found in [3], [6] and [7].

3.1 MINLP

The basic mathematical description of a MINLP problem is as follows:

min f(z,y)
:Bﬂy

st.gj(z,y) <0, jed (3.1)
xeR", yeZ™

where f(-), g(-) are convex, differentiable functions, .J is the index set of inequalities and = and
y are the continuous and discrete variables, respectively.

3.2 Branch and Bound

This method first solves the continuous nonlinear programming (NLP) relaxation, the discrete
variables are considered continuous (the NLP subproblem). After this the program generated
subproblems, where the domain of the variable (still continuous) is being restricted. This is
called branching. Then it solves these subproblems. This process continues until the variable is
fixed to a (integer) value.

The advantage of this approach (when compared with explicit enumeration) lies in the fact that
not all subproblems have to be solved.

The BNB method is generally only attractive, if the NLP subproblems are relative inexpensive
to solve or when only a few of them need to be solved. This could be either because of the low
dimensionality of the discrete variables or because the integrality gap of the continuous NLP
relaxation of the NLP subproblem is small. If possible it is recommended to approximate the



nonlinear cost function by a quadratic cost function, this will reduce the calculation effort of
finding the local minimum [6] [8].

3.3 Outer Approximation

The OA method solves in a cycle of iterations a mixed integer linear programming (MILP) prob-
lem and a relaxed NLP, with fixed integer variables. The local minimum of the NLP gives a
solution (x*,y*) for the continuous variables. The corresponding cost function and the nonlinear
constraints are then linearized around this solution. « Is the value of the linearized cost function.
This will result in a linear inequality constraint for the MILP.

min o
x’y

L
s.t.a > f(‘rka yk) + v.f(wk?yk)T y— yk
ok ok ok T | T g
gj<$ay)+vgj<xay) y— k

¥ e R, yF ez

Rearranging this constraint, results in an linear inequality constraint, that can be used to solve
the MILP subproblem:

k
Vf(xk yk T -1 |: €z :| Vf(xkvyk)T |: ;l;k :| - f(xk>yk)
vaiat )T 0 } vls g (33)
i o YOS I B
This can be written as:
Az <b (3.4)

An updated version of this constraint is added at every cycle to the MILP subproblem. Therefore
at every cycle one linear constraint from the linearized cost function and j linearized nonlinear
constraints are addded. The cost function and the nonlinear constraints, used in the MILP sub-
problem, are linearized functions in the minimum of the NLP subproblem [6].

The cycle of iterations will start with the MILP subproblem. The cost function is linearized
around the initial conditions. The output of this optimization is the intersection between the
linear bounds and the linearized function. After the MILP subproblem the relaxed NLP subprob-
lem is solved. At this subproblem feasible solutions are found, whereas the MILP subproblem
only results in feasible solutions with regard to the discrete variables. The resulting variables are
used as the starting points for the next iteration.

The OA method should reduce the number of NLP problems, that have to be solved.

3.4 Generalized Benders Decomposition

The GBD method is similar to the OA method. The difference arises in the definition of the
MILP. The GBD method only considers active constraints of the NLP problem. By using the
Karush — Kuhn — T'uckerconditions and eliminating the continuous variables, the inequalities
can be reduced to a single linear constraint [6].



min «
I?y

a> f@* y") + vy @™ y9) T (y — oF) + ()T g, %) + vyga®, v9) T (y — vF)] (3.5)
zFeRn yFezm

In equation 3.5 g(x,y) represents the constraint function and p represents the Lagrange Multi-
plier. Rearranging the equation and inserting the continuous variables results in the following
equation.

x

[ 1 vy f@m )T 1] |y | <O = fah yh) + v f(@F, ) Tk = (1) T g(ab, b

«

(3.6)

This inequality constraint is added at every iteration to the other inequality constraints, which
results in.

Az <b (3.7)

Therefore the computational cost for solving the MILP subproblem of the GBD method is less
then the MILP subproblem of the OA method since only one constraint is added per iteration [6].
So the MILP subproblem has less constraints the the OA method, but usually more iterations are
needed. The MILP problem is then solved by using a linearized function of the cost function and
the new equality constraints. The cycle is then repeated with resulting variables as input for NLP
problem.

3.5 Conclusion

BNB is useful, when there are not many integer variables or when the the integrality gap between
the discrete and continuous subproblem is small, otherwise a lot of NLP’s have to be solved.

The OA method is advantageous compared to Branch and Bound, when the NLP takes much
computation time, because less iterations are needed

In the GBD method only active constraints are considered this will reduce the complexity of the
NLP subproblem and therefore the computation time. The disadvantage is that more cycles of
iteration are needed to solve the subproblem.

When the computational costs of the NLP subproblem are high, the OA and GBD method are
recommended. The trade off between the OA and GBD method is determined by the number of
times the NLP has to be solved.

10



Chapter 4

Comparison of the optimization
routines

In this Chapter the routines will be compared. Therefore a part of the drive cycle will used. The
resulting discrete variables represent the usage of the switch. This is needed to be able to validate
the vehicle model. The fuel consumption will then be compared with a model with a continuous
switch and a model without a switch, DC/DC converter and a supercap. (x*,y*) The different
routines will be evaluated on the time, that is needed to find a solution for the problem and the
output, which contains the fuel consumption and the corresponding variables.

First the drive cycle and the loads, that are used for the tests are discussed. The next section
deals with the implementation of the optimization routines, which are discussed in Chapter 4.
Then the results will be summarized. In the fourth section of this Chapter the results will be
compared with the results of the model with a continuous switch and the model without the su-
percap. This is done to evaluate the model with respect to the discrete switch. (x*,y*) The Matlab
scripts, that are used for the implementation, are shown in Appendix B.

4.1 The drive cycle and loads

This section will deal with the mechanical power for the drive train and the electrical power, that
are needed to operate the vehicle. The artificial data, that is used to describe the mechanical and
electrical power, is chosen such that the switch will switch several times. The mechanical and
electrical power is represented by simple sinusoidal waves. So there will be sections, where it is
expensive to generate electrical power and section, where it will be cheaper to generate electrical
power. This data is used to test the performance of the model and more important the perfor-
mance of the optimization routines.

First two periods of a sinusoid are distributed over 20 seconds, which results in 60 variables
for the BNB method and 61 for OA and GBD method (n integer plus 2-n+1 continuous variables).
Next the same waves are distributed over 30 seconds, which results in 9o, 91 and 91 variables
respectively. As last two periods are distributed over 40 seconds, therefore there are 120, 121 and
121 variables respectively. (x*,y*) Figure 4.1 shows the mechanical and electrical power over a
period of 40 seconds. Appendix B.1 shows all the loads, which are used for the tests.

11
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Figure 4.1: Mechanical and electrical power

4.2 Implementation of the routines

The computer, that is used to solve the optimization problems, is an DELL Dimension 2400 desk-
top with an Intel Pentium 4 processor 2.8 GHz and 512 MB of RAM.

4.2.1 Branch and Bound

The BNB method used for this research, is bnb20.m (Revision: 1.20), which is an algorithm
implemented in MATLAB and is designed by E.C. Kuipers, Applied Physics, Rijksuniversiteit
Groningen. The nonlinear subproblems are solved with fmincon.m from the MATLAB Opti-

mization Toolbox [9)].

options for fmincon.m

e TolX=10"°
Termination tolerance on X, where X are the variables corresponding to the minimum
function value. The lower the value, the more accurate the solution will be, but it will also

increase the computational costs.

e TolFun=10""6

12



Termination tolerance on the function value. The value is a trade off between accuracy and
computational costs.
4.2.2 Outer Approximation

There are no nonlinear constraints in this specific optimization problem, therefore equation 3.3
can be reduced to:

min «
z,y
H y
i 1] Lo ] | s vreta T | 5] - st (1)
[0
This can be written as:
Az <D (4.2)

Therefore one constraint will adeded at every iteration.

Solvers

For the MILP subproblem the MATLAB [9] version of Ip_solve 5.1.1.3 [10] is used, a free solver
originally developed by Michel Berkelaar at Eindhoven University of Technology. This solver is
based on the revised simplex method and the Branch-and-bound method for the integers. The
relaxed NLP subproblem is solved with fmincon.m from the Matlab Optimization Toolbox.

Optimization options

e TolX=10""
Termination tolerance on X, where X are the variables corresponding to the minimum
function value.

e TolFun =109

Termination tolerance on the function value.

e MaxSQPIlter = 50
Maximum number of Sequential Quadratic Programming iterations. This gives a maxi-
mum of to the number of computation to solve the subproblem.

Stopping criterium

The resulting cost function value of NLP subproblem has to converge to the resulting value of the
MILP subproblem. The differences between the values has to be less then some tolerance value.
For this case the difference should be less then 5 -10 ~3.

The corresponding discrete variables are the same for both subproblems, because the output
of the MILP subproblem is used for the NLP subproblem, at which the discrete variables are
fixed. Therefore only the continuous variables will change within a cycle, but the solution of the
MILP subproblem is the solution of the linearized problem, which does not have to be feasible.
Therefore only the cost function value of both subproblems have to correspond and then the
iteration is terminated. The maximum number of cycles is limited to 400 as back-up.

13



4.2.3 Generalized Benders Decomposition

This specific problem does not change the formulation of the constraints for the MILP subprob-
lem. Therefore equation 3.5 is implemented.

Solvers

For the GBD routine the same solvers as for the OA routine are used. Also the same optimization
options, as in at the BNB and OA routines, are used. Therefore the routines can be compared.

Stopping criterium

Contrary to the OA method, the GBD method will always give a feasible solution for the NLP
subproblem, due to the used Karush-Kuhn-Tucker conditions. Therefore the resulting contin-
uous design variables can be used as an additional stopping criterium. Together with the cost
function values of the subproblems the stopping criteria will be able to stop, when the subprob-
lems have found the same optimum (the same cost function value within some margin). As
back-up the maximum number of cycles is limited to 400.

4.3 Results of the routines

The results of the tests are shown in the next tables. In Appendix B the course of the iterations
during the tests of the OA and GBD methods are shown.

4.3.1 Branch and Bound
no. of no. of starting value no. of no. of duration
variables || discrete variables point iterations | possible nodes
60 20 7€T08 555.2706931 29 10° 12.9 s
60 20 ones 555.2706931 29 10° 12.8 s
90 30 zeros | 846.6874144 55 10Y 55.8 s
90 30 ones 846.6874141 55 10Y 55.4 s
120 40 zeros | 1123.1755111 221 1012 5.8 min
120 40 ones | 1123.1755111 221 1012 5.9 min

Table 4.1: Results of Branch and Bound

Table 4.1 shows that the BNB method is able to solve the MINLP problem. Regardless of the used
starting points, the method needs the same amount of time and cycles to find the minimum. The
calculation time increases rapidly with the number of variables.

14




4.3.2 Outer Approximation

no. of no. of starting value no. of nodes duration
variables || discrete variables | point or iterations

61 20 Zeros 555.2705934 40 54.1s
61 20 ones 555.2705934 41 54.5 s
91 30 7€ros 846.6874142 115 11.8 min
91 30 ones 846.6874144 119 10.8 min
121 40 zeros | 1124.4130679 > 186 > 4.5 hours
121 40 ones 1123.5838414 > 259 > 8.7 hours

The OA method solves the first two problems successfully, but the starting points influence the
required time and number of iterations. The third test, with 121 variables, is too large for the
used NLP and MILP toolboxes. The method is unable to solve the problem within a reasonable
time. The optimizations was terminated. Table 4.2 makes it also clear, that calculation time is

Table 4.2: Results of Outer Approximation

increased considerable with the number of variables.

fuel consumption

error
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Figure 4.2: Data Outer Approximation, period of 40 seconds, ones as starting points

Figures 4.2 shows the course of the optimization and the errors for the test with 121 variables.
The course is represented from the bottom up by the value of the linearized problem (MILP)
and the value of the NLP subproblem. It shows clearly, that this routine is still converging to a
solution, but as discussed above, it will take a lot of time before a solution with a desired accuracy

is found.

Figures B.4 to B.9, in Appendix B.2, show the courses of the optimization and the errors at every

cycle.
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4.3.3 Generalized Benders Decomposition

no. of no. of starting value no. of nodes | duration
variables || discrete variables | point or iterations

61 20 7eros 555.2705932 40 409 s
61 20 ones 555.2705931 40 39.5 s
91 30 ZEeros 846.6874143 105 3.03 min
91 30 ones 846.6874143 102 2.95 min
121 40 zeros | 1123.7816152 | 400 (=max) | 46.30 min
121 40 ones 1123.5956219 | 400 (=max) | 45.40 min

This method is also able to solve the first two problems, but it was not able to solve the third
problem within the maximum number of iterations (400). Besides that, this method, with the
used solvers, needs a large amount of time to solve this test. Figure 4.3 shows the test with 121
variables. It can be seen that the routine is still converging to the solution, but it will take a

Table 4.3: Results of Generalized Benders Decomposition

considerable number of iterations and time to find an accurate solution.

Table 4.3 shows that the time, that is required to solve the problem, increases rapidly with the
increasing number of variables.

Figure 4.3: Data Generalized Benders Decomposition, period of 40 seconds, zeros as starting

points

Figures B.14 and B.15, in Appendix B.3, show the errors between the values of the subprob-
lems. These figures also show that a considerable number of iterations is needed to solve the

third problem.
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4.3.4 Conclusion

The Tables, 4.1 to 4.3, show clearly that the BNB method performs better then the other methods.
The BNB method is able to solve all of the given problems and solves them faster. But even the
BNB method is limited by the number of variables.

In this specific problem the integrality gap of the continuous NLP relaxation is small, this will
reduce the number of NLP subproblems that have to be solved. Therefore the BNB method is an
attractive method for this problem.

The large amount of time that is needed to solve the MINLP problem with the OA and GBD
techniques can be explained by the slow converging rate of these techniques. Therefore a large
amount of iterations are needed to solve the problem. To solve larger problems, faster techniques
and/or solvers are needed.

Appendix B.4.1 to B.4.3 show the variables of solutions of every test. It can be seen for the tests,
where all routines were able to find a solution (periods of 20 and 30 seconds), the solutions are
similar

4.4 Different models

In this section the model with the discrete switch is evaluated, by comparing it with two other
models: a model with a continuous switch and a model without the supercap.

4.4.1 Model with a continuous switch

Table 4.4, shows that use of a continuous switch does decrease the fuel consumption. This can
be explained by the fact that the supercap is used optimal with a continuous switch. The figure
in Appendix B.4.3 show the positions of the discrete switch and continuous switch for every test.

no. of starting value
variables point

60 Z€eros 953.9269335
60 ones 553.9269179
90 Z€ros 845.5139630
90 ones 845.5139630
120 7€ros 1120.7407429
120 ones 1120.7407425

Table 4.4: Results of the model with a continuous switch

4.4.2 Model without the supercap

Table 4.5 shows the results of the tests, with the model without the supercap, the DC/DC con-
verter and the switch. These results show that usage of a supercap will reduce the fuel consump-
tion.

17



no. of starting value
variables point

60 7€ros 581.7406253
60 ones 581.7406253
90 Z€ros 876.2941362
90 ones 876.2941362
120 Z€ros 1170.8537338
120 ones 1170.8537339

Table 4.5: Results of the model without a supercap

4.4.3 Conclusion

The first two tests show, that the models with a switch and a supercap will reduce the fuel con-
sumption. This can also be seen in Table 4.6. This table shows the results of the BNB routine and
the results of the tests with the model without a supercap. The reduction of the fuel consumption
is about 4 %.

no. of with without reduction
variables supercap supercap by supercap
60 555.2706931 | 581.7406253 4.55 %
90 846.6874144 | 876.2941362 3.38 %
120 1123.1755111 | 1170.8537338 4.07 %

Table 4.6: Fuel consumption supercap vs. no supercap

4.5 Other Solvers

The NLP solver requires a lot of calculation time to solve each subproblem. All methods used
the fmincon.m from the Matlab Optimization Toolbox, therefore the solver itself does not cause
the differences between the methods. The differences arise by number of times the solver is
required. This effect is enhanced, when the number of variables is increased.

To obtain a shorter computation time, other solvers can be explored. The following subsections
briefly describe a few sources, where other solvers can be found.

4.5.1 TOMLAB

TOMLAB [11] is a general purpose development environment in Matlab for research, teaching
and practical solution of optimization problems. It is developed to fulfill the need for advanced,
robust and reliable tools to be used in the development of algorithms and software for the solu-
tion of applied optimization problems. It claims to be flexible, easy-to-use, robust and reliable for
the solution of all types of applied optimization problems.

TOMLAB is compatible with the Matlab Optimization Toolbox 2.1. TOMLAB supplies a large
collection of Matlab solvers as well as software packages. TOMLAB provides algorithms, which
are able to solve Mixed Integer Linear, Quadratic and Nonlinear Programming problems,
TOMLAB/MINLPy, vl1.2. This solver uses a BNB algorithm. Furthermore it provides Non-
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linear Programming routines. So TOMLAB can be used to solve the MINLP problem with the
routines, which are described in this report.

4.5.2 LINDO API

LINDO Systems has developed an Application Programming Interface, called LINDO API. This
interface can be used with Matlab. LINDO Systems assures that it can solve large scale NLP
problems, whereas the Matlab solver, fmincon.m, is not a large scale solver [5]. The report of B.
Zijlstra [5] describes the usage and performance of Matlab as an interface for LINDO API. The
free trail version was too limited for the implementation of the problem, therefore no tests are
conducted with this solver.

4.5.3 AMPL

AMPL is a comprehensive and powerful algebraic modelling language for linear and nonlin-
ear optimization problems, in discrete or continuous variables [13]. AMPL, developed by BELL
Laboratories, uses common and familiar concepts to formulate the optimization problem. The
algorithm is able to manage the communication with an appropriate solver.

The modelling language is readable for offline and online solvers. Some of those online solvers
can be found at the neos server.
http://www-neos.mcs.anl.gov/neos/solvers/NC0O:IPOPT/solver-www.html

The access to this server is free and their are no limits on the size of the problem. But due to
limited time, the problem was not implemented in this environment.
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Chapter 5

Conclusions and recommendations

In this report several MINLP routines, namely Branch and Bound, Outer Approximation and
Generalized Benders Decomposition, were evaluated for an energy management problem of a
vehicle with a dual power storage net. The results show that, with these implementation, the
Branch and Bound method is the best method for this specific problem. It is able to solve all the
problems within a short time in comparison to the other methods. The other methods are not
able to solve all the problems in limited time and they needed a lot more computational time to
find the minimum of the given problems.

The NLP solver that is used for the tests, requires a lot of calculation time to solve the subprob-
lems. The calculation time increases rapidly with an increase of the number of variables. So for
larger problems, other solvers are needed.

These results are determined by three issues of this optimization problem. The problem de-
scription determines the type of the optimization problem, other ways of specifying the problem
can result in other optimization types and in different types of problems occurring during an
optimization. The second issue is the optimization methods that is used. Each techniques uses
specific characteristics of a problem, therefore every method will have its specific advantages and
disadvantages. The third issue is the implementation of the techniques for instance the type of
solvers and settings, that are used and the environment in which the techniques are programmed.
In this report only the techniques are discussed for a given problem description.

Therefore other techniques, other implementations or solvers should be considered to solve large
MINLP problems.
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Appendix A

MINLP model of the dual storage

power net
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This appendix describes the MINLP model of the dual storage power net as derived by M.W.T.
Koot. It is an excerpt from [4].

The components can be modeled as quadratic relations between incoming and outgoing
power. The model can be structured such that the design variables of the optimization problem
are the power stored in the battery P, the power stored in the supercap P.s, and the position
of the switch s. This has some benefits in writing the optimization problem as a (mixed integer)
nonlinear or quadratic programming problem with linear constraints.

A.1 Components

Battery:

P, = Py, + b P, (A1)
Supercap:

P.= Pes +cP2 (A.2)

DC/DC converter:
Pay = Pac + Py (A.3)

Py, > 0 means power is going from the battery to the supercap. P; represents the losses in the
DC/DC converter. P, is always positive and increases with the power going trough the converter.
It can for instance be modeled as:

Py=dP; oras: P;=dP3 (A4)
Generator:
Py=go+ g1 Pet g2 P, (A.5)

Mechanical power:

P, =P,+ P, (A.6)
Engine:
f=fo+ fiPm+ 2P (A7)
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A.2 Power flow

Electrical power flow:

Po=(1-s)Pe—Pup—P = (1-s)P.=P+PF+ Py (A.8)
P.=sP.+ P, = sP.=P.—P, (A.9)

Combining these yields:
Po=sP.+(1—s)P.= P+ Py+ P.+ Pg — Py (A.10)

Using the relation for the DC/DC converter this becomes:
P.=P+P+P.+ P, (A.11)

Independently from the position of the switch, the electric energy provided by the generator is
equal to the sum of the powers to the load, the battery, and the supercap, and the power losses of
the DC/DC converter.

The losses of the DC/DC converter need to be expressed as a polynomial of the design vari-
ables Py, P.s, and s. Two possible ways are presented.

First possibility:

P;=dP3, (A.12)
where:

Py =P, —sP, (A.13)
where:

P.=P +P,+P.+P;j=PF+P,+P.+dP2, (A.14)
So this becomes:

Py=P.—s(P+P,+P.+dP2) (A.15)
or:

sdP3. + Py~ P.+s(P,+P,+P.)=0 (A.16)

This can be solved to P,., but does not yield a polynomial relation in the design variables.
The difficulty is that P. depends on P,, and P, depends on P,.
By neglecting the term P, in the electric power flow equation for a moment:

P.~ P+ P,+ P, (A7)
this becomes:
Pi~P.—s(P+P,+P,) (A.18)

which is a polynomial relation in the design variables.
Using this relation yields the following electric power flow equation:

P,=P+P,+P.+P;=P+P,+P.+d(P.—s(P,+ P,+ P,))* (A.19)

which is a polynomial relation in the design variables.
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A.3 Cost function

The relations described above can be combined such that the fuel use is expressed as a high order
polynomial of Py, P, and s :

f = fuel(Pys, Pes, 8) (A.20)
The design variables are:

x:[PbsPcss]T (A.21)

A.4 Constraints
Switch:

0<s<1 or s={0,1} (A.22)
Storage power:

Posmin < Pos < Posmaz ~ Pesmin < Pes < Pesmaa (A.23)

Storage energy:

k

Epsmin < Eps < Epsmac  Where  Epg(k) = Eg(0) + > Pos(i) At (A.24)
=1
k

Ecsmin S ECS S Ecsmaa: Where ECS(k) - ECS(O) + Z PCS(Z) At (A25)
=1

Endpoint constraints:

n

Bys(n) = Eps(0) = > Pou(k) =0 (A.26)
k=1
k
Ecs(n) = Ecs(o) = Z Pcs(i) =0 (A-27)
=1

Electric power:

Pemin < Pe < Pemaa (A.28)
where:

P.=P +Py+P.+Pj=P+Py+Ps+bP:+cP:+ P, (A.29)

Since the quadratic terms and P, are always positive, P, can be conservatively bounded on the
lower side by:

Pys + Pes 2 Pemin — P (A?)O)

The upper bound on P, and P,, and the bounds on P, are neglected for now. They will already
be limited because of the bounds on Py, and P..
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B.1 Loads
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Figure B.2: Mechanical and electrical power for n = 30
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B.2 Outer Approximation
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B.3 Generalized Benders Decomposition
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Figure B.10: Data Generalized Benders Decomposition, period of 20 seconds, zeros as starting
points

558 T T T T T T T
ol T e T e ]
c y
8
g 554 .
3
[}
c
8 5521 |
] —— NLP subproblem
- 5501 —— MILP subproblem i
548 1 1 1 1 1 1 1

10

10° .
210" - .
[}

lo—mk

10'15 1 1 1 1 1 1 1

0 5 10 15 20 25 30 35 40
number of iteration

Figure B.11: Data Generalized Benders Decomposition, period of 20 seconds, ones as starting
points

32



fuel consumption
@
s
N
T
1

©

i

o
i

838 I I I I I
0 20 40 60 80 100 120

10

— efrror

100 g

10° .

error

-10

-15 | |

10 I I
60 80 100 120

number of iteration

o
N
o
N
o

Figure B.12: Data Generalized Benders Decomposition, period of 30 seconds, zeros as starting
points

855

oo
al
o

fuel consumption
foe]
B
(92}

©
B
o

—— NLP subproblem
. —— MILP subproblem

835 L L L
0

20 40 60 80 100 120
10
10° |- .
2 107 .
()
107k .
10*6 1 1 1 1 1
0 20 40 60 80 100 120

number of iteration

Figure B.13: Data Generalized Benders Decomposition, period of 30 seconds, ones as starting
points

33



1130

c llZwa& A A MM Aapdh Mmm H 'iﬂ ”h 1”6 oot N i 1 %

K]

IS

£

3 1120 .

Q

o

s

= 1115 n
—— NLP subproblem
—— MILP subproblem

1110 1 1 1 1 1
0 50 100 150 200 250 300 350 400

10 T T 3
— error |]

10"

error

10

lo’ 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
number of iteration

Figure B.14: Data Generalized Benders Decomposition, period of 40 seconds, zeros as starting
points

1130 T T T T T T T

1125 n
c
S
g 1120+ |
>
%]
c
8 1115 .
o] —— NLP subproblem
2 —— MILP subproblem

1110

1105 1 1 1 1 1 1 1

0 50 100 150 200 250 300 350 400

10 | T 3
[ emor);
10"
S
@
10°
10" L

1 1 1 1 1 1
0 50 100 150 200 250 300 350 400
number of iteration

Figure B.15: Data Generalized Benders Decomposition, period of 40 seconds, ones as starting
points

34



B.4

B.4.1

The variables

Power stored in the battery
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Figure B.16: Power stored in the battery, period of 20 second
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Figure B.17: Power stored in the battery, period of 30 second
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Figure B.18: Power stored in the battery, period of 40 second
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B.4.2 Power stored in the supercap

BNB with X0:0
BNB with xozl
OA with x0=0
15F OA with X0:1
GBD with x0=0
GBD with x0:1
continuous with X0=0
r continuous with x =1
0.5
8
o
0 =
-0.5r
1+
15 i i i
0 5 10 15 20
Time [s]

Figure B.19: Power stored in the supercap, period of 20 second
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Figure B.20: Power stored in the supercap, period of 30 second
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Figure B.21: Power stored in the supercap, period of 40 second
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B.4.3 The position of the switch
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Figure B.22: The position of the switch, period of 20 second
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Figure B.23: The position of the switch, period of 30 second
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Figure B.24: The position of the switch, period of 40 second
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