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Preface

This report is written to finalize my traineeship in the Control Systems Tech­
nology group at the Eindhoven University of Technology. The traineeship had
two goals:

1. Getting the H-Drive in the laboratory of the group operational.

2. Studying an alterative to the present zero-search method that is based
on a vibrational procedure designed by R. Beijenberg. The method to be
designed could also use prior knowledge of the system in order to obtain
a faster and accurate zero-determination.

This report first describes the working of LiMMS systems like the H-Drive
and the stages that are needed to align the drive. Next the controllers and
the safety-layer are studied in detail. At the end of the report, an alternative
zero-search procedure based on a Kalman-filter is explored.

During the traineeship the final reports of Antoine Verweij and S.G.M. Hen­
driks proved to be an useful source of information.

v



Chapter 1

Introduction to the H-Drive

The first chapter contains an introduction to the H-Drive. First the principle of
the Linear Motion Motor System that drives the H-Drive, is explained. After
that, relevant system parameters are identified and the various sensors attached
to the robot are described.

1.1 Principle of the Linear Motion Motor Sys­
tem (LiMMS)

Linear Motion Motor Systems (LiMMS) are composed of two parts, a stator and
translator, as depicted in figure 1.1. The stator consists of a set of permanent
magnets that are placed on a metal strip with a constant pitch. The translator
contains a set of iron-coils that act like electromagnets when a current is sup­
plied. Attracting and repelling forces between the magnets of the stator and
translator result in a thrust force that sets the system in movement. To derive
the equations of motion for the complete LiMMS, the resulting force on one coil
is determined first.

Using the definitions of current and electromagnetic field in combination
with Faraday's law of induction yields:

-----"+-~~,-'-- GJ_N_. ~ ..:r StatOr

v
-~

Figure 1.1: Three phase synchronous permanent-magnet linear motor
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2 CHAPTER 1. INTRODUCTION TO THE H-DRIVE

Fph,n
n
Kph
i(t)
f
p(t)

?/J
P

T

'P
x

force of one phase (for coil number n)
index of coil
motor constant for one phase
current through one coil
amplitude of current through the coils
coupled flux
amplitude of the coupled flux
position offset of the pole shoe with respect to the
permanent magnets (before initialization, con­
verted from [m] to [rad])
magnet pitch (distance between N-S pole)
current angle offset
position of the LiMMS

Table 1.1: Symbols and variables

[N]
[-]
[N/A]
[A]
[A]
[Vs]
[Vs]
[rad]

[m]
[rad]
[m]

(1.1)

The coupled flux varies with position according to equation 1.2. The result­
ing horizontal force will be zero (either repelling or attracting) when the coil is
positioned exactly above a magnet. The force will be maximal when the coil is
halfway between two magnets.

~ 7I"X
?/In = ?/J cos(- + Pn)

T
(1.2)

The force Fph,n on one coil n also varies with the current that is supplied to
the coil. When deriving the equation of movement for the whole stator further
on in this section, it will be seen that it is useful to make the current position
dependent, with a user controllable offset 'Pn'

~ 7I"X
in = I cos(- + 'Pn)

T

Combining above equations results in equation 1.4 with Kph,n = ~:;j;.

(1.3)

(1.4)

The LiMMS is constructed such that the difference in position offset, con­
verted from meters to radians l , between two adjacent coils is ~71". In a three­
phase motor the phases of the currents to the different coils are also shifted ~71"

radians:

phase 0: Pph,O = P 'Pph,O = 'P
phase 1: Pph,l = P + j7l" 'Pph,l = 'P + j7l"
phase 2: Pph,2 = P +"371" 'Pph,2 = 'P + "371"

lConversion from meters to radians: P[rad) := p[rrtJ . '!fIT

(1.5)
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Using equation 1.4 and the settings from 1.5 yield:

3

phase 0:
phase 1:
phase 2:

Fph,o = ~fKph {cos(p - <p) - cos(2~x + p + <p)}
Fph,l = !fKph {cos(p-<p) -cose~x +p+<p+ tn)}
Fph,2 = ~IKph {cos(p - <p) - cose~x + p + <p + in)}

The total resulting horizontal thrust force is equal to the sum of the forces
on the individual coils.

2 3~

Fph = L Fph,n = "2IKph,n cos(p - <p)
n=O

(1.6)

Equation 1.6 shows that by applying a position-dependent current, as de­
scribed in equation 1.3, the thrust force has been made position-independent.
The efficiency of the LiMMS is maximal when the offset <p of the current is equal
to the initial position offset p.

Equation 1.7 shows the resulting system equation.

mx(t) = Fph - Fdisturbances

The disturbances are caused by:

(1.7)

• Cogging force, caused by the attraction between the permanent magnets
and the iron cores of the LiMMS. This force is always present and tries
to align the iron cores to a stable position of the translator. The effect
can be modeled with a sinusoidal function with a period depending on the
magnets.

• Reluctance force, caused by the varying self-inductance of the windings of
the coils of the translator. This effect results in a position and velocity
dependent force ripple that can only be modeled when the accuracy of
the placement and magnetic tolerance of the separate magnets are known.
This requires a detailed analysis of the LiMMS.

• Friction in the ball bearings between the translator and the guiding rails.

1.2 Setup of the H-Drive

The H-Drive comprises of two parallel Y-axes. The X-axis is connected to the
translator that moves along the Y-axes. It is possible to attach different devices,
like a Z-axis, to the translator of the X-axis. Figure 1.2 shows a schematic view
of the H-Drive and the used system of coordinates.

A number of sensors is used to report special states of the H-Drive:

• end-of-stroke sensor (eos) (figure 1.3.a): two micro-switches are attached
to every translator. The switches get activated when the translator bumps
to the spring at the end of the axes.
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Xmin",-o.613

oo.{O)

Y2max"1.084

-.PositiveY2

PosilfveY1--
Y1maK '" 1.089

Figure 1.2: System of coordinates and location of sensors

• end-position detector (epd) (figure 1.3.b): every axis contains one metal
strip. The edge of the strip coincides with the absolute origin of the
coordinate system of that axis. An inductive sensor at the translator
(epd) is used to detect the presence of the metal strip.

• angle violation sensor (avs) (figure 1.3.c): one set of inductive sensors
guard the tilt of the X-axis with respect to the Y-axes. Initially it was
assumed that sensor avs(O) gets activated when the angle gets too big in
one direction and sensor avs(l) gets activated by an angle violation in
the other direction. Pending the project accurate measurements showed
that sensor avs(O) gets activated when the X-axis is perpendicular to the
Y-axis. Only avs(l) detects an angle violation. At the opposite side of
the location of the avs-sensors a connection point for two more avs-sensors
is available. It looks like these sensors should be attached, but got lost
during the modifications that have been made to the H-Drive to make it
suitable for research.

The current for the coils is supplied by a current amplifier (figure 1.3.d).
The Controller for the H-Drive can be build in the MATLAB/Simulink sys­

tem. This model is compiled and loaded into the PowerPC processor that runs
independent from the PC on the dSPACE DS1130 board that takes care of the
interfacing between the PC, the controller in the PowerPC processor and the
hardware belonging to the H-Drive.

1.3 System identification

The transfer-functions of the system contain a lot of useful information. To
determine the transfer-function2 the system is moved at constant velocity, also
called jogging, when injecting noise n on input I (figure 1.4). This is done
to eliminate non-linear and position effects like cogging and friction. A weak
controller C(s) is used to make the translator track the desired trajectory r
needed for jogging.

2Special thank go to Aart-Jan van der Voort for determining the transfer functions and
giving permission to publish the results in this report.
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Figure 1.3: Overview of the H-Drive system: (A) EOS-sensor YI-Axis, (B)
EPD-sensor X-Axis, (C) AVS-sensor, (D) Setup with current amplifier, PC,
dSPACE box and H-Drive, (E) H-Drive

r
erence +-

position
H

Plant

x
poSllon

Figure 1.4: Block scheme used to determine transfer function.
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Bode Diagrams
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Figure 1.5: Transfer function of X-axis
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Figure 1.6: Transfer function of Y-axis

The noise n and current-input fare measured and the transfer function 8(s)
between these two signals is determined. Studying figure 1.4 shows that 8(s)
can be expressed as 1.8.

1
8(s) = 1 + H(s)C(s) (1.8)

Using 1.8 the transfer-function of the H-Drive is calculated. The resulting
transfer functions are displayed in figure 1.5 and 1.6.

It can been seen that the system behaves like a multi-DOF mass. Until the
first mass is decoupled at the first resonance frequency, the system behaves like
a single mass as can be seen in the bode-plot (gain decreases 40dB per decade if
frequency is expressed in rad/sec, phase is -180 degrees). This is in accordance
with theory..
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The first resonance of the X-axis occurs at 161 Hz. The first resonance of
the Y-axis at 110 Hz

Ignoring disturbances the equation of motion can be written as 1.9 (p = <p).

x(t)
~Kph~ ~

(1.9)--I=exI
m

H(s)
1(s) 1
X(s) exs2

By fitting 1.9 on the first part of the transfer function where the system
behaves like a single mass, parameter ex can be determined.

The motor constant was calculated by S.G.H Hendriks3 as follows. The
translator is an electromechanical transducer which uses a magnetic field. Equa­
tion 1.10 shows a typical model of such a transducer.

(1.10)U Ri _ o7.(;(x, i)
ot

Ri _ (07.(; oi + 07.(; ox)
oi Ot ox ot

R · Loi K. ox
~- Ot+ mOt

When moving the translator by hand the current i will be zero, but a voltage
U will be generated because of the self-inductance (equation 1.11).

U = Kmx(t) (1.11)

By integrating the induced voltage over time, the change of the coupled flux
can be calculated as showed in 1.12 and 1.13.

E = 07.(; ox
ox Ot

(1.12)

i
t2

Edt
h

(1.13)

Eph/ph is the induced voltage measured between two of the three coils. When
measuring the translator position x and the induced voltage Eph/ph during
movement, the integrated Eph/ph (7.(;ph/ph) can be plotted as a function of po­
sition, as depicted in figure 1.7. In figure 1.7 it can be seen that the magnet
pitch is T = 12 mm and the amplitude of the coupled flux over two phases is
~(X)ph/ph = 0.33 Vs.

3Thesis Report No. 2000.37 - Iterative Learning Control on the H-drive, S.G.H. Hendriks,
Eindhoven University of Technology, Department of Mechanical Engineering, 20 november
2000
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o.

o.

0.1

~J 0

-0.1

-0.2

-0.3

(1.15)

-o.4'---'-o"".18,,--"0."'18----,-O'".14.-n-0.7,;12C---on'.1.-n-o"".o8,-----o~.08..,----'.Oc:..04.----o".O~2
position [m:

Figure 1.7: Measured 'ljJph/ph as funtion of translator position x

The current through the coils is shifted 120° degrees in phase. Using equation
1.2 the measured flux 'IjJ(X)ph/ph can be calculated.

'IjJ(X)ph/ph 'IjJ(X2) - 'IjJ(Xl) (1.14)
~ 'lTX ~ 'lTX
'ljJcos(- +P + 120°) - 'ljJcos( - + p)

T T
~ r;:; 'lTX
'IjJ(X)y 3 cos( - + phase)

T
~ 'lTX
'IjJ(X)ph/ph cos(- + phase)

T

Using the definition of Kph (the motor constant over one phase) and equation
1.14 yields 1.15.

a'IjJ 1 a'IjJ
ax - v'3 ax

'IT ~ 'lTX
r;:;'IjJ(x)ph/phsin(- +phase)

Ty3 T
'IT ~

Tv!3'IjJ(X)Ph/Ph

Therefore the motor constant K ph can be calculated using the measurement
depicted in figure 1.7: Kph = 49.6 N/A

Antoine Verweij4 determined the coulomb and viscous friction of a perma­
nent magnet linear motor by moving the translator with several constant ve­
locities. The force needed during a constant speed movement can be calculated
by multiplying the motor current with the motor constant. By plotting a trend
line through the measurement results the coulomb friction and damping can be
determined. These experiments have not been done on the H-drive yet, but
figure 1.8 depicts how the resulting friction-speed graph could look like.

4Thesis Report No. EPE 2000.02 - Control of a permanent magnet linear motor with
dSPACE and MATLABjSimulink, Antoine Verweij, Eindhoven University of Technology, De­
partment of Electrical Engineering, november 2000
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Figure 1.8: Coulomb and Viscous friction as funtion of translator velocity v.
(The figure shows no real measurement data, but a result that can be expected).

Parameter X-axis Y-axes
First resonance [Hz] 161 110
Motor constant K ph [N/A] 49,6 49,6
Parameter a (eq. 1.9) [N/(AKg)] 8,08 3,60
Lumped mass [Kg] 9,21 20,6
Pitch between two magnets [m] 0,012 0,012
Coulom friction [N] 5,0* 5,0*
Viscous friction [Ns/m] 16* 16*

Table 1.2: Parameters of H-Drive (* = based on report of Antoine Verweij, not
measured or verified by experiments)

The most important results of the system identification are listed in table
1.2.



Chapter 2

Zero-search procedure

In this chapter the original zero-search procedure as based on a patent of R.
Beijenberg, is described. First the notion of an equilibrium point is explained.
Subsequently the idea behind the vibration procedure is disclosed and finally a
schematic view of the procedure is showed.

2.1 Stable and unstable equilibrium

The aim of the zero-search procedure is to find the initially unknown value
(p - c.p) with the objective to use commutation to keep the motor constant at
its maximal level (see equation 1.6). Figure 2.1 shows the resulting horizontal
thrust force as function of the current angle offset c.p and position offset p (FPP­
Curve: Force Position Phase).

As can be seen in the in the figure, there are two points at which the force
is equal to zero. Only one of these points is a stable equilibrium. This can be
demonstrated with a simple virtual experiment.

Assume that at a certain fixed current angle c.p the translator is positioned
such that (p - c.p) = 45° and the current amplitude f is positive. According to
figure 2.1 the thrust force is positive, which causes the translator to move in the
positive direction: p increases. If p increases, (p - c.p) increases and the thrust
force decreases until the equilibrium at 90° is reached.

If the translator is positioned such that (p-c.p) = 135° and the current ampli­
tude f is positive, the resulting thrust force will be negative and the translator

'-1'--- ~___J

Figure 2.1: Force as function of translator position and phase of current

11



12 CHAPTER 2. ZERO-SEARCH PROCEDURE

- Position
- - Current (Pulse
._. Velocity

Figure 2.2: One single vibration pulse: current, velocity and position.

will also move towards the equilibrium point at 90°.

However, if the translator is positioned near (p - <p) = 270° a small dis­
turbance will cause the translator to drift away from the unstable equilibrium
point at 270°

2.2 Vibration pulses

Theoretically, it is possible to move the translator to the position of the stable
equilibrium by merely supplying the coils with a current. However, this method
is not used in practice because:

• The translator could make a sudden uncontrolled movement .

• If the translator starts at the unstable equilibrium point (p - <p) = 270°,
the translator would not move at all and the stable equilibrium will never
be reached.

To get around these difficulties the zero-search procedure makes use of a vi­
bration method which moves the translator as little as possible. This is achieved
by supplying a pulsing vibration current to the coils which causes a vibrat­
ing movement: a movement in positive direction is followed immediately by a
movement in negative direction (figure 2.2). The total pulse endures 1O~ and
comprises of 6 sine parts with periods of ~ and 2~, followed by a pause of 2~.
By doing so the net displacement after a vibration pulse will be approximately
zero.

To keep the movement during the vibration small, the duration of the pulse l

is kept small (typical: ~ = 1...10 msec).
During a vibration pulse offset <p is kept constant. The amount of move­

ment, and the direction of the movement provide information about the current
position on the FPP-Curve. The total amount of movement is calculated using
equation 2.1. By changing J and <p in between successive pulses, it is possible
to reduce the movement to a minimum, as described in the next section.

IThe duration of t. cart be set by changing define DELTA in HD_V4..Movetest. c
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RESULT displacement(O->I) + displacement(I->2)

+displacement(2->3) + displacement(3->4)

(PI - PO) - (P2 - PI) - (P3 - P2) + (P4 - P3)

-PO + 2PI - 2P3 + P4

(2.1)

The position is measured by an incremental encoder. Therefore a certain
amount of movement is required. Interference between the LiMMS and other
vibrating parts of the H-Drive also require a minimum amount of movement,
called the detection level2 , before a result is reliable enough to adjust the value
t.p for the next pulse (typical: detectionlevel = 1O...20p,m).

2.3 Zero-search procedure

Figure 2.3 shows the flow-chart of the vibration procedure that is used to find
the stable equilibrium.

Before the actual zero-search procedure is started a movetest is executed
to make sure there is sufficient movement to retrieve useful information about
the current position on the FPP-Curve. The movetest does not just serve as
a self-test for the LiMMS, but also guarantees that the zero-search procedure
finds the stable equilibrium.

The movetest is labelled" successful " if the total movement caused by one
vibration pulse exceeds the detection level during three successive J?ulses. If the
total movement stays beneath the detection level, the amplitude I is increased
and phase t.p is shifted by 90° until the test succeeds. An error message is
raised when the desired detection level even can not even be reached with the
maximum allowed current.

After a successful movetest, the procedure continues with the actual zero­
search procedure that tries to find the stable equilibrium point on the FPP­
Curve: the point where even the highest allowed amplitude of the current does
not cause a significant movement. To be able to provide a position independent
motor constant during each vibration period, current offset t.p is kept constant
and commutation is activated.

After each vibration the resulting movement is compared with the movement
of the previous period and the estimated position t.p is shifted an angle dt.p more
towards the equilibrium point that is looked for. Pending the iteration process
the step-size dt.p of the shift is made smaller. The following scheme is used to
find the zero-point:

• If the resulting movement stays under the detection level, the amplitude of
the current is increased (without changing t.p). If the maximum amplitude
is reached, the stable equilibrium is found and the zero-search procedure
is stopped.

• If the resulting movement exceeds the detection level, the estimate t.p is
shifted to try to reduce the movement during the next vibration pulse.

2The detection level can be set by changing the define DETECTION-LEVEL in
HD_V4..Movetest. c
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phLmotor '" phi + (enc*l80o/'f)

I Vjbrati~

IRESULTI

I>Imax

testcount

y."
failure

I
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J~,

from now on:
commutation with

phLmotor", phi + 90° + (enc*l80o/d
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vjbratlon~
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(RESULT<O and
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(RESULT>O and
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dphi '" O.S*dphi
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Figure 2.3: Flow chart of zero-search procedure
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Figure 2.4: Signals during zero-search procedure

- If the sign of the current RESULT is equal to the sign of the previous
RESULT, the equilibrium point on the FPP curve was not passed
during last iteration step. Therefore estimate rp is shifted an angle
drp in the correct direction, without changing step-size drp.

If the sign of the current RESULT differs from the sign of the pre­
vious RESULT, this points out that the equilibrium point on the
FPP curve was passed during last iteration step. Therefore step-size
drp is reduced and estimate rp is shifted drp in the correct direction.

Finally a phase of 90° is added to rp to emerge at the position where the
FPP-curve has value +1, which results in a overall motor constant of !Kph,i
(equation 1.6). Figure 2.4 shows measured signals from a random zero-search
procedure.

When the axis moves too far3 away from its initial position during zero­
searching, the procedure is stopped and an error-message is issued.

The H-Drive becomes unstable when the zero-search procedure is started
when the homing sensor is activated. This problem does not occur in simulations

3The maximum allowed drift during zero-searching can be set by changing the value of
define ZERO-MAX-DRIFT in HD_V4-HDrive.c
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Figure 2.5: Error message caused by activated EPD-Sensor.

and is therefore probably caused by the hardware, not by errors in the H-Drive
software. Because this problem could not be solved pending the period of the
internship, the vibration procedure is interrupted by the software when the
EPD-Sensor gets activated and an error message is issued (figure 2.5). The
system would not move until the axes have been manually moved to a safe
position. When moving the axes, the H-Drive has to be turned off to prevent
dangerous situations to occur.



Chapter 3

Initialization of the system

This chapter describes the different stages of the initialization that are needed
before the system can be operated by a user:

• Before the zero-search procedure is started a movetest is performed to
ensure sufficient movement is present to start the zero-search procedure.

• In the zero-search procedure the offset p between the translator and the
permanent magnets is determined. At the end of this stage it is possible
to keep the motor-constant maximal by applying commutation.

• The Y-axes will be aligned in a straight position so the system can be
moved without a dangerous tilt that can damage the system.

• Find the origin of the system's coordinate system by homing the three
axes. After this procedure the absolute positions of the axes are known.

• Move the robot to the start position.

• Pass control to user. The user defined controller is embedded in a safety­
layer that runs to protect the H-Drive for dangerous situations.

Above stages are studied in more detail in the following sections

3.1 Movetest and Zero-Search

The theory of the zero-search procedure is described in detail in chapter 2.
Experiments on the H-Drive showed that executing the vibration-based align­

ment procedure on one axis hardly interferes with the alignment procedure on
another axis1 . Therefore it is allowed to align the axes simultaneously to achieve
the shortest initialization time possible. When the zero-search of one axis is
completed, the axis waits till the zero-searches for all axes are completed before
continuing to the next stage.

IThe maximum measured displacement of one axis, when aligning one of the other axes,
was 1 I'm during one complete set of vibration pulses.

17
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When the axis moves too far2 away from its initial position during zero­
searching, the procedure is stopped and an error-message is issued.

For inexplicable reasons the H-Drive becomes unstable when the zero-search
is started with an activated homing sensor. Therefore an error message is issued
when the user tries to start the initialization at the homing point. The system
will not move until the axes have been moved manually to a safe position.

After the zero-search procedure a commutation algorithm3 is used to keep
the motor constant at its maximum value to achieve a constant, maximum
efficiency.

3.2 Alignment of Y-axes

After the zero-search the X-axis has to be set in a position perpendicular to the
Y-Axes before moving to the homing point to prevent the axis from wedging,
caused by a tilt between the axes. Because the position of the axes is not known
until the homing point has been found, it is not possible to align the Y-axes by
making use of the encoder-outputs.

Therefore the avs-sensors are used to align the Y-axes. There are two pro­
cedures4 build into the software that can be used to align the Y-axes:

• The first method keeps the translator of the Yl-axis on its initial position
and moves the Y2-axis in positive direction till avs(l) is activated and
stores the position of avs(I). Next the Y2-axis is moved in the negative
direction till avs(O) gets activated. The position of avs(l) gets stored.
Finally a PID-Controller moves the Y2-axis to the position exactly in the
middle between the both avs-sensors.
This method should be used when both avs-sensors signal a tilt in a dif­
ferent direction.

• The second method keeps the translator of the Yl-axis on its initial posi­
tion and moves the Y2-axis in positive direction till avs(l) is activated and
stores the position of avs(I). Next the Y2-axis is moved in the negative
direction till avs(O) gets just activated.
This method should be used when avs(l) detects a tilt in one direction
and avs(O) detects the perpendicular position.

As long as the second set of avs-sensors has not been installed on the H-Drive
the second method is used.

3.3 Homing

In the next stage all axes are moved simultaneously at a constant low velocity5

until the homing point is detected by the epd-sensor. After this the translator

2The maximum allowed drift during zero-searching can be set by changing the value of
define ZERO..MAX-DRIFT in HD_V4J1Drive. C

3The direction of the commutation (in the same or opposite direction of the coordinate
system) can be set in mdlInitializeConditionsO of HD_V4J1Drive.c

4By defining ALIGN_Y_TO_CENTRE in HD_V4J1Drive.c the first method is used, by undefining
ALIGN_Y_TO_CENTRE the second method is used.

5The homing-speed can be set in function mdlInitializeConditions 0 of HD_V4J1Drive. c
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Value
Rise time 3.5 msec
Settling time 3.5 msec
Overshoot 1.2 percent
Bandwidth (for m = 12) 107 Hz
Gain margin 00

Phase margin 91 degrees at 107 Hz

Table 3.1: Characteristics of PID-Controller for moving
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stops smoothly according to a third degree setpoint and waits till all translators
arrive at their homing point. Next all translators move with a very low speed
(one third of the original homing-speed) till the epd is no longer detected. The
global origin of the coordinate system is known and the position-value is reset
in software.

3.4 Moving

A PID-Controller with a bandwidth of 20 Hz is used to make the translator
follow the desired profile with a small error. The controller is tuned in such
a way that the same settings6 can be used for the X-axis and Y-axes. The
Bode and Nyquist diagrams7 are depicted in figure 3.1, 3.2 and 3.3. Table 3.1
summarizes the most important characteristics8 of the controller. Because the
gain stays in the vicinity of 0 dB for frequencies well beyond the bandwidth of
the system, a relative low bandwidth is chosen to prevent problems caused by
the resonance frequencies of the system.

REMARK: When designing the controllers for the H-Drive software the
mass of the three LIMMS were estimated to be 12 Kg. Later on, when the
software was finished, the real masses were estimated using the system identi­
fication as described in section 1.3. The controllers in the software have not
been re-tuned for the new masses. However, the bode-plots for these systems are
depicted in this report to show their performance and prove stability.

3.5 User control

The user is not allowed to have full control over the H-Drive. A safety-layer
protects the system from dangerous situations. This layer is studied in detail in
the next chapter.

6The parameters of the PID-Controller can be set in function mdlInitializeConditionsO
of IID_V4..HDrive.c

7The plots from figure 3.1, 3.2 and 3.3 are based on simulations, not on real measure­
ments. Because sampling takes places at a relatively high frequency, lag-times caused by the
discretizing the controller can be ignored.

sThe rise time is here defined as the time it takes the system to reach the vincity of it's
settling point (90% of desired end-point), the settling-time is the time it takes the system to
stay in the vincity of it's settling point (10% deviation of desired value) and the overshoot is
the maximum amount the system overhoots it's final value (expressed as a percentage).
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Bode diagrams
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Figure 3.1: PID Controller - Bode plot of open loop system (from I to x)
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Step response
1.2r------.-------,----.--:-~---_,_____---.___--_____,

21

0.005 0.01 0.015
time [sec)

0.02
m=1
._. m=9
- - m=2

0.025 0.03

Figure 3.3: PID Controller - Step response of system (digitally controlled at 5
kHz)



Chapter 4

Safety layer

To protect the H-Drive form dangerous events during operation, the system
is safeguarded by a safety layer that takes over control from the user when
necessary. The different features of the safety layer are explained in this chapter.

4.1 Components of the safety-layer

Because several violations can occur simultaneously for the same axis, a priority
scheme is used to solve the most hazardous problems first. Situations with a
lower priority are not looked at until all problems with higher priority have been
solved. In the current implementation of the safety-layer problems are solved in
the following order:

• When the emergency-button is pressed the H-Drive is brought to standstill
as fast as possible.

• A tilt-protection procedure prevents the axis from wedging, caused by a
tilt between the axes

• A software based airbag is implemented to prevent the LiMMS from hit­
ting the end strokes.

• The speed of the LiMMS is limited by a velocity-brake.

• The current that is send from the current amplifier to the H-Drive is
limited to 4 Ampere during regular use. Some components of the safety­
layer are allowed to shift the limit to a higher value temporary when
necessaryl.

There exists one exception to the priority scheme: because calculating the
output of the safety-controllers and sending the current actually to the motor
is done at different stages in the code, clipping can occur simultaneously with
other actions from the safety-layer. After calculating the outputs needed for the
airbag or velocity-brake, the current send to the motor is clipped to a safe level.

IThe 4 Ampere limit is referred to as IMax..Lov and can be changed in HD_V4...HDrive.c.
The 8 Ampere limit that is used to prevent destructive situations is referred to as IMax..High.

23
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4.2 Airbag

The LiMMS is protected from bumping against the end-strokes by the use of a
software safety-layer. The user is only allowed to control the LiMMS in the safe
area (figure 4.1, LSAFE)' When the LiMMS enters the airbag protected region
LAB, a software based airbag takes over control. Because the only aim of the
airbag is to brake the movement and push the LiMMS back into the safe area,
a simple PD-controller can be used to perform this task.

LAB L
SAFE I LAB

~
airbaQ:

_....
:airbag.. )

Figure 4.1: Safetyairbag

As a rule of thumb, when using a digital controller, the sampling frequency
[Hz] of the controller should be bigger than 30 times the bandwidth of the closed
loop system. Employing a sampling frequency of 5kHz requires a bandwidth
smaller than 167 Hz. By tuning the PD-controller to form a critically damped
closed loop, the fastest possible response is obtained (see figure 4.4). The bode
and Nyquist diagrams in figure 4.2 and 4.3 show that the closed loop system is
stable. Settings: P = 100, D = 25.

During the airbag operation the maximum allowed current level is temporary
increased. Afterwards the H-Drive is turned off.

The minimally required thickness of the required airbag is calculated by
using standard kinematic equations.

The maximum velocity of the LiMMS is limited to 1 mls by the velocity
brake (see next section). It is plausible to assume that the position error (dis­
tance to nearest point in safe area) and velocity cause the controller to send out
a current near the maximum allowed current level Imax . Usi~ equation 1.7 and
ignoring disturbances yields the following equation (0:1 = ~~ ):

x(t) = o:dmax

The time that is needed to come to a standstill:

VmaxtAB = -~--

O:I/max

(4.1)

(4.2)

Combining 4.1, 4.2 and X(tAB) = Xo + votAB + !xt~B gives the minimal
thickness of the airbag.

L 1 v~ax
AB min = 2"-~-­

, O:I/max
(4.3)

With Vmax = 1, o:lx - aI,x-axis = 8.08 , O:I,Y -axes = 3.60 and /max = 4,
a safety layer of 15 mm is sufficient for the X-axis and 35 mm satisfies for the
Y-axes.
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Bode diagrams
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X-axis Y-axes
Penetration:
Estimated 15mm 35mm
Measured 13mm 31 mm
Settings:
minpos -0.60 m -0.05 m
maxpos +0.05 m +1.05 m
margin +0.03 m +0.05 m
Result:
Usable area: -0.57...+0.02 m 0.00...1.00 m

Table 4.1: Settings of the airbag

The airbag of the X-axis has been tested experimentally by applying a con­
stant current between -4A and +4A to the LiMMS and measuring the position
after entering the airbag. The airbag of the Y-axes has been tested by applying a
current to the Y1-axis and using a PID-Controller and feedforward to make the
Y2-axis follow the Y1-axis as good as possible. Table 4.1 shows the maximum
penetration and the final settings of the airbag2 •

Because the airbag-procedure is meant to prevent a destructive event, the
maximum current limit is increased to IMax-High.

4.3 Velocity brake

The original velocity limitation consisted of a simple procedure that sends a
current to the motor with an amplitude of minus two times the velocity at that
moment.

In the new version of the H-Drive software a P-Controller is used to control
the velocity back to a safe level when needed. The bandwidth of the open loop
system has to stay beneath 167 rad/sec when running the controller at 5 kHz.

Setting3 P = 25 does the job (see figures 4.2, 4.6 and 4.7).
When the velocity reaches a safe level, control is passed back to the user. A

high velocity is not destructive. Therefore the current limit is kept at IMax...LOlJ.

4.4 Tilt protection

The tilt protection comes into operation when the difference between the Y1
and Y2 position becomes too big4 .

The procedure brakes the X-axis and Y-axis by using the P-Controller of the
velocity brake (section 4.3). A slave-controller uses the PID controller of the
homing/moving procedure (section 3.3) to eliminate the difference between the
coordinates of the Y-axes. The difference reduces according to a third-degree
setpoint5 , by constructing the Y2-reference from the current Y1-state (position

2These settings can be changed in function mdlInitializeConditions 0 of HD_V4.JIDrive. c
3These settings can be changed in function mdlInitializeConditions 0 of HD_V4.J1Drive. c
4These settings can be changed by setting maxangle in function

mdlInitializeConditionsO of HD_V4.JIDrive.c
5Initialized in safety_angle-vioLinitO and calculated in safety_angle_violO in

HD_V4_Safety. c
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Nyquist plot
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and velocity) superposed with the values from the setpoint.
To assure that the Y2-axis is able to follow the Yl-axis, the current of the

Yl axis is limited to 80% of the maximum current level. In this manner the
PID-Controller of the Y2 axis has enough play to reduce the error.

Physically a difference of 30 mm is allowed, but a safety-margin is needed
to absorb the effects of overshoot when tilt occurs when the Y-axes are moving
with a significant difference in velocity. Therefore the tilt-protection is activated
when the difference between the Y coordinates becomes bigger than 20 mm.

Control is not given back to the user when the tilt is gone.

4.5 Emergency stop

The emergency-button that is standard installed on the robot only disconnects
the power when engaged6 . Therefore this procedure is inapt to interfere in an
emergency situation.

A second emergency button is connected to the dSPACE box. When this
button is pressed, the H-Drive is brought to a standstill as fast as possible by
the H-Drive control software.

The procedure of the emergency stop is very similar to the procedure of the
tilt protection: brake X-axis and Yl-axis by making use of the controller of
the velocity-brake, use a slave-controller to make the Y2-axis follow the Yl-axis
and limit the current of the master-controllers to 80% of the maximum current­
level to make sure the slave-controller can do its job. Because the emergency
procedure is build to protect the system and user from very dangerous situations
the maximum current level is set to Imax-High.

Afterwards the system is switched off so the translators can be moved with
a minimal amount of resistance.

6When only the power is disconnected form the LiMMS, the axes keep moving untill the
friction brings the system to a standstill or when the LiMMS bumps to one of the end-points.
This can result in serious damage and dangerous situations.



Chapter 5

Implementation in Simulink

At the beginning of the project, only the X-axis was controlled by version 3.0
of the H-drive software written by S.G.H. Hendriks l (based on software from
M.J.G. van de Molengraft en Antoine Verweij). Unfortunately this version of the
code turned out to be inapt to expand to a three axes controller. Further more,
the code was set up in a disorderly manner. Therefore, a new implementation
of the code has been developed with a accessory Simulink interface. Version 4.0
of the H-Drive software is available in two different versions that can be used
with MATLABjSimulink:

• H-Drive Model: simulation model of the H-Drive, including initialization
procedure, safety layer, sensors and 3D animated view of the system.

• H-Drive Hardware: Simulink block to control the real H-Drive system.

The Simulink blocks for Simulation and Hardware control are fully compat­
ible and can be interchanged without adapting the surrounding model. Both
blocks use the same C code for the initialization and protection of the H-Drive.
In the next sections the blocks are discussed in more detail.

5.1 Introduction

The H-Drive Simulink block has the following input and output ports (also see
appendix B.1):

• In_I (vector 3): vector with currents that have to be applied to the differ­
ent axes as defined by the user, defined in the order: [current X, current
Y1, current Y2]. The software in the H-Drive block protects the system
from overcurrent.

• In_Start (scalar) : a value "1" on this input-port switches the H-Drive
on and starts the initialization procedure. Value "0" turns the system
ofr.

lThesis Report No. 2000.37 - Iterative Learning Control on the H-drive, S.G.H. Hendriks,
Eindhoven University of Technology, Department of Mechanical Engineering, 20 november
2000

2When using version 4.0 of the H-Drive software, it's sometimes safer to use the emergency
button to stop the system. Section 4.5 explains why.
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(Sub)code State

CHAPTER 5. IMPLEMENTATION IN SIMULINK

Description
During Initialization:

8 Waiting for start
11 Test
12 Zero search
13 Y-Align
14 Homing
15 Moving
7 Aligning failed

During Operation:
..0.. Ready
..2.. End of stroke
·.3.. Position violation
..4.. Velocity violation
·.5.. Current violation
·.6.. Angle violation

Emergency:
17 Emergency stop

Waiting for signal to start (In_Start)
Movetest of vibration procedure
Executing zero-search procedure
Aligning Y-axes
Homing
Moving axes to starting position
Zero-search procedure failed

LiMMS is operating ok
Eos-sensor activated (hit end-stop)
LiMMS entered airbag region
Moving too fast
Overcurrent
Angle between Y- and X-axis too big

Emergency button was hit

Table 5.1: State indications for the H-Drive

• Out-Pos (vector 3): Position of the H-Drive with respect to the global
system of coordinates. The position of the LiMMS is not known until the
homing-procedure of the initialization is finished. Therefore the output of
this port can be set3 to 0 during initialization.

• Out-Time (scalar): time since initialization. This time has to be used in
controllers. The global Simulink-time returns the time that elapsed since
turning the robot on.

• Out-State (scalar): status of the H-Drive (see table 5.1). During the ini­
tialization the status-variable shows the global status of the overall system.
After the initialization the status variable shows the separate states of the
three axes. Example: state 350 means: position violation (3) for X-axis,
overcurrent (5) for Yl-axis, operating OK (0) for Y2-axis.
Leading zeros are not displayed, so state 50 means: X-axis OK (leading
zero, not showed), overcurrent (5) for Yl axis and Y2 axis OK (0).

• Out-CtrEn (scalar): the output of this port is 1 when the user is given
permission to control the H-Drive and 0 when the software controls the
H-Drive (initialization / safety layer). Therefore this output can be used
to enable a subsystem that contains a user defined controller.

• Out-I2Drive (vector 3): contrary to the input signal In_I this vector
shows the currents that have actually been send to the LiMMS. Actions
of the safety layer are therefore visible in this signal.

3Setting definine SHOIl-POS in HO_V4JIDrive.c to zero, output of position and velocity are
supressed during initialization.
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Figure 5.1 shows a typical Simulink model to control the H-Drive. The model
consists of the H Drive Model4 and a controller.

Figure 5.2 depicts a possible setup for a controller, using the I/O ports of
the H-Drive block to control the plant.

Under the mask of the Simulink block a C based S-function takes care for
initializing and protecting the H-Drive. This S-function is either connected to
a software-model of the plant or the real-life hardware. Externally the masked
subsystems for simulation and hardware control look exactly the same and are
directly interchangeable.

5.2 Simulation

The simulation version of the software has the following features:

4The model to control the real-life system looks exactly the same, with the exception that
the Hdrive block is called "HDrive Hard" .
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Figure 5.3: HD_V4_Model \ HDrive Model

• Modelled plant, based on equation 1.7. The friction is modelled using
a constant coulomb friction component and a viscous component that is
linear with the velocity of the LiMMS. Because of the second order model,
higher order effects like resonances are not visible in simulation. Cogging
and reluctance forces are not modelled. (figure B.4)

• Simulated sensor-signals: EOS, EPD, AVS (see figure 1.2 and 1.3 for sen­
sors and sensor locations).

• Animated H-Drive (figure 5.3).

Before the simulation can be started, the simulation parameters have to be
defined from the MATLAB command window. This can be done by running the
M-file HD...Parameters, which defines the plant parameters (table 1.2), sensor
positions (figure 1.2) and sets some parameters for the animated view.

Figure 5.3 shows the animated view of the H-Drive, that automatically pops
up when the simulation is started (if variable AnimShow is set to 1 in the MAT­
LAB workspace). The window contains the following information:

• State of the sensors: end-of-stroke (EOS), end-position detector (EPD)
and angle violation sensor (AVS). Value 0 means the sensor is not acti­
vated, value 1 means the sensor is activated.

• Position (pos) and velocity (vel) of the LiMMS.

• Difference between the Y2 and Yl coordinate. This is a measure for the
tilt of the Y-axes with respect to the X-axis.

• Status of the H-Drive.

• H-Drive time: time elapsed since the initialization.
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5.3 Interfacing with the H-Drive
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The Simulink block that is used to control the real-life plant, looks the same like
the block that is used for the simulation. Internally the H-Drive model from the
simulation is replaced by connections that lead to the dSPACE DS1130 board
that takes care for the interfacing between the PC and the H-Drive. After
designing a controller in MATLABjSimuIink and selecting an appropriate sam­
pling frequency (default: 5 kHz), the model can be compiled using the Realtime
Workshop compiler (RTW Build). Hereafter the system can be controlled from
ControlDesk. Because the real-life plant is used, it is not necessary to run the
HD_Parameters script.

Under some (dangerous) situations the H-Drive is automatically turned off
by the safety-layer. Afterwards it is not always possible to restart the system
by triggering the signal In_Start. Resetting the software in the PPC processor
(from within ControIDesk) or switching the current amplifier on and off solves
this problem.

5.4 Simulink S-Function

The code that is used to control the H-Drive is included in appendix B.



Chapter 6

Kalman-based zero-search

The zero-search procedure presented in chapter 2 only considers the direction of
the displacement, caused by a pulsing current amplitude. By not looking at the
amount of displacement, valuable information gets lost. This chapter presents
the idea of using a Kalman filter to estimate the position offset.

6.1 Introduction

Before starting the design of the new zero-search procedure, the performance
and accuracy of the Kalman filter is investigated.

Appendix A.1.1 and A.1.2 contain an elaborate description of the extended
Kalman filter that will be used. In the first instance, a simple system model
without friction is used (equation 1.6 and 1.7 in section 1.1:

mx(t)

2 3
)' Fph,i = "2 IKph•i cos(p - 'P)
i=O

Fph - Fdisturbances

(6.1)

Ignoring disturbances like friction forces results in:

with the following groups of parameters to be estimated:

~Kph

2 m
p

(6.2)

(6.3)

Figure 6.1 shows the change of some important parameters of the Kalman
filter when the settings of table 6.1 are used in a simulation environment. Before
the output of the modelled plant is lead into the Kalman filter, some noise is
added. Moreover, the output of the model is discretized to simulate the behavior
of the encoder.
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Discription Value
Input
Current amplitude i
Phase cp of current
Filter
Model

Extended state

Initial estimate
Measurement noise

Modelling noise

Variance matrix

U1 = sin(27ft/30e-3 )

U2 = 7ft/30c3

x" = a1u1cos(a2 - u2 )

:t' = [x X 001 002] T

X6 = [0 0 (0.75 + 0.5rand(1))a1 0 f
R = (10-6?
diag(Q) = [(10-6? (10-3? (10-3)2 (10-3)2] T

diag(Po) = r (10-6? (10-4)2 (1)2 (1O? f.
Table 6.1: Settings Kalman filter depicted in figure 6.1

Error alpha1 [deg)
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Velocity x'(t)
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Figure 6.1: Signals from simulations with Kalman filter
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The first simulations showed that it should be possible to achieve an accuracy
of 5 degrees when determining the position offset of the LiMMS. This is slightly
worse than the accuracy of the vibration method of chapter 2, which is 3 degrees.
The variations in changing motor gain l caused by this error are 0.4%. By tuning
and extending the Kalman filter, the accuracy of the zero search method can
probably be increased.

Another requirement of the zero-search is the possibility to perform the algo­
rithm at an apparently fixed position (in the uncontrolled example of figure 6.1
the drift form the starting point is several millimeters, which is unacceptable).
This might be achieved by implementing a controller (section 6.3) that takes
care the LiMMS follows a predefined setpoint with a very small amplitude.

Persistent excitating signals on the inputs Ul and U2 are required to assure
correct operation of the Kalman filter (section 6.2). From this point of view
a more complex setpoint like xr€j(t) = amplitude· sin3 (t) would be a better
choice. However, due to friction and cogging its undesirable to have periods
with zero velocity. As a first test the setpoint2 consists of a simple sine with
an amplitude REF_AMPLITUDE of 50 Mm, period REF-DELTA of 0.1 sec and phase
offset REF_PHLOFFSET of Orad.

During the first experiments on the real H-Drive, it became obvious that
friction and cogging play an important part. Therefore the effect of friction is
included in the system model, that will be used in the Kalman filter (equation
6.4 , 6.5 and 6.1). Appendix A.I.1 and A.I.2 contain an elaborate description
of the extended Kalman filter that will be used in the next sections.

i = a, u, cos(a2 - u2 ) - a 3 sign(x) (6.4)

_3~a, - 2 m

a 2 =p
a =£

3 m

6.2 Input signals

Ul = f
U2 = lfJ (6.5)

Looking at equation 6.4 it can be seen that the system has two inputs to control
only one output. This means the control is over-determined. The following
strategy is used to make sure both signals Ul and U2 are persistently excitating
(which is required for the Kalman filter to operate correctly):

• Ul: Amplitude f of the current is used as control-input to make the system
follow the desired setpoint. Section 6.3 goes further into the matter of the
controller and its difficulties.

• U2: Phase lfJ of the current follows a predefined profile (see later on). The
profile is initially chosen such that the parameters of the Kalman filter

1· _ Kph,real-Kph,attained _ (cos(zero)-cos(zero±error» lOO'3{ - (1-
ga'tn_error - Kph,real - cos(zero) * 0-

cos(error)) * 100% = 0.4%
2The setpoint can be modified by changing the mentioned parameters REF..AMPLITUDE,

REF...DELTA and REF...PHLOFFSET or adapting function Hdrive--Zerosearch~etsetpointsOin
IID_V5...Phi..Est . c
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can be estimated quickly. In course of time the profile is set such that the
setpoint can be followed more accurately.

As long as position offset P (and coherent with P parameter (2) is not known
exactly, the gain of the cosine-term in equation 6.4 can vary between -1 and
+1, which makes it almost impossible to control the system. The uncertainty
with respect to the cosine makes it very difficult to choose a correct gain for
the controller. Moreover, the uncertainty of the sign of the cosine can cause
the controller to become unstable. To minimize the effect of these problems the
desired form of signal U2 is set up as follows (figure 6.2):

• Stage 1: Signal U2 is chosen such that gain cos(a2 - u2 ) in the system
equation varies between -1 and +1. This enormous fluctuation guarantees
that the gain is at least once in a period big enough to cause a movement
of the LiMMS. During the first stage a rough estimate of the parameters
is obtained quickly, so the sign and gain of the cosine-term in the system
equation are roughly known and controlling the LiMMS is more easily.
Reference signal during this stage: 'Pref = REF_~~LTA
Phase send to current amplifier: U2 = -'Pref

Resulting cosine term in system: cos(002 ,.eal - u 2 ) = cOS(Preal - 'Pref)

The desired signal is shifted by offset P which is physically present in the
system and can not be compensated as long as no good estimate of 00 2 is
available.

• Stage 2: Transition between stage 1 and 3. See later on.

• Stage 3: During the third stage cos(a2 - u2 ) fluctuates between +0.5 and
+1.0, so the gain has a rather constant value and sign, which makes it
possible to make the LiMMS follow the setpoint, while there is still suf­
ficient excitation for improving the estimates of the unknown parameters
ai·
Because the cosine-term has to stay between +0.5 and +1.0 by controlling
U 2 , the random offset P that was present in stage 1 has to be compensated
for. Without the compensation the cosine will fluctuate between two ran­
dom boundaries. Moreover, the phase of the reference signal itself can be
adjusted to get a better transition between the different stages.
Reference signal: 'Pref = 1.0472sin(REF_;tELTA +Poffset)

Phase send to current amplifier3 : U2 = -'Pref +Pestimate

Resulting cosine term in system: cos(OO 2 ,.eo' - u 2 ) = cOS(Preal - Pestimnte +

'Pref) = cos('Pref + errorp)
To get the cosine terms of stages 1 and 3 in phase, Poffset is set to
Poffset = Pesti",ate. It should be noticed the random phase offset that
was present in the cosine-term during the first stage has been eliminated
largely in the third stage.

• Stage 2: The second stage guarantees a smooth transition between stage
1 and 3. The amplitude range of the cosine is gradually shifted from
[-1.0, +1.0] to [+0.5, +1.0] and the offset correction gets activated. A

3While 'Pre! is the phase-angle that is desired to be experienced by the system, the phase
angle that is actually present is 'Pobserved = P - U2.
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Figure 6.2: cos(p - 'P) = cos(OC2 "eal - u2 ) as function of time.

transition function g(t), that varies between 0 and 1 linear in time, is used
to gradually switch between stage 1 and 3.
Transition function: g(t) = (t-tstart,stage2)

(tend, stage2 - tstart ,stage2)

Amplitude of reference signal: amp(t) = 7r(1- g(t)) + 1.0472g(t)
Reference signal: 'Pre! = amp(t) sin( REF_;fELTA +Po!!setg(t))
Phase send to current amplifier: U2 = -'Pre! +Pestimateg(t)
Resulting cosine term in system: cos(OC2"eal-u,) = cOS(Preal-Pestimateg(t)+
'Pre!) = cos('Pre! + (1- g(t))Pestimate + errorp )

Figure 6.2 shows the ideal shape of the resulting cosine term of equation 6.4
when using the defined setpoint. In practice the transition during the second
stage is not always as gradual as depicted in figure 6.2 because of the rather
poor4 offset compensation that is used, In the experimental version of the
Kalman-based zero-search method the first two stages comprises a fixed number
of periods5 . The third stage is finished after a pre-defined time.

6.3 Controller

As mentioned in the previous section, the gain of the system defined as OC1 cos(OC 2 ­

u 2 ) in equation 6.4 , is not know accurately until the zero-search procedure has
been finished. Initially the sign as well as the order of the order of the gain are
unknown. Designing a stable controller is therefore a rather complicated task.

To suppress these problems a PD-Controller is used, which output is sup­
pressed at moments when the value or sign of cos(OC2 - u 2 ) is not know well.

• After initializing the filter, parameters OC1 and OC2 are unknown. There­
fore the gain of the PD-Controller is suppressed by applying an extra
time-dependent gain6 with amplitude ~ arctan(REF_ATC_TIME-t) that

4Because of the lack of offset-compensation at the start of the second stage, it's not possible
to guarantee that the mean of the cosine has the same course as depicted in figure 6,2. The
direct, unfiltered, offset-compensation with Pe.timate later on can result in a capricious graph,

5The numbers of periods (of REF-DELTA seconds) during the first stage can be modified
by adapting define REF-PHIEXC_INIT in HD_V5-PhLEst . c while REF_PHIEXC_STOP defines the
number of periods during the second stage. Stage 3 finishes after ZERO_SEARCHTlME seconds.

6The supression of the PD controller can be modified by adapting define REF_ATC_TIME or
adapting function Hdrive..zerosearch..controlout 0 in HD_V5-PhLEst. c
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00""'"

Figure 6.3: System setup during the Kalman-based zero-search procedure.

limits the output of the controller as long as a rough estimate of 0:, and
0:2 is not available.

• When cos(0:2 - u 2 ) ~ 0 a paradoxical situation comes into existence.
Because of the low system gain, the PD controller needs to have a high
gain to be able to control the system.
However, because of errors in the estimation of 0:2 the cosine might have
a bigger gain as expected. The cosine might even have a different sign as
expected when cos(0:2 - u 2 ) is near its zero. In view of stability a high
controller gain is therefor not desirable.
Because stability is more important that being able to follow the setpoint
with a minimal error, the gain of the controller is lowered near COS(0:2 -

u2 ) = 0 by applying an extra gain7 of with amplitude ~ arctan(REF_ATC_COS·
COS(0:2 - U 2 )estimation)' This extra gain also takes care for the sign­
correction of the controller output when the system-gain changes sign.

Applying the extra gains mentioned above has exactly the same effect as
adapting the P and D gain of the controller simultaneously with the same
factor. From this point of view dynamic scheduling the P and D gain might
be a more elegant solution. By changing the P and D gain independently it is
possible to have more control over the systems response.

The output of the controller is filtered by a first order low-pass filterS that
suppresses frequency contents above 50 Hz to prevent the eigen frequencies of
the systems from being excited.

Figure 6.3 shows a schematic view of the controlled system.
Simulations with several controller settings (different bandwidths and gain/phase­

margins) showed that the system becomes often unstable and the setpoint can
hardly be followed. One of the sources of error is the impact of friction when
making small movements (see section 6.4). To reduce the influence of friction,
a friction-compensating feedforward was added. The feedforward had no pos­
itive effect at all. Friction plays especially a dominant role when the LiMMS
has to be brought in movement from standstill during the first moments of the
zero-search procedure. However, the system parameters that are needed for
the friction compensation are initially unknown, so compensation is virtually

7The supression of the PD controller can be modified by adapting define REF-ATC_COS or
adapting function Hdrive..zerosearch_controlout 0 in HD_V5-PhLEst. c

BThe first order filter, defined in the discretized z-domain, can be modified
by adapting defines ZERO..FILTER_GAIN and ZERO..FILTEILPOLE or adapting function
Hdrive..zerosearch_controlout() in HD_V5-Phi-Est.c
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Figure 6.4: Physical interpretation of the LuGre friction model

Variable Discription
Equations

Ffrietion = CJoZ + CJ, i + CJ2X Tangential friction force
'-' J& Average deflection of the bristlesZ - x - g(x)z

CJog(:i:) = Fe + (Fs - Fe) e-(t) Stribeck curve
Variables

x Relative velocity between the two surfaces
Z Average bristle deflection
g(x) Stribeck curve for steady-state velocities
Vs Stribeck velocity
Fs Static friction (Stribeck curve)
Fe Coulomb friction (Stribeck curve)
CJo Bristle stiffness
CJ, Bristle damping
CJ2 Viscous damping coefficient

Table 6.2: Equations and variables of the LuGre friction model

impossible when it is most needed. With a little error in the estimation of pa­
rameter 0:2 system gain 0:, COS(0:2 -u2 ) might have a different sign as expected,
which results in a friction compensation that works in the wrong direction and
makes the system unstable. The same problems arise when implementing a
mass feedforward.

6.4 Improvements

The reliability of the zero-search procedure presented in this chapter is low.
It takes a good deal of improvements before the Kalman-based procedure can
surpass the vibration method with respect to stability, speed and noise-level.
The following items should be considered:

• When following the prescribed setpoint for the position, with its small dis­
placements and low velocity, friction plays an important role. During the
motion the system has several periods in which the system is in stick-slip9

mode and equation of motion (6.4) is no longer valid. A more elaborate
model is needed to describe the physical situation. Figure 6.4 shows what

9While being in stick-slip mode, the sliding surface sticks to the non-sliding surfce untill
the force exceeds the break-away force. After moving a little the surface gets stuck again,
waiting till it breaks away again. This results in a jerky motion: stick-slip.
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is physically going on.
At microscopical level, the tops of the profile of the sliding surfaces form
asperities that can deform when subjected to a driving force (figure 6.4.a).
Contacting asperities act as small stiff springs with dampers, giving rise
to microscopic displacements (stick) and return forces. If the displace­
ment becomes too large, the junctions break. During the deformations
the asperities act as bristles that can be modeled as springs and dampers
with an average deflection z (figure 6.4.b). At high velocities the asper­
ities break and equation 6.4, that describes the motion of a driven mass
subjected to friction, is valid again (figure 6.4.c).
The LuGre friction model lO from table 6.2 can be used to describe these
phenomena.

• Adding friction- and mass compensation in the feed-forward makes it more
easy to follow the desired setpoint. However, this is very difficult because
the most important parameter, position offset p, is initially completely
unknown as long as relative position encoders are used to determine the
position, instead of absolute encoders so it is impossible to use results of
previous zero-search procedures.

• The current controller can be improved by independently scaling P and
D instead of directly changing the gain of the controller by using gain­
reduction blocks as shown in figure 6.3. By changing P and D indepen­
dently it is possible to tune the behavior of the controller for the various
stages of the zero-stage procedure.

• Initially it is very difficult to make the LiMMS follow the desired trajec­
tory. When the LiMMS moves into the wrong direction during the very
first period of the setpoint, the sign of the system gain is apparently dif­
ferent as expected. Therefore the estimate of the offset could be shifted
180 degrees. Moreover the sign of the setpointll could be shifted to make
it more easily for the controller to move the error that arose because of
the bad estimate of the system gain.

• The phase U2 send to the LiMMS is currently determined by correcting
the defined setpoint with the estimated offset calculated by the Kalman
filter as described in section 6.2 (see also figure 6.5.a). Although the
estimated offset p is provided by the Kalman filter, the resulting signal U2

is initially rather capricious. Therefore adding a extra controller to make
the observed phase angle12 follow the setpoint for 'Pre! might be worth
the consideration (figure 6.5.b) . This controller might also improve the
stability during the zero-search procedure.

• Instead of making the LiMMS follow a desired trajectory, a completely
different strategy can be used in which an arbitrary input Ul supplied.

10Journal publication: R.H.A. Hensen, M.J .G. van de Molengraft, M. Steinbuch, Frequency
domain identification of dynamic friction model parameters, in Proc. 3rd IEEE Int. Conf. on
Control Theory and Applications; Editors: Jianliang Wang, Pretoria, South Africa, 167-171,
(2001)

llThe direction of the setpoint can be flipped by changing the sign of the global variable
refdir (i). Although this feature is present in version 5 of the software, it is not used yet.

12See equation 1.6, 6.4: 'Pobeserved = p - U2
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Figure 6.5: Proposal: (a) current setup (b) setup with extra U2 controller

When the LiMMS drifts too far away from its initial starting-point action
is taken to change the direction of moving (e.g. by changing sign Ul). This
setup does not need a controller to limit the amount of movement of the
LiMMS.

• The trace of variance matrix P of the Kalman filter is a measure for the
amount of uncertainty in the parameter estimates. Therefore trace(P)
should be used as variable to change the controller gains instead of time
t.
Trace( P) should also be included in the condition to finish the zero-search
stage and continue with homing.

When improving the Kalman-based zero-search procedure one should use
Version 4.0 of the H-Drive software as starting point (Appendix B).
Version 5.~ only contains experimental code to make the Kalman-based method
operational. The safety and alignment procedures are not as sophisticated as in
Version 4.0



Chapter 7

Conclusion and
recommendations

Getting the H-Drive operational turned out to be quite a job. The single axis
code that was already available at the beginning of the project l turned out be
unsuitable to control all axis of the robot: the code was difficult to expand, set
up in a disorderly manner and besides contained several bugs.

Version 4.0 of the software solves this problem. Using the defines from section
B.2 the most important characteristics of the initialization and the safety-layer
can be changed in an easy manner, while the code-description from section B.3
can be used as a guide to apply more profounding changes.

The various controllers that are used during the initialization of the system
and in the safety-layer are based on old estimates ofthe system parameters. The
performance of the safety-layer can be increased by tuning the controllers, using
the data resulting from the system identification that is described in section 1.3.

Further, it might be wise to add a neat stop-procedure to stop the H-Drive.
When the current is disconnected from the LiMMS, the axes keep moving until
the friction becomes too big or the LiMMS bumps to the end-point. At the
moment the H-Drive can therefore only be turned of in a safe way by pressing
the emergency switch (see footnote section 5.1) or generating a setpoint-profile
to bring the H-Drive to a standstill.

The experiments with a Kalman-based zero-search procedure yielded no use­
ful results. One could ask oneself if implementing another zero-search procedure
is desirable at all, for the vibrational methods works accurate and proved to be
quite stable. Moreover, the time it takes to find the zero is small with regard
to the total time needed to initialize the system.

However, when replacing the present zero-search procedure with a Kalman­
based one, the recommendations from section 6.4 should be taken into account.

Finally, an attempt was made to bring a lot of useful information on the H­
Drive together in this report. Hopefully the report will therefore a good starting

IThesis Report No. 2000.37 - Iterative Learning Control on the H-drive, S.G.H. Hendriks,
Eindhoven University of Technology, Department of Mechanical Engineering, 20 november
2000
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point for future research...



Appendix A

Digital Kalman filter

This appendix summarizes the equations of the digital extended Kalman filter
that is used in version V5.e of the H-Drive software that is described in chapter
6 and appendix D.

A.I Equations of the Kalman filter

A.L1 General digital extended Kalman filter

The calculation scheme for a digital extended Kalman filter is as follows:

1. Time update: estimate rk+l based on the previous state rk:

rk+llk = 1(rk, T?k) + Q

2. Calculate Jacobian matrix Fk+l of 1 (xk+llk) and Hk+l of h (xk+llk) :
Fij = &f;/&xj
Hij = &hi/&xj

3. Calculate variance matrix P and gain matrix K:
Pk+llk = Fk+lPkFI+l + Q
Kk+l = Pk+llkHI+l [Hk+lPk+llkHI+l + R]-l

4. Measurement update:
"Z*k+l = result of measurement
x'k+l = rk+llk + Kk+l["Z*k+l - h k+l("Z*k+llk)]

5. Update variance matrix P:
PHI = [1 - Kk+lHk+l]Pk+llk

The Kalman filter uses system model 10 to estimate the state-vector
x'k+llk of the next period. This estimate is then improved by comparing mea-

surement results "Z*k with results that are predicted by model hO. Noise ma­
trices Q and R indicate the magnitude of model uncertainties and measurement
noise. The value of error ("Z*k - h k) and the magnitude of uncertainties (Q, R,
and P) determine how much time-update x'k+llk is changed by measurement
results.
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Parameter

APPENDIX A. DIGITAL KALMAN FILTER

Description
State after step k (final estimate)
Intermediate state-estimate for step k + 1 based on infor­
mation from step k
Function that describes the relation between successive
states and inputs
Jacobian matrix of 1(x) at step k
Measurement vector at step k
Function that describes the relation between measurement
vector z+k and state x k

Jacobian matrix of h(x) at step k
Covariance matrix at step k
Intermediate covariance matric estimate for step k+1 based
on information from step k
Gain matrix at step k
Identity matrix
Process noise matrix
Measurement noise matrix

Table A.l: Variables used in the Kalman filter

Before using the Kalman filter, it is necessary to choose initial values for
state estimate x 0 and variance matrix Po. Considering the statistic (normal)
distribution of the possible values of the state variables, x 0 contains the mean
values and Po is a diagonal matrix with variances on the diagonal.

A.1.2 Kalman filter for H-Drive

Using the equations of the previous subsection, a digital Kalman filter for the
H-Drive is designed.

In section 1.1 the following equations of motion were derived (equation 1.6
and 1.7):

2 3~

Fph = l:i=O Fph,i = .~.IKph,i cos(p - 'P)
mx(t) = F ph - Fdisturbances

Taking coulomb friction into account as the only disturbance force results
in:

x = a, u, cos(002 - u2 ) - oo3 sign(x)
with parameters:

3~a, = 2 m

002 =p

003 =:!ii
and inputs:
Ul = J
U2 = 'P
The sign of the coulomb friction can be determined by comparing succes­

sive encoder measurements. Therefore sign(x) is not calculated based on state
x k+b but is an externally determined parameter:

sign(x)
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The state vector consists of position and velocity, extended with the unknown
(constant) parameters that are to be determined:

-=t r' ITx = X X a1 a2 a3

Only the position is measured: ...,...
z+k+l = measured position at time-step K +1 = h (x' k) + R

Using these equations, the vectors and matrices for the Kalman filter are:

r x X a1 a2 a3 1T

1(x'k' Uk) +Q

r x + xdt 1
x+xdt

a1

a2

a3

o 1
-sign(x)dt

o
o
1

o
-xk(3)u(l) sin(xk(4) - u(2) )dt

o
1
o

r xk(I)+xk(2)dt 1
xk(2) + [xk(3)u(l) cos(xk(4) - u(2)) - xk(5)sign(x)]dt

xk(3)
xk(4)
xk(5)

8!I/8x 5 1

: I
8f5/8x5

o
u(l) cos(xk(4) - u(2))dt

1
o
o

r 8fI/8x 1

I :
8f5/8x1

r 1 dt
o 1
o 0
o 0
o 0

8hI/8x5 1
o 0 1

h(x'k,Uk)+R

[xl
r 8hI/8x 1

rIO 0

The resolution of the encoder is l{tm, therefore the variance of the measure­
ment error is 10-12 . Setting R to 10-13 yields the best results.

Vector x' 0 contains an initial estimate of the parameters:
x'o = r x(to) 0 6.25 7f/2 0.5 f with uncertainty (variance)

diag(P) = r 10-12 10-8 1 1 0.1 f.
Matrix Q is a diagonal matrix with model uncertainties on its diagonal.

The equation to estimate the position of the next time-step is almost perfect,
therefore is Qn is very small. On the other hand, the modelling of the friction is
rather poor, therefore Q55 is big. Studying all parameters results in diag(Q) =

r 10-14 10-8 10-6 10-8 10-4 f. The interdependency of the elements
of Q determines which parameters are fitted the best1 .

1 A large value of Qii allows a big deviation between the measured state and the estimated
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A.1.3 Implementation of the digital Kalman filter

To minimize the processor load during operation, the Kalman filter is rewritten
to minimize the number of operations needed to update the state. This is done
by:

• Converting matrix equations to a set of simple algebraic equations, so
time-consuming that are needed to do matrix multiplications can be avoided.

• Taking into account the symmetry of the variance matrix P: only the
upper triangular part has to be calculated.

• Isolating terms that occur more than once in the equation: assign a vari­
able to these terms that has to be calculated only once.

With these measures the Kalman filter can even operate real-time at high
sample frequencies. The resulting C code is included in file HD_V5-PhLEst. c
of Version 5.~ of the H-Drive software set. More information can be found in
appendix D.

A.2 Performance

Section 6.1 shows an application of the digital Kalman filter and the attained
performance.

state variable i. The state variable changes slowly because of deviations and is therefore not
sensitive to temporary disturbaces (e.g. caused by modelling errors)



Appendix B

C Code for the excitation
method (Software V4.0)

This appendix contains an introduction to Version 4.0 of the H-Drive software:
operation of the Simulink blocks including a description of the I/O ports and
error messages, parameters in the C software that are used to change important
settings like controller-parameters and safety margins, an overview of the code
and the source-code itself.

B.l Simulink

Figure B.1 shows the most important blocks that are part of version 4 of the
H-Drive software set:

• Simulation Interface (A): block for simulating the H-Drive. The block
contains a model of the H-Drive (C), the simulator (D) and the control
block (E). More information: section 5.1 and 5.2 and Appendix table B.1.
Figure 5.1 shows a what is under the mask of the simulation interlace.

• Hardware Interface (B): block for interfacing with the real-life H-Drive.
The block contains a model of the H-Drive (C), the simulator (D) and the
control block (E). More information: section 5.1 and B.2 and Appendix
table B.1. Figure B.2 shows a view under the mask of the hardware
interface.

• Simulation Model (C): 3-Axis of the H-Drive, including sensors (section
1.2) and emergency switch. Both the real position of the LiMMS and the
position output of the decoder (with random origin) are available at the
output. More information: Appendix table B.2. Figure B.4 shows the
Simulink model.

• H-Drive Animator (D): block for generating an animated view of the H­
Dirve. More information: section 5.1, 5.2 and Appendix table B.3.

• Control block with software (E): block with initialization procedures, safety­
layer and other software. This block forms the core of the simulation and
hardware interface. More information: Appendix table B.4.
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The following pages contain views of the several components, views under
the masks and tables with descriptions of the I/O ports.
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Figure B.l: Simulink blocks belonging to version 4 of the H-Drive software set:
(A) Simulation Interface, (B) Hardware Interface, (C) Simulation Model, (D)
H-Drive Animator, (E) Control block with software
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5 3-Axis System
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Figure B.2: Inside hardware interface (B): HD_V4_Hardware \ HDrive Hard
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Figure B.3: Inside simulation interface (A): HD_V4_Model \ HDrive Model
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Figure B.4: Inside Model: HD_V4.Model \ HDrive Model \ 3-Axis Model \ X

Port
Input:
In_I

In_Start
Output
OuLPos
OuLtime
OuLState
OuLCtrEn

OuLI2Drive

Width Description

3 Current to be send to the 3 axes (before passing
safety layer)

1 Switch H-Drive On (1) / Off (0)

3 Position of the LiMMS for 3 axes
1 Time since initialization procedure finished
1 State of the H-Drive (see table B.5)
1 Enable (1) or disable (0) external controller

defined by user
3 Current actually send to the 3 axes

Table B.1: Simulation Interface (A) and Hardware Interface (B)

OuLemergency 3

Width DescriptionPort
Input:
In_I
In_Phi
In_Power
In_Reset
Output
OuLPos
OuLVel

OuLeos
OuLepd
OuLavs
realpos

3
3

3
3

3
3
3

Amplitude of current to be send to the 3 axes
Phase of current to be send to the 3 axes
Switch H-Drive On (1) / Off (0)
Reset position encoder

Position of the LiMMS for 3 axes (encoder output)
Position of the LiMMS for 3 axes (exact, no esti­
mate)
Output of EOS-sensor for 3 axes
Output of EPD-sensor for 3 axes
Output of AVS-sensors
Position of the LiMMS for 3 axes (with respect to
orgin)
Output of Emergency button

Table B.2: 3-Axis Model (C)
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Port
Input
Port 1

Port 2
Port 3
Port 4
Port 5
Port 6
Port 7

Width Description

3 Position of the LiMMS for 3 axes (with respect to
orgin)

1 State of the H-Drive (see table B.5)
3 Velocity of the LiMMS for 3 axes
3 Output of EOS-sensor for 3 axes
3 Output of EPD-sensor for 3 axes
2 Output of AVS-sensors
1 Time since initialization procedure finished

Table B.3: H-Drive Animator (D)

Current to be send to the 3 axes (before passing
safety layer)
Switch H-Drive On (1) / Off (0) (before passing
safety layer)
Connection to hardware: EOS-sensor
Connection to hardware: EPD-sensor
Connection to hardware: AVS-sensor
Connection to hardware: Position encoder
Connection to hardware: Emergency button

Connection to hardware: Current actually send to
H-Drive
Connection to hardware: Phase of current send to
H-Drive
Connection to hardware: Switch H-Drive On (1) /
Off (0)
Connection to hardware: Reset position encoder
State of the H-Drive (see table Bo5)
States of the separate axes
Enable (1) or disable (0) external controller, defined
by user
Time since initialization procedure finished
Position of the LiMMS for 3 axes
Velocity estimate of the LiMMS for 3 axes
Debug information: value of variable RESULT
(zero search)
Debug informatio: value of variable DPhi (zero
search)
Debug information: output of internal PID Con­
troller
Debug information: output of setpoint generator

3

3

Width Description

3

1

1

Input:
In_I

In_Start

Port

In-EOS 3
In_EPD 3
In_AVS 2
In_Pos 3
In_Emergency 1
Output
OuLI

OuLPower

OuLPhi

OuLencrst 3
OuLstatus 1
OuLSubstate 3
OuLCtrEn 1

OuLHTime 1
OuLPos 3
OuLVel 3
OuLResult 3

OuLDPhi 3

OuLCtrlOut 3

OuLCtrlSP 3

Table B.4: Control block with software (E)
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(Sub)code State
During Initialization:

8 Waiting for start
11 Test
12 Zero search
13 Y-Align
14 Homing
15 Moving
7 Aligning failed

During Operation:
..0.. Ready
..2.. End of stroke
..3.. Position violation
..4.. Velocity violation
..5.. Current violation
..6.. Angle violation

Emergency:
17 Emergency stop

Description

Waiting for signal to start (In_Start)
Movetest of vibration procedure
Executing zero-search procedure
Aligning Y-axes
Homing
Moving axes to starting position
Zero-search procedure failed

LiMMS is operating ok
Eos-sensor activated (hit end-stop)
LiMMS entered airbag region
Moving to fast
Overcurrent
Angle between Y- and X-axis too big

Emergency button was hit

B.2

Table B.5: State indications for the H-Drive

Important Parameters

Several settings of the H-Drive can be changed by setting parameters in the
software. The following tables show the most important variables together with
their position in the software and links to sections in this report where the
variable is described in more detail. For convenience the parameters have been
grouped according their use: system settings, zero search procedure, initializa­
tion and safety layer.

B.2.1 System Settings

Parameters with respect to system settings: number of operational axes, show
position, velocity observer, magnet pitch and current settings.

noa I

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

WARNING:

HD_V4JIDrive.c
Define
[-]
3

Number of axes: 3=operate all axes, 1=op­
erate X-axis only.
Be very carefull when chaning this pa­
rameter. Memory allocation and safety
operations are only designed for 3 axes
(X,Y1,Y2) or only the X-axis being opera­
tional. Before using another configuration,
a lot of procedures have to be modified.
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SHOWPOS

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

KGAIN

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

I

I

HD_V4_HDrive.c
Define
[-J
1.0
Section 5.1

1.0 = Show position and velocity during
initialization, 0.0 = Suppress output of po­
sition and velocity during initialization..

HD_V4_PID.c
Define

100

Gain of internal velocity reconstruction fil­
ter (used by the safety later for monitoring
the velocity of the axes and the D-action
for the controllers during initialization)

TAU

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

I

I

HD_V4_Motor.c
Define
[m]
0.012
Section 1.1, 1.3

Magnet pitch of the LiMMS (distance be­
tween the North and South poles of the
magnets in the rails)

HD_V4_HDrive.c
Define
[AJ
4.0
Section 4.1

Maximum allowed current during normal
use
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ImaJLJiigh

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

I

HD_V4_HDrive.c
Define
[A]
8.0
Section 4.1

Maximum allowed current during critical
operations performed by the safety layer.

B.2.2 Parameters zero search procedure

Parameters with respect to zero search procedure: current settings, detection
level, pulse-period and maximum drift.

Imax-Algn I

Source file: HD_V4_HDrive.c
Location / Type: Define
Unit: [A]
Default value: 5.0
See also: Section 2.3

Discription: Maximum allowed current during zero
search procedure.

DETECTION_LEVEL I

Source file: HD_V4_Movetest.c
Location / Type: Define
Unit: [m]
Default value: lOe-6
See also: Section 2.2, 2.3

Discription: Detection level of zero-search procedure.

DELTA I

Source file: HD_V4_Movetest.c
Location / Type: Define
Unit: [sec]
Default value: 3e-3
See also: Section 2.2

Discription: Duration of L\ in vibration pulse.



B.2. IMPORTANT PARAMETERS 61

ZERO-MAX_DRIFT

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

I

HD_V4_HDrive.c
Define
[]
5e-4
Section 2.3, 3.1

Maximum allowed drift from starting point
during zero-search procedure.

B.2.3 Parameters initialization

Paramters with respect to initialization: method of Y-alignment, alignment
speed, homing speed, PID-controller moving stage and end-position after ini­
tialization.

ALIGN_Y_TO_CENTRE I

Source file: HD_V4_HDrive.c
Location / Type: Define
Unit: [#define / #undef]
Default value: #undef
See also: Section 3.2

Discription: Choose procedure for aligning X-axis with
respect to Y-axes by defining/undefining
this parameter. Read section 3.2 for more
information.

vyalgn I

Source file: HD_V4_HDrive.c
Location / Type: mdlInitializeConditionsO
Unit: [m/sec]
Default value: 0.03
See also: Section 3.2

Discription: Maximum speed of aligning X-axis with re-
spect to Y-axes

YALGKTREST I

Source file: HD_V4_HDrive.c
Location / Type: Define
Unit: [sec]
Default value: 0.2
See also:

Discription: Delay between centering Y-axes and start-
ing the homing procedure.
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vh(i)

Source file:
Location / Type:
Unit:
Default value:

See also:

Discription:

p..JlIove(i)

I

I

HD_V4_HDrive.c
mdlInitializeConditions()
[m/sec]
+0.1 / -0.1 / -0.1 respectively for X / Y1
/ Y2
Section 3.3

Homing speed of axis of axis i

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

i..Jllove(i)

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

I

HD_V4_HDrive.c
mdlInitializeConditions()
[m/sec]
1000 (for all axes)
Section 3.3, 3.4, Figure 3.1

PID-Controller for moving axes: P-action
for axis i

HD_V4_HDrive.c
mdlInitializeConditions()
[m/sec]
100 (for all axes)
Section 3.3, 3.4, Figure 3.1

PID-Controller for moving axes: I-action
for axis i

d..Jllove(i)

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

I

HD_V4_HDrive.c
mdlInitializeConditionsO
[m/sec]
100 (for all axes)
Section 3.3, 3.4, Figure 3.1

PID-Controller for moving axes: D-action
for axis i
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target(i)

Source file:
Location / Type:
Unit:
Default value:

See also:

Discription:

TREST

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

I

I

HD_V4_HDrive.c
mdlInitializeConditions()
[m]
-0.3 / +0.5 / +0.5 respectively for X / Y1
/ Y2
Section 3.4

Final position of axis i after initializing

HD_V4_HDrive.c
Define
[sec]
1.0

Delay between end of moving procedure
and enabling external controller

B.2.4 Parameters safety layer

Parameters with respect to safety layer: airbag parameters, margins, PD-controller
airbag, P-controller velocity brake, maximum speed.

maxpos(i) I

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

minpos(i)

Source file:
Location / Type:
Unit:
Default value:
See also:

Discription:

I

HD_V4_HDrive.c
mdlInitializeConditions()
[m]
+0.5/ +1.05/ +1.05
Section 4.2, Table 4.1

Airbag boundaries: maximum coordinate
for axis i (physically allowed).

HD_V4_HDrive.c
mdlInitializeConditionsO
[m]
-0.60 / -0.05 / -0.05
Section 4.2, Table 4.1

Airbag boundaries: minimum coordinate
for axis i (physically allowed).
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margin (i) I

Source file: HD_V4_HDrive.c
Location / Type: mdlInitializeConditions()
Unit: [m]
Default value: 0.03 / 0.05 / 0.05
See also: Section 4.2, Table 4.1

Discription: Thickness of airbag for axis i

p_airbag(i) I

Source file: HD_V4_HDrive.c
Location / Type: mdlInitializeConditions()
Unit:
Default value: 100 / 100 / 100
See also: Section 4.2, Figure 4.2

Discription: PD-Controller for airbag: P-action for axis
i

d_airbag(i) I

Source file: HD_V4_HDrive.c
Location / Type: mdlInitializeConditions()
Unit:
Default value: 25/25/25
See also: Section 4.2, Figure 4.2

Discription: PD-Controller for airbag: D-action for axis
i

maxspeed(i) I

Source file: HD_V4_HDrive.c
Location / Type: mdlInitializeConditions()
Unit:
Default value: 1.0 / 1.0 / 1.0
See also: Section 4.3

Discription: Maximum allowed speed for axis i

p-veLbrake (i) I

Source file: HD_V4_HDrive.c
Location / Type: mdlInitializeConditions()
Unit:
Default value: 25/25/25
See also: Section 4.3, Figure 4.5

Discription: P-Controller for velocity brake: P-action
for axis i
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B.3

Figure B.5: Flow chart of a typical Simulink program

Description of the code

This section contains a description of the code, summarized per source-file. For
an overview of the most important defines and variables one is referred to section
B.2.

To make a custom-made component interact with MATLAB/Simulink, the
component should have a set of standard functions that can be called by Simulink.
Figure B.5 shows the order in which these functions are called:

• mdlInitializeSizes: set width of I/O ports, allocate memory for work
vectors, etc.

• mdlInitializeSampleTimes: tell the Simulink simulator at what sample­
times the model should be evaluated. The choice of sample-times should
be compatible with the integration method l that is used by Simulink.

• mdlInitializeConditions: initialize variables that are used within the
code.

• mdlOutputs: calculate outputs of the component.

• mdlUpdate: update (discrete) states of the component.

lBecause the H-Drive component will be used with dSPACE / RealTime-Workshop, the
integration method of Simulink is set to Euler, with a fixed step. The code for the H-Drive
can therefore use continuous sample times.
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• mdlDerivatives: calculates the derivatives of the states. This function is
only used during minor (iterating) time steps. This code is therefore not
used by the Real Time Workshop.

• mdlTerminate: end of simulation tasks. Above functions are located in the
main-file HD_V4-Hdrive. c. The control-functions use a set of supporting
functions that are described in the next sub-sections.

B.3.1 HD_V4_HDrive.c

This is the main-file that ties together the other files and sets some important
defines.
The main file also contains all compulsory Simulink functions that were men­
tioned in the introduction of this section (figure B.5).

• Defines and includes

• function mdlInitializeSizesO
Compulsory Simulink function, needed for setting I/O-ports, work-vectors,
etc.

• function mdlInitializeSampleTimes 0
Compulsory Simulink function, needed for setting sample times (continu­
ous) and time-offset (0 sec).

• function mdlInit ializeCondit ions ()
Compulsory Simulink function, needed for initialization of some variables:

- Initialize globals in the work-space for re-entrancy

- Initialize variables for the main-loop (e.g. airbag parameters, con-
troller settings, etc)

- Initialize the H-Drive-API by calling
HD_V4_Vapi\Hdrive_initialize()

- Initialize PID-controller by calling HD_V4-PID\pid_ini 0
(also needed for velocity observer)

• function mdlOutputs 0
x: continuous states, y: outputs, uPtrs: inputs.
Before the different stages of the H-Drive are looked at, the function first
checks if the user pressed the emergency-button. It his is true and the sys­
tem is in its TEST or ZERO_SEARCH mode the power is immediately switched
off, because it is not possible to use a controller to bring the system to
standstill as quick as possible with the yet unknown system-gain. Other­
wise the EMERGENCY-STOP_SYSTEM cases is used to stop the system as quick
as possible.
At every stage the needed motor-currents have to be calculated and send
to the current amplifier using HD_V4--Motor\send..lIlotoLcommandO, ac­
cording to the current state the system is in:

- WAITING-FOR_START
Initialize variables needed during the zero-search procedure, set motor­
currents to zero, switch current amplifiers on.
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- TEST
Test if there is enough movement to start the zero-search procedure
(using HD_V4-Movetest\Hdrive..lIlovetest_out 0). If the displace­
ment is bigger than the DETECTION_LEVEL during three successive
tests, the test succeeds and the zero-search procedure is started.
If the test fails, the amplitude of the reference current is increased
and the phase is shifted 90 degrees until the test succeeds, or the
amplitude exceeds the maximum allowed level (followed by stage
ALIGNING_FAILED) .

- ZERO_SEARCH
Execute the zero-search procedure by calling
HD_V4-Movetest\Hdrive-zerosearch_out 0 (that is, search the phase
at which the system moves less than DETECTION.LEVEL when even the
maximum current amplitude is applied)

- Y_ALIGN
Align the Y-axes with respect to the X-axis using
HD_V4-Vapi\Hdrive_yalign_out 0 to prevent the axes from wedging
during the homing procedure.

- HOMING
Home LiMMS using HD_V4_Vapi\Hdrive...homing_outO

- MOVING
Move LiMMS to the desired location using
HD_V4-Vapi\Hdrive..lIloving_out 0 before control is handed over to
the user.

- POS_VIOLATION***
LVIOLATION***
These states do no longer exist in Version 4 of the software. Safety­
operations are carried out per axis in state READY. Assigning a
global state for all axis is not possible, because axes can be in different
states.

- END_OF_STROKE
Power is switched off to prevent further damage.

- VEL-VIOLATION
This state brakes the LiMMS when the velocity becomes too big
during the zero-search procedure. This state would not get activated
in practice because the velocity cannot exceed the maximum limit
during alignment, because the safety-layer already cancels the zero­
search after a relatively small drift ZERO-MAX-DRIFT.

- ALIGNING-FAILED
The power is switched off because the zero-search procedure failed.

- READY
After a successfully initialization the system comes into the READY­
state in which control is handed over to the user. To protect the
system from dangerous situations, a safety layer is used.
Function HD_V4J>ID\pidout 0 is used to estimate the velocity, after
which HD_V4_Safety\safety_CheckO is used to check for possible
violations. Violations are returned by setting the correct global vari­
ables (per axis):
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* pos_violation is set whenever the LiMMS enters the airbag­
region.
Function HD_V4_Safety\safety_pos_airbagO is used to send
the LiMMS back into the safe area.

* veLviolation is set when the velocity of the LiMMS becomes
too high.
Function HD_V4_Safety\safety_veLairbagO is used to slow
down the LiMMS.

* ang-violation is set when the angle between the x- and y-axes
becomes too big function HD_V4_Safety\safety_angle_violO
is used to speed down the LiMMS and align the Y-axes with
respect to each other after initializing the safety-operation with
HD_V4_Safety\safety_angle-vioLini O.

Two other violations remain. These are checked at another place in
the code:

* The end-of-stroke sensor gets activated when the LiMMS hits
one of the springs located at the end of the axes, near This
situation is checked for in HD_V4...HDrive\mdlUpdateO

* Overcurrent protection is included in
HD_V4~otor\send~otor_command()

During this stage the time since initialization is also calculated and
fed back to the user.

- ANG_VIOLATION
When the angle between the x- and y-axes becomes too big, this
stage can be used to brake the speed of all axes, while at the same
time Y2 is pulled towards Yl to correct the angle-violation.
Function HD_V4_Safety\safety_angle_viol 0 is used to achieve this
task.

- EMERGENCY_STOP_SYSTEM
This stage uses HD_V4_Safety\safety_direct-stopO to bring the H­
Drive to standstill as quick as possible. When the velocity of all axes
are approximately zero, the current-amplifier is switched off.

• function mdlUpdate 0
x: continuous states, y: outputs, uPtrs: inputs
Function mdlOutputs 0 only generates the outputs to be send to the cur­
rent amplifier as described in the previous item. An extra controlling
mechanism is needed to switch between the different stages at the right
moment. This is exactly the purpose of the mdlUpdate 0 function.
Before looking at the different cases, the functions first determines whether
or not the software switch IN_START...ALGN is turned on.

- WAITINGJrOR-START
Wait until the user gives the sign to start the alignment procedure.
Jump to state TEST to start alignment.

- TEST
Test if the movement-test of the zero-search procedure from the
mdlOuput 0 function generated sufficient movement to proceed with
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the zero-search procedure.
After a successful test the state changes to ZERO_SEARCH.
Erroneous situations result in ALLIGNING-FAILD (movement-test failed)
or END_OF_STROKE (end stroke hit).

- ZERO_SEARCH
This stages controls the zero-stage procedure.
Possible failures:

* The zero-search procedure as described in section 2.3 is not able
to find the zero: results in ALLIGNING-FAILD

* The LiMMS drifts to far away from its starting point because of
too heavy vibrations or an unstable point: resulting in
ALLIGNING-FAILD

* The end of stroke is hit: results in END_OF_STROKE

When the zero-search succeeds, PHI is incremented by 90 degrees to
get gain cos(p - cp) = 1 and the state changes to HOMING or Y_ALIGN,
depending on the number of operational axes:

* I-Dimensional (only X-axis used): switch to HOMING-state and
initialize the first part of homing 2 by calling
HD_V4_Vapi\Hdrive_start-homing().

* 3-Dimensional (all axes in use); switch to Y_ALIGN to align the
Y2-axis with respect to the YI-axis. Initialize the alignment by
calling HD-V4_Vapi\Hdrive_yalign_restart O. Sub-state
YALGN_STATE is set to YALGN-FIND-AVS-B to indicate that the
program is looking for the location of AVS-sensor B3.

- ALLIGNING-FAILD
After an alignment error the system can not be used anymore. There­
fore this state can only change to a worse situation: an activated
end-of-stoke sensor (state END_OF-STROKE).

- Y_ALIGN
During the first part of the Y-Alignment (YALGN-FIND-AVS-B)
HD_V4_Vapi\Hdrive_yalignsynchronize 0 is used to detect the state
of sensor avs(I). When this sensor gets activated for the first time,
YALGN_STATE is set to YALGN-FIND-AVS-A and
HD_V4_Vapi\Hdrive_yalignJestart 0 is called to store the position
of the sensor and calculate the jogging-parameters for the next part.
What happens during the next part, depends on the aligning-mode
as described in section 3.2:

* Method 1 (ALIGN_Y_TO_CENTRE)
During the second part of the Y-Alignment (YALGN-FIND-AVS-B)
HD_V4_Vapi\Hdrive_yalignsynchronize 0 is used to detect the
state of sensor avs(O). When this sensor gets activated for the
first time, YALGN_STATE is set to YALGN_CENTRE and
HD_V4-Vapi\Hdrive_yalign...restart 0 is called to store the po­
sition of the sensor and calculate the trajectory-parameters for

2First part of homing: move toward the origin of the axis until! the homing sensor gets
activated for the first time.

3In some parts of this report sensor A is called avs(O) and sensor B is called avs(l)
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the next part.
During the third part of the Y-Alignment (YALGN-FIND-AVS-B)
the Y2 axis is moved to the centre between avs(O) and avs(l) us­
ing a PID-controller. HD-Y4-Yapi\Hdrive_yalignsynchronize 0
is used to detect when the desired position gets reached. Fi­
nally sub-state YALGN_STATE is set to READY, while the global
and substateO are set to HOMING.
HD_V4_Vapi\Hdrive_start_homingO is called to initialize the
homing-parameters (jogging profile).

* Method 2 (Not ALIGN-Y_TO_CENTRE)
During the second part of the Y-Alignment (YALGN-FIND-AVS-B)
HD_V4_Vapi\Hdrive_yalignsynchronizeO is used to detect the
state of sensor avs(O). When this sensor gets activated for the
first time, YALGN_STATE is set to READY, while global state and
subsate 0 are set to HOMING and
HD_V4_Vapi\Hdrive_start-homingO is called to initialize the
homing-parameters (jogging profile).

During the alignment the state of the end-of-stroke sensor is moni­
tored and state END_OF_STROKE gets activated when necessary.

- HOMING
During the first part of the homing-procedure, the LiMMS moved
until the homing sensor gets activated for the first time
(HD_V4_Vapi\Hdrive_synchronizeO evaluates to true with option
HdriveHOME1).
At the end of the first part the jogging speed is lowered to get a more
accurate measurement. To change the direction of movement, the
sign of the jogging velocity is changed.
HD_V4_Vapi\Hdrive_start-homingO is called to initialize the jog­
ging parameters for the second part.
During the second part of the homing-procedure the LiMMS is moved
at a lower speed to get a more accurate measurement that indicates
the location of the homing-markers.
When HD_V4-Yapi\Hdrive_synchronizeO evaluates to true with op­
tion HdriveHOME2 the homing procedure is ready. The state switches
to MOVING and HD_V4_Vapi\Hdrive_start...movingO is called to cal­
culate the parameters for the trajectory needed for the moving pro­
cedure.
During homing the state of the end-of-stroke sensor is monitored and
state END_OF-.STROKE gets activated when necessary.

- MOVING
Function HD_V4_Vapi \Hdrive_synchronize(MOVING) is used to de­
tect when the moving-procedure is finished.
When all axes have reached the desired position, the initialization of
the H-Drive is finished: the state is set to READY, the external con­
troller gets activated and the combined status of the individual axes
is showed instead of the global initialization status.
During moving the state of the end-of-stroke sensor is monitored and
state END_OF_STROKE gets activated when necessary.
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- VEL_VIOLATION
Overspeed violations are handled per axis in the READY-state. The
global VEL-VIOLATION state can be used during the alignment pro­
cedure. Because recovery from overspeed during alignment is not
possible, VEL-VIOLATION can only change to state END_OF-STROKE.

- READY
The READY state only checks for position and angle violation. (state
END_Of-STROKE and ANG_VIOLATION respectively)

• function mdlDerivativesO
This function is implemented in Simulink to provide the derivatives of the
state-variables. The derivatives dx [] are calculated in this manner:

- WAITING-FOR_START
dx [status_id] is set to 0.0

- TEST and ZERO_SEARCH
Empty case, dx [J not altered.

- Y_ALIGN
Function HD_V4_Vapi\Hdrive_yalign_dif 0 is used to calculate the
derivatives.

- HOMING
Function HD_V4_Vapi\Hdrive-homing_difO is used to calculate the
derivatives.

- MOVING
Function HD_V4_Vapi\Hdrive-llloving_difO is used to calculate the
derivatives.

- READY
Function HD_V4_Vapi\Hdrive_ready_dif 0 is used to calculate the
derivatives.

- ALLIGNING-FAILD, VEL_VIOLATION, POS_VIOLATION, ANG_VIOLATION
and EMERGENCY_STOP_SYSTEM
Function HD_V4_Vapi\Hdrive_violation_dif 0 is used to calculate
the derivatives.

• function mdlTerminate 0
Empty function, but compulsory for Simulink.

• 'frailer code to define the file as MATLAB MEX-file.

B.3.2 HD_V4_HDrive.h

Defines to identify the several stages and synchronization stages.

B.3.3 HD_V4..10Ports.h

Overview of I/O ports and accessory defines (see also table B.4 on page 57)
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This file contains code to allocate global memory for re-entrancy.
During a Simulink simulation, the MEX-program is called repeatedly. Usually,
global variables disappear when a computer program terminates. This means
that it would not be possible to use the value of a declared variable in a next
program call (read: next iteration step / time step). Therefore MATLAB im­
plemented the possibility of re-entrancy.

• function rwrk_init (int *pivar, int *pidx, int nrw, SimStuct *S)

- This function allocates re-entrancy memory for a set of nrw variables.

- pivar stores the index of the current variable-set (the first set gets
index 0, the second set gets index 1, etc).

- pidx stores the index of the first variable in the current variable set.
See example for more information.

- The SimStruct tells MATLAB which Simulink block will use the
re-entrancy variable

Example:
You want to create the following structure: the first set of variables con­
tains 3 variables, the second one contains a single value and the third set
contains 3 values.

- During the first function call you use nrw=3, in the second call nrw=l,
in the third nrw=3

- Mter the first call value ° is stored at address *pivar, the second
call stores 1 at the specified address *pivar and the third call stores
2.

- Mter the first call value °is stored at address *pidx, the second
call stores 3 at the specified address *pivar (during the first call
3 variables were created, so the first variable of the second set will
be at position 4), and the third call stores 4 (during the first call
3 variables were created, the second call declared 1 variable, so the
first variable of the third set will be at position 5).

• function rwrk_init_all 0
Generates all function calls to rwrk_init_all 0 that are needed to gen­
erate the data-structure for the variables used by the H-Drive Program
V4.0

The Movetest-file contains the functions and parameters needed for the zero­
search procedure that is described in chapter 2. The flowchart, depicted in
figure 2.3, shows a comprehensive overview of the code.

• defines to set settings of procedure: vibration period and detection level.
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• function Hdrive...movetest_out(reaLT *u, reaLT *pos,
Simstruct *S)
The function tests whether there is enough movement to start with the
zero-search procedure when using the current settings of the current­
amplitude and phase-angle. If the displacement is bigger than the detection­
level during three successive measurements, the zero-search is started.
However, when the displacement is too small, the reference current is
increased and the phase-angle is shifted 90 degrees.

• function Hdrive_zerosearch_out (reaLT *u, reaLT *pos, Simstruct
*S)
Function to align the H-Drive, that is: finding the phase at which the
movement of the axis stays beneath the detection level, even when apply­
ing the maximum allowed current.

In above functions *u is a pointer to an array to store the controller outputs,
*pos is a pointer to an array with the positions of the axes of the H-Drive and
*S contains the current SimStruct.

B.3.6 HD_V4_Safety.c

This file comprises the following functions that are used to create a safety-layer
to protect the H-Drive from dangerous situations:

• function safety_check(reaLT *u, reaLT *pos, reaLT *vel,
Simstruct *S)
This function is used by the main-file to check for different safety-violations:
velocity, position and angle violation4 • When a violation is detected, the
sub-state and according violation-parameter of the current axis are set.
Overcurrent is not detected by this function5 .

• function safety_pos_airbag(reaLT *U, reaLT *pos, reaLT *vel,
Simstruct *S)
This function uses a PD-controller6 to push the system back into the
safe-area when boundary trespassing occurs (see section 4.2 and figure
4.1 at page 24). After trespassing the function can be used to brake the
movement to zero-velocity.

• function safety_veLairbag(reaLT *u, reaLT *pos, reaLT *vel,
int_T i Simstruct *S)
The velocity-brake (section 4.3) consists of a simple P-controller7 that
controls the velocity of axis i to its maximum allowed value.

• function safety_angle_vioLinHreaLT H, reaLT *pos,
Simstruct *S)
This function calls HD_V4_Jog\p2p_ini 0 to create the trajectory that is
needed by safety_angle_violO to correct the angle-violation.

4Position and angle violations are only reported when the initialization has finished and
the exact position of the H-Drive is known.

50vercurrent is detected when sending the current to the motor:
HD_V4JKotor\send-motor_command()

6Settings PD-Controller (per axis): p_airbagO, d_airbagO
7Settings PD-Controller (per axis): p-veLbrakeO
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• function safety_angle_viol(reaLT *u, reaLT t, reaLT *pos,
real_T *vel, cons real_T *xc, Simstruct *S)
The following actions are taken to prevent damage, caused by a tilt:

- Brake X-axis to zero velocity using a P-controller8 .

- Brake Y1-axis to zero velocity using a P-controller. The maximum
control-current is limited to 80% of the maximum allowed value to
make sure that the contoller for Y2 can follow Y1.

- Use a PID-controller9 to control the Y2-axis to remove the tilt be­
tween the Y-axes by making the difference between the Y-coordinates
follow the profile calculated by safety_angle_vioLiniO.

• function safety_direct_stop(reaLT *u, reaLT *pos, reaLT *vel,
cons real_T *XC, Simstruct *S)
This function brings the H-Drive to a standstill as fast as possible. The
function is similar to safety_angle_violO with the difference that the
controller for Y2 follows the Y1 coordinate (instead of Y1 +profile).

In above functions *u is a pointer to an array to store the controller outputs,
*pos is a pointer to an array with the positions of the axes of the H-Drive, *vel
is a pointer to an array with the velocities, *xc is a pointer to an array with the
state-variables and *S contains the current SimStruct.

Motor.c contains the code to drive the motors of the H-Drive:

• define TAU:
Defines the magnet pitch. This value is needed for the commutation.

• function send...lllotoLcommand(reaLT *u, reaLT *pos,
Simstruct *S)
First, this function determines the maximum current level for the current
state. In case of an emergency, the current can be increased to prevent
damage.
After this the function sends the (if necessary clipped) current to the out­
put, and applies commutation to keep the motor-constant at its maximum
level. (see section 1.1)

In above function *u is a pointer to an array to store the controller outputs,
*pos is a pointer to an array with the positions of the axes of the H-Drive and
*S contains the current SimStruct.

Implementation of a simple PID-Controller.

• Defines: gain KGAIN of the velocity-observer

8Parameter P is set to p_veLbrakeO
9Settings PID-Controller (per axis): p...moveO, i...moveO, d...moveO
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• function pid_inHreaLT *xc. reaLT *pos)
Initialize state-variables needed by the controller: set xc [i] to the current
position and reset the integrated position-error xc [i+4] .

• function pid_dif (reaLT *dxcdt. const reaLT *xc. reaLT *pos,
reaLT *qref)
Function to calculate the derivatives of the state variables. This function
is inherited by some functions that are used in mdlDerivatives 0 in the
main-file.

• function pid_out(reaLT *U, reaLT *vel. const reaLT *xc,
real_T *pos. real_T *qref. real_T *vref, Simstruct *S)
This function estimates the velocity, using the same observer as used in
pid_dif () and returns the output of the PID-controllerlO .

In above functions *u is a pointer to an array to store the controller outputs,
*pos is a pointer to an array with the positions of the axes of the H-Drive, *vel
is a pointer to an array with the velocities, *xc is a pointer to an array with the
state-variables and *S contains the current SimStruct.

This file contains functions to generate a third order setpoint profile as depicted
in figure B.6. Two types of setpoint profiles can be used:

• Jogging: the movement is started using j og_ini 0 and continues at a
constant velocity until jog_stopO is called to stop movement in a gentle
way. This function is used to generate the setpoint for the movement
during homing and alignment of the Y-axes.

• Point-to-point movement: the complete trajectory is calculated using
p2p_ini 0, based on the desired start- and end-position, and some other
parameters.

The complete set of functions comprises the following components:

• Defines with the memory-locations of the set-point parameters

• function jog_inHreaLT xstart, reaLT tstart, reaLT vdes,
real_T tdes. real_T maxjerk, int_T i, Simstruct *S)
This function calculates the parameters for a setpoint profile to generate
a jogging-movement. By setting t4 to a very big value, the system keeps
moving at a constant velocity. The movement can be stopped by calling
the jog_stopO-function that calculates the parameters for the fourth pe­
riod and further.
Arguments of the function:

- xstart. tstart: starting position and starting time of the setpoint

- vdes, tdes: desired jogging speed and time to reach Vdes

- maxjerk: maximum jerk during the acceleration phase

lOSettings PID-Controller (per axis): p..move 0, i..move (), d..move 0
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- i: axis id

Table B.6 shows how the parameters for the third order setpoint from
figure B.6 can be calculated.

• function jog_get (reaLT *qref, reaLT *vref, reaLT *aref,
real_T t, int_T i, Simstruct *S)
This function calculates the current reference values (position, speed, ve­
locity) using the setpoint-parameters for axis i at time t.
Take care: the locations to store the reference values qref, vref and aref
are pointers to the memory-locations to store the value for axis i, not a
pointer to an array to store the reference values of all axis.
For example:
qref [] , vref [] and aref [] are three arrays that have to be used to store
the setpoint-values for the X, YI and Y2 axis.
The following call should be used to get the current setpoint profiles for
the Y2-axis (axis id: 2):
jog_get (&qref [2] , &vref[2] , &aref[2] , time, 2, S)

• function jog_stop (reaLT t, int_T i, Simstruct *S)
This function ends the jogging-movement for axis i

• function j og_satus (reaLT t, int_T i, reaLT tset, Simstruct *S)
This function can be used to monitor the status of the jogging movement.
Value 1 is returned when the jogging-movement ends (that means when
time t is bigger than t7 + tset)
tset is the settiling time: an extra pause that is added to the profile
to make sure that the system has reached its desired end-position and
vibrations damped out.

• function p2p_ini (reaLT xstart, reaLT tstart, reaLT xend,
real_T vdes, real_T tdes, real_T maxjerk, int_T i,
Simstruct *S)
This function calculates the parameters for a set-point profile to generate
a point-to-point movement. The function is nothing more than a combi­
nation of jog_iniO and jog_stopO.
The value of t4 is chosen such the end-position of the setpoint profile is
equal to the desired position xendll .

• function p2p_get (reaLT *qref, reaLT *vref, reaLT *aref,
real_T t, int_T i, Simstruct *S)
This function calculates the current reference values (position, speed, ve­
locity) using the setpoint-parameters for axis i at time t. Because jogging
and moving use the same equations, this function is nothing but a copy
of jog_get O.

• function p2p_status (reaLT t, int_T i, reaLT tset,
Simstruct *S)

11 Because the time at which the period with constant velocity Vdes ends is not know in
jogging-mode, t4 contains the time at which jog...stopO was called. However, when defining a
point-to-point movement, t4 can be caculated beforehand. A correct value of t4 can cause a
trajectory that started at position Xstart. ends at position Xdes'
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Figure B.6: Trajectory as genereated by HD_V4_Jog.c
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This function can be used to signal the status of the point-to-point move­
ment. The function is merely a copy of jog_status O.

The H-Drive API contains a set of useful functions to control H-Drive specific
tasks like homing, moving and aligning the y-axes:

• Hdrive_initialize(real_T *pos, 8im8truct *8)
This function initializes the H-Drive: reset parameters for the zero-search
procedure, reset the encoders, etc.

• Hdive_start-homing(real_T *pos, real_T t, 8imStruct *8)
Initialize the homing procedure for all axes simultaneously: initialize the
jogging-profile using HD_V4_Jog\jog_ini 0 and initalize the PID-controller
using HD_V4_PID\pid_ini O.
The jogging profile is not initialized here when the end-point-detector is
already activated, because this means that the first part of the homing
procedure (roughly searching the epd-detector) can be skipped.

• Hdrive-homing_dif(real_T *dx, real_T *x, real_t *pos,
real_T t, 8imStruct *8)
This function calculates the derivatives of state xc during the homing­
state using HD_V4_Jog\jog_getO to get the reference position and
HD_V4...PID\pid_dif 0 to calculate the derivatives using the actual and
desired positions.

• Hdrive-homing_out(real_T *u, real_T *vel, real_T *x,
real_T *pos, real_T t, 8im8truct *8)
This function calculates the controller output during the homing-stage.
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t3 -? ••• Etc.

to Just initial conditions

j(t) = jerk
a(t) = jerk· (t - to)
v(t) = Ijerk· (t - to)2
s(t) = ljerk. (t - to)3

j(t) = 0
a(t) = al = jerk· 0
v(t) = vI+al·(t-tI)
s(t) = SI+VI·t

+~a2 . (t - tI)2

j(t) = -jerk
a(t) = a2 - jerk· (t - t2)
v(t) = V2 + a2 . (t - t2)

-~jerk . (t - t2)2
s(t) = S2+V2·t

+la2 . (t - t2?
-ljerk. (t - to)3

to
ao
Vo
So

Etc.

tstart
a(t = to) = 0

= v(t=to)=O
s(t = to) = Xstart

a(t = tl) = jerk· 0
~jerk. 02

iJerk.03

a(t = t2) = al
v(t = t2)
VI + an
VI + al(tdes - 20)

= jerk· 0 . (tdes - ~o)

v(t = t2) = ~jerk . 02

s(t = t2) = ijerk. 03

+~jeTk . 021 + ~jerk . 120

a(t = t3) = 0
v(t = t3)

= v2 + a20 - ~jerk . 02

-jerk· 02 + tdes . jerk· 0
= Vdes
== s(t == t3) == ...

Table B.6: Some equations for determining the jogging parameters
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HD_V4_jog_get 0 is used to get the setpoint, while HD_V4J'ID\pid_out 0
is used to calculate the controller output.

• Hdrive_start~oving(real_T *pos, real_T t, SimStruct *S)
Initialize the moving procedure for all axes simultaneously: initialize the
setpoint-profile using HD-Y4_Jog\p2p_ini 0 and initialize the PID-controller
using HD_V4_PID\pid_ini 0

• Hdrive~oving_dif(real_T *dx, real_T *x, real_T *pos, real_T t,
SimStruct *S)
This function calculates the derivatives of state xc during the moving­
state, using HD_V4_Jog\p2p_get 0 to get the reference position and
HD_V4J'ID\pid_dif 0 to calculate the derivatives using the actual and
desired positions.

• Hdrive~oving_out(real_T *u, real_T *vel, real_T *x,
real_T *pos, real_T t, SimStruct *S)
This function calculates the controller-output during the moving-stage.
HD_V4_p2p_get 0 is used to get the setpoint, while HD_V4J'ID\pid_out 0
is used to calculate the controller output.

• Hdrive_synchronize(real_T *pos, real_T *tar, real_T t,
int_T sync_id, SimStruct *S)
This function is used to control the course of the homing and moving
procedure:

- When sync_ID is set to HdriveHOME1, this means that the H-Drive is
performing the first part of the homing-procedure: roughly seeking
the position of the epd-detector.
The first time an epd-detector is detected for a particular axis, the
jogging profile for that axis is stopped using HD_V4_Jog\jog_stopO.
The function returns value 0 until all axes detected the epd.

- When sync_ID is set to HdriveHOME2, this means that the H-Drive
is performing the second part of the homing-procedure: accurately
seeking the position of the epd-detector.
When the epd-sensor gets de-activated for the first-time, the po­
sition of that axis is stored in the variable Epd...Marker(i) to in­
dicate the exact position of the endpoint-detector. Further more
HD_V4_Jog\jog_stopL. is called to stop the jogging-movement of
that axis.
The function returns value 0 until the epd-position is known for all
axes. At that point the position of the H-Drive is reset so that po­
sition zero, coincides with the position of the epd-marker. Also, the
current position is transformed with respect to the new origin and
the PID-controller gets resetted.

- When sync_ID is set to HdriveMOVE, the function return 0 until the
moving-procedure has finished. The PID-controller gets initialized
and output OUT-CTRLEN is set to 1, so the user-defined controller
gets enabled.
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• Hdrive-ready_dif(real_T *dx, real_T *x, real_T *pos, real_T t)
This function calculates the derivatives of state xc during the ready-state
using HD_V4_PID\pid_difO.

• Hdrive_violation_dif(real_T *dx, real_T *x, real_T *pos, real_T
t)

This function calculates the derivatives of state xc during a violation-state
using HD34_PID\pid_difO.

• Hdrive_yalign-restart(real_T *pos, real_T t, int_T contr_id,
8im8truct *8)
This function is used to initialize the sub-states of the y-align procedure:
initialize the jogging- or point-to-point setpoint and initialize the PID­
controller.

• Hdrive_yalign_out(real_T *u, real_T *vel, real_T *x,
real_T *pos, real_T t, int_T contr_id, 8imStruct *8)
This function calculates the controller-output during the y-align stage.
HD34.-.PID\pid_out 0 is used to calculate the controller output, while
HD_V4_Jog\jog_getO or HD_V4_Jog\p2p_getO is used to get the current
setpoint (depending on the sub-state of the y-alignment).

• Hdrive_yalign_synchronize(real_T t, int_T sync_id,
8im8truct *8)
This function is used to control the course of the y-align procedure:

- When sync_ID is set to YALGNJIND-AV8_B, the functions returns
value a as long as avs-sensor B is not seen.

- When sync_ID is set to YALGN_FIND-AV8_A, the functions returns
value a as long as avs-sensor A is not seen.

- When sync_ID is set to YALGN_CENTRE, the functions returns value
a as long as the final aligning position of the Y-axes has not been
reached.

• Hdrive_yalign_dif(real_T *dx, real_T *x, real_T *pos, real_T t,
int_T contr_id, 8im8truct *8)
This function12 calculates the derivatives of state xc during the moving­
state, using HD_V4_Jog\p2p_get 0 or HD_V4_Jog\p2p_get 0 to get the
reference position (depending on the sub-state of the y-alignment) and
HD_V4.-.PID\pid_dif 0 to calculate the derivatives using the actual and
desired positions.

In above function *u is a pointer to an array to store the controller outputs,
*pos and *vel are pointers to an array with the positions and velocities of the
axes of the H-Drive *x and *xc point to the states and an array to store the
derivatives of the states, t holds the current time and *8 contains the current
SimStruct.

12Input argument *tar is no longer used by this function and can therefore be removed in
future releases.
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B.4 Source code

AligningHdrive V4.0 (Matlab 5.3 version)

(c) Loy Rovers, 2001
(c) Stef Hendriks, 2000

last update: March 26, 2001

This program is based on the VRS software of Rene' van de Molengraft
and on the aligning software of Antoine Verweij

The allignmentpulses are based on a sinus

II -----------------------------------------------------------------------------
II Setup
II -----------------------------------------------------------------------------

#define S_FUNCTION_NAME HD_V4_HDrive
#define S_FUNCTION_LEVEL 2
#include "s imstruc.h"
#include <math.h>

#define SHOWPOS 1.0
II l=show position and velocity during initialisation

#define pi
#define noa
II The number of
I I noa=l -) axis
II noa=3 -) axis

3.1415926535897932384626433832795
3

axis that are operational
O=X-axis
O=X-axis, l=Yl-axis, 2=Y2-axis

#define NINPUTS
#define NOUTPUTS
#define NSTATES

20
34
7

246
+ 37*3 for HD_V4_Jog.c
89

+ 37 for HD_V4_Jog.c

NRWRK
10*1+42*3 for HD_V4_HDrive
NIWRK
1 for HD_V4_HDrive.c

#define
II
#define
II

#define Imax_Algn
II maximum current
#define Imax_Low
I I maximum current
#define Imax_High
II maximum current

5
during alignment[A]

4
during normal use [A]

8
during critical safety-procedures [A]

#define TREST 1
II delay between end of moving procedure en enabeling ext. controller [sec]
#define YALGN_TREST 0.2
II delay between end of centring y-axes and homing [sec]
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*** Warning: In the current setup of the H-Drive one of the Tilt-sensors
** seems to be missing. The assumption that sensor AVS_A detects tilt in
* one direction, and B detects tilt in the other direction isn't correct

Sensor AVS_B seems to detect tilt, Sensor AVS_A gets activated when the
X-axis is perpendicular to the Y-axis.
The following define makes it possible to switch between the possibility
to (1) set the Y-axis in such a position that is in the middle between
the position where the avs-sensors get activated or (2) set the y-axis
in the position where AVS_B gets just activated

II
II
II
II
II
II
II
II
II
II
II
II
II

#undef

#define ALIGN_Y_TO_CENTRE
#undef ALIGN_Y_TO_CENTRE

-> activates option (1)
-> activates option (2)

II -----------------------------------------------------------------------------
II Control
II -----------------------------------------------------------------------------

#define START_PULSE(element)
II

prwrk[piwrk[O]+element]

#define
II
#define
II
#define
II

STATUS prwrk [piwrk [1]]
Global status of the H-Drive (See HD_V4_HDrive.h)
substate(element) prwrk[piwrk[2]+element]
Local status per axis (See HD_V4_HDrive.h)
SHOWCOMBINED prwrk [piwrk [3]]
O=Show Global state, 1=Show combined state

#define YALGN_STATE prwrk[piwrk[4]]
II sub-state of aligning y-axes
#define HOMING1_READY(element) prwrk [piwrk[5] +element]
II 1=homing phase 1 ready
#define HOMING1_ALL_READY prwrk[piwrk[6]]
II 1=homing phase 1 ready for ALL axes

#define
II
#define
II

Hdrive_pos(element)
Position of H-Drive
Hdrive_vel(element)
Velocity of H-Drive

prwrk [piwrk [7]+element]
(corrected with pos_reset)

prwrk [piwrk [8] +element]

#define
II
#define
II
#define

us (element)
Control output
PHI(element)
The Angle wich
Hdrive_result

should be

prwrk [piwrk [9] +element]

prwrk [piwrk [10]+element]
determined

prwrk[piwrk[11]]

#define Hdrive_time
II Current time

prwrk [piwrk [12]]

#define
II
#define
II

pos_reset(element)
position at major reset

posreset_yalgn(element)
position at virtual reset

prwrk[piwrk[13]+element]

prwrk[piwrk[14]+element]
(aligning y-axes)

#define epd(element) prwrk [piwrk [15] +element]
II 1=epd sensor activated (and recognized by controller)
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#define
II
#define
II
#define
II

p_move(element)
PID-Action (Aligning
d_move(element)
PID-Action (Aligning
i_move (element)
PID-Action (Aligning

prwrk [piwrk [16] +element]
Y-axes, Homing, Moving)

prwrk [piwrk [17] +element]
Y-axes, Homing, Moving)

prwrk[piwrk[18]+element]
Y-axes, Homing, Moving)

#define triggertime prwrk [piwrk[19]]
II l=system has been triggered for start (and recognized by controller)

prwrk[piwrk[22]+element]
after initialization)

prwrk [piwrk [23] +element]

#define
II
#define
II
#define
II
#define
II

vyalgn
speed of y-alignment m/s
vh(element)
The homing speed m/s
target (element)
Target (point to move to
commdir(element)
Directions of commutation

prwrk [piwrk [20]]

prwrk [piwrk [21] +element]

II -----------------------------------------------------------------------------
II Zero-search procedure (vibration)
II -----------------------------------------------------------------------------

#define
II
#define
II
#define
II
#define
II

ALLIGN_READY(element) prwrk [piwrk [24] +element]
Vibration: Zero-search ready
Iref(element) prwrk [piwrk [25]+element]
Vibration: Reference current for the alligning procedure
DPHI(element) prwrk[piwrk [26] +element]
Vibration: Maximal Step size of the angle change
DISC_STEP(element) prwrk [piwrk [27] +element]
Vibration: To count the discrete steps

#define AMPLlTUDE_COUNT(element) prwrk [piwrk [28] +element]
II Vibration: Max numbers of changing the angle without changing amplitude

prwrk[piwrk [29] +element]
per cicle
prwrk[piwrk[30]+element]

of RESULTO
prwrk [piwrk [31] +element]

displacement after a pulse
prwrk[piwrk [32] +element]

displacement after a pulse
prwrk [piwrk [33] +element]

displacement after a pulse
prwrk [piwrk [34] +element]

displacement after a pulse
prwrk[piwrk[35]+element]

displacement after a pulse

RESULT (element)
Vibration: Total movement
PREVIOUS_RESULT (element)
Vibration: Previous value
tempO (element)
Vibration: Memory for
tempi (element)
Vibration: Memory for
temp2(element)
Vibration: Memory for
temp3(element)
Vibration: Memory for
temp4(element)
Vibration: Memory for

#define
II
#define
II
#define
II
#define
II
#define
II
#define
II
#define
II

#define TEST_COUNT(element)
II Move Test: The number of
#define TEST_FAULT(element)
II Move Test: No detections

prwrk [piwrk [36] +element]
how many test cicles should succeeed

prwrk [piwrk [37] +element]
of movement

II -----------------------------------------------------------------------------
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II Homing Procedure
II -----------------------------------------------------------------------------

#define
II
II

Epd_Marker(element)
Temporary storage to store
(Only needed until encoder

prwrk [piwrk [38]+element]
position of homing point
is reset)

II -----------------------------------------------------------------------------
II Safety-Layer
II -----------------------------------------------------------------------------

#define ZERO_MAX_DRIFT 5.0e-4
II Maximum drift during zero-search (bigger -> stop procedure)

#define maxout(element) prwrk[piwrk [39] +element]
II Safety Layer: maximum allowed current (see HD_V4_Motor.c)

#define
II
#define
II

p_airbag(element)
Safety Layer: PD-action
d_airbag(element)
Safety Layer: PD-action

prwrk[piwrk [40] +element]
(Airbag)

prwrk[piwrk[41]+element]
(Airbag)

p_vel_brake(element)
Safety Layer: gain for
maxspeed(element)
Safety Layer: maximum

#define
II
#define
II
#define
II

#define
II
#define
II

maxpos(element) prwrk [piwrk [42]+element]
Safety Layer: maximum allowed position
minpos(element) prwrk[piwrk[43]+element]
Safety Layer: minimum allowed position
margin(element) prwrk [piwrk [44]+element]
Safety Layer: extra safety margins (for user)

prwrk [piwrk [45] +element]
braking at overspeed

prwrk [piwrk [46] +element]
allowed speed

#define maxangle prwrk[piwrk[47]]
II afety Layer: maximum angle of y-axis (Delta (Y2-Yl) in [m])

#define
II
#define
II
#define
II
#define
II

pos_violation(element) prwrk[piwrk[48]+element]
Safety Layer: O=OK, l=position violation of axis
vel_violation(element) prwrk[piwrk [49] +element]
Safety Layer: O=OK, l=overspeed
ang_violation prwrUpiwrk [50]]
Safety Layer: O=OK, l=angle violation (between Y-axes)
i_violation(element) prwrk [piwrk [51]+element]
Safety Layer: O=OK, l=current too high

II -----------------------------------------------------------------------------
II Headers and includes
II -----------------------------------------------------------------------------

#include "HD_V4_HDrive.h"
#include "HD_V4_Work.c"
#include "HD_V4_Jog.c"
#include "HD_V4_pid.c"
#include "HD_V4_VapLc"
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#include "HD_V4_Safety.c"
#include "HD_V4_Motor.c"
#include "HD_V4_Movetest.c"
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II -----------------------------------------------------------------------------
II COMMENT ON INPUTS AND OUTPUTS

II -----------------------------------------------------------------------------

#include "HD_V4_IOPorts.h"

II -----------------------------------------------------------------------------
II mdlInitializeSizes()

II -----------------------------------------------------------------------------

static void mdlInitializeSizes(SimStruct *S)
{

l*ssSetNumSFcnParams(S, 0);
if (ssGetNumSFcnParams(S) != ssGetSFcnParamsCount(S)) return;*1

ssSetNumContStates(S, NSTATES);
ssSetNumDiscStates(S, 0);

if (!ssSetNumInputPorts(S, 1)) return;
ssSetInputPortWidth(S, 0, NINPUTS);
ssSetInputPortDirectFeedThrough(S, 0, 0);

if (!ssSetNumOutputPorts(S,1)) return;
ssSetOutputPortWidth(S, 0, NOUTPUTS);

ssSetNumSampleTimes(S, 1);
ssSetNumRWork(S, NRWRK);
ssSetNumIWork(S, NIWRK);
ssSetNumPWork(S, 0);
ssSetNumModes(S, 0);
ssSetNumNonsampledZCs(S, 0);

}

II -----------------------------------------------------------------------------
II mdlInitializeSampleTimes()
II -----------------------------------------------------------------------------

static void mdlInitializeSampleTimes(SimStruct *S)
{

ssSetSampleTime(S, 0, CONTINUOUS_SAMPLE_TIME);
ssSetOffsetTime(S, 0, 0.0);

}
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II -----------------------------------------------------------------------------
II mdllnitializeConditions()
II -----------------------------------------------------------------------------

#define MOL_INITIALIZE_CONDITIONS

static void mdllnitializeConditions(SimStruct *S)
{

Iidouble
int3
real_T
real_T
int_T

step_size
*pi"rk
*prwrk
*x
i;

ssGetStepSize(S);
ssGetIWork(S);
ssGetRWork(S);
ssGetContStates(S);

II Initialize the global variables in the "ork space

rwrk_init_all(S);
STATUS=(int_T) WAITING_FOR_START;
for (i=O;i<noa;i++) {

substate(i)=(int_T) WAITING_FOR_START;
}

Hdrive_time=O.O;

for (i=O;i<noa;i++) {
us(i)=O.O;
START_PULSE(i) =1;
ALLIGN_READY(i) =0;

}

II Aligning Y-axes: speed of aligning [m/sec]
vyalgn 0.03;

II Homing:
vh(O)
vh(1)
vh(2)

Homing speed [m/sec]
+0.1; II X-axis
-0.1; II Yl-axis
-0.1; II Y2-axis

II Moving: Position after initializing
target (0) -0.3; II X-axis
target (1) = +0.5; II Yl-axis
target (2) = +0.5; II Y2-axis

II Moving: PID-Controller for moving to end-position
p_move(O) 1000.0; II X-axis
i_move (0) 100; II
d_move(O) 100; II
p_move(1) 1000.0; II Y1-axis
i_move (1) 100; II
d_move(1) 100; II
p_move(2) 1000.0; II Y2-axis
i_move (2) 100; II
d_move(2) 100; II
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II Safety Layer: airbag boundaries
maxpos(O) = +0.05; II X-axis
minpos(O) -0.60; II
margin(O) 0.03; II
maxpos(1) +1.05; II Yl-axis
minpos(1) -0.05; II
margin (1) 0.05; II
maxpos(2) +1.05; II Y2-axis
minpos(2) -0.05; II
margin(2) 0.05; II

II Safety Layer: PO-Controller for airbag
p_airbag(O) 100.0; II X-axis
d_airbag(O) 25; II
p_airbag(1) 100.0; II Yl-axis
d_airbag (1) 25; II
p_airbag(2) 100.0; II Y2-axis
d_airbag(2) 25; II

II Safety Layer: Maximum speed [m/sec]
maxspeed(O) 1.0; II X-axis
maxspeed(1) 1.0; II Yl-axis
maxspeed(2) 1.0; II Y2-axis

II Safety Layer: P-Controller for velocity brake
p_vel_brake(O) 25; II X-axis
p_vel_brake(l) = 25; II Yl-axis
p_vel_brake(2) = 25; II Y2-axis

II Safety Layer: Maximum difference in position between Yl and Y2 axis
maxangle = 0.020; II

II Safety Layer: Clipping parameters
II See HD_V4_Motor.c

II Overall: Direction of commutation
commdir(O) +1.0; II X-axis
commdir(l) -1.0; II Yl-axis
commdir(2) -1.0; II Y2-axis

II initialize Hdrive
Hdrive_initialize(&Hdrive_pos(O),S);

II controller initial condition
pid_ini(x,&Hdrive_pos(O»;

}
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II -----------------------------------------------------------------------------
I I mdlOutputsO
II -----------------------------------------------------------------------------

static void mdlOutputs(SimStruct *S, int_T tid)
{

real_T
real_T
InputRealPtrsType

*piwrk
*prwrk

*x = ssGetContStates(S);
*yPtrs = ssGetOutputPortRealSignal(S,O);
uPtrs = ssGetlnputPortRealSignalPtrs(S,O);

ssGetIWork(S);
ssGetRWork(S) ;
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istat , i,statout , all_vel_zero;
time;

II current time
time=ssGetT(S);

II current position
for (i=O;i<noa;i++) {

Hdrive_pos(i)=IN_POS(i)-pos_reset(O+i);
OUT_SUBSTATE(i)=substate(i);

}

II Calculate output-status variable
II READY->status per axis, combined in one number

if «int)SHOWCOMBINED==l){
statout=O;
for(i=O;i<noa;i++) {

statout=10*statout+substate(i);
}

}

else{
statout=STATUS;

}

OUT_STATUS=statout;

II +---------------------------------------------------+
I I I *** EMERGENCY STOP? *** I
II +---------------------------------------------------+

if «int)IN_EMERGENCY==l) {
istat=(int)STATUS;

II Zero_Search: Unable to control system -> switch off
II current

switch (istat) {

case TEST:
case ZERO_SEARCH:

STATUS=EMERGENCY_STOP_SYSTEM;
OUT_POWER=O;

break;

default:
STATUS=EMERGENCY_STOP_SYSTEM;

break;
}

}

istat=(int)STATUS;
switch (istat) {

II +---------------------------------------------------+
II I *** STILL INITILALIZING: SYNCHRONISED CONRTOL *** I
II +---------------------------------------------------+
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for (i=O;i<noa;i++) {

AMPLITUDE_COUNT(i)= 0;
DISC_STEP(i) 0;
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TEST_COUNT(i)
TEST_FAULT(i)

DPHI(i)
PHI (i)
RESULT(i)
PREVIOUS_RESULT(i) =
Iref(i)
tempO(i)
temp1(i)
temp2(i)
temp3(i)
temp4(i)

}

triggertime
SHOI/COMBINED

O·,
0;

0.25*pi;
O',
O·,
0;
0.2;
O·,
0;
0;
0;
O',

0;
0;

II switch off motor commands
for (i=O;i<noa;i++) {

us(i)=O.O;
START_PULSE(i) =1;
ALLIGN_READY(i) =0;

}

II zeroise outputs except for status out and enable signal (end of etroke)
for (i=O;i<NOUTPUTS;i++) {

yPtrs[i]=O.O;
}

OUT_POIlER=1; II Enable power supply (end of stroke)
OUT_STATUS=(real_T) I/AITING_FOR_START;
for(i=O;i<noa;i++) {

substate(i)=(int_T) I/AITING_FOR_START;
}

Hdrive_result=(real_T) send_motor_command(lus(O) ,lHdrive_pos(O) ,S);
break;

case TEST:
1* This case test if there is enough movement before starting the
zero-search \/hen there is not enough movement the Reference Amperes
will be scaled up and the angle is increased with pi/2. The movement
should be higher then the DETECTION_LEVEL, this should be tested
three times. After this the zero-search can be started *1

Hdrive_movetest_out(lus(O),lHdrive_pos(O),S);
Hdrive_result=(real_T) send_motor_command(lus(O),lHdrive_pos(O),S);

for (i=O;i<noa;i++) {
OUT_POS(i)=SHOI/POS*Hdrive_pos(i); II position not known yet
OUT_VEL(i)=SHOI/POS*Hdrive_vel(i); II yields zero at this stage (?)

}

break;
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1* The zero search case is a iterative way of finding the zero point
of the motor.At this zero angle the motor will not move at any current
The drive should move more than the detection level. *1

Hdrive_zerosearch_out(&us(O),&Hdrive_pos(O), S);
Hdrive_result=(real_T) send_motor_command(&us(O),&Hdrive_pos(O),S);

for (i=O;i<noa;i++) {
OUT_POS(i)=SHOWPOS*Hdrive_pos(i); II position not known yet
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i); II yields zero at this stage (?)

}

break;

case Y_ALIGN:
Hdrive_yalign_out(&us(O) ,&Hdrive_vel(O) ,x, &Hdrive_pos (0) , time,

YALGN_STATE,S);
Hdrive_result=(real_T) send_motor_command(kus(O),&Hdrive_pos(O),S);
for (i=O;i<noa;i++) {

OUT_POS(i)=SHOWPOS*Hdrive_pos(i); II position not known yet
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i); II yields zero at this stage (?)

}

break;

case HOMING:
Hdrive_homing_out(&us(O),&Hdrive_vel(O) ,x, &Hdrive_pos (0),time,S);
Hdrive_result=(real_T) send_motor_command(&us(O),&Hdrive_pos(O),S);

for (i=O;i<noa;i++) {
OUT_POS(i)=SHOWPOS*Hdrive_pos(i); II position not known'yet
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i); II yields zero at this stage (?)

}

break;

case MOVING:
Hdrive_moving_out(&us(O),&Hdrive_vel(O),x,&Hdrive_pos(O),time,S);
Hdrive_result=(real_T) send_motor_command(kus(O),&Hdrive_pos(O),S);

for (i=O;i<noa;i++) {
OUT_POS(i)=SHOWPOS*Hdrive_pos(i);
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i); II yields zero at this stage (?)

}

break;

1* -> Doesn't occur during initialization stages
case POS_VIOLATION:

II to get velocity
pid_out(&us(O),&Hdrive_vel(O),x,&Hdrive_pos(O),&Hdrive_pos(O),

&Hdrive_vel(O),S);
Hdrive_result=(real_T) airbag(&us(O),&Hdrive_pos(O),&Hdrive_vel(O),

l,S) ;
II outputs
for (i=O;i<noa;i++) {

OUT_POS(i)=Hdrive_pos(i);
OUT_VEL(i)=Hdrive_vel(i);

}

Hdrive_result=(real_T) send_motor_command(&us(O),&Hdrive_pos(O),S);
break;
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II case I_VIOLATION:
II break;

case END_OF_STROKE:
II outputs
for (i=O;i<noa;i++) {

OUT_POS(i)=SHOWPOS*Hdrive_pos(i);
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i);llgeeft elke keer nul

}

OUT_POWER=O; II Power off
break;

case ALLIGNING_FAILD:
II -> New code:

II to get velocity
pid_out(&us(O),&Hdrive_vel(O),x,&Hdrive_pos(O),&Hdrive_pos(O),

&Hdrive_vel(O),S);

for (i=O;i<noa;i++) {
OUT_POS(i)=SHOWPOS*Hdrive_pos(i);
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i);
us(i)=O.O; II No current

}

Hdrive_result=(real_T) send_motor_command(&us(O) ,&Hdrive_pos(O) ,
S); II set current to 0

OUT_POWER=O; II Turn Power off

1* ->Old code: just a brake action:
II to get velocity
pid_out(&us(O),&Hdrive_vel(O),x,&Hdrive_pos(O),&Hdrive_pos(0),

&Hdrive_vel(O),S);
for (i=O;i<noa;i++) {

OUT_POS(i)=SHOWPOS*Hdrive_pos(i);
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i);

}

for (i=O;i<noa;i++) {
us(i)=-2*Hdrive_vel(i);

}

Hdrive_result=(real_T) send_motor_command(&us(O),&Hdrive_pos(O),S);

break;

II This state is only used for overspeed during alignment

case VEL_VIOLATION:
for (i=O;i<noa;i++) {

OUT_POS(i)=SHOWPOS*Hdrive_pos(i);
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i);

}

pid_out(&us(O),&Hdrive_vel(O),x,&Hdrive_pos(O),&Hdrive_pos(0),
&Hdrive_vel(O),S);llto get velocity

for (i=O;i<noa;i++) {
us(i)=-2*Hdrive_vel(i);

}

91
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Hdrive_result=(real_T) send_motor_command(&us(O),&Hdrive_pos(O),S);
break;

II +---------------------------------------------------+
II I *** OPERATING: CONRTOL PER AXIS *** I
II +---------------------------------------------------+

case READY:

II triggering time for feed-forward
if (IN_START_ALGN==l && triggertime==O){

Hdrive_time=time;
triggertime=l;

}

if (triggertime==l) {
OUT_HTIME=time-Hdrive_time;

}

else {
OUT_HTIME=time;

}

II to get velocity
pid_out(&us(O) ,&Hdrive_vel(O),x,&Hdrive_pos(O) ,&Hdrive_pos(O),

&Hdrive_vel(O),S);

II *** SAFETY CHECK PER AXIS

for (i=O;i<noa;i++) {

II ---> pass user inputs
us (i)=U(O+i) ;

II ---> Check for possible violations
safety_check (&us (0) ,&Hdrive_pos(O) ,&Hdrive_vel(O),S);

II ---> End of stroke

II Checked in mdIUpdate(), special state gets activated

II ---> Position Violation

if «int_T)pos_violation(i)==l) {
II Airbag action
safety_pos_airbag(&us(O),&Hdrive_pos(O),&Hdrive_vel(O),i,S);

}

II ---> Velocity Violation

else if «int_T)vel_violation(i)==l) {
II brake
safety_vel_airbag(&us(O),&Hdrive_pos(O),&Hdrive_vel(O),i,S);

}

}

II *** GLOBAL SAFETY-CHECK

II ---> Angle Violation
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if «int_T)ang_violation==1) {
safety_angle_viol_ini(time,&Hdrive_pos(O), S);
safety_angIe_viol (&us (0) ,time ,&Hdrive_pos (0) ,&Hdrive_vel(O),x,S);

}

II ---> outputs
for (i=O;i<noa;i++) {

OUT_POS(i)=Hdrive_pos(i);
OUT_VEL(i)=Hdrive_vel(i);

}

Hdrive_result=(real_T) send_motor_command(&us(O),&Hdrive_pos(O),S);
break;

case ANG_VIOLATION:
II to get velocity

pid_out(&us(O) ,&Hdrive_vel(O) ,x,&Hdrive_pos(O),&Hdrive_pos(O),
&Hdrive_vel(O),S);

II Brake axes and pull Y2 towards Y1
safety_angle_viol(&us(O),time,&Hdrive_pos(O),&Hdrive_vel(O),x,S);

for (i=O;i<noa;i++) {
OUT_POS(i)=SHOWPOS*Hdrive_pos(i);
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i);

}

Hdrive_result=(real_T) send_motor_command(&us(O),&Hdrive_pos(O),
S); II set current

IIOUT_POWER=O; II Turn Power off
break;

II +---------------------------------------------------+
II I *** EMERGENCY STOP? *** I
II +---------------------------------------------------+

case EMERGENCY_STOP_SYSTEM:
all_vel_zero=1;
II to get velocity
pid_out(&us(O) ,&Hdrive_vel(O) ,x,&Hdrive_pos(O) ,&Hdrive_pos (0),

&Hdrive_vel(O),S);

II Calculate outputs
safety_direct_stop(&us(O) ,lHdrive_pos(O) ,&Hdrive_vel(O) ,x, S);

for (i=O;i<noa;i++) {
II Switch off current when velocity becomes realy small
if (fabs(Hdrive_vel(i))>O.001) {

all_vel_zero=O;
}

}

II velocity sufficient low to switch off power
if «int)all_vel_zero==1) {

OUT_POWER=O;
}

for (i=O;i<noa;i++) {
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OUT_POS(i)=SHOWPOS*Hdrive_pos(i);
OUT_VEL(i)=SHOWPOS*Hdrive_vel(i);

}

Hdrive_result=(real_T) send_motor_command(&us(O),&Hdrive_pos(O),
S); II set current

break;
}

}

II -----------------------------------------------------------------------------
I I mdlUpdateO
II -----------------------------------------------------------------------------

#define MOL_UPDATE
#if defined(MOL_UPDATE)

static void mdlUpdate(SimStruct *S, int_T tid)
{

real_T *x = ssGetContStates(S);
InputRealPtrsType uPtrs = ssGetInputPortRealSignalPtrs(S,O);

int_T
real_T
int_T
real_T

*pivrk = ssGetIWork(S);
*prvrk = ssGetRWork(S);
istat, i, count;
time;

II check for stop...
if (IN_START_ALGN==O) {

II reinitialize Hdrive
Hdrive_initialize(&Hdrive_pos(O),S);
pid_ini(x,&Hdrive_pos(O»;
STATUS=WAITING_FOR_START;

}

II current time
time=ssGetT(S);

istat=(int_T) STATUS;
svitch (istat) {

II +---------------------------------------------------+
II I *** STILL INITILALIZING: SYNCHRONISED CONRTOL *** I
II +---------------------------------------------------+

case WAITING_FOR_START:
if (IN_START_ALGN==1) {

I I start allignment ...
STATUS=(int_T)TEST;
for (i=O;i<noa;i++) {

substate(i)=(int_T)TEST;
}

}
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break;

case TEST:
II NB. 3 loops -> State gets the error-value of the error vhith the
II highest priority

II Check vhich axis are ready vith testing
count=O;
for (i=O;i<noa;i++) {

if «int_T)TEST_COUNT(i)==3) {
substate(i)=(int_T) ZERO_SEARCH:
count++;

}
}

II all axes ready vhith testing -> goto stage ZERO_STAGE
if (count==noa){

STATUS=(int_T) ZERO_SEARCH;
}

II Alignment-procedure failed for one or more axes -> goto state
II ALLIGNING_FAILD
for (i=O;i<noa; i++) {

if «int_T)TEST_FAULT(i)==l) {
STATUS=(int_T) ALLIGNING_FAILD;
substate(i)=(int_T) ALLIGNING_FAILD;

}
}

II One or more eos-sensors activated -> goto state END_OF_STROKE
for (i=O;i<noa;i++) {

if «IN_EOS(i)==l)) { Ilend of stroke
STATUS=(int_T) END_OF_STROKE;
substate(i)=(int_T) END_OF_STROKE;

}
}

break:

case ZERO_SEARCH:
II Alignment-procedure failed for one or more axes -> goto state
II ALLIGNING_FAILD
for (i=O;i<noa: i++) {

if (AMPLITUDE_COUNT(i»=50) {
STATUS=(int_T) ALLIGNING_FAILD;
substate(i)=(int_T) ALLIGNING_FAILD;

}
}

II Check vhich axis are ready vith aligning
count=O;
for (i=O;i<noa;i++) {

if (ALLIGN_READY(i)==l) {
substate(i)=(int_T) HOMING;
count++;

}
}

II all axes ready vhith testing -> goto stage ZERO_STAGE
if (count==noa){

II Calculate phase-offset
for (i=O;i<noa;i++) {

PHI(i)=PHI(i)+pi/2;
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}

II Next stae: align Y2 axis with respect to Y1 acis or go homing?
if (noa<3) { II Just one axis, no y-alignment needed

STATUS=(int_T) HOMING;
Hdrive_start_homing(&Hdrive_pos(O) ,time,S);

}

else {
STATUS=(int_T) Y_ALIGN;
YALGN_STATE=(int_T) YALGN_FIND_AVS_B;
Hdrive_yalign_restart(&Hdrive_pos(O),time,YALGN_STATE,S);

}
}

II Check if axis have drifted to far away from starting point
for (i=O;i<noa;i++) {

if (fabs(Hdrive_pos(i»>ZERO_MAX_DRIFT) {
substate(i)=(int_T) ALLIGNING_FAILD;
STATUS=(int_T) ALLIGNING_FAILD;

}
}

II One or more eos-sensors activated -> goto state END_OF_STROKE
for (i=O;i<noa;i++) {

if «IN_EOS(i)=~1» { II end of stroke
STATUS=(int_T) END_OF_STROKE;
substate(i)=(int_T) END_OF_STROKE;

}
}

break;

case ALLIGNING_FAILD:
II One or more eos-sensors activated -> goto state END_OF_STROKE
for (i=O;i<noa;i++) {

if «IN_EOS(i)==1» { II end of stroke
STATUS=(int_T) END_OF_STROKE;
substate(i)=(int_T) END_OF_STROKE;

}
}

break;

II Still busy with finding Angle_Violation_A Sensor?
if (YALGN_STATE==YALGN_FIND_AVS_B) {

if (Hdrive_yalign_synchronise(time , YALGN_FIND_AVS_B,S»{
YALGN_STATE=(int_T) YALGN_FIND_AVS_A;
Hdrive_yalign_restart(&Hdrive_pos(O),time,YALGN_FIND_AVS_A,S);

}
}

II ***
II ***
II ***
II ***
II ***
II ***
II ***
II ***
II ***
II ***

Warning: In the current setup of the H-Drive one of the
Tilt-sensors seems to be missing. The assumption that
sensor AVS_A detects tilt in one direction, and B detects
tilt in the other direction isn't correct.
Sensor AVS_B seems to detect tilt, Sensor AVS_A gets
activated when the X-axis is perpendicular to the
Y-axis.
The following define makes it possible to switch between
the possibility to (1) set the Y-axis in such a position
that is in the middle between the position where the avs-
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II *** sensors get activated or (2) set the y-axis in the position
II *** where AVS_B gets just activated
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#ifdef

II Still busy with finding Angle_Violation_B Sensor?
if (YALGN_STATE==YALGN_FIND_AVS_A){

if (Hdrive_yalign_synchronise(time,YALGN_FIND_AVS_A,S»{
YALGN_STATE=(int_T) YALGN_CENTRE;
Hdrive_yalign_restart(&Hdrive_pos(O),time,YALGN_CENTRE,S);

}
}

II Still busy with moving to centre?
if (YALGN_STATE==YALGN_CENTRE){

if (Hdrive_yalign_synchronise(time ,YALGN_CENTRE,S»{
YALGN_STATE=(int_T) READY;
STATUS=(int_T) HOMING;
for(i=O;i<noa;i++) {

substate(i)=(int_T) HOMING;
}

Hdrive_start_homing(&Hdrive_pos(O),time,S);
}

}

#else

II Still busy with finding Angle_Violation_B Sensor?
if (YALGN_STATE==YALGN_FIND_AVS_A){

if (Hdrive_yalign_synchronise(time,YALGN_FIND_AVS_A,S»{
YALGN_STATE=(int_T) READY;
STATUS=(int_T) HOMING;
for(i=O;i<noa;i++) {

substate(i)=(int_T) HOMING;
}

Hdrive_start_homing(&Hdrive_pos(O) ,time,S);
}

}

#endif

II One or more eos-sensors activated -> goto state END_OF_STROKE
for (i=O;i<noa;i++) {

if «IN_EOS(i)==l» { II end of stroke
STATUS=(int_T) END_OF_STROKE;
substate(i)=(int_T) END_OF_STROKE;

}
}

break;

case HOMING:
II Not all axis ready with stage Hdrive_HOMEl ?
if (HOMING1_ALL_READY==O){

if (Hdrive_synchronize(&Hdrive_pos(O),&target(O),time,HdriveHOMEl,
S» {
II All axis ready with stage HdriveHOMEl
for (i=O;i<noa;i++) {

vh(i)=-vh(i)/3;
}

Hdrive_start_homing(&Hdrive_pos(O) ,time,S);
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}
}

II All axis ready with stage HDriveHOMEl ?
if (HOMING1_ALL_READY==1){

if (Hdrive_synchronize(&Hdrive_pos(O) ,&target(O) ,time,HdriveHOME2,
S» {
II All axis ready with stage HDriveHOME2
for (i=O;i<noa;i++) {

substate(i)=(int_T) MOVING;
vh(i)=-vh(i) *3;

}

STATUS=MOVING;
Hdrive_start_moving(&Hdrive_pos(O) ,time,S);

}

}

II One or more eos-sensors activated -> goto state END_Of_STROKE
for (i=O;i<noa;i++) {

if «IN_EOS(i)==l» { II end of stroke
STATUS=(int_T) END_Of_STROKE;
substate(i)=(int_T) END_Of_STROKE;

}
}

break;

case MOVING:
II All axes ready with stage HdriveMOVE ?
if (Hdrive_synchronize(&Hdrive_pos(O) ,&target(O) ,time,HdriveMOVE,

S» {
for (i=O;i<noa;i++) {

substate(i)=(int_T) READY;
}

STATUS=READY;
SHOWCOMBINED=l;

}

II One or more eos-sensors activated -> goto state END_Of_STROKE
for (i=O;i<noa;i++) {

if «IN_EOS(i)==l» { II end of stroke
STATUS=(int_T) END_Of_STROKE;
substate(i)=(int_T) END_Of_STROKE;

}
}

break;

case VEL_VIOLATION:
II One or more eos-sensors activated -> goto state END_Of_STROKE
for (i=O;i<noa;i++) {

if «IN_EOS(i)==l» { Ilend of stroke
STATUS=(int_T) END_Of_STROKE;
substate(i)=(int_T) END_Of_STROKE;

}
}

break;

1* Doesn't occur during initiazing states
case POS_VIOLATION:

II One or more eos-sensors activated -> goto state END_Of_STROKE
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for (i=O;i<noa;i++) {
if «IN_EOS(i)==l» {

STATUS=(int_T) END_Of_STROKE;
substate(i)=(int_T) END_Of_STROKE;

}
}

break;

II end of stroke
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II +---------------------------------------------------+
I I I *** OPERATING: CONRTOL PER AXIS *** I
II +---------------------------------------------------+

case READY:

II One or more eos-sensors activated -> goto state END_Of_STROKE
for (i=O;i<noa;i++) {

if «IN_EOS(i)==l» { II end of stroke
STATUS=(int_T) END_Of_STROKE;
substate(i)=(int_T) END_Of_STROKE;

}
}

if «int_T)ang_violation==l) {
STATUS=(int_T) ANG_VIOLATION;

}

II Substates are determined in mdlOutputs()
II if (fabs(Hdrive_vel(O»>2.1) II only for one axis
II STATUS=(int_T) OVERSPEED; II overspeed protection> 2,lm/s

break;

case ANG_VIOLATION:
break;

case END_Of_STROKE:
break;

case EMERGENCY_STOP_SYSTEM:
break;

}
}

#endif

II -----------------------------------------------------------------------------
II mdlDerivatives
II -----------------------------------------------------------------------------
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#define MOL_DERIVATIVES
#if defined(MDL_DERIVATIVES)

static void mdlDerivatives(SimStruct *S)
{

ssGetdX(S);
ssGetContStates(S);

ssGetIWork(S);
ssGetRWork(S);

*dx =
*x
*piwrk
*prwrk
i,istatj
time;

real_T
real_T
int_T
real_T
int_T
real_T

II current time
time=ssGetT(S);

istat=(int_T) STATUS;
switch (istat) {

case WAITING_FOR_START:
for (i=O;i<NSTATES;i++) {

dx[il=O.O;
}

break;

case TEST:
break;

case ZERO_SEARCH:
break;

case Y_ALIGN:
Hdrive_yalign_dif(dx,x,&Hdrive_pos(O),time,YALGN_STATE,S);

break;

case HOMING:
Hdrive_homing_dif(dx,x,&Hdrive_pos(O),time,S);

break;

case MOVING:
Hdrive_moving_dif(dx,x,&Hdrive_pos(O),time,S);

break;

case READY:
Hdrive_ready_dif(dx,x,&Hdrive_pos(O),time);

break;

case ALLIGNING_FAILD:
Hdrive_violation_dif(dx,x,&Hdrive_pos(O),time);

break;
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case VEL_VIOLATION:
Hdrive_violation_dif (dx,x,&Hdrive_pos (0) ,time);

break;

case POS_VIOLATION:
Hdrive_violation_dif (dx,x,&Hdrive_pos (0) ,time);

break;

case ANG_VIOLATION:
Hdrive_violation_dif (dx,x,&Hdrive_pos (0) ,time);

break;

case EMERGENCY_STOP_SYSTEM:
Hdrive_violation_dif (dx,x, &Hdrive_pos (0) ,time);

break;

}
}

#endif
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II -----------------------------------------------------------------------------
II mdlTerminate()

II -----------------------------------------------------------------------------

static void mdlTerminate(SimStruct *S)
{
}

II -----------------------------------------------------------------------------
I I Trailer code
II -----------------------------------------------------------------------------

#ifdef MATLAB_MEX_FILE
#include "simulink.c"
#else
#include "cg_sfun.h"
#endif
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B.4.2 HD_V4_HDrive.h

II -----------------------------------------------------------------------------
II status values
II -----------------------------------------------------------------------------

II During initialization

#define WAITING_FOR_START
#define TEST
#define ZERO_SEARCH
#define Y_ALIGN
#define HOMING
#define MOVING

#define ALLIGNING_FAILD

II During operation:

#define READY
#define END_OF_STROKE

#define POS_VIOLATION
#define VEL_VIOLATION
#define I_VIOLATION

#define ANG_VIOLATION

II Stop System:

8
11
12
13
14
15

7

o
2

3
4
5

6 II Angle of y-axis too big

II -----------------------------------------------------------------------------
II synchronize values (homing)
II -----------------------------------------------------------------------------

#define HdriveHOMEl
#define HdriveHOME2
#define HdriveMOVE

10
11
12

II -----------------------------------------------------------------------------
II synchronize values (aligning y-axis to set angle to zero)
II -----------------------------------------------------------------------------

#define YALGN_FIND_AVS_B
#define YALGN_FIND_AVS_A
#define YALGN_CENTRE

10
11
12

II -----------------------------------------------------------------------------
II clipping values (OBSOLETE)
II -----------------------------------------------------------------------------

II #define X_CLIP
II #define Yl_CLIP
II #define Y2_CLIP

-1.0
-1.0
-1.0
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BA.3 HD_V4JOPorts.h
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II -----------------------------------------------------------------------------
II HDrive I/O-Ports
II -----------------------------------------------------------------------------

#define U(element)
#define Y(element)

(*uPtrs[element])
(yPtrs[element])

II Number of Axis (noa):
II
II 0: X-axis
II 1: Yl-axis
II 2: Y2-axis
II
II Input Signals
II
II U(O) ....U(2)
II U(3)
II U(4) ....U(6)
II U(7) ....U(9)
II U(10) ...U(11)
II U(12) ...U(14)
II U(15) ...U(17)
II U(18)
II U(19)
II
II Output channels
II
II y[O] ... y[2]
II y[3] ... y[5]
II y[6]
II y[7] ... y[9]
II
II y[10]
II y[11] ... y[13]
II
II y[14]
II y[15]
II
II y[16] ... y[18]
II y [19] ... y [21]
II
II y [22] ...y [24]
II y [25] ...Y[27]
II y[28] ... y[30]
II y [31] ... y [33]

Users controller input .... currents [A]
start signal allignment
end of stroke sensor 1: switch on
Home sensor (EPD), 1: home found
Angle violation between Y-axes
phi offset, default 0
position of the Hdrive for the three axis[m]
trigger feedforward signall Hdrive time
Emergency brake

amplitude current for the three axis [A]
Angle PHI for the three axis
Enable power supply
Reset Encoders

Status
Substates

Enable controller after moving
Hdrive time after Moving

After Moving for the three axis
velocity for the three axis

Result
DPHI
Controller output for homing/moving
Controller output for homing/moving

II
#define IN_I (element) U(O+element) II U(O) ....U(2)
#define IN_START_ALGN U(3) II U(3)
#define IN_EOS(element) U(4+element) II U(4) ....U(6)
#define IN_EPD(element) U(7+element) II U(7) ....U(9)
#define IN_AVS(element) U(10+element) II U(10) ...U(11)
#define IN_PHI_OFST(element) U(12+element) II U(12) ...U(14)
#define IN_POS(element) U(15+element) II U(15) ...U(17)
#define IN_TRIG U(18) II U(18)
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#define IN_EMERGENCY U(19) II U(19)
II
II Output channels
II

#define OUT_I(element) Y(O+element) II y[O] ... y[2]
#define OUT_PHI(element) Y(3+element) II y [3] ...Y[5]
#define OUT_POWER Y(6) II y[6]
#define OUT_RST_ENC(element) Y(7+element) II y[7] ... y[9]

II
#define OUT_STATUS Y(10) II y[10]
#define OUT_SUBSTATE(element) Y(ll+element) II y[ll] ... y[13]

II
#define OUT_CTRL_EN Y(14) II y[14]
#define OUT_HTIME Y(15) II y [15]

II
#define OUT_POS(element) Y(16+element) II y [16] ... y [18]
#define OUT_VEL(element) Y(19+element) II y [19] ... y [21]

II
#define OUT_RESULT(element) Y(22+element) II y [22] ... y [24]
#define OUT_DPHI(element) Y(25+element) II y [25] ... y [27]
#define OUT_CTRL_OUT(element) Y(28+element) II y [28] ... y [30]
#define OUT_CTRL_SP(element) Y(31+element) II y [31] ... y [33]
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BAA
II init globals in work-space for re-entrancy

#define JOG_IDX 52

II -----------------------------------------------------------------------------
II rwrk_init_var()
II -----------------------------------------------------------------------------

int rwrk_init_var(int *pivar, int *pidx, int nrw, SimStruct *S)
{

*piwrk = ssGetIWork(S);

piwrk[pivar[O)) = pidx[O);
pivar[O)++;
pidx[O) = pidx[O)+nrw;

return 1;
}

II -----------------------------------------------------------------------------
II rwek_init_all()
II -----------------------------------------------------------------------------

int rwrk_init_all(SimStruct *S)
{

int ivar,idx;

ivar = OJ
idx = 0;

II .************************************************************************
II * HD_V4_Hdrive.c *
1/ *************************************************************************

II -------------------------------------------------------------------------
II Control
II -------------------------------------------------------------------------

rwrk_init_var(&ivar,&idx,l,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,l,S);

II START_PULSE(element)

II STATUS
II substate(element)
I I SHOWCOMBINED
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rwrk_init_var(&ivar,&idx,3,S); II HOMING1_READY(element)
rwrk_init_var(&ivar,&idx,l,S); II HOMING1_ALL_READY

rwrk_init_var(&ivar,&idx,3,S); II Hdrive_pos(element)
rwrk_init_var(&ivar,&idx,3,S); II Hdrive_vel(element)

rwrk_init_var(&ivar,&idx,3,S); II us (element)
rwrk_init_var(&ivar,&idx,3,S); II PHI (element)
rwrk_init_var(&ivar,&idx,l,S); II Hdrive_result

rwrk_init_var(&ivar,&idx,l,S); II Hdrive_time

rwrk_init_var(&ivar,&idx,3,S); II pos_reset(element)
rwrk_init_var(&ivar,&idx,3,S); II posreset_yalgn(element)

rwrk_init_var(&ivar,&idx,3,S); II epd(element)

rwrk_init_var(&ivar,&idx,3,S); II p_move(element)
rwrk_init_var(&ivar,&idx,3,S); II d_move(element)
rwrk_init_var(&ivar,&idx,3,S); II i_move (element)

rwrk_init_var(&ivar,&idx,l,S); II triggertime

rwrk_init_var(&ivar,&idx,l,S); II vyalgn
rwrk_init_var(&ivar,&idx,3,S); II vh(element)
rwrk_init_var(&ivar,&idx,3,S); II target (element)
rwrk_init_var(&ivar,&idx,3,S); II commdir(element)

II -------------------------------------------------------------------------
II Zero-search procedure (vibration)
II -------------------------------------------------------------------------

rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);

rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);

rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);

II ALLIGN_READY(element)
II Iref(element)
II DPHI(element)
II DISC_STEP(element)

II AMPLITUDE_COUNT(element)

II RESULT (element)
II PREVIOUS_RESULT(element)
II tempO(element)
II templ(element)
II temp2(element)
II temp3(element)
II temp4(element)

II TEST_COUNT(element)
II TEST_FAULT(element)

II -------------------------------------------------------------------------
II Homing Procedure
II -------------------------------------------------------------------------

II Epd_Marker(element)
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II -------------------------------------------------------------------------
II Safety-Layer

II -------------------------------------------------------------------------

II

rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);

rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(kivar,kidx,3,S);
rwrk_init_var(kivar,kidx,3,S);

rwrk_init_var(kivar,kidx,3,S);
rwrk_init_var(kivar,kidx,3,S);

rwrk_init_var(kivar,kidx,3,S);
rwrk_init_var(kivar,kidx,3,S);
rwrk_init_var(kivar,kidx,1,S);
rwrk_init_var(kivar,kidx,3,S);

II ZERO_MAX_DRIFT

II maxout(element)

II p_airbag(element)
II d_airbag(element)

II maxpos(element)
II minpos(element)
II margin(element)

II p_vel_brake(element)
II maxspeed(element)

II maxangle

II pos_violation(element)
II vel_violation(element)
II ang_violation
II i_violation(element)

II *************************************************************************
II * HD_V4_Jog.c *
II *************************************************************************

rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(kivar,&idx,3,S);
rwrk_init_var(kivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(kivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(kivar,kidx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(kivar,kidx,3,S);
rwrk_init_var(kivar,&idx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(kivar,&idx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(kivar,&idx,3,S);
rwrk_init_var(kivar,kidx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(&ivar,&idx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(&ivar,kidx,3,S);
rwrk_init_var(kivar,kidx,3,S);

II to(element)
II tt(element)
II t2(element)
II t3(element)
II t4(element)
II t5(element)
II t6(element)
II t7(element)
II sO(element)
I I st(element)
II s2(element)
II s3(element)
II s4(element)
II s5(element)
II s6(element)
II s7(element)
II vO(element)
I I vt(element)
II v2(element)
II v3(element)
II v4(element)
II v5(element)
II v6(element)
II v7(element)
I I aO(element)
I I at(element)
II a2(element)
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}

rvrk_init_var(&ivar,&idx,3,S);
rvrk_init_var(&ivar,&idx,3,S);
rvrk_init_var(&ivar,&idx,3,S);
rvrk_init_var(&ivar,&idx,3,S);
rvrk_init_var(&ivar,&idx,3,S);
rvrk_init_var(&ivar,&idx,3,S);
rvrk_init_var(&ivar,&idx,3,S);
rvrk_init_var(&ivar,&idx,3,S);
rvrk_init_var(&ivar,&idx,3,S);
rvrk_init_var(&ivar,&idx,3,S);

return 1;

II a3(element)
II a4(element)
II a5(element)
II a6(element)
II a7(element)
II delta(element)
II gamma(element)
II jerk(element)
II idir(element)
II xstrt(element)



B.4. SOURCE CODE 109

B.4.5 HD_V4_Movetest.c

(DELTA/ssGetStepSize(S»
samples per part of a pulse

lOE-6
level [m]

#define DELTA
II Vibration: period of pulse
#define vibration_step
II Vibration: number of
#define DETECTION_LEVEL
II Vibration: detection

3E-3

II -----------------------------------------------------------------------------
II Hdrive_movetest_out()
II -----------------------------------------------------------------------------

int_T Hdrive_movetest_out(real_T *u,real_T *pos, SimStruct *S)
{

int_T i;
int_T *piwrk
real_T *prwrk
real_T *yPtrs
InputRealPtrsType
real_T DeltaT

ssGetIllork(S);
ssGetRllork(S);
ssGetOutputPortReaISignal(S,O);

uPtrs = ssGetInputPortReaISignaIPtrs(S,O);
= ssGetStepSize(S); Iisample time

if ssIsSampleHit(S,O,tid){
for (i=O;i<noa;i++) {

if (IN_EPD(i)==l) {
ssSetErrorStatus(S,

"ERROR: Starting the zero-search procedure at homing-point is n

"dangerous. Svitch off the H-Drive and move the LiMMS manually"
"to safe area. ");

TEST_FAULT(i)=l;
}

if((int_T)substate(i)==TEST) { II Only do this when axis is still
II in test-mode

OUT_RST_ENC(i)=O; II reset encoder

if (START_PULSE(i) 1){ II The motor viII be excited by a
II serie of short pulses

u[i]=Iref(i)*sin(pi/DELTA)*DeltaT*DISC_STEP(i»;
OUT_RST_ENC(i)=l; II reset encoder
START_PULSE(i) =0;

}

else if (DISC_STEP(i)< ( l*vibration_step» {
u[i]=Iref(i)*sin(pi/DELTA)*DeltaT*DISC_STEP(i»;

}

else if (DISC_STEP(i)< ( 2*vibration_step» {
u[i]=Iref(i)*sin«(pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pil2»;

}

else if (DISC_STEP(i)==( 2*vibration_step»{
templ(i)=pos[i];
u[i]=Iref(i)*sin((pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pil2»;

}

else if (DISC_STEP(i)< ( 3*vibration_step» {
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}

else if (DISC_STEP(i)< ( 4*vibration_step» {
u[i]=-Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;

}

else if (DISC_STEP(i)==( 4*vibration_step»{
temp2(i)=pos[i];
u[i]=-Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;

}

else if (DISC_STEP(i)< ( 5*vibration_step»
u[i]=-Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;

else if (DISC_STEP(i)< ( 6*vibration_step»
u[i]=-Iref(i)*sin«pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pi12»;

else if (DISC_STEP(i)==( 6*vibration_step»{
temp3(i)=pos[i];
u[i]=-Iref(i)*sin«pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pi/2»;

}

else if (DISC_STEP(i)< ( 7*vibration_step»
u[i]=-Iref(i)*sin«pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pi12»;

else if (DISC_STEP(i)< ( 8*vibration_step»
u[i]=Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;

else if (DISC_STEP(i)==( 8*vibration_step»{
temp4(i)=pos[i];
RESULT(i)=-(tempO(i)-temp1(i»+(temp1(i)-temp2(i»

+(temp2(i)-temp3(i»-(temp3(i)-temp4(i»;
OUT_RESULT(i)=RESULT(i);
u[i]=O;

}

else if (DISC_STEP(i)< (10*vibration_step»
u[i]=O;

else if (DISC_STEP(i)==(10*vibration_step»{
tempO(i)=pos[i];
OUT_RESULT(i) =0;
if «RESULT(i»=-DETECTION_LEVEL)&&(RESULT(i)<=DETECTION_LEVEL»

{Iref(i)=1.2*Iref(i);
PHI(i)=PHI(i)+(pi/2);
TEST_COUNT (i)=O;
if (Iref(i»Imax_Algn) {

Iref(i)=O;
TEST_FAULT(i)=l;

}
}

else {
++TEST_COUNT(i);
TEST_FAULT(i) =0;

}

DISC_STEP(i)=O;
u[i]=Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;
OUT_RST_ENC(i)=O; II reset encoder

}

}

else { II axis was already done with testing-stage
u[i]=O;

}
}

}

return 1;
}
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II -----------------------------------------------------------------------------
II Hdrive_zerosearch_out()
II -----------------------------------------------------------------------------

int_T Hdrive_zerosearch_out(real_T *u,real_T *pos, SimStruct *S)
{

int_T
int_T
real_T
real_T
real_T

i;
*pi"rk
*prllrk
*yPtrs
DeltaT

= ssGetIWork(S);
= ssGetRWork(S);

= ssGetOutputPortReaISignal(S,O);
= ssGetStepSize(S); Iisample time

if ssIsSampleHit(S,O,tid){
for (i=O;i<noa;i++) {

if «int_T)substate(i)==ZERO_SEARCH) { II Only do this "hen axis is
II still in zero-search-mode

if (DISC_STEP(i)< ( 1*vibration_step»
u[i]=Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;

else if (DISC_STEP(i)< ( 2*vibration_step»
u[i]=Iref(i)*sin«pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pi12»;

else if (DISC_STEP(i)==( 2*vibration_step»{
temp1(i)=pos[i];
u[i]=Iref(i)*sin«pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pi12»;}

else if (DISC_STEP(i)< ( 3*vibration_step»
u[i]=Iref(i)*sin«pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pi12»;

else if (DISC_STEP(i)< ( 4*vibration_step»
u[i]=-Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;

else if (DISC_STEP(i)==( 4*vibration_step»{
temp2(i)=pos[i];
u[i]=-Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;

}

else if (DISC_STEP(i)< ( 5*vibration_step»
u[i]=-Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;

else if (DISC_STEP(i)< ( 6*vibration_step»
u[i]=-Iref(i)*sin«pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pi12»;

else if (DISC_STEP(i)==( 6*vibration_step» {
temp3(i)=pos[i];
u[i]=-Iref(i)*sin«pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pi12»;

}

else if (DISC_STEP(i)< ( 7*vibration_step»
u[i]=-Iref(i)*sin«pi/(DELTA*2»*DeltaT*DISC_STEP(i)+(pi12»;

else if (DISC_STEP(i)< ( 8*vibration_step»
u[i]=Iref(i)*sin«pi/DELTA)*DeltaT*DISC_STEP(i»;

else if (DISC_STEP(i)==( 8*vibration_step» {
temp4(i)=pos[i];
RESULT(i)=-(tempO(i)-temp1(i»+(temp1(i)-temp2(i»

+(temp2(i)-temp3(i»-(temp3(i)-temp4(i»;
OUT_RESULT(i)=RESULT(i);
u[i]=O;}

else if (DISC_STEP(i)< (10*vibration_step»
u[i]=O;

else if (DISC_STEP(i)==(10*vibration_step»
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{tempO{O)=pos[i];
if ({RESULT{i»=-DETECTION_LEVEL)&&{RESULT{i)<=DETECTION_LEVEL»

{Iref{i)=1.2*Iref(i);
if (Iref{i»Imax_Algn)

{Iref(i)=O;
ALLIGN_READY{i)=1;

}

AMPLlTUDE_COUNT(i)=O;
}

else
{AMPLlTUDE_COUNT{i)++; II Same amplitude count
if ({(PREVIOUS_RESULT(i»O)&&{RESULT{i)<O» II

({PREVIOUS_RESULT{i) <O)&&(RESULT{i»O»)
DPHI{i)=DPHI{i)*O.5;
PREVIOUS_RESULT(i)=RESULT{i);

if (RESULT{i»O)
PHI{i)=PHI{i)-DPHI{i);

else
PHI{i)=PHI(i)+DPHI(i);

}
OUT_DPHI{i)=DPHI(i);
OUT_RESULT{i)=O; II signal result zero
DISC_STEP{i)=O;
u[i]=Iref{i)*sin({pi/DELTA)*DeltaT*DISC_STEP(i»;

}
DISC_STEP{i)++;

}

else { II axis was already done with testing-stage
u[i]=O;

}
}

}

return 1;
}
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B.4.6 HD_V4_Safety.c

SAFETY AIRBAG

II -----------------------------------------------------------------------------
II safety_check()

II -----------------------------------------------------------------------------

void safety_check(real_T *u, real_T *pos, real_T *vel, SimStruct *S)
{

int_T *piwrk=ssGetIWork(S);
real_T *prwrk=ssGetRWork(S);

II *** SAFETY CHECK PER AXIS

for (i=O;i<noa;i++) {

II All OK
if (STATUS==READY)

substate(i)=READY;

II Check for speed violation
if (fabs(vel[i))>=maxspeed(i)) {

vel_violation(i)=l:
substate (i) =VEL_VIOLATION;

}

else {
vel_violation(i)=O:

}

II Check for boundary tresspassing (only when initialisation has been
II completed!)
if «(pos[i)<=minpos(i)+margin(i)) I I (pos[i»=maxpos(i)-margin(i))) &&

«int)STATUS==READY)) {
pos_violation(i)=l;
substate(i)=POS_VIOLATION;

}

else {
pos_violation(i)=O;

}

II Check for too large current
II Not in safety-layer, but in motor.c
II Why? Compensating other violations can result in extra high
II current levels that are not known at this point in het code
II (compensation will be calculated in functions like
II safety_pos_airbag())

}

II *** GLOBAL SAFETY-CHECK

II Check for tilt Y-axes (only when initialisation has been



114APPENDIX B. C CODE FOR THE EXCITATION METHOD (SOFTWARE V4.0)

II completed and all axes are operational)
if «(int)STATUS==READY) && (noa>=3) && (fabs(pos[2]-pos[1]»maxangle» {

ang_violation=l;
substate(l)=ANG_VIOLATION;
substate(2)=ANG_VIOLATION;

}

else {
ang_violation=O;

}
}

II -----------------------------------------------------------------------------
II safety_pos_airbag()
II -----------------------------------------------------------------------------

void safety_pos_airbag(real_T *u, real_T *pos, real_T *vel, int_T i,
SimStruct *S)

{

int_T *pivrk=ssGetIWork(S);
real_T *prvrk=ssGetRWork(S);

II compensate boundary tresspassing: PD-control to border of safe area
if (pos[i]<=minpos(i)+margin(i» {

u[i]=p_airbag(i)*(minpos(i)+margin(i)-pos[i])-d_airbag(i)*vel[i];
}

else if (pos[i]>=maxpos(i)-margin(i» {
u[i] =p_airbag(i) * (maxpos (i)-margin(i)-pos [i])-d_airbag(i)*vel[i];

}

else {
u[i]=-d_airbag(i)*vel[i]; II tresspassing just compensated...

}
}

II -----------------------------------------------------------------------------
II safety_vel_airbag()
II -----------------------------------------------------------------------------

void safety_vel_airbag(real_T *u, real_T *pos, real_T *vel, int_T i, SimStruct *S)
{

int_T *pivrk=ssGetIWork(S);
real_T *prvrk=ssGetRWork(S);
real_T desired_vel;

II compensate overspeed: brake

II Original method: brake by applying a current that is -2 times the current
II velocity (desired_vele=O)
II u[i]=-p_vel_brake(i)*vel[i];

II Nev method: control to maximum veocity



BA. SOURCE CODE

desired_vel=maxspeed(i)*fabs(vel[i])/vel[i];
u[i]=p_vel_brake(i)*(desired_vel-vel[i]);

}
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II -----------------------------------------------------------------------------
II safety_angle_viol()
II -----------------------------------------------------------------------------

void safety_angle_viol_ini(real_T t, real_T *pos, SimStruct *S)
{

II int_T *piwrk=ssGetIWork(S);
II real_T *prwrk=ssGetRWork(S);

real_T xstart,xend,tdes,vdes;

II Generate profile that describes the distance between Y2 and Y1 in time
II p2p_ini(real_T xstart, real_T tstart, real_T xend, real_T vdes,
II real_T tdes, real_T maxjerk, int_T i, SimStruct *S)

xstart=pos[2]-pos[1];
xend=O;
vdes=(xend-xstart)*5;
tdes=O.1;

II initial delta
II final delta
II speed (delta=Owithin 1/5-th of a second)
II time to reach vdes

p2p_ini(xstart,t,xend,vdes,tdes,100,2,S);
}

void safety_angle_viol(real_T *u, real_T t, real_T *pos, real_T *vel,
const real_T *xc, SimStruct *S)

{

int_T *piwrk=ssGetIWork(S);
real_T *prwrk=ssGetRWork(S);
real_T desired_vel,y2xref,y2vref,qref[1],vref[1],aref[1];

desired_vel=O.O;

II X-axis: Brakte to zero velocity
u[O]=p_vel_brake(O)*(desired_vel-vel[O]);

II Y1-axis: Brake to zero-velocity
u[1]=p_vel_brake(1)*(desired_vel-vel[1]);
II Make sure u[1] doesn't get to big so Y2 can follow Y1
if (fabs(u[1]»O.8*Imax_Low) {

u[1]=O.8*Imax_Low*(u[1]/fabs(u[1]»;
}

II Y2-axis: Follow Y1 as good as possible
p2p_get(lqref[O],lvref[O] ,karef[O] ,t,2,S); II (Y2-Y1)-profile
y2xref=pos[1]+qref[O];
y2vref=O; Ilvel[1]+vref[O];
u[2]=p_move(2)*(y2xref-pos [2])+d_move(2)*(y2vref-vel [2] )+i_move(2)*xc[2+4];

}
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II -----------------------------------------------------------------------------
II safety_direct_stop()
II -----------------------------------------------------------------------------

void safety_direct_stop(real_T *u, real_T *pos, real_T *vel, const real_T *xc,
SimStruct *S)

{

int_T *piwrk=ssGetIWork(S);
real_T *prwrk=ssGetRWork(S);
real_T desired_vel;
int_T i;

for(i=O;i<noa;i++) {
II X, Y1 -> Brake to zero
desired_vel=O.O;
if (i<2) {

u[i]=p_vel_brake(i)*(desired_vel-vel[i]);
if (fabs(u[i]»O.8*Imax_High) {

u[i]=O.8*Imax_High*(u[i]/fabs(u[i]»;
}

}

else {
II Y2 -> Follow Y1-axis
u[i]=p_move(2)*(pos[1]-pos[2])+d_move(2)*(vel[1]-vel[2])+i_move(2)*xc[2+4];

}

}
}
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B.4.7

send motor commands

#include "HD_V4_IOPorts.h"
#define TAU 0.012 II Magnet Pitch (distance between N-S Pole) [mJ

II -----------------------------------------------------------------------------
II send_motor_command()

II -----------------------------------------------------------------------------

int_T send_motor_command(real_T *u. real_T *pos, SimStruct *S)
{

i,iclip;

int_T
real_T
real_T

*piwrk
*prwrk
*yPtrs

ssGetI\/ork(S);
ssGetR\/ork(S);
ssGetOutputPortRealSignal(S,O);

II clip motor command if higher than maxout
iclip=l;

for (i=O;i<noa;i++){

II Normal operation ->
II normal current level}

}

else {
maxout(i)=Imax_Low;

II Determine maximum current level
if «(int_T)pos_violation(i)==l) I I

«(int_T)STATUS==EMERGENCY_STOP_SYSTEM») {
maxout(i)=Imax_High; II Position violation ->

II Larger current allowed

II Check for too large current
if (fabs(u[i]»maxout(i» {

u[i)=maxout(i)*u[i]/fabs(u[i);
i_violation(i)=l;
iClip=(int_T) I_VIOLATION;
if «int_T)substate(i)==READY) II NO other violations?

substate (i) =I_VIOLATION;
}

else
i_violation(i)=O;

II Outputs
OUT_I(i)=u[i) ;
OUT_PHI(i)=PHI(i)+commdir(i)*«pos[i)+pos_reset(i»*pi/TAU);

}

return iclip;
}



118APPENDIX B. C CODE FOR THE EXCITATION METHOD (SOFTWARE V4.0)

II simple pid-controller

II -----------------------------------------------------------------------------
II Defines and includes
II -----------------------------------------------------------------------------

#define KGAIN
#include "HD_V4_IOPorts.h"
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II -----------------------------------------------------------------------------
II pid_iniO
II -----------------------------------------------------------------------------

void pid_ini(real_T *xc, real_T *pos)
{

for (i=O;i<noa;i++) {
xc [i] =pos [i] ;
xc[i+4]=0.0;

}
}

II -----------------------------------------------------------------------------
II pid_difO
II -----------------------------------------------------------------------------

void pid_dif(real_T *dxcdt, const real_T *xc, real_T *pos, real_T *qref)
{

II xc[0 ... 3] represent filtered positions

for (i=O;i<noa;i++) {
dxcdt[i]=KGAIN*(pos[i]-xc[i]);
dxcdt[i+4]=qref[i]-pos[i];

}
}

II -----------------------------------------------------------------------------
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II pid_outO
II -----------------------------------------------------------------------------

void pid_out(real_T *u, real_T *vel, const real_T *xc, real_T *pos,
real_T *qref, real_T *vref, SimStruct *S)

{

int_T i;
real_T
int_T
real_T

*yPtrs
*pillrk
*prllrk

ssGetOutputPortRealSignal(S,O);
ssGetIWork(S);
ssGetRWork(S);

for (i=O;i<noa;i++) {

II velocity estimates
vel[i]=KGAlN*(pos[i]-xc[i]);

II simple PlD-controller
u[i]=p_move(i)*(qref [i]-pos[i])+d_move(i)*(vref [i]-vel [i])

+i_move(i)*xc[i+4];
OUT_CTRL_OUT(i)=u[i];

}

}
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B.4.9

II jogging and point-to-point motion based on third-degree setpoint profile
II Rene' van de Kolengraft, April, 14th, 2000
II saves settings for four different axes
II time t is the absolute time

II -----------------------------------------------------------------------------
II Defines and includes
II -----------------------------------------------------------------------------

II shortcuts for jogging
II #define JOG_lDX
#define to(element)
#define t1(element)
#define t2(element)
#define t3(element)
#define t4(element)
#define t5(element)
#define t6(element)
#define t7(element)
#define sO(element)
#define sl(element)
#define s2(element)
#define s3(element)
#define s4(element)
#define s5(element)
#define s6(element)
#define s7(element)
#define vO(element)
#define v1(element)
#define v2(element)
#define v3(element)
#define v4(element)
#define v5(element)
#define v6(element)
#define v7(element)
#define aO(element)
#define a1(element)
#define a2(element)
#define a3(element)
#define a4(element)
#define a5(element)
#define a6(element)
#define a7(element)
#define delta(element)
#define gamma(element)
#define jerk(element)
#define idir(element)
#define xstrt(element)

variables in workspace
See HD_Work.c for starting index
prwrk [piwrk[JOG_lDX+O] +element]
prwrk [piwrk [JOG_lDX+1] +element]
prwrk [piwrk[JOG_lDX+2] +element]
prwrk[piwrk[JOG_lDX+3]+element]
prwrk[piwrk[JOG_lDX+4]+element]
prwrk [piwrk[JOG_lDX+5] +element]
prwrk[piwrk[JOG_lDX+6]+element]
prwrk [piwrk[JOG_lDX+7] +element]
prwrk [piwrk [JOG_lDX+8] +element]
prwrk [piwrk [JOG_lDX+9] +element]
prwrk[piwrk[JOG_lDX+10]+element]
prwrk[piwrk[JOG_lDX+11]+element]
prwrk[piwrk [JOG_lDX+12] +element]
prwrk[piwrk[JOG_lDX+13]+element]
prwrk [piwrk [JOG_lDX+14] +element]
prwrk[piwrk[JOG_lDX+15]+element]
prwrk[piwrk[JOG_lDX+16]+element]
prwrk[piwrk[JOG_lDX+17]+element]
prwrk[piwrk[JOG_lDX+18]+element]
prwrk[piwrk[JOG_lDX+19]+element]
prwrk[piwrk [JOG_lDX+20] +element]
prwrk[piwrk[JOG_lDX+21]+element]
prwrk[piwrk[JOG_lDX+22]+element]
prwrk [piwrk [JOG_lDX+23] +element]
prwrk [piwrk [JOG_lDX+24] +element]
prwrk[piwrk[JOG_lDX+25]+element]
prwrk[piwrk[JOG_lDX+26]+element]
prwrk[piwrk[JOG_lDX+27]+element]
prwrk[piwrk[JOG_lDX+28]+element]
prwrk[piwrk[JOG_lDX+29]+element]
prwrk [piwrk[JOG_lDX+30] +element]
prwrk [piwrk [JOG_lDX+31] +element]
prwrk[piwrk[JOG_lDX+32]+element]
prwrk[piwrk [JOG_lDX+33] +element]
prwrk[piwrk[JOG_lDX+34]+element]
prwrk[piwrk[JOG_lDX+35]+element]
prwrk [piwrk[JOG_lDX+36] +element]

II -----------------------------------------------------------------------------
II jog_ini 0
II -----------------------------------------------------------------------------
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void jog_ini(real_T xstart, real_T tstart, real_T vdes, real_T tdes,
real_T maxjerk, int_T i, SimStruct *S)
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{

1*
input arguments

xstart
tstart
vdes
tdes
maxjerk
i

start position
start time
desired jogging speed
time to reach vdes
jerk in acceleration phase
axis id

real_T
int_T
real_T

det;
*piwrk=ssGetIWork(S);
*prwrk=ssGetRWork(S);

II vdes en jerk positive, idir contains the direction of the movement

if (vdes>=O.O) {
idir(i)=1.0;

} else {
idir(i)=-1.0;
vdes=-vdes;

}

if (maxjerk>=O.O) {
jerk(i)=maxjerk;

} else {
jerk(i)=-maxjerk;

}

II compute jerk period delta
det=tdes*tdes*jerk(i)*jerk(i)-4.0*jerk(i)*vdes;
if (det<O) {

ssSetErrorStatus(S,
"JOG_IN!: vdes cannot be reached (increase jerk and/or tdes).");

} else {
delta(i)=(tdes*jerk(i)-sqrt(det))/(2.0*jerk(i));

II compute acceleration period gamma

gamma(i)=tdes-2.0*delta(i);

II compute switching times

to(i)=tstart;
tl(i)=tO(i)+delta(i);
t2(i)=tl(i)+gamma(i);
t3(i)=t2(i)+delta(i);

II t4, t5, t6 and t7 equal infinity at startup

t4(i)=100000.0;
t5(i)=100000.0;
t6(i)=100000.0;
t7(i)=100000.0;
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II compute reference values at switching times

xstrt(i)=xstart;
sO(i)=O.o;

a1(i)=jerk(i)*(t1(i)-tO(i»;
v1(i)=0.5*jerk(i)*(t1(i)-tO(i»*(t1(i)-tO(i»;
s1(i)=sO(i)+jerk(i)*(t1(i)-tO(i»*(t1(i)-tO(i»*(t1(i) -to(i»/6.0;

a2(i)=a1 (i);
v2(i)=v1(i)+a1(i)*(t2(i)-t1(i»;
s2(i)=s1(i)+v1(i)*(t2(i)-t1(i»+0.5*a1(i)*(t2(i)-t1(i))*(t2(i)-t1(i»;

a3(i)=a2(i)-jerk(i)*(t3(i)-t2(i»;
v3(i)=v2(i)+a2(i)*(t3(i)-t2(i»-0.5*jerk(i)*(t3(i)-t2(i»*(t3(i)-t2(i»;
s3(i)=s2(i)+v2(i)*(t3(i)-t2(i»+0.5*a2(i)*(t3(i)-t2(i))*(t3(i)-t2(i»

-jerk(i)*(t3(i)-t2(i»*(t3(i)-t2(i»*(t3(i)-t2(i»/6.0;
}

}

II -----------------------------------------------------------------------------
I I jog_get ()
II -----------------------------------------------------------------------------

void jog_get(real_T *qref, real_T *vref, real_T *aref, real_T t, int_T i,
SimStruct *S)

{

II i axis id

*piwrk = ssGetIWork(S);
*prwrk = ssGetRWork(S);

II NOTE:
II - QUESTION: Is it an error that index 0 is used in all statemets
II below instead of index i?
II - ANSWER: No! The statement that calls the jog_get() function uses
II the correct index as argumnt (for example: veil as input), which
II results that in jog_get() element i of the orinal array is visible
II at position [0) in the function being called
if (t<=tO(i» {

aref[O)=O;
vref[O)=O;
qref [O)=sO(i);

} else if (t<=t1(i» {
aref[O)=jerk(i)*(t-tO(i»;
vref[0)=0.5*jerk(i)*(t~tO(i»*(t-tO(i»;

qref[0)=sO(i)+jerk(i)*(t-tO(i»*(t-tO(i»*(t-tO(i»/6.0;
} else if (t<=t2(i» {

aref [0) =a1 (i) ;
vref[0)=v1(i)+a1(i)*(t-t1(i»;
qref[0)=s1(i)+v1(i)*(t-t1(i»+0.5*a1(i)*(t-t1(i»*(t-t1(i»;

} else if (t<=t3(i» {
aref[0)=a2(i)-jerk(i)*(t-t2(i»;
vref[0)=v2(i)+a2(i)*(t-t2(i»-0.5*jerk(i)*(t-t2(i»*(t-t2(i»;
qref[0)=s2(i)+v2(i)*(t-t2(i»+0.5*a2(i)*(t-t2(i»*(t-t2(i»
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-jerk(i)*(t-t2(i»*(t-t2(i»*(t-t2(i»/6.0;
} else if (t<=t4(i» {

aref[O]=O;
vref[0]=v3(i);
qref[0]=s3(i)+v3(i)*(t-t3(i»;

} else if (t<=t5(i» {
aref[0]=-jerk(i)*(t-t4(i»;
vref[0]=v4(i)-0.5*jerk(i)*(t-t4(i»*(t-t4(i»;
qref[0]=s4(i)+v4(i)*(t-t4(i»-jerk(i)*(t-t4(i»*(t-t4( i»*(t-t4(i»/6.0;

} else if (t<=t6(i» {
aref [0] =a5 (i) ;
vref[0]=v5(i)+a5(i)*(t-t5(i»;
qref[0]=s5(i)+v5(i)*(t-t5(i»+0.5*a5(i)*(t-t5(i»*(t-t5(i»;

} else if (t<=t7(i» {
aref[0]=a6(i)+jerk(i)*(t-t6(i»;
vref[0]=v6(i)+a6(i)*(t-t6(i»+0.5*jerk(i)*(t-t6(i»*(t-t6(i»;
qref[0]=s6(i)+v6(i)*(t-t6(i»+0.5*a6(i)*(t-t6(i»*(t-t6(i»

+jerk(i)*(t-t6(i»*(t-t6(i»*(t-t6(i»/6.0;
} else {

aref [0]=0.0;
vref [0]=0.0;
qref [0]=s7(i);

}

if (idir(i)==-1.0) {
aref[O]=-aref[O];
vref[O]=-vref[O];
qref[O]=-qref[O];

}

qref[O]=qref[O]+xstrt(i);
}

II -----------------------------------------------------------------------------
I I jog_stopO
II -----------------------------------------------------------------------------

void jog_stop(real_T t, int_T i, SimStruct *S)
{

II i: axis id

*piwrk = ssGetIWork(S);
*prwrk = ssGetRWork(S);

t4(i)=t;
t5(i)=t4(i)+delta(i);
t6(i)=t5(i)+gamma(i);
t7(i)=t6(i)+delta(i);

a4(i)=0.0;
v4(i)=v3(i) ;
s4(i)=s3(i)+v3(i)*(t4(i)-t3(i»;

a5(i)=-jerk(i)*(t5(i)-t4(i»;
v5(i)=v4(i)-0.5*jerk(i)*(t5(i)-t4(i»*(t5(i)-t4(i»;
s5(i)=s4(i)+v4(i)*(t5(i)-t4(i»-jerk(i)*(t5(i)-t4(i»*(t5(i)-t4(i»*(t5(i)
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-t4(i))/6.0;

a6(i)=a5(i) ;
v6(i)=v5(i)+a5(i)*(t6(i)-t5(i));
s6(i)=s5(i)+v5(i)*(t6(i)-t5(i))+O.5*a5(i)*(t6(i)-t5(i))*(t6(i)-t5(i));

a7(i)=a6(i)+jerk(i)*(t7(i)-t6(i));
v7(i)=v6(i)+a6(i)*(t7(i)-t6(i))+O.5*jerk(i)*(t7(i)-t6(i))*(t7(i)-t6(i));
s7(i)=s6(i)+v6(i)*(t7(i)-t6(i))+O.5*a6(i)*(t7(i)-t6(i))*(t7(i)-t6(i))

+jerk(i)*(t7(i)-t6(i))*(t7(i)-t6(i))*(t7(i)-t6(i))/6.0;
}

II -----------------------------------------------------------------------------
II jog_status 0
II -----------------------------------------------------------------------------

int_T jog_status(real_T t, int_T i,real_T tset, 8imStruct *8)
{

II i: axis id

int_T *piwrk=ssGetIWork(8);
real_T *prwrk=ssGetRWork(8);

if (t>t7(i)+tset) {
return 1;

} else {
return 0;

}
}

II -----------------------------------------------------------------------------
II p2p_iniO
II -----------------------------------------------------------------------------

void p2p_ini(real_T xstart, real_T tstart, real_T xend, real_T vdes,
real_T tdes, real_T maxjerk, int_T i, 8imStruct *8)

{

1*
input arguments

xstart
tstart
xend
vdes
tdes
maxjerk
i

start position
start time
end position
desired jogging speed
time to reach vdes
jerk in acceleration phase
axis id

det,disp;
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*pivrk = ssGetIWork(S);
*prvrk = ssGetRWork(S);

disp=xend-xstart;
if (disp<O.O) {

disp=-disp;
}

if (vdes>=O.O) {
idir(i)=1.0;

} else {
idir(i)=-1. 0;
vdes=-vdes;

}

if (maxjerk>=O.O) {
jerk(i)=maxjerk;

} else {
jerk(i)=-maxjerk;

}

II compute jerk period delta

det=tdes*tdes*jerk(i)*jerk(i)-4.0*jerk(i)*vdes;
if (det<O) {

ssSetErrorStatus(S,
"P2P_INI: vdes cannot be reached (increase jerk and/or tdes). ");

} else {
delta(i)=(tdes*jerk(i)-sqrt(det»/(2.0*jerk(i»;

II compute acceleration period gamma

gamma(i)=tdes-2.0*delta(i);

II compute svitching times

to(i)=tstart;
tl(i)=tO(i)+delta(i);
t2(i)=tl(i)+gamma(i);
t3(i)=t2(i)+delta(i);

I I compute t4

t4(i)=t3(i)+(disp-2.0*jerk(i)*delta(i)*delta(i)*delta(i)
-3.0*jerk(i)*delta(i)*delta(i)*gamma(i)
-jerk(i)*delta(i)*gamma(i)*gamma(i»/vdes;

if (t4(i)<t3(i» {
ssSetErrorStatus(S,

"P2P_INI: vdes too high for displacement (decrease vdes).");
} else {

t5(i)=t4(i)+delta(i);
t6(i)=t5(i)+gamma(i);
t7(i)=t6(i)+delta(i);

II compute reference values at svitching times

xstrt(i)=xstart;
sO(i)=O.O;

al(i)=jerk(i)*(tl(i)-tO(i»;
vl(i)=O.5*jerk(i)*(tl(i)-tO(i»*(tl(i)-tO(i»;
sl(i)=sO(i)+jerk(i)*(tl(i)-tO(i»*(tl(i)-tO(i»*(tl(i)-to(i»/6.0;

125
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a2(i)=al(i) ;
v2(i)=vl(i)+al(i)*(t2(i)-tl(i»;
s2(i)=sl(i)+vl(i)*(t2(i)-tl(i»+O.5*al(i)*(t2(i)-tl(i))*(t2(i)-tl(i»;

a3(i)=a2(i)-jerk(i)*(t3(i)-t2(i»;
v3(i)=v2(i)+a2(i)*(t3(i)-t2(i»-O.5*jerk(i)*(t3(i)-t2(i»*(t3(i)-t2(i»;
s3(i)=s2(i)+v2(i)*(t3(i)-t2(i»+O.5*a2(i)*(t3(i)-t2(i))*(t3(i)-t2(i»

-jerk(i)*(t3(i)-t2(i»*(t3(i)-t2(i»*(t3(i)-t2(i»/6.0;

a4(i)=O.O;
v4(i)=v3(i) ;
s4(i)=s3(i)+v3(i)*(t4(i)-t3(i»;

a5(i)=-jerk(i)*(t5(i)-t4(i»;
v5(i)=v4(i)-O.5*jerk(i)*(t5(i)-t4(i»*(t5(i)-t4(i»;
s5(i)=s4(i)+v4(i)*(t5(i)-t4(i»

-jerk(i)*(t5(i)-t4(i»*(t5(i)-t4(i»*(t5(i)-t4(i»/6.0;

a6(i)=a5(i) ;
v6(i)=v5(i)+a5(i)*(t6(i)-t5(i»;
s6(i)=s5(i)+v5(i)*(t6(i)-t5(i»+O.5*a5(i)*(t6(i)-t5(i))*(t6(i)-t5(i»;

a7(i)=a6(i)+jerk(i)*(t7(i)-t6(i»;
v7(i)=v6(i)+a6(i)*(t7(i)-t6(i»+O.5*jerk(i)*(t7(i)-t6(i»*(t7(i)-t6(i»;
s7(i)=s6(i)+v6(i)*(t7(i)-t6(i»+O.5*a6(i)*(t7(i)-t6(i))*(t7(i)-t6(i»

+jerk(i)*(t7(i)-t6(i»*(t7(i)-t6(i»*(t7(i)-t6(i»/6.0;
}

}
}

II -----------------------------------------------------------------------------
II p2p_getO
II -----------------------------------------------------------------------------

void p2p_get(real_T *qref, real_T *vref, real_T *aref, real_T t, int_T i,
SimStruct *S)

{

jog_get(qref,vref,aref,t,i,S);
}

II -----------------------------------------------------------------------------
I I p2p_status 0
II -----------------------------------------------------------------------------

int_T p2p_status(real_T t, int_T i,real_T tset, SimStruct *S)
{

return jog_status(t,i,tset,S);
}
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II -----------------------------------------------------------------------------
II Hdrive_initialize()

II -----------------------------------------------------------------------------

int_T Hdrive_initialize(real_T *pos, SimStruct *S)
{

int_T
int_T
real_T
real_T

i;
*piwrk = ssGetIWork(S);
*prwrk = ssGetRWork(S);
*yPtrs = ssGetOutputPortRealSignal(S,O);

}

for (i=O;i<noa;i++) {
epd(i)=O.O;
pos[i]=O.O;
pos_reset(i)=O.O;
HOMING1_READY(i)=0;
OUT_RST_ENC(i)=l;

AMPLITUDE_COUNT(i)= 0;
DISC_STEP (i) = 0;
TEST_COUNT(i) = 0;
TEST_FAULT(i) = 0;

DPHI(i) = 0.25*pi;
PHI(i) = 0;
RESULT (i) = 0;
Iref(i) = 0.2;
PREVIOUS_RESULT(i)= 0;

tempO(i) = 0;
temp1(i) = 0;
temp2(i) = 0;
temp3(i) = 0;
temp4(i) = 0;

pos_violation(i) = 0;
vel_violation(i) = 0;
i_violation(i) = 0;

}

ang_violation = 0;

triggertime = 0;
HOMING1_ALL_READY = 0;
YALGN_STATE = 0;

return 1;

II reset

II -----------------------------------------------------------------------------
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II Hdrive_start_homing()

II -----------------------------------------------------------------------------

int_T Hdrive_start_homing(real_T *pos, real_T t, SimStruct *S)
{

int_T i;
real_T *x=ssGetContStates(S);
InputRealPtrsType uPtrs = ssGetlnputPortRealSignalPtrs(S,O);
int_T *piwrk = ssGetIWork(S);
real_T *prwrk = ssGetRWork(S);

II initialize jogging parameters

for (i=O;i<noa;i++) {
II as long as epd is not seen...

epd(i)=IN_EPD(i);
if (epd(i)==1.0 && (HOMING1_READY(i)==O» {

break;
}

else{
jog_ini(pos[i],t,vh(i),O.l,100.0,i,S);

}

}

II initialize controller states
pid_inHx,pos) ;

return 1;
}

II -----------------------------------------------------------------------------
II Hdrive_homing_dif()
II -----------------------------------------------------------------------------

int_T Hdrive_homing_dif(real_T *dx, real_T *x, real_T *pos, real_T t,
SimStruct *S)

{

ij
qref [noa] , vref [noa] , aref [noa] ;

*yPtrs = ssGetOutputPortRealSignal(S,O);

for (i=O;i<noa;i++) {
jog_get(&qref[i],&vref[i],&aref[i],t,i,S);

}

Ilpid_dif(real_T *dxcdt, const real_T *xc, real_T *pos, real_T *qref)
pid_dif(dx,x,pos,qref);

for (i=O;i<noa;i++) {
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}

return 1;
}
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II -----------------------------------------------------------------------------
II Hdrive_homing_out()
II -----------------------------------------------------------------------------

int_T Hdrive_homing_out(real_T *u, real_T *vel, real_T *x, real_T *pos,
real_T t, SimStruct *S)

{

int_T
real_T
real_T

i;
qref[noa] ,vref[noa] ,aref[noa];
*yPtrs = ssGetOutputPortRealSignal(S,O);

}

for (i=O;i<noa;i++) {
jog_get(&qref[i] ,&vref[i] ,&aref[i),t,i,S);

}

II pid_out(real_T *u, real_T *vel, const real_T *xc, real_T *pos,
II real_T *qref, real_T *vref, SimStruct *S)
pid_out(u,vel,x,pos,qref,vref,S);

for (i=O;i<noa;i++) {
OUT_CTRL_SP(i)=qref[i);

}

return 1;

II -----------------------------------------------------------------------------
II Hdrive_start_moving()

II -----------------------------------------------------------------------------

int_T Hdrive_start_moving(real_T *pos, real_T t, SimStruct *S)
{

i;
*x = ssGetContStates(S);

ssGetIWork(S);
ssGetRWork(S) ;

for (i=O;i<noa;i++) {
II p2p_ini(real_T xstart, real_T tstart, real_T xend, real_T vdes,
II real_T tdes, real_T maxjerk, int_T i, SimStruct *S)
II Original code: p2p_ini(pos[i),t,target(i),-2*vh(i),O.1,100.0,i,S);

p2p_ini(pos[i),t,target(i),-2*vh(i),O.25,100.0,i,S);
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}

II initialize controller states
pid_ini(x,pos) ;

return 1;
}

II -----------------------------------------------------------------------------
II Hdrive_moving_dif()

II -----------------------------------------------------------------------------

int_T Hdrive_moving_dif(real_T *dx, real_T *x, real_T *pos, real_T t,
8imStruct *8)

{

ij
qref[noa],vref[noa],aref[noa];

for (i=O;i<noa;i++) {
p2p_get(&qref[i],&vref[i],&aref[i],t,i,8);

}

Ilpid_dif(real_T *dxcdt, const real_T *xc, real_T *pos, real_T *qref)
pid_dif(dx,x,pos,qref); II V3.0 of software: control_dif(dx,x,pos,qref);

return 1;
}

II -----------------------------------------------------------------------------
II Hdrive_moving_out()

II -----------------------------------------------------------------------------

int_T Hdrive_moving_out(real_T *u, real_T *vel, real_T *x, real_T *pos,
real_T t, 8imStruct *8)

{

i;
qref[noa],vref[noa],aref[noa];

*yPtrs = ssGetOutputPortRea18ignal(8,O);

for (i=O;i<noa;i++) {
p2p_get(&qref[i] ,&vref[i] ,&aref[i],t,i,8);

}

II pid_out(real_T *u, real_T *vel, const real_T *xc, real_T *pos,
II real_T *qref, real_T *vref, 8im8truct *8)
pid_out(u,vel,x,pos,qref,vref,8); IIV3.0 soft.: control_out(u,x,pos,qref,8);
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for (i=O;i<noa;i++) {
OUT_CTRL_SP(i)=qref[i];

}

return 1;
}
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II -----------------------------------------------------------------------------
II Hdrive_synchronize()
II -----------------------------------------------------------------------------

int_T Hdrive_synchronize(real_T *pos, real_T *tar, real_T t, int_T sync_id,
SimStruct *S)

{

i,iret,count;

InputRealPtrsType
real_T
real_T
int_T
real_T

iret=O;

s"itch (sync_id) {

uPtrs
*yPtrs
*x
*pi"rk
*pr"rk =

ssGetlnputPortRealSignalPtrs(S,O);
ssGetOutputPortRealSignal(S,O);
ssGetContStates(S);
ssGetIWork(S);
ssGetRWork(S);

case HdriveHOME1:
for (i=O;i<noa;i++) {

II as long as epd is not seen...
if (epd(i)==O.O) {

epd(i)=IN_EPD(i);
if (epd(i)==1.0) {

jog_stop(t,i,S);
}

}
}

count=O;
for (i=O;i<noa;i++) {

if «jog_status(t,i,O.1,S»==1) {
count++;
HOMING1_READY(i)=1;

}
}

if (count==noa) {
HOMING1_ALL_READY=1;
iret=1;

}

else {
iret=O;

}



132APPENDIX B. C CODE FOR THE EXCITATION METHOD (SOFTWARE V4.0)

break;

case HdriveHOME2: II Second part of the homing procedure ....
for (i=O;i<noa;i++) {

II as long as epd is seen...
if (epd(i)==1.0) {

epd(i)=IN_EPD(i);
if (epd(i)==O.O) {

II EPD Found -> Store position and brake movement
Epd_Marker(i)=pos[i);
jog_stop(t,i,S);

}
}

}

count=O;
for (i=O;i<noa;i++) {

if (jog_status(t,i,l,S)==l) {
count++j

}
}

if (count==noa) {
II temporary variable to store overhoot with respect to epd
real_T epd_overshoot[3) = {O.O, 0.0, O.O};
II reset positions and determine overshoot
for (i=O;i<noa;i++) {

II Reset position, using the location of the EPD
II sensor, determined earlier
epd_overshoot[i)=pos[i)-Epd_Marker(i);
pos_reset(i)=Epd_Marker(i);
pos[i)=epd_overshoot[i);

II
}

reinitialize differentiator states
pid_ini(x,pos); II V3.0 of software: control_ini(x);
iret=lj

}

else {
iret=O;

}

break;

case HdriveMOVE:
count=O;
for (i=O;i<noa;i++) {

if (p2p_status(t,i,TREST,S)==1) {
count++j

}
}

if (count==noa) {
iret=l;
pid_iniCx,pos) ;
OUT_CTRL_EN=l ;

}

else {
iret=O;

}

break;

II enable external controller
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}

return iret;
}
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II -----------------------------------------------------------------------------
II Hdrive_ready_dif()
II -----------------------------------------------------------------------------

int_T Hdrive_ready_dif(real_T *dx, real_T *x, real_T *pos, real_T t)
{

pid_dif(dx,x,pos,pos);

return 1;
}

II -----------------------------------------------------------------------------
II Hdrive_violation_dif()
II -----------------------------------------------------------------------------

int_T Hdrive_violation_dif(real_T *dx, real_T *x, real_T *pos, real_T t)
{

II we still need velocity estimates for airbag ...
pid_dif(dx,x,pos,pos);

return 1;
}

II -----------------------------------------------------------------------------
II Hdrive_yalign_restart()

II -----------------------------------------------------------------------------

II Start alignment of y2 axis with respect to y1 axis or go to nwxt phase

int_T Hdrive_yalign_restart(real_T *pos, real_T t, int_T contr_id,
SimStruct *S)

{

int_T i;
real_T *x=ssGetContStates(S);

II InputRealPtrsType uPtrs = ssGetlnputPortReaISignaIPtrs(S,O);
int_T *piwrk ssGetIWork(S);
real_T *prwrk ssGetRWork(S);

II real_T *yPtrs ssGetOutputPortReaISignal(S,O);

switch (contr_id) {
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case YALGN_FIND_AVS_B:
II store position of second avs-sensor
for (i=O;i<noa;i++) {

posreset_yalgn(i)=pos[i);
}

II initialize jogging parameters
jog_ini(pos[2),t,+vyalgn,O.125,100.0,2,S);

break;

case YALGN_FIND_AVS_A:
II store position of first avs-sensor
posreset_yalgn(2)=pos[2);
II initialize jogging parameters
jog_ini(pos[2),t,-vyalgn,O.125,100.0,2,S);

break;

case YALGN_CENTRE:
II Move to centre:
II Target: half between sensor AVS_A and AVS_B
II AVS_A: posreset_yalgn(2) (due to "reset" at that position)
II Target: (Position(AVS_A)+Position(AVS_B)/2
II = (posreset_yalgn(2)+pos[2))/2
II p2p_ini(real_T xstart, real_T tstart, real_T xend, real_T vdes,
II real_T tdes, real_T maxjerk, int_T i, SimStruct *S)
p2p_ini(pos[2),t,(posreset_yalgn(2)+pos[2))/2,+vyalgn,0.25,100.0,2,S);

break;
}

II initialize controller states
pid_ini(x,pos);

return 1;
}

II -----------------------------------------------------------------------------
II Hdrive_yalign_out()
II -----------------------------------------------------------------------------

int_T Hdrive_yalign_out(real_T *u, real_T *vel, real_T *x, real_T *pos,
real_T t, int_T contr_id, SimStruct *S)

{
int_T
real_T
int_T
real_T
real_T

i;
qref [noa) , vref [noa) ,aref [noa) ;
*piwrk ssGetIWork(S);
*prwrk ssGetRWork(S);
*yPtrs ssGetOutputPortRealSignal(S,O);

switch (contr_id) {

case YALGN_FIND_AVS_B:
II Get parameters to achieve desired speed
jog_get (&qref [2) ,&vref[2),&aref[2) ,t,2,S);

break;
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II Get parameters to achieve desired speed
jog_get(&qref[2],&vref[2],&aref[2],t,2,S);

break;

case YALGN_CENTRE:
II Get parameters to achive desired position
p2p_get(&qref[2],&vref[2],&aref[2],t,2,S);

break;
}

qref[O]=posreset_yalgn(O); vref[O]=O.O; aref[O]=O.O;
qref[1]=posreset_yalgn(1); vref[1]=0.0; aref[1]=0.0;

Ilpid_out(real_T *u, real_T *vel, const real_T *xc, real_T *pos,
II real_T *qref, real_T *vref, SimStruct *S)
pid_out(u,vel,x,pos,qref,vref,S);
II suppres output of amplifiers of x and y1 axis
Ilu[O]=O.O; II automatisch omdat x en y1 in positie blijven!
Ilu [1] =0.0;

for (i=O;i<noa;i++) {
OUT_CTRL_SP(i)=qref[i];

}

return 1;
}
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II -----------------------------------------------------------------------------
II Hdrive_yalign_synchronize()

II -----------------------------------------------------------------------------

int_T Hdrive_yalign_synchronise(real_T t, int_T sync_id, SimStruct *S)
{

iret;

II
II
II
II

InputRealPtrsType
real_T
real_T
int_T
real_T

iret=O;

uPtrs
*yPtrs
*x
*pivrk
*prwrk

ssGetlnputPortRealSignalPtrs(S,O);
ssGetOutputPortRealSignal(S,O);
ssGetContStates(S);
ssGetlllork(S);
ssGetRllork(S);

case YALGN_FlNO_AVS_B:
I I as long as avs_b is not seen

if (IN_AVS(1)==0.0){
iret=O;

}

else {
iret=1 ;

}
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break;

case YALGN_FIND_AVS_A:
II as long as avs_a is not seen

if (IN_AVS(O)==O.O){
iret=O;

}

else {
iret=i;

}

break;

case YALGN_CENTRE:
II as long as Y2 axis is nit centres with respect to Yi

if (!(p2p_status(t,2,YALGN_TREST,S)==1)) {
iret=O;

}

else {
iret=i;

}

break;

}

return iret;
}

II -----------------------------------------------------------------------------
II Hdrive_yalign_dif()
II -----------------------------------------------------------------------------

int_T Hdrive_yalign_dif(real_T *dx, real_T *x, real_T *pos, real_T t,
int_T contr_id, SimStruct *S)

i;
qref [noa] , vref [noa] •aref [noa] ;

*yPtrs = ssGetOutputPortRealSignal(S,O);

switch (contr_id) {

case YALGN_FIND_AVS_B:
case YALGN_FIND_AVS_A:

II Get parameters to achieve desired speed
jog_get(&qref[2],&vref[2].&aref[2],t.2,S);

break;

case YALGN_CENTRE:
II Get parameters to achive desired position
p2p_get(&qref[2].&vref[2],&aref[2].t.2.S);

break;
}

II keep X and Yi axis in position
qref[O]=O.O; vref[O]=O.O; aref[O]=O.O;
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qref[1]=O.O; vref[1]=O.O; aref[1]=O.O;

//pid_dif{real_T *dxcdt, const real_T *xc, real_T *pos, real_T *qref)
pid_dif{dx,x,pos,qref);

return 1;

}
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Appendix C

Hardware

This appendix shows which Inputs/Outputs of dSPACE are used to connect the
H-Drive hardware with the software.

Remark with respect to table C.2: Phase T is generated automatically in
the current amplifier, based on phase Rand S: cos(R) + cos(S) + cos(T) = 1

Pin Axis Signal Description
Ind X EncX Output encoder X
Inc3 Yl EncYl Output encoder Y1
Ine5 Y2 EneY2 Output encoder Y2

Table C.1: dSPACE - Encoder inputs
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Pin Axis Signal Description
X-Axis

DACHI X XRsetP Current phase R for LiMMS
DACH2 X XSsetP Current phase S for LiMMS

VI-Axis
DACH3 Yl YIRsetP Current phase R for LiMMS
DACH4 Yl YlSsetP Current phase S for LiMMS

Y2-Axis
DACH5 Y2 Y2RsetP Current phase R for LiMMS
DACH6 Y2 Y2SsetP Current phase S for LiMMS

Table C.2: dSPACE - DA Converters

Pin Axis Description Setting
Power

100 X Power off 0= Power on
101 X Current amplifier enable o= Amplifier on
102 Yl Power off 0= Power on
103 Yl Current amplifier enable o= Amplifier on
104 Y2 Power off 0= Power on
105 Y2 Current amplifier enable o= Amplifier on

Sensors X-axis
108 X Overcurrent Not used
109 X Home EPD-sensor 1 = Sensor activated
1010 X EOS-sensor 1 = Sensor activated
1011 X OT-Sensor (Over Temperature) Not activated

Sensors VI-axis
1012 Yl Overcurrent Not used
1013 Yl Home EPD-sensor 1 = Sensor activated
1014 Yl EOS-sensor 1 = Sensor activated
1015 Yl OT-Sensor (Over Temperature) Not activated

Sensors Y2-axis
1018 Y2 Overcurrent Not used
1019 Y2 Home EPD-sensor 1 = Sensor activated
1020 Y2 EOS-sensor 1 = Sensor activated
1021 Y2 OT-Sensor (Over Temperature) Not activated

Tilt sensors
1022 AVS-A Sensor 1 = Sensor activated
1023 AVS-B Sensor 1 = Sensor activated

Emergency Button
1016 Emergency button 1 = Button hit

Table C.3: dSPACE - Digital 10



Appendix D

C Code for the Kalman
method (Software V5.~)

This appendix contains a short introduction to the experimental code that uses
a Kalman-based zero-search procedure.

D.I Description of the code

Version 5.~ of the H-Drive software is based on the code of an old alpha-release
of version 4 of the H-drive software and contains merely experimental code to
get the Kalman-filter zero-search operational. The code resembles the code that
is described in detail in section B.3, but differs at some points:

• Version 5 is not as sophisticated as version 4: there is no code present to
handle an emergency stop. Moreover, tilt of the axis is only detected, not
corrected for.

• HD-Y5_Work. c contains the same code as version 4, but now allocates mem­
ory for the V5 variables.

• HD-Y4-Movetest. c with code for a vibrational zero-search procedure is re­
placed by file HD_V5J>hi. c that contains experimental code for a Kalman­
filter and a reference generator as described chapter 6.

• HD_V5_Safety. c does not support an emergency stop. Also the code for
correcting a tilt of the axes during movement is absent.

• The homing-procedure from HD_V5-Yapi. c stores the detected epd-position
at the end of the sub-state when the epd-sensors of all axes have been de­
tected. Because the axes might move a little after detecting the epd-sensor,
this method is not as accurate as the method that is used in HD_V4_Vapi. c
where the epd-position is stored in a temporary variable as soon as it has
been detected for the first time.

When improving the Kalman-filter, the final release of Version 4.0 of the
H-drive software should be used.

141



142APPENDIX D. C CODE FOR THE KALMAN METHOD (SOFTWARE V5.~)

D.2 Source code

The source code is included on the CD-ROM that is supplied with this report.


