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DAMPING AND DISPERSION OF LINEAR LONGITUDINAL OSCILLATIONS IN A

- MULTI-COMPONENT PLASMA. I

A.J.D.LAMBERT, F. W. SLUUJTER and D. C. SCHRAM
Department of Applied Physics, Technische Hogeschool Eindhoven, The Netherlands

Received 22 November 1976

Linear dispersion-phenomena in Vlasov—Poisson plasma’s with drift are studied in order to be able to test the relevance
of linear theory for plasma turbulence. Especially the effect of the addition of light ions, giving rise to stabilisation, is taken
into account. Emphasis is laid on approximate methods that give the possibility to investigate the influence of parameters
like ion-mass-ratio, temperature ratio etc. Numerical results are given for a He-A plasma.

1. Introduction

In a previous article [1] (indicated as I) we dis-
cussed the dispersion of longitudinal waves in a plasma,
using a linearised Vlasov—Poisson system. It was our
aim to give the necessary background for using the
presence of more than one jon species as a means to
test the relevance of linear concepts in the early stages
of the development of turbulence. In this article we
extend the previous treatment to include the presence
of electron drift.

First, we study the one ion species plasma and look
especially at the influence of the electron-ion tempera-
ture ratio on the topology -of the critical electron drift
vs. phase velocity curve. The case of the electrons
hotter than the ions is investigated rigorously. The
dependence of some characteristic points of that curve
on the temperature ratio and on the ion mass is deter-
mined. Then we investigate the modifications of this
theory upon addition of another ion species.

Consequently two new parameters arise: the jon
mass ratio and the light ion fraction. Finally we make
some numerical calculations for a He-A plasma with
an electron-ion-temperature ratio of 50. At least for
this case the approximate methods we develop prove
to be rather accurate.
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2. Basic concepts

Starting again from Maxwellian distributions we
obtain the same dispersion relation as in (1.9). How-
ever, the electrons now possess an average drift
velocity vy, which can be normalised in the same way

as before with the help of the thermal speed v,
according to

u = va/(eV2). (1)
Then the argument £, reads:

£, = —u+(;+i7)) (68) 7 = &3, +17,. @)
As long as |y] <|w]| the approximate expressions:
k2= Re Z'(—u +3(08)"F) +0 Re Z'(c3)) 3)
and

7= (4n/o)*

1 - -1.2 2
[~u+ y(88) 7] e[ =100 *T 4 g5 =t

TR Z @), oo dRe Z ()
d we d (,Ol

4)

are valid.
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An essential extension with respect to the case
treated in I is the possibility of solutions with ¥>0,
i.e. instable solutions. Physically relevant and rather
simple is an analysis of the case 7= 0, i.e. the mar-
ginally stable solution. In general there are two differ-
ent marginally stable solutions of u for every w; that
value of u which is closest to zero, is called the critical
drift. , '

We will mainly concentrate on the case 6 > 1, and
consider the plasma with only one ion species first;
subsequently the two-ion species plasma will be our
concern.

In the ¥ = O-case only the denominator of (4) is of
interest. If it is zero we obtain what we will call the
basic equation: '

1 - —3.2 2
[—u + y(08) 3] €14 = @108 14 g5, =1 = 0. (5)

We will give a plot of u vs. w; for marginally stable
solutions.

3. Qualitative analysis of marginally stable solutions

Fig. 1 gives a plot of u vs. oy for 6> 1. Its physical
content is related to fig. 1 of 1. The plot can easily be
understood with the help of Jackson’s graphical
method [2]. The method is demonstrated in fig. 5.
The method is based on the full dispersion relation

(L.9):
w6 =Z'(£)0+Z'(E). (6)

Fig. 5 shows (in the case 7 = 0) how the value

zero mode principal mode )
T zero region ' B=1
! L - --weak branch —_—— k2>
stable region p—r
E ¢
principal region
Y C A
v - Strong branch :
0 —

" Fig. 1. u vs. Gp-plot of stable and instable regions and marginal
instability for a single-component plasma at 6 > 1.

2k2/9 is constructed from the Z'(¢;) and Z (&,) plots
in the complex Z -plane, where ) and —u+ 031(65)"'7
are the parameters. With this method we obtain values
of u and for the cutoff (in fig. | indicated by A)
where k2 = 0 (fig. 5¢). To the right of A, the marginally
stable solutions are evanescent (k2< 0), indicated in
fig. 1 by a dashed line. Points C'and E'in fig. I are
points with a maximum value of %2 (cf. figs. 5a and
5d, respectively). Point C is the point of the principal
mode with minimum ¢3;; point E is that of the zero
mode with maximum ¢ . (cf. figs. 5b resp. Se.) The
plot of fig. 1 can be found straightforwardly from the
basic equation (5). .

To that end we have to compare the slopes of the
two (reduced) distribution functions plotted in one
figure. The slope of the ion distribution function has
to be inverted, that of the electron distribution func-
tion has to be shifted over a distance u~/66 along the
positive «;-axis (fig. 4). If it is shifted to the right
(u>0), there are in general three intersection points
(Z, W and S) all within the interval 0 < 5, <u/\/65,
i.e. the interval in which the slopes of the ion- and
electron-distribution functions have opposite signs.
Z, W and S represent points of respectively the zero
mode, the weak and strong branch of the principal
mode, as indicated in fig. 1.

As will be shown, for relatively high 0-values
(0 = 25), point ‘A is well separated from point B and
to the right of it (point B represents the minimal
critical drift). Then there exists a u-interval where to
every u there are two physically relevant marginally
stable w;-values: one to the left of point B, and one
in the interval between A and B. At the latter cw¢-value,
corresponding to point S in fig. 4, the slope of the
electron distribution function is small and positive,
but there are many electrons there. The slope of the
ion distribution function is negative but there are only
a few of them with the required velocity. The com-
bined effect is of course just zero: electron Landau
instability is exactly compensated by ion Landau
damping. On the other hand at a smaller ¢ the slope
of the electron distribution function increases, but
there is again a point where the ions due to their
(increased negative) slope are again able to balance
the (electron) Landau instability (point W). For phase
velocities between these two points the slope and
value of the ion distribution is unable to stabilise the
electron instability.
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In fact there is always a third c3; belonging to a
certain u. This is due to the circumstance that at u =0
there is also formally a compensation, because both
ion and electron distribution slopes are equal to zero
as the two Gaussians have the same central line. A
certain separation of the central lines leads to a small
but finite u (point Z) for this compensation. One can
also look at it from another point of view. Between W
and Z the ion damping is dominant. Although the
number of ions with small velocities increases, the
slope of the distribution approaches zero as one
approaches the phase velocity 0. To the left of Z there-
fore the electrons win again and we have dominance
of the electron Landau instability. However, when
8> 1, the electron distribution slope cannot become
sufficiently large to overcome the ion Landau damping
for values of <y to the right of the rightmost point E
(see fig. 1). Point B can be found from fig. 4 by shift-
ing the curve of the electron slope to the left, until W

and S coincide. This is represented by the dotted curve.

If 6 =1 the balancing of electron instability and ion
Landau damping goes right through and point E co-
incides with the leftmost point (point C) of the princi-
pal mode (fig. 2). This is easily understood by using
Jackson’s method; cf. fig. 5 and take §=1.

If 6 <1 the branches break up again due to over-
compensation of the ion Landau damping by the
electron instability. The weak branch of the principal
mode will be connected to the upper part of the zero
mode, to form the high drift branch. In the same way
the strong branch will transform continuously into
the lower part of the zero mode to form the low drift
mode (fig. 3).

o0
\ =
T \ 0=
\ g — k%0
\ ¢ T
\
\ ,lA
\\ V2
A, 1
e !
///'I \\\L
/ | N
,‘\Bw oo T~L_8 I
] eientinke U SR
2% 0925 > G

Fig. 2. Stable and instable regions for a single-component
plasmaat9=1.

- .

=] \hrgh drift branch o/ 01

r \\ ,’/A k%0
C\o'/ ——— k%0

,0__\lclw drift branch

B
B Y = 3

0

Fig. 3. Stable and instable regions for a single-component
plasmaat 6 <1.

——— reduced slope

Fig. 4. Determination of <3-values at fixed u from the reduced
slopes of the distribution functions, that occur as terms in the
basic equation.
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Fig. 5. Jackson’s method for the evaluation of different
characteristic points of the marginal stability plot of fig. 1.
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4. Quantitative analysis

First we will consider the strong branch (6 >1). As
we are not concerned with an electron-hole plasma
(which would mean & rather close to unity) it is not
difficult to assure a sufficiently large 8 such that

|+ Gy (68) 1 < 1; | )
and then (5) reduces to

1 2
u=00{(6%)77 +e 1), (8)

For rather large < values the exponential may be
neglected and the relation between u and < becomes
a linear one. This leads to an asymptote for the strong
branch, the angle « given by

@ = arctan (66)_%. ' ©)

The weak branch also has an asymptote that can be
found from (5). One finds

B=arctan (1+ (96)_%), (10)

i.e. almost /4. Hence the weak branch approaches
approximately «y = u.

The zero branch represents the drift modified
version of the trivial solution of (3) with u =0, viz.
;= 0, ¥ arbitrary; k2 <0. We can find the angle 7y
from (8) by calculating du/dco; in the limit «o; = 0:

= arctan (8 + (65) ). (1)

In the first place this is proof of the fact that our
picture of balancing Landau damping and Landau
instability due to ions and electrons respectively is
correct. One should further note that in the limit of
61,y (cf. fig. 2).

We now proceed with the determination of the
characteristic points in fig. 1.
Point A, the cutoff, is easily determined. It can be
found from (3), taking into account condition (7)
that is valid for 6 2 25. Then the equation for point A
reduces to

2= 0 Re Z'(dy). (12)
Replacing the right-hand side by its asymptotic

expression leads to
W =02, (13)

provided 6 =2 30.
Point B, the minimum of the principal mode, is found
from (8), leading to

Qa1 = %)t (14)

For several values of § the relation between ; and
6 has been plotted (fig. 6). In the physically relevant
region (i.e. 1 5 6 <100) the ¢ belonging to point B
does not vary very much. Its value is close to 3
throughout this-domain. With decreasing 6, w; at
point B decreases much slower than ; at point A.
This means that points A and B approach each other
until they coincide at some critical §-value which
appears to be approximately 25, and which is weakly
5-dependent. A plot of the critical §-value vs. & is given
in fig. 7.

Fig. 8 of [3], a plot that shows the critical drift vs. 8,
is closely connected with this consideration (there

3 5T

4 /103
1=
3+ /
2+ @0 1
1 4
1 I I} I J
1 0 1 2 3

—» n0

Fig. 6. g-dependence of the &y-value at point B.

30

20 ! ) L i
0 1 2 3 4

e (n(E/1834)

Fig. 7. s-dependence of the critical §-value (A and B coincide).
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K 6>0>0",
I c' 0=1

A A=B A

Fig. 8. k vs. u plot and its relation to the characteristic points.

-——-UV

Oyri¢ = 20). Fig. 7 should not be trusted too much,
because of the approximations made, but it is suf-
ficiently accurate for a global discussion. In & vs. u
plots, as given in [2] and [4], 6 ~ 25 is the curve that
starts vertically from the y-axis and marginally does
not bend towards the k-axis anymore (dzu/dkzlkzo =0)
(fig. 8).

These plots also give a clear meaning to point C'. It
corresponds to the maximum k-value where instability
may occur. Its occurrence is most easily understood
from fig. Sa; the electron and ion loci have only one
point in common. This means that there is a unique
correspondence between k, « and @y The f-dependence
of these values is plotted in fig. 9. The point E' is the
counterpart of C' on the zero mode (fig. 5d).
Point C can be found by considering the situation
where u is such that the electron branch is intersected
by the ion branch exactly at the point where Im Z ‘&)
has its extremum, that is at &3, = —1/+/2, where
Im Z'(8,) = (2¢) %,

With the help of (5) one finds the following

0 1 ’ 2
—— (n0
Fig. 9. 6-dependence of the &y, k and u-values, belonging to
point C’, : '

1 ] ) i '
0 1 2 3 4 5

——(n0

Fig. 10. 6-dependence of the (¢-value at point C.

T 0-05

B-10

0-100
—D=1p00
0 1 2 3 4 5

Fig. 11. Exact u vs. y-plots for a proton plasina at a wide
range of 6-values (computer calculation).

_ expression for y at C:

Wy exp (—dz%) = (64/2¢) 71 (1%5)
by taking that branch of the solution for which

@y > 1/+/2. As is clear from fig. 10, ¢y at point Cis
only a weak function of 8 for the physically relevant
f-range. co; at point C is approximately 2. The critical
drift velocity at C is practically 1/+/2, because for
=2,

£ =—u+ (00) T~ —u =12, (16)

* With the aid of a digital computer we computed in

the case of a proton plasma (5 ~1834) a u vs. w;-plot
at different §-values (fig. 11).

5. Stabilisation by light ions

We will now consider the influence of a small frac-
tion of light ions. We can restrict ourselves to this case
only without any loss of generality. The parameter
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range that would mean addition of heavy ions to a
light ion plasma is not very interesting. The distri-
bution function of heavy ions of the same temperature
as that of light ions has a smaller width than that of the
latter, Only the introduction of a species that has a
distribution function with a width in between those

of the dominant ion species and electrons gives rise to
interesting phenomena. In order to be able to find
quantitative results that can be derived at easily with
analytical means, we restrict ourselves to the case

0> 1. Moreover, we know that for 6 closer to 1 the
situation is intrinsically rather stable, because the
critical drift at B increases (fig. 11) and, for 6 5 25,

A is on the weak branch to the left of B (e.g. see fig. 2).

So the detailed Landau instability damping balance is
not very interesting anymore.

In the case 7 = 0, the basic equation (5) is modified
for the presence of the second ion species and reads:

1 - -1.2 .2
[+ & (88) 7] &7 = 1068 T g g em 1

2 _
+6(1 - r;),u;_d)l ¢ he1 = 0. (17

The real part of the dispersion relation gives:
k% = Re Z'(—u +63,(08) ") +6n Re Z'(y) -
+8(1 - ) Re Z'(@y%), | (18)

where 7 is again the fraction of the light ions over the
total number, while u represents the mass ratio of the
heavy ions over the light ones.

We will now discuss the changes of the character-
istic points of fig. 1 and first of all we retrace the
counterpart of point A. We will use the subscript 1
because of the convention that we normalise all
quantities with respect to light-ion ones. If ¢ 2 4 and
fu — «;(68)* <1 the asymptotic expansions of Z " may
be used for both ion terms in equation (18) while the
electron term reduces to —2. Then we can introduce,
(cf. I):

M=n+1;—_—’7 (19)

. and eq. (18) gives us for the value of ¢y, belonging to
k2=0:

oMz _ 20)

W =

The introduction of the light ions forces M to grow
gradually from u! to 1. Consequently point A moves
gradually from ¢d; = /6/2u to ¢y = +/6/2. This
change is in fact trivial because of the normalisation.

The minimal critical drift, corresponding to point B
in fig. 1, can be calculated with the aid of (17). In the
case u not too small, the exponential will, in general,
make the heavy-ion contribution small. Close to B we
have

lu — (68)* <1 1)
and, if the rather mild condition on ¢

.2 2
ne” 1> (1—n)Vue H (22)

holds, it is permitted to neglect the heavy-ion term at
all. Then we obtain from (17):

.2 1
@&} —1)e = %)L (23)

this is the same expression as (14), when we substitute:

[N

g =6n°. (24)
With the aid of fig. 6 we obtain an wy-value, after the
calculation (21) and (22) have to be checked; for a
sufficiently small n (22) may not be satisfied.

To conclude this section, we want to consider the
part of the principal mode that starts from point B in
the direction of diminishing ;. Then (21) is certainly
not satisfied. If, however,

o8 <1 (25)

the elec;cron contribution can be approximated by
—u e ", If subsequently (22) is satisfied, the basic
equation reduces to

L2
1=

e fne e 0 ' ’ (26)

and if we substitute u = 1/8/2, as in (16), we obtain
the same expression for co; at C, but we have to
replace 6 by 6", given by

0" = onm. 27

We find an ;-value with the help of fig. 10. If, how-
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T

ever 6" < 1, there is practically no change in the
w-value at C, compared with that of the pure heavy-
ion plasma, while it is quite possible that ¢3; at B has
changed considerably. Of course (22) and (25) need
to be checked.

We may conclude that for a large 6 (e.g. between
10 and as large as 200) the appearance of a trace of
light ions has a pronounced effect on the minimal
critical drift due to the large difference in broadness
of the distribution function of the light ions in com-
parison with that of heavy ions of the same tempera-
ture. Below 6 ~ 10 and above 8 =~ 200 (if one would
be able to reach such a §), the effect becomes rapidly
less pronounced and will disappear. If § is sufficiently
large, B will stay to the left of A. For 6 sufficiently
low A will always be to the left of B. Strong stabili-
sation is the result, or in other words, the minimal
critical drift becomes large (in absolute value). If
proceeds towards 1, B does not shift very much to the
right anymore, but now A shifts considerably and will
again end up to the right of B. The instability will
again set in at small u.

The whole discussion is based on one ion tempera-
ture. It will be clear from the dependence of the effect
on the detailed form of the distribution function of
the light ions, that a higher temperature of the light
ions would further enhance the critical drift.

6. Some calculations

As an illustration as well as a verification we have
executed two types of calculations, one, analytically
with the aid of approximate formulae as described
above, the other starting from the exact dispersion
relation with the aid of a digital computer. We are
able to extend the latter calculations to cases with
(either positive or negative) damping. Calculations are
made for a He-A plasma with 6 = 50: a value where
stabilisation effects are pronounced.

At very low n-values point A hardly changes its
position, but B goes rapidly to the right. At a critical
value of 0, B overtakes A (fig. 12) and the minimal
critical drift is at point A instead of at point B. The
value of the minimal critical drift, with increasing n
goes through a maximum value, and then decreases
again. At an n-value of, e.g., 5, A overtakes B again
and the minimal critical drift, at B, is small again.

——— lnu

— (N7

Fig. 12. Schematic plot of the u-values belonging to A and B
vs. In n and its relation to the actual physically relevant
minimal critical drift,

=2 -
£ w8
=
< =10
T _3_
-4 | | I ]
0 100 200
—_—9

Fig. 13. The influence of 6 and u on the minimal n-value
required for stabilisation.

u T T T T T

T 1(5‘— —————— approximate calculation of A . X
numerical calculation of A
—- —numerical calculation of B

parameter @,

165 730

i . ZU
[1‘2 2 Pl Atoteiftof B —
165 L L yo, L L
B 0 I It 16 0 1
w1

Fig. 14. Approximate calculation of u at A, compared with a
numerical calculation of u at A and B, for a He-A plasma at
6 =50. Parameter ;.

Fig. 13 shows the 0-dependence of the critical 5-value
and its strong p-dependence is illustrated. The dashed
line in fig. 14 shows the results of the approximate
calculation. The continuous line shows the result of
the exact calculation and it is easily seen that at low
n-values the approximation is very useful and leads to



364 A. J. D. Lambert et al. [Linear dispersion and damping in a multi-component plasma. II

good estimations of the contamination damping.

At the region of very high u-values the approxi-
mation is no longer valid because of the fact that (21)
no longer holds. To the right of the top there is a dis-
crepancy because it is not possible to determine point
A accurately enough with analytical means because
o <4 and the light-ion term in the full dispersion
relation cannot be neglected anymore: the n-value is
then rather large. When c; 2 4 at n-values in the
neighbourhood of 1, the approximate results are again
in accordance with the exact results. Fig. 15 gives some
u vs. wy-plots of a helium—argon plasma at different
n-values. These plots are parametrised with k2. Fig. 16
gives a blow-up of the strong branch, showing the
movement of A and B at different n-values.

We close this section with two calculations for the
damped cases ¥ = £0.05 and we see the influence of
7 on the u vs. wy-plots for a helium plasma (fig. 17).
Fig. 18 is again a blow-up. Of course an intersection
with the real ; axis has to be expected, because there
exists a damped mode when there is no drift at all.

Q

Fig. 15. Numerical calculations of a « vs. &y-plot at different
n-values for 2 He-A plasma at 6 =50. k2isa parameter along
the curves.

> 1
10, 16 16% 1% 1

» point A

4 point B,

-« —-mmum critical drift

T T T T

Fig. 16. Blow-up of the plot of fig. 15, near the -axis.

I

? 2.0

10

Fig. 17. u vs. &y-plot of a He-plasma at different values of 4
(numerical).

-1
+10

T

e U

a1 ~
=107 — W

Fig. 18. Blow-up of the plot of fig. 17, near the y-axis.

7. Conclusion

In conclusion we observe that, provided one is in
the appropriate temperature ratio interval, the
addition of a small fraction of light ions has a pro-
found stabilising effect. Thus this effect may be used
to suppress selectively certain instabilities and hence
check if it is their presence that leads to a certain
level of turbulence.

In the course of this work we also developed a
number of approximate methods that give the possi-
bility to calculate easily the influence of certain
parameters like ion-mass ratio, temperature ratio and
light-ion concentration. It would be easy to extend
the theory to include different temperatures and/or
different charges for the two ion species.
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