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1. INTRODUCTION 

At the laboratory ES (Automatic System Design) of the 
Department of Electrical Engineering of the Eindhoven 
University of Technology effort is made on the construction 
of silicon compilers. That is the design of systems that 
automate the design of integrated circuits. One project is 
concerned with the construction of a macro cell generator 
for combinatorial logic. This combinatorial logic can be 
used in larger systems to control the dataflow in the 
datapath. A control function of a finite state machine can 
be described by a function of boolean variables representing 
inputs and internal states of that machine. 

The macro cell generator consists of a logic editor, a 
netdecomposition unit, a cell generator, a placement unit 
and a router. The logic editor first simplifies the 
functions by removing redundancy. Then it decomposes the 
functions, that is tracking them for common parts for which 
a new variable is introduced. To make those functions 
suitable for a certain technology (Nmos or Cmos) a 
netdecomposition is done. The next step is the 
implementation of these separate functions into small layout 
islands, called cells , consisting of nands, nors, inverters 
and combinations of them. The two next steps, placement and 
routing, speak for themselves. 

Up till now only a cell generator for Nmos was available. 
But now that the introduction of Cmos technology at the 
EFFIC, the IC-fabrication laboratory at the Eindhoven 
University of Technology, is at hand there is the necessity 
to adjust the macro cell generator for this technology. 
There is a growing desire to come to a flexible system 
suited for a wide range of technologies. It was our job to 
write a flexible cell generator for Cmos that generates the 
cell layout for a given boolean function. 
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2. LINEAR ARRAYS FOR NMOS AND CMOS 

An Nmos gate exists of a load (depletion) transistor and 
depending on the function to be realized some input or 
driver transistors. Both transistors are of the n-channel 
type (p-substrate) and can be constructed in the same type 
of diffusion. Figure 2.1. shows the circuit of a 3-input 
Nand gate (a), and the realization of a more complex non
optimized function f: -(a. (b.c+d+c.(e.f+b.d»); (b), where 
"-" means the negation. 

( a) ( b) 

figure 2.1 

The number of series and parallel connections is restricted 
by the used technology. The Nmos process currently running 
at the Effic limits the number of parallel and series con
nections to a maximum of three. As already mentioned in the 
introduction a boolean control function is transformed by 
the logic editor and the netdecomposition unit into a set of 
equations that are suited for implementation in a certain 
target technology. Together they realize the original 
boolean function. The function "f" will yield the following 
set of implementable equations for the current EFFIe Nmos 
process (figure 2.2). Appendix A gives the same results for 
a more complex function. 
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figure 2.2 

This set of equations has to be realized in the hardware of 
the target technology. Each function is realized in a confi
guration called a cell. Experience has thought that a 
linear transistor array is the best suited form to implement 
those functions. A linear array consists of a diffusion 
area over which polysilicon tracks are laid and thus forming 
the transistors of the circuit. Over this array aluminium 
interconnections are made to accomplish the network connec
tions. To make things clear figure 2.3 shows the layout of 
the cell representing the function nfn of figure 2.1.b . 
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figure 2.3 

The layout of such an array has to be optimized in length 
and width. This realization is not always possible without 
modifying (not changing) the network. Modification of a net
work means, changing the sequences in series connections, 
duplicating transistors, introducing transistors with 
grounded gates (breaks), etc .. The logic function of the 
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network must not be changed. 

Turning to static Cmos one may notice that the most striking 
difference between Nmos and Cmos when observing the circuits 
is the number of transistors needed for both technologies 
(see fig. 2.4 ). Nmos only needs one time the number of 
inputs plus one (load transistor) as opposed to Cmos that 
needs exactly twice the number of inputs. In Cmos the gate 
function and its complement are realized in resp. the N
field and the P-field. Both functions are realized in two 
separate arrays, each of which is projected on one field. 
Because both functions need the same inputs a significant 
gain in space and complexity can be made by placing the 
arrays side by side and arranging the transistors so that no 
additional routing in the space between both arrays is 
needed. Figure 2.4.a shows the optimized circuit and a non
optimized cell layout (b) of the function "f" mentioned 
above. 
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figure 2.4 

n 

A network of transistors (mathematically a graph with 
labeled edges) will be realized into a diffusion strip, i.e. 
a linear list of transistors (a linear array), in which all 
nodes that were connected in the original network (graph) 
have to be connected again by strips of metal. In future we 
will talk, in mathematical terms, about intervals instead of 
metal strips because they are due to the nodes in the graph. 
One or more metal strips can be placed behind each other in 
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one layer, called a track. If two metal strips 
should have an overlap they can not be placed 
track. They must be placed in separate tracks. 

(intervals ) 
in the same 
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3. SOME USEFUL DEFINITIONS AND THEOREMS CONCERNING GRAPHS 

As mentioned in the previous chapter a transistor network 
can be represented by a graph with labeled edges. Figure 3.1 
gives the graph representation of the network that belongs 
to the function "i" that was presented earlier. 

a 

b 

figure 3.1 

In the next we will talk about graphs and edges instead of 
circuits and transistors. Before proceeding with the algo
rithms, a few items related to graph theory are defined. 

Definition 1. 

A path in a graph G is 
final vertex of one 
one except perhaps the 
two are not the same. 

Definition 2. 

any sequence of edges 
is the initial vertex 
first and last vertex 

where the 
of the next 
when those 

The degree of a node v in graph G, denoted degree (v) , is 
the number of edges incident with v. 

Since every edge is incident with two nodes, it 
2 to the sum of the degrees of the nodes. Thus 
following result. 

contributes 
we find the 
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Theorem 1. 

The sum of the degrees of the nodes of a graph G is 
twice the number of edges: 

SUM(i)[degree(v(i»} - 2 * t 

Theorem 2. 

In any graph the number of nodes of odd degree is even. 

Definition 3. 

An Eulerpath is a path which contains each edge exactly 
once. 

If an Eulerpath exists, it means that the graph can be drawn 
on paper by following this path and without lifting the pen 
from the paper. 

Definition 4. 

An Eulergraph is a graph in which an Eulerpath exists. 

The basic theorem on the existence of an Eulerpath is the 
next: 

Theorem 3. 

A connected, undirected graph G contains an Eulerpath if 
and only if the number of nodes of odd degree is 0 or 2. 
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4. REFLECTIONS OVER A STRATEGY 

The main concern while constructing a cell is that its area 
is minimized. So both length and width have to be optim
ized. To minimize the length the following points are of 
importance: 

• use each edge only once 
• use a minimum number of breaks 

For a minimum width the next rules can be mentioned: 

• minimize the number of tracks 
• minimize the number of intervals 
• make the intervals short 

Before proceeding with these observations, first a short 
explanation about the phenomenon called break. A break is 
realized with a transistor that is permanently blocked. The 
diffusion area is divided in two separate parts, where the 
diffusion area at the left-hand side and the right-hand side 
of the break-transistor each represent a different node in 
the graph which are not connected. The break-transistor con
tributes to the length of the array and in cases where a 
point of even degree is involved in a break it contributes 
to the number of intervals which may eventually increase the 
number of tracks. 

Looking at the conditions for which the array length is 
minimized, we may notice a strong resemblance with the pro
perties of an Eulerpath. The minimum number of breaks that 
have to be added is halve the number of points with odd 
degree minus one, as a path can be made in a graph with two 
odd points. 

In fact it is easy to see that an eulerpath will yield 
minimum length of the transistor array. An eulerpath will 
however not always give minimum width. Often a large number 
of eulerpaths can be constructed in a graph each having dif
ferent interconnections that will fit in a specific number 
of tracks. 

During my practical assignment I have implemented the method 
of local cycles described by [ Talsma ]. It is a method to 
reduce the length of the intervals which is useful as this 
increases the packing of the tracks which reduces the number 
of tracks. I did not proceed with this idea because the 
algorithm took more than 2 times the amount of cpu-time than 
a Depth First Search (DFS ) oriented algorithm. Another 
argument for rejecting this approach is the complexity of 
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the method certainly when using it in Cmos cell generation. 
The method of local cycles may be reconsidered when networks 
of over 20 transistors have to be handled because the time 
used by DFS increases more than linear with the number of 
edges where local cycles is linear. For these amount of 
transistors DFS needs additional techniques (chapter 6) 
which conSiderably increase the processing time. 

With the DFS strategy I have adopted a large number of pos
sible eulerpaths are found. Out of these solutions the path 
that gives minimum width or that has the shortest sequence 
of edges can be selected. The selection can also be made on 
the kind of sequence. A suitable sequence of edges may for 
instance reduce the interconnection length between different 
cells. 
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5. BASIC ALGORITHM 

We assume the data of the 2 boolean functions ( f and f')to 
be stored in two incidence matrices called matrix1 and 
matrix2. The rows represent the nodes and the columns 
represent the edges in the graph representation of such a 
function. If edge i is connected to node k and node 1, ele
ment (i,k) and (i,l) are one while the rest of that column 
is zero. Further we choose two startpoints, both matching a 
node in one of the graphs. The job is now to find two ident
ical eu1erpaths, one in each graph. 

In the proceeding descriptions we will deal with two graphs 
representing both boolean functions. A great deal of the 
variables apply to both graphs and have a postscript (lor 
2) to indicate the referenced graph. Where variables are 
used without postscript, both variables are intended. Here 
in short some variables of interest for a good comprehension 
of the text. 

• start 

• matrix 

• edgepath 

• nodepath 

• point 

• rdegree 

initial startpoints 

the incidence matrices 

gives the sequence of edges the path exists of 

gives the sequence of nodes the path exists of 

last point that was included in nodepath 

array that keeps the restdegree of all nodes 
in the graph i.e. the initial degree minus the 
number of edges adjacent to that node that are 
part of the path. 

For a flowchart of the basic algorithm, refer to fig. 5.1. 

Out of the startpoints or out of the points that were 
reached earlier a common edge is sought for. When this edge 
is found, it is appended to both paths stored in edgepath. 
The new nodes are appended to nodepath. These nodes are 
assigned to pointl and point2. The appropriate elements in 
matrix are reset and the restdegrees are updated. With the 
newly found points a new trace operation can be started. 

When no common edge can be found, a break might be a solu
tion. A break is only considered if from the newly found 
nodes by procedure BREAK a successful trace operation is 
possible. Breaks are only made from one odd point to 
another. This to limit the additional length of the path. 
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figure 5.1 
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Three different situations can be distinguished when making 
a break: 

• only point1 is odd 

• only point2 is odd 

• both points are odd 

This may result in 
edgepath1 and a space 
tor) in edgepath2. 

This may result in 
edgepath2 and a space 
tor) in edgepath1. 

a break in 
(no trans is-

a break in 
(no transis-

A break may be inserted in both 
paths. 

When neither a TRACE nor a BREAK was possible one step back 
is done in both paths, that is the last edges and points are 
deleted from edgepath and nodepath. This operation is done 
by procedure HOUNT. If a break was mounted, which means that 
pointl and/or point2 is of odd degree, a new break will be 
tried to make, for a trace operation has proved unsuccessful 
here. If the break operation is not successful the sequence 
is mounted one more step, otherwise a new trace operation 
can be done. And of course, when no break was mounted a new 
trace operation is done. 
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6 . THE INTERCHANGE FACILITY 

6.1 A NEW DATA STRUCTURE 

With the help of breaks between odd points it is always pos
sible to find an Eulerpath in a graph. To find however 
identical sequences in different graphs, though closely 
related, has proved difficult and in some cases impossible 
with the basic concept previously described. There are 
several techniques to enlarge the probability for a solution 
for this problem. One could think of doubling edges, insert
ing breaks between even points etc. They all have one major 
disadvantage, that is the additional length of the final 
array. Changing the sequence in series connections does not 
have this disadvantage. In a logic function the order of 
appearance of the factors in a product can be changed 
without penalty except for the loss of some time efficiency. 
The logic function of the network is not changed but only 
the appearance is different. The left and right part of the 
next equation realize the same function. 

a.b.(c+d)+e.f.(g+h.(i+j).k) - (c+d).a.b+e.(g+(i+j).k.h).f 

A main condition to implement this technique is a good 
knowledge of the structure of the graph. Changing sequences 
in series connections implies that the separate terms and 
factors can be identified. Information about the hierarchy 
of these factors and terms is needed as factors from a low 
level can not be interchanged with factors of a higher 
level. To explain what is meant with level : The level of a 
variable is defined as the number of pairs of brackets 
between which the variable is mentioned. So is the level of 
the variable "c" in the preceding expression higher than the 
level of factor "a". 

All this information can be stored in an incidence matrix if 
only the two end nodes can be distinguished. The end nodes 
are the points in the electrical network where this is con
nected to the rest of the circuit. Access to the informa
tion stored in the incidence matrix implies a lot of search 
work in order to identify a specific factor or term. Mani
pulation of the stored data 1s even worse. It is clear that 
for a smooth operation on the data a better accessible data 
structure is required. 

Therefore we observe a boolean function. Generally it con
sists of a sum of sub-expressions called terms. These terms 
may consist of other terms or a product of factors. A factor 
may consist of an other SUb-expression or out of a signal. 
Note that functions of just one product are not excluded 
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from this observation. On the basis of this observation a 
new data structure or term oriented structure is introduced. 
A universal syntax of a boolean expression is given below : 

boolean expression::- «term» "+" {<boolean expression>} I 
«term» ; 

term ::- <term><opt-factor-separator><term> 1 <factor> 

factor ::- (<boolean expression>) 1 «signal-name» ; 

A signal-name is a legal name of a boolean variable. 

The proposed data structure gives optimal access to the 
separate parts of the graph i.e. terms and factors. Changing 
the sequence of factors in a product simply means moving an 
element in a linked list. The data structure exists of two 
different elements. First there are the index records that 
point to a separate term or factor. Secondly there are the 
element records in which the elements are stored or which 
carry information about the hierarchy and the kind of 
sequence (sum or product) that is pointed at. Fig. 6.1. 
illustrates the two types used in the new data structure. 

index record element record 

1 1 1 1 1 
1 verz 1 source 1 next le1point l 
1 __ 1 1 __ 1 1 

1 1 1 1 
1 tranl kind 1 sub 1 next 
1 __ 1 __ 1 __ 1_-

figure 6.1 

The record variables of index are 

• verz 

• source 

• next 

• elpoint 

Used to determine the hierarchy with respect to 
another row. (see procedure findroot ) 

An index pointer to a higher row where the 
reference is made to this row. 

An index pointer to the next row. 

This is an element pointer that points at the 
first element of a row. 
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The record variables of element are : 

• tran 

• kind 

• sub 

• next 

To give 
is fed 
6.2) is 

If an element record contains data of an edge 
(transistor), this variable gives the name of 
the according transistor. 

If the element contains data of an edge, this 
variable is equal to that edge number. If this 
element represents a compound factor it has 
value (-1). When this element represents a term 
"kind" will be zero. 

This index pointer points at the row (index 
record) where the description of the factor or 
term (compound) is continued. When no compound 
is referenced, but just an edge, this pointer is 
nil. 

points at the next element record of the row. 

an idea of how a boolean function looks like when it 
into this new data format, an example (see figure 

presented for the function 

f - a.b.(c+d.(e.f+g)+h)+i.j 

The advantage of this new data structure is the clear 
hierarchical build-up so that the different levels can be 
easily recognized. All the levels can be easyly accessed as 
only one level is stored in a row. The structure can be 
walked through in both directions, top-down and bottom-up, 
because the references in both directions are unique. We 
always know through which lower level we reached the actual 
level, but also where the reference was made in this higher 
row. 

During the description of the data structure I will say that 
an element has the value "x" if the kind part of that record 
is assigned "x". In this structure two kinds of rows can be 
distinguished. The rows in which all the elements are zero 
will be called the sum-rows as they represent an or
function. The sub parts of these elements point at a com
pound which is a term of the or-function. All the other rows 
are called product-rows as they represent an and-function. 
An element with value (-1) is a factor representing a com
pound. The sub part of this special factor element points at 
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this compound. 

There are two elements involved with the presented inter
change operation. The first is the last edge of the uncom
pleted path. It is called "used". The second is the element, 
called "object", which is tried to be moved. An interchange 
run is successful if at the end "used" and "object" are con
nected to each other. 

The elements "used" and "object" are both members of a 
branch in the data structure, not necessarily distinct 
branches. A branch is usually part of a tree in which a root 
can be distinguished. The former tree may be part of another 
tree which has another root. In this way the final root of 
the data structure is reached. So when mounting the trees 
out of the elements, a number of roots is traversed. But 
somewhere there exists a tree for "used" and one for 
"object" which will have an equal root. The first root that 
is encountered in this way is now called "root". 

To make things even more clear let "g" in figure 6.2 be the 
value of "used" and "h" the value of "object". The third row 
is now called the root-row of "gil and "h". The reference to 
"g" and "h" can be tracked back by bottom-up search. The 
element "h" is part of row nine, and this row is referenced 
from row three. The element "g" is part of row eight. This 
row is referenced from the second element of row six. Row 
six is referenced from the second element of row five. Row 
five in turn is referenced from the second element of row 
three. The second element of row three is the root of the 
tree that contains "gil. The third element of row three is 
the root of the tree that contains "h". 

Due to the hierarchy there always exists a row from which 
both "used" and "object" have a different reference. This 
row is called the "root". In this root-row at least two ele
ments are subroots. One of the used-tree, the other of the 
object-tree. If the element is an edge, the reference is 
the element itself. If the root-row is a product row it is 
important to know whether the reference to "used" is 
situated before or after the reference to "object" when 
reading the rows from left to right. The boolean first is 
true if "used" was first referenced, otherwise false. The 
variable position gets a coded value for the position of 
"used" in its subtree: 
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used at top of the tree position - 1 
2 
o 

-1 

used is the only element in its tree 
used somewhere in between top and bottom 
used at the bottom of the tree 

If the root-row is a sum-row the boolean first 
importance. There are a few values of 
(first,position) for which no shifting of "object" 
ful. If "root" is a product-row they are: 

first - true 
false 

position - 1 or 0 
-lor 0 

is of no 
the pair 
is use· 

If "root" is a sum-row position - 0 will yield no useful 
shift. If after this selection "object" is still in for a 
switch operation, all the elements from behind used-tree 
i.e. the tree containing "used" , up to and including the 
object-tree are screened for availability. If there are ele
ments found that are already part of the path a shift opera
tion may be impossible because the path and the data struc
ture could become inconsistent with each other. This screen
ing is done by procedure "still_free". I will illustrate all 
this with an example. 

Let 7 - i-I - a - 3 be a sequence of an uncompleted path 
in the graph shown in figure 6.3 The numbers in the 
sequence correspond with the node numbers in this graph. If 
we want to shift edge "f" next to edge "a", i.e. used - "a" 
and object - "f" the following steps are made. The root is 
row 2 and we see that "a" is stored in row 2 and "fU in row 
7. The tree containing "f" has its top behind "a". So first 
becomes true. As "a" is the only member in its tree, its 
position is assigned the number 2 (connection to top and 
bottom). These two values mean that "f" is still in for 
switching. Now all elements between "a" and the "f-tree" are 
scanned by procedure still_free. 

The element behind the one containing "b" is a factor 
pointer (kind - -1). It points at row 3. Row three is a 
sum-row. All the terms of this row are consecutively 
scanned. Successively the following edges are screened: c -
d - e - f - g - h . In our example all these edges are still 
free for use and thus "object" can be switched. If "root" is 
a product-row than procedure "switch" evaluates the boolean 
first to determine the shift direction. If first-true than 
"object" must be moved up in its tree, otherwise it must be 
moved down. If however "root ll is a sum-row, the value of 
position determines the shift direction. A position value of 
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1 means a shift up in the tree, a value of 2 a shift down. 
For position-2 both directions are possible, but I choose to 
move "object" up in that case. In our example "root" 1s a 
product-row and first is true, so "f" will be moved up in 
the tree. 

The shift operation starts in the row containing "object". 
Here "f" is shifted to the first place in row 7. Row 7 is 
referenced out of row 6 which is a sum-row. A sum-row is of 
no importance for the tree position of "object". Row 6 is 
referenced out of row 5 which is a product-row. The pointer 
to the previous compound is moved to the first position of 
row 5. Row 5 is referenced from row 3 which is again a sum
row and this has no implications for the position of 
"object". Row 3 is referenced from "root". In "root" we 
notice that "b" lies next to the pointer to the previous 
compound and so no shift needs to be done. "f" will now be 
connected to "a" in the transformed graph (see figure 6.3 ). 

~ 1 

b 3 L 

c 1 

original graph 2 modified qraph 

figure 6.3 

6.2 THE INTERCHANGE TOOL USED IN THE BASIC ALGORITHM 

The procedure INTERCHANGE is called from the procedure 
TRACE. Because this utility may take a considerable extra 
amount of time it will only be run in case no solution was 
found for a certain pair of startpoints applying the basic 
algorithm. The boolean menu2 marks whether a normal trace or 
an extended trace operation incorporating the interchange 
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mechanism is executed. 

As this program job was already taking too long I have 
implemented the procedure INTERCHANGE in a simple version. 
The presented implementation of "interchange" only covers a 
small percentage of all possible cases in which it can be 
applied. A more elaborate use of this mechanism will yield 
increased speed and performance. 

Only minor changes are made in procedure erace to fit in the 
interchange mechanism. The actions performed by erace can be 
described as follows. The procedure first searches in graphl 
for an adjacent edge (-object) with the last edge in the 
uncompleted path (-used). If no according edge is found in 
graph2 the procedure interchange is executed. This procedure 
searches in graph2 for an edge equal to the one found in 
graphl. If one is found, an attempt is made to switch the 
sequences in graph2 in a way that this edge becomes adjacent 
to "used". If the interchange operation was successful a new 
version of matrix2 is constructed for the changed graph. 
Because there already exists an uncompleted path the accord
ing elements in matrix2 have to be deleted. As procedure 
buildmaerix will generally change some nodenumbers, node tree 
must be adjusted too. This adjustments on those arrays are 
done by procedure adjusearray. After this intervention of 
ineerchange a trace operation can be performed which will 
append one more edge to the uncompleted path. 
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7. SUPPORTING PROCEDURES 

Apart from the procedures discussed above some additional 
procedures are applied to secure smooth operation. The input 
for the cell generator consists of two boolean functions, 
the second being the inverse of the first. A possible input 
could like : 

f1 -(a+b.(d+e.(f+g.k.1.(h+i»»; 
f2 -(a. (b+d. (e+f. (g+k+1+h.i»»; 

These two functions are parsed by the procedure col-parser. 
The output is stored according the term structure discussed 
under chapter 6. This program was available from the group. 
Some additional code had to be inserted to adjust the pro
gram for its task. The input for this procedure is a file 
with two boolean functions, like the set described above. 

The procedure buildmatrix is called from col-parser as well 
as from trace. It establishes the incidence matrix out of 
the term datastructure. Node number 1 is assigned to the 
first node in the first row of this structure and node 
number 2 to the last node of this row. The other nodes are 
assigned in order of appearance (see also example). 

-1 -1 -1 @ -1 @ -1 ® -1 @ a 
0 0 @ 0 0 @ , 
• b @ • @ b @ b 
c ~ c @ d 
d @ d ® 
e ® e @ e 

simplified term node 4ssiqnment graph representation 

figure 7.1 

A sum-row only needs a top and a bottom node, for all terms 
are connected between those nodes. Top and bottom node are 
resp. the first and the last position of the row. If the 
sum-row is not the first row in the term representation 
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structure these numbers are inherited from the source row. 

In a product-row a new node number is introduced for every 
connection of factors within that row except for the first 
and the last node which are inherited from the source row or 
in case the product-row is the first row in the structure, 
they are automaticly assigned the number 1 and 2. 
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8. SUGGESTIONS 

There are still a number of things to be done. 
is slow for large boolean expressions and has 
solving them. 

The program 
difficulty in 

In general there is no need to process arrays for all the 
start-couples currently generated by procedure startpoints. 
As the number of tracks normally differs no more than 1 or 2 
it could be sufficient to process only a certain number of 
solutions and choosing the best one out of them. 

The current version of procedure trace is a first start to a 
powerful routine capable of tracing paths in large graphs. 
Two menus are used, one without the interchange utility, the 
other with the simpliest form of this tool. The latter only 
has the possibility of searching for an object in one tree 
and in case of success modifying that part of the tree. To 
enjoy the full power of the interchange technique a search 
and modification operation in both trees must be possible. 

Because using the interchange mechanism may take a consider
able amount of time when large boolean expressions are 
evaluated it may be interesting to process a less optimal 
solution but in a shorter time. The exchange between accu
racy and cpu-time can be achieved by introducing more breaks 
than strictly necessary. One could think of first trying 
breaks between an odd-even pair of points and where needed 
inserting breaks between two even points. Notice that the 
length will always increase but that also the width of the 
cell may increase by doing so. 
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APPENDIX A EXAMPLE OF NETDECOHPOSITION OUTPUT 

The function that is to be split up into 1mplementable gates 
1s : 

fl: a.b.g+ c.d.f+ b.g.l+ c.d.e.i+ j.k.l+ a.c.h.k.l+ b.e+ 
d.l+ e.f.g+ b.c.d+ f.1.1+ a.c.j; 

The output of the net-decomposition un1t is 

gat017 :-(int013 +g e +1 1 ); 
gat018 :-(1nt016 +int014 ); 
gat019 :-(int015 +d ); 
gat020 :-(e +int013 ); 
gat021 :-(int015 a +i int013 e +int014 h int016 ); 
gat022 :-(gat021 (f' +gat017' )(j' +gat018' »; 
gat023 :-«1' +gat019' )(b' +gat020' »; 
gat024 :-(gat022 +gat023 ); 
fl :-(gat024); 
gat026 :-(d c ); 
int013 :-(gat026 ); 
gat028 :-(a c ); 
int014 :-(gat028 ); 
gat030 :-(b g ); 
int015 :-(gat030 ); 
gat032 :-(1 k ); 
int016 :-(gat032 ); 
gat020':-(gat020 ); 
b' :-(b ); 
gat019' :-(gat019 ); 
I' :-(1 ); 
gat018':-(gat018 ); 
j' :-(j ); 
gat017' :-(gat017 ); 
f' :-(f ); 
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APPENDIX B TYl'ICAL OUTPUT OF THE CELL GENERATOR 

The input for the Cell generator looks like 

fl -(a+c.d.(e+g.h.i.j.(k.l+m»); 
f2 -(a. (c+d+e. (g+h+i+j+m. (k+l»»; 

(f2 is the complement of fl) 

startl- 8start2- 5 
start1- lstart2- 1 
start1- 1start2- 2 
startl- 2start2- 1 

'lep.gth 
. of 
ce1 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 

node 
in 

graphl 
2 
1 
3 
4 
2 
4 
5 
6 
7 
8 
2 
9 
8 

node 
in 

graph2 
1 
3 
2 
3 
4 
4 
2 
4 
2 
4 
5 
2 
5 

transistor 
in 

arrayl 
a 
c 
d 
e 
br 
g 
h 
i 
j 
m 
1 
k 

number of tracks for this array- 3 

transistor 
in 

array2 
a 
c 
d 
e 
sp 
g 
h 
i 
j 
m 
1 
k 
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Appendix B Typical output of the Cell Generator 

, 
startl- 2start2- 2 

length node riode transistor transistor 
of in in itl in 

cel graphl graph2 arrayl array2 
1 2 2 1 1 
2 9 5 k k 
3 8 2 j j 
4 7 4 i i 
5 6 2 h h 
6 5 " g g 
7 4 2 d d 
8 3 ~ c c 
9 1 2 sp br 

10 i 1 a a 
11 2 j e e 
12 4 4 Dr sp 
13 2 4 m m 
14 8 5 

number of tracks for this array- 4 

startl- lstart2- 3 
start1- 2start2- 3 

start1- 2start2- 4 

length node node transistor translstor 
of iri in i.h in 

ce1 graph1 graph2 arrayl array2 
1 2 4 e e 
2 4 3 d d 
3 3 2 c c 
4 1 3 a a 
5 2 1 br br 
6 4 4 g g 
7 5 2 h h 
8 6 4 i i 
9 7 2 j j 

10 8 4 m m 
11 2 5 1 1 
12 9 2 k k 
13 8 5 

number of tracks for this array- 4 

start1- 2start2- 5 
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Appendix B Typical output of the Cell Generator 

startl- 3start2- 2 

length node node transistor transistor 
of in in in in 

cel graphl graph2 arrayl array2 
1 3 2 c c 
2 1 3 a a 
3 2 1 sp br 
4 2 2 1 1 
5 9 5 k k 
6 8 2 j j 
7 7 4 i i 
8 6 2 h h 
9 5 4 g g 

10 4 2 d d 
11 3 3 br sp 
12 4 3 e e 
13 2 4 m m 
14 8 5 

number of tracks for this array- 5 

startl- 3start2- 3 

length node node transistor transistor 
of in in in in 

cel graphl graph2 array1 array2 
1 3 3 d d 
2 4 2 g g 
3 5 4 h h 
4 6 3 i i 
5 7 4 j j 
6 8 3 m m 
7 2 5 sp br 
8 2 1 a a 
9 1 3 c c 

10 3 2 br sp 
11 4 2 e e 
12 2 4 1 1 
13 9 5 k k 
14 8 4 

number of tracks for this array- 5 
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Appendix B Typical output of the Cell Generator 

start1- 4start2- 2 

length node node transistor transistor 
of in in in in 

eel graph1 graph2 array1 array2 
1 4 2 d d 
2 3 3 c c 
3 1 2 sp br 
4 1 1 a a 
5 2 3 e e 
6 4 4 g g 
7 5 2 h h 
8 6 4 i i 
9 7 2 j j 

10 8 4 m m 
11 2 5 1 1 
12 9 2 k k 
13 8 5 

number of tracks for this array- 4 

startl- 4start2- 3 

length node node transistor transistor 
of in in in in 

eel graph1 graph2 array1 array2 
1 4 3 d d 
2 3 2 c c 
3 1 3 a a 
4 2 1 sp br 
5 2 3 e e 
6 4 4 g g 
7 5 2 h h 
8 6 4 i i 
9 7 2 j j 

10 8 4 m m 
11 2 5 1 1 
12 9 2 k k 
13 8 5 

number of tracks for this array- 5 

start1- 4start2- 4 
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Appendix B Typical output of the Cell Generator 

startl- Sstart2- 2 

length node node transistor transistor 
of in in in in 

cel graphl graph2 arrayl array2 
1 5 2 g g 
2 4 4 e e 
3 2 3 a a 
4 1 1 sp br 
5 1 2 c c 
6 3 3 d d 
7 4 2 br sp 
8 5 2 h h 
9 6 4 i i 

10 7 2 j j 
11 8 4 m m 
12 2 5 1 1 
13 9 2 k k 
14 8 5 

number of tracks for this array- 5 

startl- Sstart2- 4 

length node node transistor transistor 
of in in in in 

cel graphl graph2 arrayl array2 
1 5 4 g g 
2 4 3 e e 
3 2 4 m m 
4 8 5 k k 
5 9 3 1 1 
6 2 5 sp br 
7 2 1 a a 
8 1 3 c c 
9 3 2 d d 

10 4 3 br sp 
11 5 3 h h 
12 6 4 i i 
13 7 3 j j 
14 8 4 

number of tracks for this array- 4 
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Appendix B Typical output of the Cell Generator 

start1- 6start2- 2 

length node node transistor transistor 
of in in in in 

eel graph1 graph2 array1 array2 
1 6 2 h h 
2 5 4 g g 
3 4 2 d d 
4 3 3 c c 
5 1 2 sp br 
6 1 1 a a 
7 2 3 e e 
8 4 4 br sp 
9 6 4 i i 

10 7 2 j j 
11 8 4 m m 
12 2 5 1 1 
13 9 2 k k 
14 8 5 

number of tracks for this array- 5 

start1- 6start2- 4 

start1- 7start2- 2 

length node node transistor transistor 
of in in in in 

ce1 graph1 graph2 array1 array2 
1 7 2 i i 
2 6 4 h h 
3 5 2 g g 
4 4 4 e e 
5 2 3 a a 
6 1 1 sp br 
7 1 2 c c 
8 3 3 d d 
9 4 2 br sp 

10 7 2 j j 
11 8 4 m m 
12 2 5 1 1 
13 9 2 k k 
14 8 5 

number of tracks for this array- 5 
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Appendix B Typical output of the Cell Generator 

startl- 7start2- 4 

length node node transistor transistor 
of in in in in 

cel graphl graph2 arrayl array2 
1 7 4 i i 
2 6 3 h h 
3 5 4 g g 
4 4 3 e e 
5 2 4 m m 
6 8 5 k k 
7 9 3 1 1 
8 2 5 sp br 
9 2 1 a a 

10 1 3 c c 
11 3 2 d d 
12 4 3 br sp 
13 7 3 j j 
14 8 4 

number of tracks for this array- 4 

start1- 8start2- 2 

length node node transistor transistor 
of in in in in 

cel graphl graph2 arrayl array2 
1 8 2 j j 
2 7 4 i i 
3 6 3 h h 
4 5 4 g g 
5 4 3 e e 
6 2 4 m m 
7 8 5 k k 
8 9 3 1 1 
9 2 5 sp br 

10 2 1 a a 
11 1 3 c c 
12 3 2 d d 
13 4 3 

number of tracks for this array- 5 
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Appendix B : Typical output of the Cell Generator 

start1- 8start2- 4 

length node node transistor transistor 
of in in in in 

ce1 graph1 graph2 array1 array2 
1 8 4 br sp 
2 4 4 g g 
3 5 2 h h 
4 6 4 i i 
5 7 2 j j 
6 8 4 m m 
7 2 5 sp br 
8 2 1 a a 
9 1 3 c c 

10 3 2 d d 
11 4 3 e e 
12 2 4 1 1 
13 9 5 k k 
14 8 4 

number of tracks for this array- 5 

start1- 8start2- 5 

start1- 9start2- 2 

length node node transistor transistor 
of in in in in 

cel graph1 graph2 array1 array2 
1 9 2 1 1 
2 2 5 m m 
3 8 4 j j 
4 7 2 i i 
5 6 4 h h 
6 5 2 g g 
7 4 4 e e 
8 2 3 a a 
9 1 1 sp br 

10 1 2 c c 
11 3 3 d d 
12 4 2 br sp 
13 8 2 k k 
14 9 5 

number of tracks for this array- 4 

start1- 9start2- 5 
no other startpoints 
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APPENDIX C STORAGE AND USE OF THE PROGRAM 

The directory of the Cmos-Ceil-Generator is called 
Cmos_cell. It is located under /users/rob_e/stage . The 
files cel.p and main.p are similar and contain the pascal 
source. The files main and eel are the respective executable 
versions. They need a file like inputexample as their input. 
The output is directed to eel.out. The complete directory 
structure is given below. 

Cmos cell: 

a.out 
change 
colparse 
parser 

cel 
chtest.con 
inputexample 
spath 

Cmos_cell/change: 

findr"ot 
switch 

interch.var 
switchable 

Cmos_cell/colparse: 

C commhent.h addtokwtab.h 
error.h finalscan.h 
identifier. h initscan.h 
list.h nested_comm.h 
peeknextch.h scanner.h 
trans.h trans_esc.h 

Cmos_cell/parser: 

cel.out 
chtest. typ 
main 

cel.p 
chtest.var 
main.p 

interchange.h still free 
verzameling 

col_parser.h comment.h 
getch.h handle - esc.h 
kwtab.h lex.h 
number.h options.h 
stringconst.h symbuf.h 

col_parser. con col_parser.typ col_parser.var col_struc.con 
col _struc.typ col - struc.var 
cor.var error. con 
kwsyms.con kwtab.con 
lex.ext lex.typ 
list.var scanner,con 

Cmos_cell/spath: 

adjustarray.h break 
exist mount 
startpoints trace 

cor.con cor. typ 
error.var general.typ 
kwtab.var lex. con 
lex.var list.con 
scanner.var 

buildmatrix.h copyarray2.h 
readtree resetarray2.h 
tracks writematrix.h 
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