

Generating layouts for random logic : cell generation schemes

Citation for published version (APA):
Engelshoven, van, R. J., & Theeuwen, J. F. M. (1986). Generating layouts for random logic : cell generation
schemes. (EUT report. E, Fac. of Electrical Engineering; Vol. 86-E-164). Technische Universiteit Eindhoven.

Document status and date:
Published: 01/01/1986

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/d80985bb-c76e-4e81-86fb-d82ca5707c78

Generating Layouts for
Random Logic:
Cell Generation Schemes
by
R.J. van Engelshoven
and
J.F.M. Theeuwen

EUT Report 86-E-164
ISBN 90-6144-164-1
ISSN 0167-9708

November 1986

Eindhoven University of Technology Research Reports

EINDHOVEN UNIVERSITY OF TECHNOLOGY

Department of Electrical Engineering

Eindhoven The Netherlands

GENERATING LAYOUTS FOR RANDOM LOGIC:

Cell generation schemes

by

R.J. van Engelshoven

and

J.F.M. Theeuwen

EUT Report 86-E-164

ISBN 90-6144-164-1

ISSN 0167-9708

Coden: TEUEDE

Eindhoven

November 1986

COOPERATIVE DEVELOPMENT OF AN INTEGRATED, HIERARCHICAL AND MULTIVIEW
VLSI-DESIGN SYSTEM WITH DISTRIBUTED MANAGEMENT ON WORKSTATioNS.
(Multiview VLSl-Design System lCD). Code: 991.
Report on activity 5.3.A: Generating layouts for random logic: Cell
generation schemes.

CIP-GEGEVENS KONINKLIJKE BIBLIOTHEEK, DEN HAAG

Engelshoven, R.J. van

Generating layouts for random logic: cell generation schemes /
by R.J. van Engelshoven and J.F.M. Theeuwen. - Eindhoven:
University of Technology. - Fig.,tab. - (Eindhoven University of
Technology research reports / Department of Electrical Engineering,
ISSN 0167-9708; 86-E-164)
Met lit. opg., reg.
ISBN 90~6144-164-1
51S0 664.3 UDC 621.382:681.3.06 NUG1 832
Trefw.: elektronische schakelingen; computer aided design.

COOPERATIVE DEVELOPMENT OF AN INTEGRATED, HIERARCHICAL

AND MULTIVIEW VLSI-DESIGN SYSTEM WITH DISTRIBUTED

MANAGEMENT ON WORKSTATIONS.

(Multiview VLSI-design System ICD)

code: 991

DELIVERABLE

Report on activity 5.3.A: Generating layouts for random
logic: Cell generation schemes.

Abstract:
Starting from a boolean expression the process of generating
a linear transistor array, also called a Cell, is described
for NMOS. This result is used to obtain a practical method
for generating CMOS cells.

The adopted Depth First Search provides a clearly structured
basic algorithm consisting of modules that can easily be
adjusted or extended. In this way the cell generator may be
tuned to calculate solutions in minimum cpu-time or
solutions that need minimum ,area or even have fitting
dimensions regarding their surrounding cells.

finally a data structure is presented that makes it possible
to modify the structure of the network without changing the
implemented logic function. This approach is then applied to
the basic algorithm.

deliverable code: WP 5, task: 5.3, activity: 5.3.A.

date: 01 - 11 - 1986

partner: Eindhoven University of Technology

author: R.J. van Engelshoven, J.F.M. Theeuwen.

- iii -

Abstract

Starting from a boolean expression the process of generating
a linear transistor array, also called a cell, is described
for NMOSa This result is used to obtain a practical method for
generating CMOS cells. The adopted Depth First Search provides
a clearly structured basic algorithm consisting of modules that
can easily be adjusted or extended a In this way the cell generator
may be tuned to calculate solutions in minimum cpu-time or solutions
that need minimum area or even have fitting dimensions regarding
their surrounding cells~ Finally a data structure is presented that
makes it possible to modify the structure of the network without,
changing the implemented logic function a This approach is then
applied to the basic algorithm.

Engelshoven, RaJ. van and JaFaMa Theeuwen
GENERATING LAYOUTS FOR RANDOM LOGIC: Cell generation schemes.
Department of Electrical Engineering, Eindhoven University of
Technology, 1986.
EUT Report 86-E-164

Address of the authors:

Automatic System Design Group,
Department of Electrical Engineering,
Eindhoven University Of Technology,
P.O. Box 513,
5600 MB EINDHOVEN,
The Netherlands

- iv -

CONTENTS

1 . INTRODUCTION.......... 1

2. LINEAR ARRAYS FOR NMOS AND CMOS..................... 2

3. SOME USEFUL DEFINITIONS AND THEOREMS CONCERNING
GRAPHS.. 6

4. REFLECTIONS OVER A STRATEGy......................... 8

5. BASIC ALGORITHM 10

6. THE INTERCHANGE FACILITY 13
6.1 A NEW DATA STRUCTURE 13
6.2 THE INTERCHANGE TOOL USED IN THE BASIC ALGO-

RITHM , 19

7. SUPPORTING PROCEDURES............................... 21

8. SUGGESTIONS............. 23

9 . REFERENCES.. 24

APPENDIX A EXAMPLE OF NETDECOMPOSITION OUTPUT 25

APPENDIX B TYPICAL OUTPUT OF THE CELL GENERA-
TOR " 26

APPENDIX C : STORAGE AND USE OF THE PROGRAM 34

- 1 -

1. INTRODUCTION

At the laboratory ES (Automatic System Design) of the
Department of Electrical Engineering of the Eindhoven
University of Technology effort is made on the construction
of silicon compilers. That is the design of systems that
automate the design of integrated circuits. One project is
concerned with the construction of a macro cell generator
for combinatorial logic. This combinatorial logic can be
used in larger systems to control the dataflow in the
datapath. A control function of a finite state machine can
be described by a function of boolean variables representing
inputs and internal states of that machine.

The macro cell generator consists of a logic editor, a
netdecomposition unit, a cell generator, a placement unit
and a router. The logic editor first simplifies the
functions by removing redundancy. Then it decomposes the
functions, that is tracking them for common parts for which
a new variable is introduced. To make those functions
suitable for a certain technology (Nmos or Cmos) a
netdecomposition is done. The next step is the
implementation of these separate functions into small layout
islands, called cells , consisting of nands, nors, inverters
and combinations of them. The two next steps, placement and
routing, speak for themselves.

Up till now only a cell generator for Nmos was available.
But now that the introduction of Cmos technology at the
EFFIC, the IC-fabrication laboratory at the Eindhoven
University of Technology, is at hand there is the necessity
to adjust the macro cell generator for this technology.
There is a growing desire to come to a flexible system
suited for a wide range of technologies. It was our job to
write a flexible cell generator for Cmos that generates the
cell layout for a given boolean function.

- 2 -

2. LINEAR ARRAYS FOR NMOS AND CMOS

An Nmos gate exists of a load (depletion) transistor and
depending on the function to be realized some input or
driver transistors. Both transistors are of the n-channel
type (p-substrate) and can be constructed in the same type
of diffusion. Figure 2.1. shows the circuit of a 3-input
Nand gate (a), and the realization of a more complex non
optimized function f: -(a. (b.c+d+c.(e.f+b.d»); (b), where
"-" means the negation.

(a) (b)

figure 2.1

The number of series and parallel connections is restricted
by the used technology. The Nmos process currently running
at the Effic limits the number of parallel and series con
nections to a maximum of three. As already mentioned in the
introduction a boolean control function is transformed by
the logic editor and the netdecomposition unit into a set of
equations that are suited for implementation in a certain
target technology. Together they realize the original
boolean function. The function "f" will yield the following
set of implementable equations for the current EFFIe Nmos
process (figure 2.2). Appendix A gives the same results for
a more complex function.

gatOOS
gat009
f
gatOn
int007
gatOOS'
int007'

- 3 -

(b +f e);
(a d);
(gat009 (int007' +gatOOS' »;
(a c);
(gatOn);
(gatOOS);
(int007);

figure 2.2

This set of equations has to be realized in the hardware of
the target technology. Each function is realized in a confi
guration called a cell. Experience has thought that a
linear transistor array is the best suited form to implement
those functions. A linear array consists of a diffusion
area over which polysilicon tracks are laid and thus forming
the transistors of the circuit. Over this array aluminium
interconnections are made to accomplish the network connec
tions. To make things clear figure 2.3 shows the layout of
the cell representing the function nfn of figure 2.1.b .

poly

;c
\ , I

f"\.... via

Va.

signals
Ir1 _-.::: :':: ; ; ':'::E

I ! '-,,-
, 'a
~

out

figure 2.3

The layout of such an array has to be optimized in length
and width. This realization is not always possible without
modifying (not changing) the network. Modification of a net
work means, changing the sequences in series connections,
duplicating transistors, introducing transistors with
grounded gates (breaks), etc .. The logic function of the

- 4 -

network must not be changed.

Turning to static Cmos one may notice that the most striking
difference between Nmos and Cmos when observing the circuits
is the number of transistors needed for both technologies
(see fig. 2.4). Nmos only needs one time the number of
inputs plus one (load transistor) as opposed to Cmos that
needs exactly twice the number of inputs. In Cmos the gate
function and its complement are realized in resp. the N
field and the P-field. Both functions are realized in two
separate arrays, each of which is projected on one field.
Because both functions need the same inputs a significant
gain in space and complexity can be made by placing the
arrays side by side and arranging the transistors so that no
additional routing in the space between both arrays is
needed. Figure 2.4.a shows the optimized circuit and a non
optimized cell layout (b) of the function "f" mentioned
above.

'+-t'+t-+-++-+-out
f<>-----t--+t-tH--j.Lj..<
b -+-+-H-'il1-t
e,-t:t+-t-........,~
d 0-+--40-+

_0 ,.
,

(<>-jf---t-'-fo

a

:iQIH Vss ::~.

out i . - - !-:!
[J

l-

0

.

-

~ :r : :1-

- - --F- ::
~ -- 0 -

a : F: 0 - -- - -
I- I-

-- ~:~---~

~~ - -- c'n - -
:~- I~ --

- - - -
-~ -- :: :0

r - : 0
L.. L.. L..

a d f e (b (d b

(a) (b)

figure 2.4

n

A network of transistors (mathematically a graph with
labeled edges) will be realized into a diffusion strip, i.e.
a linear list of transistors (a linear array), in which all
nodes that were connected in the original network (graph)
have to be connected again by strips of metal. In future we
will talk, in mathematical terms, about intervals instead of
metal strips because they are due to the nodes in the graph.
One or more metal strips can be placed behind each other in

- 5 -

one layer, called a track. If two metal strips
should have an overlap they can not be placed
track. They must be placed in separate tracks.

(intervals)
in the same

- 6 -

3. SOME USEFUL DEFINITIONS AND THEOREMS CONCERNING GRAPHS

As mentioned in the previous chapter a transistor network
can be represented by a graph with labeled edges. Figure 3.1
gives the graph representation of the network that belongs
to the function "i" that was presented earlier.

a

b

figure 3.1

In the next we will talk about graphs and edges instead of
circuits and transistors. Before proceeding with the algo
rithms, a few items related to graph theory are defined.

Definition 1.

A path in a graph G is
final vertex of one
one except perhaps the
two are not the same.

Definition 2.

any sequence of edges
is the initial vertex
first and last vertex

where the
of the next
when those

The degree of a node v in graph G, denoted degree (v) , is
the number of edges incident with v.

Since every edge is incident with two nodes, it
2 to the sum of the degrees of the nodes. Thus
following result.

contributes
we find the

- 7 -

Theorem 1.

The sum of the degrees of the nodes of a graph G is
twice the number of edges:

SUM(i)[degree(v(i»} - 2 * t

Theorem 2.

In any graph the number of nodes of odd degree is even.

Definition 3.

An Eulerpath is a path which contains each edge exactly
once.

If an Eulerpath exists, it means that the graph can be drawn
on paper by following this path and without lifting the pen
from the paper.

Definition 4.

An Eulergraph is a graph in which an Eulerpath exists.

The basic theorem on the existence of an Eulerpath is the
next:

Theorem 3.

A connected, undirected graph G contains an Eulerpath if
and only if the number of nodes of odd degree is 0 or 2.

- 8 -

4. REFLECTIONS OVER A STRATEGY

The main concern while constructing a cell is that its area
is minimized. So both length and width have to be optim
ized. To minimize the length the following points are of
importance:

• use each edge only once
• use a minimum number of breaks

For a minimum width the next rules can be mentioned:

• minimize the number of tracks
• minimize the number of intervals
• make the intervals short

Before proceeding with these observations, first a short
explanation about the phenomenon called break. A break is
realized with a transistor that is permanently blocked. The
diffusion area is divided in two separate parts, where the
diffusion area at the left-hand side and the right-hand side
of the break-transistor each represent a different node in
the graph which are not connected. The break-transistor con
tributes to the length of the array and in cases where a
point of even degree is involved in a break it contributes
to the number of intervals which may eventually increase the
number of tracks.

Looking at the conditions for which the array length is
minimized, we may notice a strong resemblance with the pro
perties of an Eulerpath. The minimum number of breaks that
have to be added is halve the number of points with odd
degree minus one, as a path can be made in a graph with two
odd points.

In fact it is easy to see that an eulerpath will yield
minimum length of the transistor array. An eulerpath will
however not always give minimum width. Often a large number
of eulerpaths can be constructed in a graph each having dif
ferent interconnections that will fit in a specific number
of tracks.

During my practical assignment I have implemented the method
of local cycles described by [Talsma]. It is a method to
reduce the length of the intervals which is useful as this
increases the packing of the tracks which reduces the number
of tracks. I did not proceed with this idea because the
algorithm took more than 2 times the amount of cpu-time than
a Depth First Search (DFS) oriented algorithm. Another
argument for rejecting this approach is the complexity of

- 9 -

the method certainly when using it in Cmos cell generation.
The method of local cycles may be reconsidered when networks
of over 20 transistors have to be handled because the time
used by DFS increases more than linear with the number of
edges where local cycles is linear. For these amount of
transistors DFS needs additional techniques (chapter 6)
which conSiderably increase the processing time.

With the DFS strategy I have adopted a large number of pos
sible eulerpaths are found. Out of these solutions the path
that gives minimum width or that has the shortest sequence
of edges can be selected. The selection can also be made on
the kind of sequence. A suitable sequence of edges may for
instance reduce the interconnection length between different
cells.

- 10 -

5. BASIC ALGORITHM

We assume the data of the 2 boolean functions (f and f')to
be stored in two incidence matrices called matrix1 and
matrix2. The rows represent the nodes and the columns
represent the edges in the graph representation of such a
function. If edge i is connected to node k and node 1, ele
ment (i,k) and (i,l) are one while the rest of that column
is zero. Further we choose two startpoints, both matching a
node in one of the graphs. The job is now to find two ident
ical eu1erpaths, one in each graph.

In the proceeding descriptions we will deal with two graphs
representing both boolean functions. A great deal of the
variables apply to both graphs and have a postscript (lor
2) to indicate the referenced graph. Where variables are
used without postscript, both variables are intended. Here
in short some variables of interest for a good comprehension
of the text.

• start

• matrix

• edgepath

• nodepath

• point

• rdegree

initial startpoints

the incidence matrices

gives the sequence of edges the path exists of

gives the sequence of nodes the path exists of

last point that was included in nodepath

array that keeps the restdegree of all nodes
in the graph i.e. the initial degree minus the
number of edges adjacent to that node that are
part of the path.

For a flowchart of the basic algorithm, refer to fig. 5.1.

Out of the startpoints or out of the points that were
reached earlier a common edge is sought for. When this edge
is found, it is appended to both paths stored in edgepath.
The new nodes are appended to nodepath. These nodes are
assigned to pointl and point2. The appropriate elements in
matrix are reset and the restdegrees are updated. With the
newly found points a new trace operation can be started.

When no common edge can be found, a break might be a solu
tion. A break is only considered if from the newly found
nodes by procedure BREAK a successful trace operation is
possible. Breaks are only made from one odd point to
another. This to limit the additional length of the path.

- 11 -

Ino other atartpoints' ~ __ ~y-<

figure 5.1

- 12 -

Three different situations can be distinguished when making
a break:

• only point1 is odd

• only point2 is odd

• both points are odd

This may result in
edgepath1 and a space
tor) in edgepath2.

This may result in
edgepath2 and a space
tor) in edgepath1.

a break in
(no trans is-

a break in
(no transis-

A break may be inserted in both
paths.

When neither a TRACE nor a BREAK was possible one step back
is done in both paths, that is the last edges and points are
deleted from edgepath and nodepath. This operation is done
by procedure HOUNT. If a break was mounted, which means that
pointl and/or point2 is of odd degree, a new break will be
tried to make, for a trace operation has proved unsuccessful
here. If the break operation is not successful the sequence
is mounted one more step, otherwise a new trace operation
can be done. And of course, when no break was mounted a new
trace operation is done.

- 13 -

6 . THE INTERCHANGE FACILITY

6.1 A NEW DATA STRUCTURE

With the help of breaks between odd points it is always pos
sible to find an Eulerpath in a graph. To find however
identical sequences in different graphs, though closely
related, has proved difficult and in some cases impossible
with the basic concept previously described. There are
several techniques to enlarge the probability for a solution
for this problem. One could think of doubling edges, insert
ing breaks between even points etc. They all have one major
disadvantage, that is the additional length of the final
array. Changing the sequence in series connections does not
have this disadvantage. In a logic function the order of
appearance of the factors in a product can be changed
without penalty except for the loss of some time efficiency.
The logic function of the network is not changed but only
the appearance is different. The left and right part of the
next equation realize the same function.

a.b.(c+d)+e.f.(g+h.(i+j).k) - (c+d).a.b+e.(g+(i+j).k.h).f

A main condition to implement this technique is a good
knowledge of the structure of the graph. Changing sequences
in series connections implies that the separate terms and
factors can be identified. Information about the hierarchy
of these factors and terms is needed as factors from a low
level can not be interchanged with factors of a higher
level. To explain what is meant with level : The level of a
variable is defined as the number of pairs of brackets
between which the variable is mentioned. So is the level of
the variable "c" in the preceding expression higher than the
level of factor "a".

All this information can be stored in an incidence matrix if
only the two end nodes can be distinguished. The end nodes
are the points in the electrical network where this is con
nected to the rest of the circuit. Access to the informa
tion stored in the incidence matrix implies a lot of search
work in order to identify a specific factor or term. Mani
pulation of the stored data 1s even worse. It is clear that
for a smooth operation on the data a better accessible data
structure is required.

Therefore we observe a boolean function. Generally it con
sists of a sum of sub-expressions called terms. These terms
may consist of other terms or a product of factors. A factor
may consist of an other SUb-expression or out of a signal.
Note that functions of just one product are not excluded

- 14 -

from this observation. On the basis of this observation a
new data structure or term oriented structure is introduced.
A universal syntax of a boolean expression is given below :

boolean expression::- «term» "+" {<boolean expression>} I
«term» ;

term ::- <term><opt-factor-separator><term> 1 <factor>

factor ::- (<boolean expression>) 1 «signal-name» ;

A signal-name is a legal name of a boolean variable.

The proposed data structure gives optimal access to the
separate parts of the graph i.e. terms and factors. Changing
the sequence of factors in a product simply means moving an
element in a linked list. The data structure exists of two
different elements. First there are the index records that
point to a separate term or factor. Secondly there are the
element records in which the elements are stored or which
carry information about the hierarchy and the kind of
sequence (sum or product) that is pointed at. Fig. 6.1.
illustrates the two types used in the new data structure.

index record element record

1 1 1 1 1
1 verz 1 source 1 next le1point l
1 __ 1 1 __ 1 1

1 1 1 1
1 tranl kind 1 sub 1 next
1 __ 1 __ 1 __ 1_-

figure 6.1

The record variables of index are

• verz

• source

• next

• elpoint

Used to determine the hierarchy with respect to
another row. (see procedure findroot)

An index pointer to a higher row where the
reference is made to this row.

An index pointer to the next row.

This is an element pointer that points at the
first element of a row.

- 15 -

The record variables of element are :

• tran

• kind

• sub

• next

To give
is fed
6.2) is

If an element record contains data of an edge
(transistor), this variable gives the name of
the according transistor.

If the element contains data of an edge, this
variable is equal to that edge number. If this
element represents a compound factor it has
value (-1). When this element represents a term
"kind" will be zero.

This index pointer points at the row (index
record) where the description of the factor or
term (compound) is continued. When no compound
is referenced, but just an edge, this pointer is
nil.

points at the next element record of the row.

an idea of how a boolean function looks like when it
into this new data format, an example (see figure

presented for the function

f - a.b.(c+d.(e.f+g)+h)+i.j

The advantage of this new data structure is the clear
hierarchical build-up so that the different levels can be
easily recognized. All the levels can be easyly accessed as
only one level is stored in a row. The structure can be
walked through in both directions, top-down and bottom-up,
because the references in both directions are unique. We
always know through which lower level we reached the actual
level, but also where the reference was made in this higher
row.

During the description of the data structure I will say that
an element has the value "x" if the kind part of that record
is assigned "x". In this structure two kinds of rows can be
distinguished. The rows in which all the elements are zero
will be called the sum-rows as they represent an or
function. The sub parts of these elements point at a com
pound which is a term of the or-function. All the other rows
are called product-rows as they represent an and-function.
An element with value (-1) is a factor representing a com
pound. The sub part of this special factor element points at

- 16 -

functionJ]tr

, /
""-.I 1)f, 0 1 ~, 0 I

.I I\~
1 ,

, ,
I 1 '-.1 a _1 ~ b I

~II -1 I '1 , , 1\ I
, II W

, '" 1 ~, 0 1 '-I 0 1 '-I 0 I ... 1 , ,
; [\\Ii 1

, ,
I 1 ... r C I .fI

, ; W
--+ 1 ... r d 1 ..J,-1 I '" , I Ii'
• '" J.,

'" ~, 0 r* T 7L111 j I
I " I I

I , II ~
I 1 ... r e 1 '-I f I 1 .fI ,
, II ,~

4 1 '" 9 I T 71.

, [, ~
I I ... r h I .fI

, II ~
1 I ... r 1 1 ..J j 1 " '1

figure 6.2

- 17 -

this compound.

There are two elements involved with the presented inter
change operation. The first is the last edge of the uncom
pleted path. It is called "used". The second is the element,
called "object", which is tried to be moved. An interchange
run is successful if at the end "used" and "object" are con
nected to each other.

The elements "used" and "object" are both members of a
branch in the data structure, not necessarily distinct
branches. A branch is usually part of a tree in which a root
can be distinguished. The former tree may be part of another
tree which has another root. In this way the final root of
the data structure is reached. So when mounting the trees
out of the elements, a number of roots is traversed. But
somewhere there exists a tree for "used" and one for
"object" which will have an equal root. The first root that
is encountered in this way is now called "root".

To make things even more clear let "g" in figure 6.2 be the
value of "used" and "h" the value of "object". The third row
is now called the root-row of "gil and "h". The reference to
"g" and "h" can be tracked back by bottom-up search. The
element "h" is part of row nine, and this row is referenced
from row three. The element "g" is part of row eight. This
row is referenced from the second element of row six. Row
six is referenced from the second element of row five. Row
five in turn is referenced from the second element of row
three. The second element of row three is the root of the
tree that contains "gil. The third element of row three is
the root of the tree that contains "h".

Due to the hierarchy there always exists a row from which
both "used" and "object" have a different reference. This
row is called the "root". In this root-row at least two ele
ments are subroots. One of the used-tree, the other of the
object-tree. If the element is an edge, the reference is
the element itself. If the root-row is a product row it is
important to know whether the reference to "used" is
situated before or after the reference to "object" when
reading the rows from left to right. The boolean first is
true if "used" was first referenced, otherwise false. The
variable position gets a coded value for the position of
"used" in its subtree:

- 18 -

used at top of the tree position - 1
2
o

-1

used is the only element in its tree
used somewhere in between top and bottom
used at the bottom of the tree

If the root-row is a sum-row the boolean first
importance. There are a few values of
(first,position) for which no shifting of "object"
ful. If "root" is a product-row they are:

first - true
false

position - 1 or 0
-lor 0

is of no
the pair
is use·

If "root" is a sum-row position - 0 will yield no useful
shift. If after this selection "object" is still in for a
switch operation, all the elements from behind used-tree
i.e. the tree containing "used" , up to and including the
object-tree are screened for availability. If there are ele
ments found that are already part of the path a shift opera
tion may be impossible because the path and the data struc
ture could become inconsistent with each other. This screen
ing is done by procedure "still_free". I will illustrate all
this with an example.

Let 7 - i-I - a - 3 be a sequence of an uncompleted path
in the graph shown in figure 6.3 The numbers in the
sequence correspond with the node numbers in this graph. If
we want to shift edge "f" next to edge "a", i.e. used - "a"
and object - "f" the following steps are made. The root is
row 2 and we see that "a" is stored in row 2 and "fU in row
7. The tree containing "f" has its top behind "a". So first
becomes true. As "a" is the only member in its tree, its
position is assigned the number 2 (connection to top and
bottom). These two values mean that "f" is still in for
switching. Now all elements between "a" and the "f-tree" are
scanned by procedure still_free.

The element behind the one containing "b" is a factor
pointer (kind - -1). It points at row 3. Row three is a
sum-row. All the terms of this row are consecutively
scanned. Successively the following edges are screened: c -
d - e - f - g - h . In our example all these edges are still
free for use and thus "object" can be switched. If "root" is
a product-row than procedure "switch" evaluates the boolean
first to determine the shift direction. If first-true than
"object" must be moved up in its tree, otherwise it must be
moved down. If however "root ll is a sum-row, the value of
position determines the shift direction. A position value of

- 19 -

1 means a shift up in the tree, a value of 2 a shift down.
For position-2 both directions are possible, but I choose to
move "object" up in that case. In our example "root" 1s a
product-row and first is true, so "f" will be moved up in
the tree.

The shift operation starts in the row containing "object".
Here "f" is shifted to the first place in row 7. Row 7 is
referenced out of row 6 which is a sum-row. A sum-row is of
no importance for the tree position of "object". Row 6 is
referenced out of row 5 which is a product-row. The pointer
to the previous compound is moved to the first position of
row 5. Row 5 is referenced from row 3 which is again a sum
row and this has no implications for the position of
"object". Row 3 is referenced from "root". In "root" we
notice that "b" lies next to the pointer to the previous
compound and so no shift needs to be done. "f" will now be
connected to "a" in the transformed graph (see figure 6.3).

~ 1

b 3 L

c 1

original graph 2 modified qraph

figure 6.3

6.2 THE INTERCHANGE TOOL USED IN THE BASIC ALGORITHM

The procedure INTERCHANGE is called from the procedure
TRACE. Because this utility may take a considerable extra
amount of time it will only be run in case no solution was
found for a certain pair of startpoints applying the basic
algorithm. The boolean menu2 marks whether a normal trace or
an extended trace operation incorporating the interchange

- 20 -

mechanism is executed.

As this program job was already taking too long I have
implemented the procedure INTERCHANGE in a simple version.
The presented implementation of "interchange" only covers a
small percentage of all possible cases in which it can be
applied. A more elaborate use of this mechanism will yield
increased speed and performance.

Only minor changes are made in procedure erace to fit in the
interchange mechanism. The actions performed by erace can be
described as follows. The procedure first searches in graphl
for an adjacent edge (-object) with the last edge in the
uncompleted path (-used). If no according edge is found in
graph2 the procedure interchange is executed. This procedure
searches in graph2 for an edge equal to the one found in
graphl. If one is found, an attempt is made to switch the
sequences in graph2 in a way that this edge becomes adjacent
to "used". If the interchange operation was successful a new
version of matrix2 is constructed for the changed graph.
Because there already exists an uncompleted path the accord
ing elements in matrix2 have to be deleted. As procedure
buildmaerix will generally change some nodenumbers, node tree
must be adjusted too. This adjustments on those arrays are
done by procedure adjusearray. After this intervention of
ineerchange a trace operation can be performed which will
append one more edge to the uncompleted path.

- 21 -

7. SUPPORTING PROCEDURES

Apart from the procedures discussed above some additional
procedures are applied to secure smooth operation. The input
for the cell generator consists of two boolean functions,
the second being the inverse of the first. A possible input
could like :

f1 -(a+b.(d+e.(f+g.k.1.(h+i»»;
f2 -(a. (b+d. (e+f. (g+k+1+h.i»»;

These two functions are parsed by the procedure col-parser.
The output is stored according the term structure discussed
under chapter 6. This program was available from the group.
Some additional code had to be inserted to adjust the pro
gram for its task. The input for this procedure is a file
with two boolean functions, like the set described above.

The procedure buildmatrix is called from col-parser as well
as from trace. It establishes the incidence matrix out of
the term datastructure. Node number 1 is assigned to the
first node in the first row of this structure and node
number 2 to the last node of this row. The other nodes are
assigned in order of appearance (see also example).

-1 -1 -1 @ -1 @ -1 ® -1 @ a
0 0 @ 0 0 @ ,
• b @ • @ b @ b
c ~ c @ d
d @ d ®
e ® e @ e

simplified term node 4ssiqnment graph representation

figure 7.1

A sum-row only needs a top and a bottom node, for all terms
are connected between those nodes. Top and bottom node are
resp. the first and the last position of the row. If the
sum-row is not the first row in the term representation

- 22 -

structure these numbers are inherited from the source row.

In a product-row a new node number is introduced for every
connection of factors within that row except for the first
and the last node which are inherited from the source row or
in case the product-row is the first row in the structure,
they are automaticly assigned the number 1 and 2.

- 23 -

8. SUGGESTIONS

There are still a number of things to be done.
is slow for large boolean expressions and has
solving them.

The program
difficulty in

In general there is no need to process arrays for all the
start-couples currently generated by procedure startpoints.
As the number of tracks normally differs no more than 1 or 2
it could be sufficient to process only a certain number of
solutions and choosing the best one out of them.

The current version of procedure trace is a first start to a
powerful routine capable of tracing paths in large graphs.
Two menus are used, one without the interchange utility, the
other with the simpliest form of this tool. The latter only
has the possibility of searching for an object in one tree
and in case of success modifying that part of the tree. To
enjoy the full power of the interchange technique a search
and modification operation in both trees must be possible.

Because using the interchange mechanism may take a consider
able amount of time when large boolean expressions are
evaluated it may be interesting to process a less optimal
solution but in a shorter time. The exchange between accu
racy and cpu-time can be achieved by introducing more breaks
than strictly necessary. One could think of first trying
breaks between an odd-even pair of points and where needed
inserting breaks between two even points. Notice that the
length will always increase but that also the width of the
cell may increase by doing so.

- 24 -

9. REFERENCES

[1] Harary, F.
GRAPH THEORY.
Reading, Mass.: Addison-Wesley, 1969.
Addison-Wesley series in mathematics

[2] Christofides, N.
GRAPH THEORY, An algorithmic approach.
New York: Academic Press, 1975.
Computer science and applied mathematics

[3] Talsma, J.E.
OPTIMIZATION OF LINEAR TRANSISTOR ARRAYS. 2 parts.
M.Sc. Thesis. Department of Mathematics and Informatics,
Delft University of Technology, 1985.

- 25 -

APPENDIX A EXAMPLE OF NETDECOHPOSITION OUTPUT

The function that is to be split up into 1mplementable gates
1s :

fl: a.b.g+ c.d.f+ b.g.l+ c.d.e.i+ j.k.l+ a.c.h.k.l+ b.e+
d.l+ e.f.g+ b.c.d+ f.1.1+ a.c.j;

The output of the net-decomposition un1t is

gat017 :-(int013 +g e +1 1);
gat018 :-(1nt016 +int014);
gat019 :-(int015 +d);
gat020 :-(e +int013);
gat021 :-(int015 a +i int013 e +int014 h int016);
gat022 :-(gat021 (f' +gat017')(j' +gat018' »;
gat023 :-«1' +gat019')(b' +gat020' »;
gat024 :-(gat022 +gat023);
fl :-(gat024);
gat026 :-(d c);
int013 :-(gat026);
gat028 :-(a c);
int014 :-(gat028);
gat030 :-(b g);
int015 :-(gat030);
gat032 :-(1 k);
int016 :-(gat032);
gat020':-(gat020);
b' :-(b);
gat019' :-(gat019);
I' :-(1);
gat018':-(gat018);
j' :-(j);
gat017' :-(gat017);
f' :-(f);

- 26 -

APPENDIX B TYl'ICAL OUTPUT OF THE CELL GENERATOR

The input for the Cell generator looks like

fl -(a+c.d.(e+g.h.i.j.(k.l+m»);
f2 -(a. (c+d+e. (g+h+i+j+m. (k+l»»;

(f2 is the complement of fl)

startl- 8start2- 5
start1- lstart2- 1
start1- 1start2- 2
startl- 2start2- 1

'lep.gth
. of
ce1

1
2
3
4
5
6
7
8
9

10
11
12
13

node
in

graphl
2
1
3
4
2
4
5
6
7
8
2
9
8

node
in

graph2
1
3
2
3
4
4
2
4
2
4
5
2
5

transistor
in

arrayl
a
c
d
e
br
g
h
i
j
m
1
k

number of tracks for this array- 3

transistor
in

array2
a
c
d
e
sp
g
h
i
j
m
1
k

- 27 -
Appendix B Typical output of the Cell Generator

,
startl- 2start2- 2

length node riode transistor transistor
of in in itl in

cel graphl graph2 arrayl array2
1 2 2 1 1
2 9 5 k k
3 8 2 j j
4 7 4 i i
5 6 2 h h
6 5 " g g
7 4 2 d d
8 3 ~ c c
9 1 2 sp br

10 i 1 a a
11 2 j e e
12 4 4 Dr sp
13 2 4 m m
14 8 5

number of tracks for this array- 4

startl- lstart2- 3
start1- 2start2- 3

start1- 2start2- 4

length node node transistor translstor
of iri in i.h in

ce1 graph1 graph2 arrayl array2
1 2 4 e e
2 4 3 d d
3 3 2 c c
4 1 3 a a
5 2 1 br br
6 4 4 g g
7 5 2 h h
8 6 4 i i
9 7 2 j j

10 8 4 m m
11 2 5 1 1
12 9 2 k k
13 8 5

number of tracks for this array- 4

start1- 2start2- 5

- 28 -
Appendix B Typical output of the Cell Generator

startl- 3start2- 2

length node node transistor transistor
of in in in in

cel graphl graph2 arrayl array2
1 3 2 c c
2 1 3 a a
3 2 1 sp br
4 2 2 1 1
5 9 5 k k
6 8 2 j j
7 7 4 i i
8 6 2 h h
9 5 4 g g

10 4 2 d d
11 3 3 br sp
12 4 3 e e
13 2 4 m m
14 8 5

number of tracks for this array- 5

startl- 3start2- 3

length node node transistor transistor
of in in in in

cel graphl graph2 array1 array2
1 3 3 d d
2 4 2 g g
3 5 4 h h
4 6 3 i i
5 7 4 j j
6 8 3 m m
7 2 5 sp br
8 2 1 a a
9 1 3 c c

10 3 2 br sp
11 4 2 e e
12 2 4 1 1
13 9 5 k k
14 8 4

number of tracks for this array- 5

- 29 -
Appendix B Typical output of the Cell Generator

start1- 4start2- 2

length node node transistor transistor
of in in in in

eel graph1 graph2 array1 array2
1 4 2 d d
2 3 3 c c
3 1 2 sp br
4 1 1 a a
5 2 3 e e
6 4 4 g g
7 5 2 h h
8 6 4 i i
9 7 2 j j

10 8 4 m m
11 2 5 1 1
12 9 2 k k
13 8 5

number of tracks for this array- 4

startl- 4start2- 3

length node node transistor transistor
of in in in in

eel graph1 graph2 array1 array2
1 4 3 d d
2 3 2 c c
3 1 3 a a
4 2 1 sp br
5 2 3 e e
6 4 4 g g
7 5 2 h h
8 6 4 i i
9 7 2 j j

10 8 4 m m
11 2 5 1 1
12 9 2 k k
13 8 5

number of tracks for this array- 5

start1- 4start2- 4

- 30 -
Appendix B Typical output of the Cell Generator

startl- Sstart2- 2

length node node transistor transistor
of in in in in

cel graphl graph2 arrayl array2
1 5 2 g g
2 4 4 e e
3 2 3 a a
4 1 1 sp br
5 1 2 c c
6 3 3 d d
7 4 2 br sp
8 5 2 h h
9 6 4 i i

10 7 2 j j
11 8 4 m m
12 2 5 1 1
13 9 2 k k
14 8 5

number of tracks for this array- 5

startl- Sstart2- 4

length node node transistor transistor
of in in in in

cel graphl graph2 arrayl array2
1 5 4 g g
2 4 3 e e
3 2 4 m m
4 8 5 k k
5 9 3 1 1
6 2 5 sp br
7 2 1 a a
8 1 3 c c
9 3 2 d d

10 4 3 br sp
11 5 3 h h
12 6 4 i i
13 7 3 j j
14 8 4

number of tracks for this array- 4

- 31 -
Appendix B Typical output of the Cell Generator

start1- 6start2- 2

length node node transistor transistor
of in in in in

eel graph1 graph2 array1 array2
1 6 2 h h
2 5 4 g g
3 4 2 d d
4 3 3 c c
5 1 2 sp br
6 1 1 a a
7 2 3 e e
8 4 4 br sp
9 6 4 i i

10 7 2 j j
11 8 4 m m
12 2 5 1 1
13 9 2 k k
14 8 5

number of tracks for this array- 5

start1- 6start2- 4

start1- 7start2- 2

length node node transistor transistor
of in in in in

ce1 graph1 graph2 array1 array2
1 7 2 i i
2 6 4 h h
3 5 2 g g
4 4 4 e e
5 2 3 a a
6 1 1 sp br
7 1 2 c c
8 3 3 d d
9 4 2 br sp

10 7 2 j j
11 8 4 m m
12 2 5 1 1
13 9 2 k k
14 8 5

number of tracks for this array- 5

- 32 -
Appendix B Typical output of the Cell Generator

startl- 7start2- 4

length node node transistor transistor
of in in in in

cel graphl graph2 arrayl array2
1 7 4 i i
2 6 3 h h
3 5 4 g g
4 4 3 e e
5 2 4 m m
6 8 5 k k
7 9 3 1 1
8 2 5 sp br
9 2 1 a a

10 1 3 c c
11 3 2 d d
12 4 3 br sp
13 7 3 j j
14 8 4

number of tracks for this array- 4

start1- 8start2- 2

length node node transistor transistor
of in in in in

cel graphl graph2 arrayl array2
1 8 2 j j
2 7 4 i i
3 6 3 h h
4 5 4 g g
5 4 3 e e
6 2 4 m m
7 8 5 k k
8 9 3 1 1
9 2 5 sp br

10 2 1 a a
11 1 3 c c
12 3 2 d d
13 4 3

number of tracks for this array- 5

- 33 -
Appendix B : Typical output of the Cell Generator

start1- 8start2- 4

length node node transistor transistor
of in in in in

ce1 graph1 graph2 array1 array2
1 8 4 br sp
2 4 4 g g
3 5 2 h h
4 6 4 i i
5 7 2 j j
6 8 4 m m
7 2 5 sp br
8 2 1 a a
9 1 3 c c

10 3 2 d d
11 4 3 e e
12 2 4 1 1
13 9 5 k k
14 8 4

number of tracks for this array- 5

start1- 8start2- 5

start1- 9start2- 2

length node node transistor transistor
of in in in in

cel graph1 graph2 array1 array2
1 9 2 1 1
2 2 5 m m
3 8 4 j j
4 7 2 i i
5 6 4 h h
6 5 2 g g
7 4 4 e e
8 2 3 a a
9 1 1 sp br

10 1 2 c c
11 3 3 d d
12 4 2 br sp
13 8 2 k k
14 9 5

number of tracks for this array- 4

start1- 9start2- 5
no other startpoints

- 34 -

APPENDIX C STORAGE AND USE OF THE PROGRAM

The directory of the Cmos-Ceil-Generator is called
Cmos_cell. It is located under /users/rob_e/stage . The
files cel.p and main.p are similar and contain the pascal
source. The files main and eel are the respective executable
versions. They need a file like inputexample as their input.
The output is directed to eel.out. The complete directory
structure is given below.

Cmos cell:

a.out
change
colparse
parser

cel
chtest.con
inputexample
spath

Cmos_cell/change:

findr"ot
switch

interch.var
switchable

Cmos_cell/colparse:

C commhent.h addtokwtab.h
error.h finalscan.h
identifier. h initscan.h
list.h nested_comm.h
peeknextch.h scanner.h
trans.h trans_esc.h

Cmos_cell/parser:

cel.out
chtest. typ
main

cel.p
chtest.var
main.p

interchange.h still free
verzameling

col_parser.h comment.h
getch.h handle - esc.h
kwtab.h lex.h
number.h options.h
stringconst.h symbuf.h

col_parser. con col_parser.typ col_parser.var col_struc.con
col _struc.typ col - struc.var
cor.var error. con
kwsyms.con kwtab.con
lex.ext lex.typ
list.var scanner,con

Cmos_cell/spath:

adjustarray.h break
exist mount
startpoints trace

cor.con cor. typ
error.var general.typ
kwtab.var lex. con
lex.var list.con
scanner.var

buildmatrix.h copyarray2.h
readtree resetarray2.h
tracks writematrix.h

Eindhoven University of Technology Research Reports
pepartment of Electrical Engineer~

tl-l·iJ vl]k, J. and A.P. Verli1sdonk, J.C. ~
DIGITAL TRANSMISSION EXPERIMENTS WITH THE ORBITAL TEST SATELLITE.
EUT Rt'port 84-£-144. 1'.'84. ISBN 90-6144-144-7

(145) Weert, M .• J .M. v.'ln
MiNIMALISATIE VAN PROGRAMMABLE LOGIC ARRflVS.
EUT Report 84-E-145. 1?84. ISBN 90-6144-145-5

(14(,) J\lchems, J.e. en P.M.C.M. van den Eijnd,>11
TOESTAND-TOEWIJZING IN SEQUENTIELE CIRCUITS.
EUT Report 85-E-146. 1985. ISBN 90-6144-146-3

(147) Rozendaal, L.T. en M.P.J. Stevens, P.M.C.M. van den Eijnden

ISSN 0167-9708
Coden: TEUEOE

DE REALISATIE VAN EEN MULTIFUNCTIONELE I/O-CONTRULLER MET BEHULP VAN EEN GATE-ARRAY.
EUT Report 85-£-147. 1985. ISBN 90-6144-147-1

(148) £ijnden, P.M.C.M. van d~n
A COURSE ON FIELD PROGRAMMABLE LOGIC.
EUT Report 85-£-148. 1985. ISBN 90-6144-1-18-X

(149) Beeckman, P.A.
MILLIMETER-WAVE ANTENNA MEASUREMENTS WITH THE HP8510 NETWORK ANALYZER.
EUT Report 85-E-149. 1985. ISBN 90-6144-149-8

(150) Meer, A.C.P. van
EXAMENRESULTATEN IN CONTEXT MBA.
EUT Report 85-E-150. 1985. ISBN 90-6144-150-1

(151) Ramakrishnan, S. and W.M.C. van d~n H~uvel
SHORT-CIRCUIT CURRENT InERRUPTION IN A LOW-V0LTAG/:: FUSE WITfJ ABLATING WALLS.
EUT Report B5-E-151. 1985. ISBN 90-6144-151-X

(152) Stefanov, B. and L. Zarkova, A. Ve~fklnd

DEVIATION FROM LOCAL THERMODYNAMIC EQUILIBRIUM IN A CESIUM-SEEDED ARGUN PLASMA.
EUT Report 85-E-152. 19B5. ISBN 90-6144-152-8

(153) Hof, P.M.J. Van den and P.H.M. J<lnss~n

SO-ME ASYMPTOTIC PROPERTIES OF MULTIVARIABLE MODELS IDENTIFIED BY EQUATION ERROR TECHNIQUES.
EUT Report 85-E-153. 1985. ISBN 90-6144-133-6

(154) Geerlings, J.H.T.
LIMIT CYCLES IN DIGITAL FILTERS: A bibliography 1975-1984.
EUT Report 85-E-154. 1985. ISBN 90-6144-154-4

(155) ~, J.F.G. de
THE INFLUENCE OF A HIGH-INDEX MICRO-LENS IN A LASER-TAPER COUPLING.
EUT Report 85-E-155. 1985. ISBN 90-6144-155-2

(156) Amelsfort, A.M.J. van and Th. Scharten
A THEORETICAL STUDY OF THE ELECTROMAGNETIC FIELD IN A LIMB, EXCITED BY ARTIFICIAL SOURCES.
EUT Report 86-E-156. 1986. ISBN 90-6144-156-0

(157) Ladder, A. and M.T. van Stlphout. J.T.J. van Ei)ndhoven
ESCHER: Eindhoven SCHematic EditoR reference manual.
EUT Report 86-E-157. 1986. ISBN 90-6144-157-9

(158) Arnbak, J.C.
DEVELOPMENT OF TRANSMISSION FACILITIES FOR ELECTRONIC MEDIA IN THE NETHERLANDS.
EUT Report 86-E-158. 1986. ISBN 90-6144-158-7

(159) Wang Jingshan
HARMONIC AND RECTANGULAR PULSE REPRODUCTION THROUGH CURRENT TRANSFORMr.RS.
EUT Report 86-E-159. 1986. ISBN 90-6144-159-5

(160) Wolzak, G.G. and A.M.F.J. van de ~, E.F. Steennis
PARTIAL DISCHARGES AND THE ELECTRICAL AGING OF XLPE CABLE INSULATION.
EUT Report 86-E-160. 1986. ISBN 90-6144-160-9

(l6l) Veenstra, P.K.
RANDOM ACCESS MEMORY TESTING: Theory and practice. The gains of fault modelling.
EDT Report 86-E-161. 1986. ISBN 90-6144-161-7

(l(2) Meer, A.C.P. van
TMS32010 EVALUATION MODULE CONTROLLER.
EUT Report 86-E-162. 1986. ISBN 90-6144-162-5

(163) Stok, L. and R. van den Born, G.L.J.M. Janssen
HIGHER LEVELS OF A SILICON COMPILER. --
EUT Report 86-E-16). 1986. ISBN 90-6144-16)-)

(164) Enqelshoven, R.J. van and J.F.M. Theeuwen
GENERATING LAYOUTS FOR RANDOM LOGIC: Cell gcncf3tion schemes.
EUT Report 86-E-164. 1986. ISBN 90-6144-164-1

	Abstract
	Contents
	1. Introduction
	2. Linear arrays for NMOS and CMOS
	3. Some useful definitions and theorems concerning graphs
	4. Reflections over a strategy
	5. Basic algorithm
	6. The interchange facility
	6.1 A new data structure
	6.2 The interchange tool used in the basic algorithm
	7. Supporting procedures
	8. Suggestions
	9. References
	Appendix A : example of netdecomposition output
	Appendix B : typical output of the cell generator
	Appendic C : storage and use of the program

