

Coherent tool support for design-space exploration

Citation for published version (APA):
Shi, F., & Technische Universiteit Eindhoven (TUE). Stan Ackermans Instituut. Software Technology (ST)
(2014). Coherent tool support for design-space exploration. [EngD Thesis]. Technische Universiteit Eindhoven.

Document status and date:
Published: 01/10/2014

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/d8833053-654a-4a06-83a8-4e7be81fc959

Coherent Tool Support for
Design-Space Exploration

Fangyi Shi
September 2014

Coherent Tool Support for

Design-Space Exploration

Fangyi Shi

September 2014

Coherent Tool Support for Design-Space Exploration

Eindhoven University of Technology

Stan Ackermans Institute / Software Technology

Partners

Embedded Systems Innovation By TNO Eindhoven University of Technology

Steering Group Frans Reckers

Bart Theelen

Ad Aerts

Date September 2014

Contact

Address

Eindhoven University of Technology

Department of Mathematics and Computer Science

MF 7.090, P.O. Box 513, NL-5600 MB, Eindhoven, The Netherlands

+31402474334

Published by Eindhoven University of Technology

Stan Ackermans Institute

Printed by Eindhoven University of Technology

UniversiteitsDrukkerij

ISBN 978-90-444-1310-6

Abstract Embedded Systems Innovation by TNO developed three generic tools to improve industrial

applicability. POOSL provides an integrated editing, debugging and validating environment

for system modelling, combined with a simulator. TRACE is a tool for visualizing quantita-

tive analysis results. Design Framework (DF) aims for system architecting including archi-

tectural views, work flow support and the link of architectural reasoning to concrete model-

ing activities and artifacts. However, there is no integrated environment to support these

three tools to work together.

This project proposes a prototype to demonstrate cooperation between the three generic

tools as an integrated environment for design-space exploration. The report describes the

process that was applied to the new integrated environment, Exploration Experiment (EE).

EE provides a platform to define an experiment by specifying a sequence of a model and

executors. From DF, the user can execute a defined experiment and get the execution results

automatically.

In addition to the development of EE, this report also includes the process of the develop-

ment of TRACE extensions. The extensions contain new functionalities of multiple Gantt

Chart comparison and design-space visualizations, a standalone application and an executa-

ble JAVA Archive file.

Keywords

Design-Space Exploration, Coherent Tool Support, Exploration Experiment, Design

Framework, POOSL, TRACE, execution flow, Gantt Chart, Design-Space Visualization

Preferred

reference

Fangyi Shi, Coherent Tool Support for Design-Space Exploration. Eindhoven University of

Technology, SAI Technical Report, September, 2014. (978-90-444-1310-6)

Partnership This project was supported by Eindhoven University of Technology and Embedded Systems

Innovation By TNO.

Disclaimer

Endorsement

Reference herein to any specific commercial products, process, or service by trade name,

trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorse-

ment, recommendation, or favoring by the Eindhoven University of Technology or Embed-

ded Systems Innovation By TNO. The views and opinions of authors expressed herein do not

necessarily state or reflect those of the Eindhoven University of Technology or Embedded

Systems Innovation By TNO, and shall not be used for advertising or product endorsement

purposes.

Disclaimer

Liability

While every effort will be made to ensure that the information contained within this report is

accurate and up to date, Eindhoven University of Technology makes no warranty, represen-

tation or undertaking whether expressed or implied, nor does it assume any legal liability,

whether direct or indirect, or responsibility for the accuracy, completeness, or usefulness of

any information.

Trademarks Product and company names mentioned herein may be trademarks and/or service marks of

their respective owners. We use these names without any particular endorsement or with the

intent to infringe the copyright of the respective owners.

Copyright Copyright © 2014. Eindhoven University of Technology. All rights reserved.

 No part of the material protected by this copyright notice may be reproduced, modified, or

redistributed in any form or by any means, electronic or mechanical, including photocopy-

ing, recording, or by any information storage or retrieval system, without the prior written

permission of the Eindhoven University of Technology and Embedded Systems Innovation

By TNO.

Foreword
TNO-ESI strives to improve embedded systems engineering by doing industry-as-

laboratory research projects and dissemination of results in several ways. An im-

portant form of dissemination is by means of generic model-based design tools for

embedded systems. Contributions from industry-as-lab projects have resulted in three

generic tools that are actively being professionalized to improve industrial applicabil-

ity:

1) POOSL to edit and validate models for discrete-event simulations

2) TRACE to visualize performance analysis results

3) Design Framework for system architecting including architectural views,

work flow support and the link of architectural reasoning

to concrete modeling activities and artifacts

The goal of the assignment “Coherent Tool Support for Design-Space Exploration”

was to demonstrate cooperation between the three generic tools as an integrated envi-

ronment for design-space exploration. Each of the three tools provides an essential

cornerstone in a model-based design-space exploration and must remain independent

since they can also support embedded system design individually as shown in past

and current industry-as-lab projects.

The main challenges for the assignment originated from the need to extend existing

tools with new functionalities & interfaces and from realizing a coherent interaction

between independent tools. The approach must be robust against the fact that each of

the tools is still being developed, which means that limited documentation exists and

that adaptations and extensions must be aligned properly.

During the first part of this assignment, Fangyi has realized various improvements of

the visualization tool TRACE. She improved the functionality (by new extensions),

quality (by removing bugs), flexibility and performance (by finding a much smaller

footprint). During the second part of the project, Fangyi has worked in close coopera-

tion with her OOTI colleague and team mate Bayasgalan to design and implement

the new Exploration Experiment tool that allows specifying & executing design-

space exploration experiments using POOSL simulations and TRACE visualizations,

all of which being manageable by the Design Framework.

We enjoyed the fruitful and well-prepared progress meetings and steering group

meetings. We look forward to continue our cooperation with Fangyi as our new

TNO-ESI colleague after her graduation.

We are grateful to Fangyi for her contributions to TRACE and the Exploration Ex-

periment tool and wish her a lot of success in her future career.

Eindhoven, September 2014

Frans Reckers, Bart Theelen

Embedded System Innovation by TNO

iii

Preface
This report is the graduation report of Fangyi Shi from the Stan Ackermans Insti-

tute's Software Technology program of the Eindhoven University of Technology.

The report is the result of the project "Coherent Tool Support for Design-Space

Exploration". The project has been carried out at Embedded System Innovation

by TNO for nine months.

In this report, the design and development progresses for the Exploration Experi-

ment tool and the TRACE tool are described. An detailed explanation of the do-

main, the problem, the goal and the requirements of this project is provided from

Chapter 1 to 4. Readers who are mainly interested in architectural design and

technology choices can focus on Chapter 5 and 6. The results, lessons learned and

a general reflection of the project can be found in Chapter 7, 8 and 10. The pro-

ject management progress is described in Chapter 9.

September 13, 2014

v

Acknowledgements
There are a number of people I would love to express my great gratitude for their

support and assistance during the project.

First and foremost, I would love to thank Frans Reckers for giving me the oppor-

tunity to carry out this project at TNO-ESI. He was not only a very good project

manager, but also a great coach to my personal development.

Also, full of thanks to my company supervisor, Bart Theelen, who devoted a lot

of time and effort to guide my direction, challenge my idea, assist my work, re-

view my progress.

Besides, I am very grateful to my university supervisor, Ad Aerts, for his supervi-

sion and valuable feedbacks throughout the entire project as well as in the past

two years. I became more and more confident thanks to his support and confirma-

tion.

Thanks also go out to my teammate as well as my friend, Bayasgalan Baatar, for

her great ideas and efforts. This project would not have been carried out without

her hard work.

Furthermore, I would like to thank all the colleagues at TNO-ESI for their assis-

tances and feedbacks. Especially to the Design Framework team, Roelof Ham-

berg, Peter Vink, Marc Willekens, for their hard work on developing extensions

in DF to support this project. Thanks also go out to Jeroen van Schelven for his

help during the TRACE extension development.

Special thanks to Maggy de Wert and all the OOTI fellows. I enjoyed every mo-

ment that spent together during the two-years OOTI program.

Last but not the least, I would love to express my greatest thanks to my family

and friends for their unconditional love, support and encourage during the past

two years.

Fangyi Shi

September 14, 2014

vii

Executive Summary
Embedded Systems Innovation by TNO (TNO-ESI) is a leading Dutch research

group for high-tech embedded systems design and engineering. It strives to im-

prove embedded systems engineering by doing industry-as-laboratory research

projects. Contributions from industry-as-lab projects have resulted in three gener-

ic tools that are actively being professionalized to improve industrial applicabil-

ity:

 POOSL - provides an integrated editing, debugging and validating envi-

ronment for POOSL modelling, combined with a high-speed simulator.

It is used for analysis of system behavior.

 TRACE - is a tool for visualizing quantitative analysis results.

 Design Framework (DF) - aims for system architecting including archi-

tectural views, work flow support and the link of architectural reasoning

to concrete modeling activities and artifacts.

As today’s embedded systems are rapidly becoming more complex, an important

challenge in the early stages of the design of embedded systems is the multitude

of design possibilities that need to be considered. Design-space exploration is

applied for designing these kinds of complex embedded systems. With the help of

the three tools, a developer can design complex embedded systems by specifying

system requirements with DF, developing and debugging models with POOSL,

simulating models with the POOSL simulator and visualizing analysis results

with TRACE.

However, there is no integrated environment to support these three tools to work

together. Therefore, the main goal of this project is to demonstrate cooperation

between the three generic tools as an integrated environment for design-space

exploration.

In order to meet the goal, I worked together with my teammate, Bayasgalan Baa-

tar. We designed and developed a new tool, Exploration Experiment (EE), to pro-

vide the integrated environment.

In addition to the new EE tool, extensions to the existing three tools are required

in order to be integrated with the new functionalities and interfaces. The exten-

sions of the TRACE tool are also part of my responsibility in this project.

The results of this project include:

 The EE tool, which provides a prototype of the integrated environment

to demonstrate cooperation between the three generic tools. The EE tool

contains a web application and a Java application. The web application

is used to define an experiment by specifying a sequence of a model and

executors. The Java application is a running server to handle experiment

execution requests.

 A new released version of TRACE Eclipse plug-in, which includes new

functionalities of multiple Gantt Chart comparison and design-space vis-

ualization. In order to integrate with the EE tool, an executable Java Ar-

chive file with TRACE functionalities was wrapped. Besides, a

standalone application with small footprint was also developed in this

project. The standalone application works independently from Eclipse

IDE and provides more flexibility for the tool users.

The results from this project prove the concept of coherent tool support for de-

sign-space exploration. The integrated environment can be used to the industry-

as-lab projects at TNO-ESI in future.

viii

ix

Table of Contents

Foreword .. i

Preface .. iii

Acknowledgements ... v

Executive Summary .. vii

Table of Contents ... ix

List of Figures .. xiii

List of Tables ... xv

1. Introduction ... 1

1.1 Context ... 1

1.2 Design-Space Exploration.. 1

1.3 TRACE Extension ... 2

1.4 Outline .. 3

2. Domain Analysis .. 5

2.1 Current Tools and Relevant Technology 5
2.1.1. Design Framework .. 5
2.1.2. Exploration Experiment... 6
2.1.3. POOSL .. 6
2.1.4. TRACE .. 7

2.2 Design-Space Exploration.. 7

3. Problem Analysis ... 9

3.1 Problem Description .. 9

3.2 Project Goal and Scope.. 9

3.3 Stakeholders ... 10
3.3.1. The University ... 10
3.3.2. The Company .. 10
3.3.3. End Users .. 10
3.3.4. Software Developers ... 11
3.3.5. Project Teammate .. 11

3.4 Opportunities and Challenges .. 11
3.4.1. Opportunities and Challenges in EE .. 11
3.4.2. Opportunities and Challenges in TRACE Extension 12

4. System Requirements .. 13

4.1 Exploration Experiment Requirements 13
4.1.1. EE Functional Requirements ... 13
4.1.2. EE Non-functional Requirements .. 14

x

4.2 TRACE Requirements ... 15
4.2.1. TRACE Functional Requirements ... 15
4.2.2. TRACE Non-functional Requirements 17

5. System Architecture .. 19

5.1 Introduction .. 19

5.2 Exploration Experiment Architecture... 19
5.2.1. EE Use Case Scenarios .. 19
5.2.2. EE Development View .. 22
5.2.3. EE Process View ... 25
5.2.4. EE Physical View .. 27
5.2.5. EE Logical View ... 28

5.3 TRACE Architecture ... 30
5.3.1. TRACE Use Case Scenarios .. 30
5.3.2. TRACE Development View .. 32
5.3.3. TRACE Logical View ... 34

6. Design & Implementation ... 37

6.1 Introduction .. 37

6.2 EE Design and Implementation .. 37
6.2.1. Individual Scope .. 37
6.2.2. EE Definition Handler ... 37
6.2.3. EE Execution Handler ... 38
6.2.4. Interfaces ... 40

6.3 TRACE Design and Implementation .. 41
6.3.1. TRACE Standalone Alternatives ... 41
6.3.2. File Structure for Quantity Attribute Value 42

7. Verification & Validation ... 45

7.1 Introduction .. 45

7.2 EE Verification ... 45
7.2.1. Functional Test .. 45
7.2.2. Non-Functional Requirements Evaluation 47

7.3 TRACE Verification .. 48
7.3.1. Functional Test .. 48
7.3.2. Non-Functional Requirements Evaluation 51

7.4 EE Validation ... 51
7.4.1. Case Study Introduction .. 52
7.4.2. Perform DSE with EE .. 52

7.5 TRACE Validation .. 54
7.5.1. Input Files for TRACE .. 54
7.5.2. Display a Single Gantt Chart ... 54
7.5.3. Open Gantt Chart Comparison .. 55
7.5.4. Open DS Graph ... 56

8. Conclusion .. 59

8.1 Results .. 59
8.1.1. Exploration Experiment Results .. 59
8.1.2. TRACE Results ... 59

xi

8.2 Lessons Learned ... 59

8.3 Future Work ... 60

9. Project Management ... 63

9.1 Introduction .. 63

9.2 Project Planning and Scheduling ... 63

9.3 Work-Breakdown Structure (WBS) .. 64

9.4 Risk Management ... 65

10. Project Retrospective ... 69

10.1 Design Criteria Revisited ... 69

10.2 Reflection .. 70

Glossary ... 71

Bibliography .. 73

About the Authors .. 75

xiii

List of Figures

Figure 1 Concept of Model-Based Design-Space Exploration 2
Figure 2 A Simple Use Case in DF.. 6
Figure 3 A Simple TRACE Gantt Chart .. 7
Figure 4 An Overview of Coherent Tool Support for DSE 8
Figure 5 EE Use Case Diagram ..20
Figure 6 Component Diagram of Core Components ..22
Figure 7 Component Diagram for EE ...24
Figure 8 Activity Diagram of Main Action Flows ..25
Figure 9 Activity Diagram for Running an Experiment27
Figure 10 Deployment Diagram for One Platform ...28
Figure 11 Deployment Diagram for Two Platforms ...28
Figure 12 The Controller Class Diagram in EE Execution Handler29
Figure 13 TRACE Use Case Diagram ..31
Figure 14 TRACE Component Diagram ..33
Figure 15 TRACE Editor Class Diagram ...35
Figure 16 Deployment Structures for Web Service and System Call39
Figure 17 Mapping Tasks on a Multiprocessor Platform52
Figure 18 Define an Execution Flow with a Pre-defined POOSL Model52
Figure 19 Running EE Experiment from DF ..53
Figure 20 A Completed EE Experiment Execution from DF53
Figure 21 Simulation Output Files ...54
Figure 22 A Single Gantt Chart Visualization in TRACE55
Figure 23 Display Properties of a Single Claim in a Gantt Chart55
Figure 24 A Gantt Chart Comparison Visualization in TRACE...........................56
Figure 25 Display the Comparison on Node1...56
Figure 26 A DS Graph Selection Dialog and the Relevant DS Graph57
Figure 27 Six DS Graph Types ...57
Figure 28 Display Properties of a Point/Curve in a DS Graph58
Figure 29 An Overview of Milestone Timeline ..63
Figure 30 TRACE Extension Development Work-Breakdown Structure64
Figure 31 EE Development Work-Breakdown Structure65
Figure 32 Risk Distribution on Likeliness and Impact ...67

xv

List of Tables

Table 1 Stakeholders and Concerns ..10
Table 2 Requirement - Define an Experiment ..13
Table 3 Requirement - Execute an Experiment ..14
Table 4 Requirement - Interact with DF ...14
Table 5 Requirement - Build a Standalone Application16
Table 6 Requirement - Display Gantt Chart Comparison16
Table 7 Requirement - Display DS Graph ..16
Table 8 Requirement - Build an Executable File ..16
Table 9 Three Steps to Define an Experiment ..26
Table 10 Six Steps to Run an Experiment ..26
Table 11 Server Language Alternative Analysis ..37
Table 12 Conducting Executable Alternative Analysis ..39
Table 13 Runtime Functional Call Alternative Analysis40
Table 14 TRACE Standalone Alternative Analysis ..41
Table 15 File Structure for Quantity Attribute Value Alternative Analysis42
Table 16 Test Cases – EE Definition Handler ..45
Table 17 Test Cases - DF..47
Table 18 Test Case - Gantt Chart Comparison ...49
Table 19 Test Case - DS Graph ..49
Table 20 Test Case - TRACE Executable File ...50
Table 21 Test Case - TRACE Standalone Application ...50
Table 22 Risk Analysis and Avoidance/Mitigation Strategy65

1

1.Introduction

This report describes a new proof of concept for the coherence of the set of tools that

are developed at TNO-ESI to support design-space exploration (DSE). There are

four tools involved: Design Framework, Exploration Experiment, POOSL and

TRACE. This chapter introduces the relevant background information, discusses the

goal of the project, and provides an outline of the entire report.

1.1 Context
This project is a nine-month project that was provided by Embedded Systems Inno-

vation by TNO (TNO-ESI). TNO-ESI is a leading Dutch research group for high-

tech embedded systems design and engineering. It has a close cooperation with high-

tech industry, as well as a strong association with fundamental research of academia.

TNO-ESI contributes to society and the economy by driving advances in high-tech

systems technology, with a strong shared research program, dedicated innovation

support, a focused competence development program, and various knowledge and

experience sharing activities. See more description in [1].

In order to conduct good research for industry, TNO-ESI develops several tools:

 POOSL - provides an integrated editing, debugging and validating envi-

ronment for system modelling, combined with a high-speed simulator.

 TRACE - is a tool for visualizing quantitative analysis results.

 Design Framework (DF) - aims for system architecting including architec-

tural views, work flow support and the link of architectural reasoning to

concrete modeling activities and artifacts.

More detailed information is in [2].

This project requires the integration of all of the above tools; moreover, a new tool

Exploration Experiment (EE) is needed to provide an integrated environment to sup-

port the entire progress. The set of these tools are referred to as ESI tools in this re-

port. Except EE, the other ESI tools have already been used by industry independent-

ly. In order to support the coherence, all of them need to be extended to allow inte-

gration. However, the extensions should not affect the individual usage of the tools.

The extensions of POOSL and Design Framework are not the main focus of the pro-

ject. The TRACE extension and EE are included this project.

Therefore, the entire nine-month project can be divided into two parts:

 Design and development of TRACE extension

 Design and development of EE

The first part is a completely individual work, which is conducted in the first three

months. The second part, which lasts six months, is done in cooperation with my

OOTI colleague, Bayasgalan Baatar.

1.2 Design-Space Exploration
As today’s embedded systems are rapidly becoming more complex, an important

challenge in the early stages of the design of embedded systems is the multitude of

design possibilities that need to be considered. Design-Space Exploration (DSE) is

applied for designing these kinds of complex embedded systems.

The concept of model-based DSE is illustrated in Figure 1. A developer usually starts

from a set of concepts and requirements and needs to produce a design that embodies

the concepts and satisfies the requirements. This is done in a stepwise process where

2

in each the design for particular selection of the requirements are explored. To do

this, the developer needs to develop and debug models of design alternatives. After

several iterations of validating with requirements and modifying models, well-

defined models are developed. Then property evaluation can be conducted to get ex-

ploration results. After analyzing and interpreting exploration results, the developer

may reach final design decisions or may become aware of some issues in concepts

and requirements level and then improve the requirements.

Concepts & Requirements

Models of Design Alternatives

Modelling

Exploration Results

Property Evaluation
(correctness & performance)

Interpretation

Design Decisions

V
alid

atio
n

Im
p

ro
ve

m
e

n
ts R

e
q

u
ire

d

Figure 1 Concept of Model-Based Design-Space Exploration

The ESI tools can be referred to some parts in Figure 1 separately.

 POOSL - can be used to develop and debug "Models of Design Alterna-

tives". The POOSL simulator, called Rotalumis, refers to " Property Evalua-

tion " part and the simulation results refer to "Exploration Results" part.

 TRACE - is a result visualization tool and is related to the "Interpretation".

 DF - keeps the information of "Concepts & Requirements" and "Design De-

cisions".

 EE – provides an integrated environment which controls a flow of “Model-

ling”, “Property Evaluation” and “Interpretation” by integrating the above

three tools to work together to support model-based DSE.

The main goal of the project is to demonstrate cooperation between the three generic

tools (POOSL, TRACE, DF) with an integrated environment (EE) for design-space

exploration.

1.3 TRACE Extension
Another goal of this project is to extend functionalities in the TRACE tool in order to

provide more features for DSE. TRACE was originally used for visualizing a single

Gantt Chart.

Two extensions to TRACE are the main focus in this project:

 Multiple Gantt Chart files visualization to support comparison

 Design-Space(DS) Graphs for visualization of statistical data in design-

spaces

By adding the two main functionalities, the TRACE tool can provide better features

for interpretation in DSE.

3

1.4 Outline
This report describes the development of the coherent tool support for DSE, as well

as the development of TRACE extensions. It is organized as follows:

Chapter 2 provides a domain analysis, where a detailed description of the ESI tools

as well as their current development stages are discussed. This chapter also gives

more explanation about how the ESI tools should support design-space exploration.

Chapter 3 presents a problem analysis, where the problem to be solved is defined and

the goals and design opportunities are identified.

Chapter 4 gives a comprehensive description of the requirements for both EE and

TRACE development. Both functional and non-functional requirements are listed.

Chapter 5 describes the EE system architecture and TRACE system architecture sep-

arately. Various architectural diagrams are provided in order to explain the systems

from different views.

Chapter 6 explains the design and implementation details in both EE and TRACE.

The detailed explanation of how to design and implement the systems are addressed.

A number of design alternatives are evaluated to make essential technological choic-

es.

Chapter 7 discusses verification and validation methods and results. It focuses on

verifying and evaluating the requirements which are defined in Chapter 4. A compre-

hensive case study is used to validate the EE and TRACE systems.

Chapter 8 concludes the results of the project. Lessons which have been learned dur-

ing the project are also discussed. It also proposes some new features or improve-

ments for future work.

Chapter 9 offers an insight into the management which has been carried out through-

out the project. It discusses project planning and scheduling, work-breakdown struc-

tures and risk management.

Finally, Chapter 10 reflects upon the entire process of the project. It also revisits the

major design criteria to check whether they have been carried out successfully.

5

2.Domain Analysis

This chapter gives a detailed introduction of the ESI tools, their current development

stages, as well as the relevant technologies involved. Moreover, the concept of how

to join these tools to support DSE is also described.

2.1 Current Tools and Relevant Technology

2.1.1. Design Framework

Design Framework(DF) aims at capturing the design rationales in the process of de-

signing embedded or cyber-physical systems. Its principal concepts cover storing the

design rationales, which encompasses design decisions and analysis results, by link-

ing design goals to concrete questions and analysis results for a particular scope of

the system. The DF does also provide a mechanism for using heterogeneous models

for different system parts and linking them by means of essential design parameters

and their dependencies. An elaborated conflict detection mechanism at different lev-

els is provided in order to enable the designer to keep the design consistent through-

out the process. [14]

A design process of a complex system consists of many activities. These activities

can refer to a specific component of the system or parts of this component. These

components and their parts are recognized as blocks in DF, and they are organized in

a tree structure. Each block can contain a number of parameters. The parameters can

be linked as input/output parameters to transformations. The transformation has a

model to conduct experiments. If input parameter values are modified, some experi-

ments must be conducted accordingly then the output parameter values can be updat-

ed automatically. In the current implementation, it supports Excel, Matlab, and for-

mula models. Besides, the conflict detection mechanism is implemented by the con-

cept of validation. A validation takes parameters as its inputs and confirms whether

their values are satisfying the constraints.

Figure 2 shows a simple DF project "demonstrator" with a tree style decomposition.

Parameters “M1” and “M2” from two blocks “memory 1” and “memory 2” are con-

nected as inputs to the transformation with a Excel model “test model”, while param-

eters “latency” and “throughput” from the block “performance” are connected as

outputs to the transformation. The green circle indicates the constraint that “M2” is

larger than “M1” is validated. By modifying the values of “M1” or “M2”, the values

of “latency” and “throughput” will be updated after the execution of the transfor-

mation has completed.

6

Figure 2 A Simple Use Case in DF

DF has been implemented as a web application, and the main technologies applied

are: PHP, Apache server, MySQL database, HTML5, and JavaScript.

See more information about DF in [4].

2.1.2. Exploration Experiment

The Exploration Experiment (EE) tool does not exist yet, and even needs to be de-

signed from scratch. EE is introduced to accomplish some experiments for DF. As

mentioned in the previous section, the transformation has a model to conduct some

experiments. EE is a tool to define such a model and carry out all of the concrete ex-

periments. Since the concept for EE is new, no relevant technology is specified. De-

sign and implementation are the main part of this project.

2.1.3. POOSL

POOSL is an acronym for Parallel Object-Oriented Specification Language. It is a

system-level description language that has been used for modelling complex systems.

It has well-defined formal semantics, which is a prerequisite for performance analysis

and verification.

As a modelling language, POOSL can specify systems, define cluster and process

classes, and illustrate data transmission for any complex embedded system. POOSL

models can be simulated by Rotalumis, a simulator that has been developed to con-

duct a simulation for a well-defined POOSL model. The simulation results can

demonstrate how a system reacts for different instantiations, by setting different pa-

rameter values inside its corresponding POOSL model.

The POOSL tool contains two parts: a POOSL Editor/Debugger and a POOSL simu-

lator. The technology applied in the POOSL Editor/Debugger is Eclipse plug-in,

Xtext and EMF. In this project, only well-defined POOSL models are used, so the

POOSL Editor/Debugger is not a concern. However, a POOSL model convertor is

needed before starting to run the simulator. The convertor contains two parts, the

first part is applied to set parameter values inside the POOSL model, while the sec-

ond part is to convert the POOSL model to a xml file as an input file for the simula-

tor. The first part has not been developed yet. The second part has already been

7

wrapped into a ".jar" file, which is derived from the same sources underlying the

POOSL Editor/Debugger. The POOSL simulator is an ".exe" file.

The details about POOSL are described in [5] and [6].

2.1.4. TRACE

TRACE is a Gantt Chart visualization tool for any generic activity scheduling. It is

capable of presenting large sets of Resource-Claim-Dependency relationships as a

function of time. A simple visualization output is shown in Figure 3.

Figure 3 A Simple TRACE Gantt Chart

The input for TRACE is typically the result of analysis tools or simulators in the do-

main of TNO-ESI applications, such as Rotalumis simulation results. Since the sub-

ject of the results can be quite different, the generic TRACE tool is configurable to

support identification, selection, and presentation in a way that fits the application

area of the subject.

Since the TRACE tool is an Eclipse plug-in, the development language is Java. In

order to draw Gantt Charts, it imports the jFreeChart library.

The detailed description and concrete examples are from [7].

One extension to the existing TRACE tool is to include some functionalities to sup-

port Design-Space(DS) graphs from another tool, Envisioncy. The Envisioncy tool is

a Java application developed by a group of TU/e students with a guidance of TNO-

ESI. It is used to display DS graph for statistical data. Currently it supports six DS

graphs: Radar Graph, 3D Scatter Plot Graph, 2D Scatter Plot Graph, 3D Heat Graph,

2D Heat Graph, and Parallel Coordinates Graph. It uses OpenGL library to generate

these DS graphs.

2.2 Design-Space Exploration
A brief explanation of Design-Space Exploration (DSE) has already been described

in Chapter 1. The concept of DSE is applied for designing the complex embedded

systems, therefore, the domain of this project refers to any embedded system and

embedded system designers are the target users.

The user can design a complex system with the help of the ESI tools. For example,

he/she can specify requirements with DF, develop and debug models with POOSL,

simulate models with the POOSL simulator and visualize results with TRACE. Cur-

rently, all of the above steps can be performed separately. With the EE tool devel-

oped in this project, the user can define an experiment, which contains a flow of a

POOSL model, the POOSL converter, the POOSL simulator and the TRACE visual-

izer. From DF, the user can execute a defined experiment and get the visualization

result automatically.

8

The overview of how the ESI tools provide support for DSE is shown in Figure 4.

Figure 4 An Overview of Coherent Tool Support for DSE

The figure indicates that:

 Exploration Experiment(EE) contains a POOSL model and provides an en-

vironment to conduct an execution flow of POOSL model conversion,

POOSL model simulation, and simulation results visualization.

 POOSL is in charge of modelling a system, by specifying applications and

platforms with parameterized models.

 DF passes some initial input values to EE and gets the final results from EE.

It acts as an external application towards EE and the complex execution de-

tails are invisible to DF.

 Model Convertor is used to set parameter values to the POOSL model and

convert the model to a format which Rotalumis can handle.

 Rotalumis is responsible for analysis of the specified POOSL model, and

produces simulation results.

 TRACE collects the simulation results from Rotalumis and generates rele-

vant Gantt Charts.

9

3.Problem Analysis

This chapter provides a detailed problem analysis, which involves a concrete prob-

lem description, project goal and scope explanation, stakeholder analysis, and an

illustration of project challenges and opportunities.

3.1 Problem Description
The purpose of this project is to demonstrate the coherent tool support for DSE. The

fact that most ESI tools are still under development increases the complexity level of

integration. Well defined interfaces are needed among the tools.

According to the overview of how the ESI tools should integrate to support design-

space exploration in Chapter 2, DF is supposed to act as an external application re-

garding the entire experiment execution. It only deals with the initial input data and

the final output data. The interfaces between EE and DF need to be compatible with

the current implementation of DF. Before executing the experiment, DF needs to

know the definition of the input and output parameters. Therefore, EE has to extract

input parameter information from the POOSL model, as well as the output parameter

information from the TRACE tool for DF.

After getting the input and output parameter information from EE, DF can set values

for input parameters and trigger the execution. EE should collect these values from

DF, map these input values to the relevant POOSL models, and then conduct the

simulation and visualization processes. Once the entire process has been done, EE

should update the final TRACE results in DF.

3.2 Project Goal and Scope
As it is mentioned in Chapter 1, this project can be divided into two parts: TRACE

extension development part and EE development part. The first part is one person's

three-month work, while the second part is two persons' six-month work. Therefore,

regarding time duration, my main effort is on the development of the EE tool.

The main goal of this project is to demonstrate the ESI tools working together to

support DSE, by fulfilling the following functional sub-goals:

 Define and develop interfaces between DF and EE, which requires coopera-

tion with the DF team.

 Define and conduct execution flows in EE, which needs cooperation with

my teammate.

 Develop TRACE extensions to support more visualization features, which is

my individual work for three months.

 Develop POOSL extensions to support getting and setting parameters,

which belongs to the scope my teammate.

 Develop DF extensions to support interactions with EE, which is part of the

DF team's work.

The concrete requirements are discussed in Chapter 4.

There are also some non-functional sub-goals in this project:

 Research various technological alternatives to make technology choices.

 Apply some useful architecture and design patterns.

 Adapt to the company's environment and improve communication skills.

10

3.3 Stakeholders
The stakeholders involved in this project play different roles and have their specific

concerns. Table 1 lists the various stakeholders’ concerns.

Table 1 Stakeholders and Concerns

Name Role Concerns

TU/e

(OOTI)

Conductor of the OOTI

final project
 Complexity of the design

 Difficulty of challenges

 Quality of the final report

TNO - ESI Owner of the project Progress of the project

 Sufficient manuals

 Ready to use tools

Users End users of the products Ease of use

 Good performance

Software

Developers

Developers of the ESI

tools
 Ease of integration

 Loose coupling among the tools

 Maintainability

Project

Teammate

Bayasgalan Baatar, the

other OOTI trainee work-

ing on this project

 Clear scope of individual work

3.3.1. The University

The university (TU/e) focuses on the learning curve of this project and the overall

architecture and design. Besides a good architecture for the entire project, the univer-

sity also aims for well-written academic documentation.

3.3.2. The Company

TNO-ESI, as the owner of the project, focuses on the feasibility of the prototype.

Moreover, the available documentation of the ESI tools is to be improved substantial-

ly; hence this stakeholder requires sufficient documentation, such as user manuals

and development documents.

3.3.3. End Users

Regarding the ways of using the ESI tools, end users can be separated into two

groups.

One group uses these tools individually, and they have already had experience with

the existing versions. They have formed their habits of using these tools. When new

features are introduced, they do not easily accept big changes. The users in this group

also can have different demands. For example, the users from one TNO-ESI partner

require an Eclipse plug-in for the TRACE tool, because the company’s policy of in-

stalling new software. However, the users from another TNO-ESI partner do not pre-

fer the Eclipse plug-in, because there are many redundant UI features in Eclipse

where they only need to use the TRACE visualization features.

The other group of users is to use the coherent tool support for design-space explora-

tion. They are test users for this project, and their concern is a user-friendly interac-

tion among these tools.

11

3.3.4. Software Developers

Three tools, DF, POOSL, and TRACE, are still under development. The developers’

main concern is to keep these tools loosely coupled and ensure the minimum impact

of changes in the individual tools. Therefore, it is a challenge to ensure the fewest

integration points.

Moreover, in order to make the tools work together, we need the input from the tool

developers. The developers of DF provide us an idea of how DSE can be controlled

through their user interface. POOSL developers provide us some functionality to

make POOSL extension easier. TRACE developers need to transfer all the software

code and explain it in detail. Then, the progress of extending TRACE functionalities

can move on smoothly.

3.3.5. Project Teammate

Since this project is a two-person project, we need to divide our tasks clearly and

work together with each other.

3.4 Opportunities and Challenges
Design opportunities and implementation challenges for the EE development part

differ from those for TRACE development part.

3.4.1. Opportunities and Challenges in EE

There are many opportunities in the EE design and implementation:

 Aim for a generic EE

According to the problem description, EE can be a part of DF and can also work

individually. Loose-coupling between DF and EE is a big concern during the de-

sign. In this project, EE only needs to support POOSL models, the POOSL con-

vertor, Rotalumis and TRACE. However, the design of EE needs to be as gener-

ic as possible. In further, EE should be easily extensible to support other models

and executables.

 Communicate with DF

EE interacts with DF, which is a web application. The methods to communicate

with a web application are plenty, such as web sockets, web services, and

TCP/UDP sockets. The evaluation of these technologies is a part of the design.

 Deploy and run all the executables

Multiple executables should be executed inside EE in parallel. Some of them

might take a long time, so a stable environment is preferable to support a long

execution.

 Define the execution flow and relevant models

In order to refer to specific models and organize the execution flow in an ade-

quate way, it is necessary to have a well-defined experiment. How to define and

organize the experiments is also a challenge in this project.

 Vary among technologies

EE needs to work with different tools, which are implemented in different pro-

gramming languages. Therefore, EE also relies on various technologies at the

same time:

o web application technologies, such as HTML5, PHP, JavaScript

o database technologies

o web socket and web service technologies

o programming languages, such as Java or C++

12

3.4.2. Opportunities and Challenges in TRACE Extension

The current version of the TRACE tool has a simple structure without any software

architecture pattern or design patterns. There is a good opportunity to refactor the

code and apply some design patterns and a proper architecture.

Unlike EE design and implementation, the TRACE tool requires a deep knowledge

of Eclipse plug-in development and Java programming skills.

Envisioncy is a Java application and displays DS graphs. In order to show the DS

graphs, it has its own framework, such as user interfaces and a file loading mecha-

nism. While merging the Envisioncy functionalities into TRACE, only the code used

for generating DS graphs is useful. Therefore, another challenge in extending

TRACE is to extract the necessary code from Envisioncy.

13

4.System Requirements

After a concrete analysis for the relevant domain and problem, the detailed system

requirements are discussed in this chapter. Since the entire project can be divided

into two parts: EE development and TRACE extension development, the requirements

are also separated into two parts accordingly.

4.1 Exploration Experiment Requirements
The requirements of EE include functional and non-functional requirements. The

functional requirements focus on the specific features to be supported by EE, while

the non-functional requirements specify criteria to be used to judge the operation of

the system.

4.1.1. EE Functional Requirements

Three high-level features comprise the EE functional requirements:

 Define an experiment by specifying components (executors and models) and

relationships between these components.

 Execute a well-defined experiment by executing a execution chain.

 Interact with DF by taking input values and setting output results.

The detailed functional requirements are shown in the following tables.
1

Table 2 Requirement - Define an Experiment

ID Name Description

A1 Create an experiment Give a name for the new experiment and get a unique

ID from server.

A2 Retrieve an executor Select an executor from the server and display the

executor’s information on the UI.

A3 Upload a model Upload a well-defined POOSL model to the server

and display the model’s information on the UI.

A4 Retrieve a model Select an uploaded POOSL model from the server

and display the model’s information on the UI.

A5 Add a connection

from a model to an

executor

Specify that a model is an input to an executor from

the UI and add this relation to the database.

A6 Add a connection

from one executor to

another executor

Specify that the output of one executor is an input for

another executor from the UI and add this relation to

the database.

A7 Download an EE

model

After defining an experiment, generate an EE model

for the experiment and download it from the server.

B1 Retrieve an experi-

ment

Select an available experiment from the server and

display the defined executors, models and relations.

B2 Run an experiment Start an experiment by passing the current experi-

ment ID.

C1 Display progress sta-

tus or error messages

Collect the messages from the EE Execution Handler

and display them from the UI.

1
 For all the Requirement Specification Tables in this chapter: the priority is identi-

fied by ID. High priority requirements begin with “A”, medium priority requirements

begin with “B”, and low priority requirements begin with “C”.

14

Table 3 Requirement - Execute an Experiment

ID Name Description

A8 Generate a run ID Generate a unique ID for each experiment execution.

A9 Set input values Parse input information and map the input values to

the relevant model.

A10 Create output folders Create a unique output folder for every executable in

the runtime.

A11 Set input arguments Set the specific input arguments for every executable.

A12 Get the next executor Look up the database and return the next executor

information.

A13 Run an executor Run an executable with the specified inputs and out-

put path.

A14 Extract parameters Extract input and output information from one exper-

iment definition.

A15 Generate an EE mod-

el

After extracting parameters, generate an EE model

accordingly.

A16 Update final results After finishing all the executions, notify the UI to

display the final results.

B3 Execute an experi-

ment with default

data

Execute an experiment without mapping the values of

input parameters to the model.

B4 Check execution time Display execution time for every executable.

C2 Update intermediate

results

After finishing one execution, notify the UI to display

the execution results.

C3 Notify error messages Notify the UI when there is an exception during the

executions.

Table 4 Requirement - Interact with DF

ID Name Description

A17 Upload an EE model Select an EE model and upload it to the DF server.

A18 Parse experiment

parameters

Get experiment parameters from an EE model and

convert the parameters to the DF format.

A19 Set input values Enter experiment parameter values through the UI of

DF.

A20 Start an experiment Start an experiment by passing the experiment ID and

input parameter values.

A21 Display output results Collect the output parameter values or images from

the EE and display them from the UI of DF.

C4 Display progress sta-

tus or error notifica-

tions

Collect messages from the EE and display them from

the UI of DF.

4.1.2. EE Non-functional Requirements

Besides the functional requirements, it is also important to clarify the essential non-

functional requirements. The design of the overall architecture is mainly impacted by

the non-functional requirements. Since the opportunities and challenges of EE have

already been mentioned in Chapter 3, the following four non-functional requirements

are included:

 Loose-coupling

 Generality

 Usability

 Extensibility

15

Loose-coupling
Loose-coupling refers to how to define minimal interfaces between DF and EE. The

purpose of loose-coupling comes from two aspects:

 DF: DF has its own concept of transformation. EE is considered as a sup-

porting tool for conducting experiments and completing the transformations

in DF. DF does not need to know how EE works, but only input parameters

and output results. Extraction of only necessary EE information for DF is a

requirement.

 EE: EE performs as a part of DF and conducts experiment for DF. However,

EE is also supposed to work independently from DF. The user should be

able to conduct an experiment from the EE UI.

Generality
Generality refers to how a generic EE framework can be built to support arbitrary

models and executables. The initial idea of this project is to import POOSL models,

execute the POOSL convertor, the POOSL simulator, and the TRACE visualization

tool in a sequence. However, EE is also supposed to import other types of models,

like Excel models, Matlab models, and run their simulators in the future.

Usability
Usability is related to user’s experience with EE. In order to define an experiment,

the user needs to specify all the detailed information. The need of user interaction

brings up the usability requirement. In general, usability can be judged from two as-

pects:

 Learning curve: if the users are not familiar with the EE tool at all, they

should be able to start a simple use case quickly.

 User interaction: the users can accomplish their tasks with minimal effort

and no redundant procedures are required.

Extensibility
Extensibility is related to the generality non-functional requirement. Since EE aims

for support for different models and executables, an important issue is how much

effort a developer needs to make when introducing other models and executables. A

well-structured EE architecture and a good development manual can reduce the de-

veloper’s effort.

4.2 TRACE Requirements
Apart from the EE requirement specifications, there is another independent group of

specifications for extending the TRACE tool.

4.2.1. TRACE Functional Requirements

The TRACE functional requirements are mainly composed of four parts:

 Build a TRACE standalone application, which can work properly without the

Eclipse framework.

 Display Gantt Chart comparison for multiple input files.

 Merge Envisioncy functionality into the TRACE Eclipse plug-in to display

Design-Space (DS) graphs, and support proper navigation from DS graphs to the

corredsponding Gantt Charts.

 Build an executable file for executing from the command line and generating

images for Gantt Charts or DS graphs. This executable file is used inside the EE

tool to support design-space exploration.

The detailed functional requirement specifications are shown in the following tables.

16

Table 5 Requirement - Build a Standalone Application

ID Name Description

A22 Include the same func-

tionalities as Eclipse

plug-in version

All the functionalities that can work with Eclipse

plug-in version can be conducted with the

standalone version.

A23 Work independently

from the Eclipse IDE

The standalone version can work independent of

the Eclipse IDE.

B5 Support multiple oper-

ating systems

The standalone version should work properly under

different operating systems, such as Windows,

Linux, Mac OS.

Table 6 Requirement - Display Gantt Chart Comparison

ID Name Description

A24 Open a Gantt Chart

comparison editor

Display a Gantt Chart comparison editor by select-

ing multiple files or folder(s) as inputs.

A25 Merge Gantt Chart files

into one graph

Parse multiple files and represent Gantt Chart

comparison within one graph.

A26 Sort claims Sort all the claims by resource names.

A27 Support some major

features for a Gantt

Chart Comparison

Support the functionalities for comparison graphs:

 Zooming and panning

 Filtering

 Grouping

 Coloring

A28 Show properties of a

point

Select a point in a Gantt Chart and display its prop-

erties.

A29 Support the existing

functionalities for a

single Gantt Chart

By introducing the comparison features, the exist-

ing features of a single Gantt Chart are still availa-

ble.

Table 7 Requirement - Display DS Graph

ID Name Description

A30 Open a DS graph selec-

tion dialog

Display a DS graph selection dialog by a DS graph

request with multiple files or folder(s) as inputs.

A31 Parse quantity files Get the quantity information from the multiple

quantity files and fill the data structure.

A32 Open a DS graph Display a DS graph with an editor.

A33 Show properties of a

point/curve

Select a point/curve in a DS graph and display its

properties.

B6 Navigate from a DS

graph to a Gantt Chart

Interact with a DS graph or the property view and

navigate from the current DS graph to a Gantt

Chart graph.

B7 Display a navigation

selection dialog

Show a dialog to specify which single Gantt Chart

or multiple Gantt Chart comparison needs to dis-

play.

Table 8 Requirement - Build an Executable File

ID Name Description

A34 Wrap an executable file Build a JAR executable file from the TRACE

plugin.

A35 Execute the executable Open the "Command Prompt" and run the executa-

ble file by specifying the input arguments.

A36 Generate images Generate the relevant “.png” or “.jpg” images for

Gantt Charts or DS graphs.

17

4.2.2. TRACE Non-functional Requirements

Three non-functional requirements are taken into account while extending the

TRACE tool:

 Usability

 Performance

 Extensibility

Usability
Usability refers to how easy the TRACE tool is for a user to accomplish a task. Since

this tool requires a lot of user interactions, usability is a main non-functional re-

quirement. Five aspects are focused on:

 Learning curve: it is the same as the EE tool. If the users are not familiar

with the tool at all, they should be able to start a simple use case quickly.

 User experience: since the tool has already been used in some companies,

the new features need to keep a similar user experience.

 User interaction: the users can accomplish their task with minimal effort and

no redundant procedures are required.

 User styles: the tool is supposed to provide different ways to precede the

same task. In this way, the users do not have to be restricted to one specific

interaction method.

 File organization: the tool needs to take multiple inputs and these input files

are related with each other. A flexible way to organize the files is required.

Performance
Performance refers to how much time the TRACE tool needs to respond to a desired

task. As it is an Eclipse plug-in application, the Eclipse IDE consumes most of the

time. Nevertheless, the response time still should be optimized, especially towards

the following two aspects:

 User setting initialization: if multiple files share the same configuration, the

tool needs a minimum initialization time for the same configuration setting.

 File Loading time: since the size of input files can be very large, a way to

load those files in an efficient way is required.

Extensibility
Extensibility refers to how easy the TRACE tool is for a developer to add new fea-

tures. Because the tool is continuously under development by different developers, a

well-structured architecture is demanded for achieving extensibility, regarding to two

aspects:

 Existing features: if developers need to modify existing features, how easy

is it for them to understand the current structure.

 New features: since it is an Eclipse plug-in application, each new plug-in ex-

tension can be added separately. Even so, a clear way to merge new func-

tionalities into its logical place in the existing architecture is needed.

19

5.System Architecture

After investigating all of the key requirements in the previous chapter, this chapter

discusses how the system architecture fulfills the various requirements (both func-

tional and non-functional). In order to do so, the 4+1 architecture view model is ap-

plied to illustrate Exploration Experiment(EE) and Trace architectures. The 4+1

architecture view model consists of the logical view, development view, process view,

physical view, and use case scenario.

5.1 Introduction
The system architectures that refer to EE development and TRACE development are

completely independent. Therefore, the rest of the chapter is divided into two parts to

illustrate the EE architecture and TRACE architecture. Coincidently, both architec-

tures apply the Model-View-Controller (MVC) architecture pattern. It is a good op-

portunity to practice MVC with different use cases and development technologies.

Different UML diagrams can be applied to illustrate different views of the 4+1 archi-

tecture view model. The corresponding UML diagrams and views are as follows:

 Logical view: class diagram

 Development view: component diagram

 Process view: activity diagram

 Physical view: deployment diagram

 Use case scenario: use case diagram

5.2 Exploration Experiment Architecture
In this section, the EE use case scenarios, the EE development view, EE process view,

EE physical view and EE logical view are applied to illustrate the EE overall archi-

tecture.

5.2.1. EE Use Case Scenarios

The EE application provides the user a platform to define an experiment. It also gen-

erates EE models for DF. An EE model contains the information of input and output

parameters for a specific experiment. Based on this EE model, DF can communicate

with the EE tool and conduct the relevant experiment.

According to the EE functional requirements, which are discussed in Chapter 4, there

are three user goals:

 Define an experiment

 Add an EE model to a DF transformation

 Run an experiment

The use case diagram is illustrated in Figure 5, and followed by concrete use case

scenario tables.

20

Figure 5 EE Use Case Diagram

Use Case 1: Define an Experiment
Primary Actor: EE Tool User

Context of use: the user wants to define an experiment

Scope: EE Web Application

Precondition: Apache server is on and direct to the EE web page

Success Guarantees: the user can define an experiment and the system can display

the defined experiment on the UI and store it on the EE server.

Main Success Scenario

1: EE Tool User: Create a new experiment by giving a name.

2: EE System: Display a blank definition field accordingly.

3: EE Tool User: Select an executor from the EE server.

4: EE System: Display the selected executor accordingly.

5: EE Tool User: Select an executor and retrieve a model from the EE server as an

input to the executor.

6: EE System: Display the added model and connect the model to the selected exec-

utor.

7: EE Tool User: Select an executor and add another executor as its next executor.

8: EE System: Display the added executor and connect it to the selected one.

9: The order of Step5 and Step 7 can be reversed.

10: Step 5 and Step 7are repeated until all models and executors are added.

Alternate flows

1.a: EE Tool User: Select a defined experiment from the EE server.

 EE System: Display the pre-defined executors, models and their connections on

the definition field.

5.a : EE Tool User: Upload a model to the EE server.

 EE System: Request the model information from the user.

 EE Tool User: Enter the model information.

21

 EE System: Save the uploaded model on the server, display the added model

and connect it to the selected executor.

Extensions

10.a: EE Tool User: Download an EE model from the EE server.

 EE System: Generate the required EE model and display it on the EE UI.

 EE Tool User: Save the generated EE model to a local place.

Use Case 2: Add an EE model to a DF transmission
Primary Actor: DF Tool User

Context of use: the user wants to apply a well-defined experiment to DF

Scope: DF web application

Precondition: Open a DF project

Success Guarantees: the user can apply an experiment to DF and the DF system

can extract the relevant information of the experiment.

Main Success Scenario

1: DF Tool User: Upload an EE model to a DF transformation.

2: DF System: Extract the parameter information from the EE model and display it.

3: DF Tool User: Map the extracted parameter information to DF inputs and outputs.

4: DF System: Display the mapping results.

Use Case 3: Run an Experiment

Use Case 3.1 Run an Experiment internally

Primary Actor: EE Tool User

Context of use: the user wants to run an experiment from the EE web application

Scope: EE web application and a running EE server

Precondition: Define an experiment

Success Guarantees: the user can run a defined experiment internally and the EE

system can conduct the experiment successfully.

Main Success Scenario

1: EE Tool User: Define an experiment, see Use Case 1.

2: EE System: Display the defined experiment on the definition field.

3: EE Tool User: Run the defined experiment with default input parameter values

4: EE System: Execute the desired experiment on the EE server and send the execu-

tion results back.

5: EE System: Display the results from the EE UI.

Extensions

5.a: EE Tool User: Check the results through the EE UI.

Use Case 3.2 Run an Experiment from DF

Primary Actor: DF Tool User

Context of use: the user wants to run an experiment from DF

Scope: DF web application and a running EE server

Precondition: A DF project is opened and an EE model has been applied to DF

Success Guarantees: the user can run an applied experiment and the DF system can

conduct the experiment successfully.

Main Success Scenario

1: DF Tool User: Apply an experiment to DF, see Use Case 2.

2: DF System: Display the mapping of input and output parameters.

3: DF Tool User: Set input parameter values.

4: DF System: Save the values on the DF server.

5: EE System: Execute the desired experiment on the EE server and send the execu-

tion results back.

6: DF System: Display the results from the DF UI.

Extensions

6.a: DF Tool User: Check the results through the DF UI.

22

5.2.2. EE Development View

From software designer’s perspective, the development view uses component dia-

grams. The component diagram illustrates how the tool components are coupled to-

gether. Every tool contributes differently to the system.

POOSL Editor/Debug is used for specifying a model before using it in an experiment.

The POOSL convertor, Rotalumis and TRACE are the executors that can be run from

the command line. These executors are executable files which take input files and

produce output files. How to assemble these executors is inside the integrated envi-

ronment provided by EE.

Core Components
Since there are three EE use case scenarios, three core components are introduced

accordingly. They are EE Definition Handler, EE Execution Handler and Design

Framework (DF). The overview of these three core components are in Figure 6.

EE Definition Handler

It is an application to define concrete experiments. It deals with the user interfaces

and database management.

EE Execution Handler

It focuses on the logical rules of handling all the executions and also manages the

database and file system.

Design Framework

The implementation of the DF component is part of DF team's tasks. However, inter-

faces between DF and EE Execution Handler need to be well defined by us.

Figure 6 Component Diagram of Core Components

Interfaces among components

EE Execution Handler communicates with DF and EE Definition Handler separately.

Figure 6 also defines the interfaces which support these communications.

In order to make as few modifications as possible in the current DF implementation,

two types of interfaces are involved between DF and EE Execution Handler.

 Runtime functional call interfaces

23

These interfaces refer to UpdateProgressResult, UpdateProgressStatus and

RunExperiment in Figure 6. RunExperiment is provided by EE Execution

Handler and invoked by DF, when DF needs to start one experiment. Up-

dateProgressResult and UpdateProgressStatus are provided by DF and

called by EE Execution Handler. When an experiment has completed, EE

can invoke UpdateProgressResult to send the output data back to DF. There

are several steps to complete an entire execution chain, when one step has

completed or an error has occurred during the execution, EE can invoke Up-

dateProgressStatus to update the current progress status.

 File interface

File interface refers to a special EE model that is defined in EE Definition

Handler, generated by EE Execution Handle, and used by DF. In an EE

model, it includes the information of experiment ID, input parameters and

output parameters. By uploading an EE model to DF, DF can map in-

put/output parameters, set input parameter values, trigger one execution of a

specified experiment, and wait for updating output parameters.

The interfaces between EE Definition Handler and EE Execution Handler are three

functional call interfaces.

 RunExperiment is provided by EE Execution Handler and invoked by EE

Definition Handler. It supports the function of executing an experiment with

default parameter values of a model.

 UpdateProgressStatus is provided by EE Definition Handler and invoked by

EE Execution Handler. It updates the progress status for an experiment exe-

cution.

 CreateEEModel is provided by EE Execution Handler and is called by EE

Definition Handler, when the user needs to create an EE model for a defined

experiment.

EE Internal Components
Since the development of EE is the main focus of this project, the EE Internal com-

ponents are discussed in detail in this section.

Defining and Executing an experiment are conducted by EE Definition Handler and

EE Execution Handler separately. Defining an experiment requires a graphical user

interface(GUI) to allow users to interact. By interpreting users’ inputs, EE Definition

Handler can update the user interface on the client or manipulate data on the server.

Executing an experiment does not contain a user interface, but and EE Execution

Handler takes inputs from DF or EE Definition Handler, conducts the execution flow,

produces various outputs, modifies the data in the database, updates progress status

and updates results.

Although EE Definition Handler and EE Execution Handler are separate compo-

nents, the overall architecture is applied by regarding the two components as one EE

component. As usability and extensibility are two important non-functional require-

ments for EE, a framework which can well organize users’ inputs, control data mod-

el, and present views is preferable. Therefore, the Model – View – Controller (MVC)

architecture pattern is selected.

The MVC pattern separates the entire architecture into three main parts:

 Model contains application data, business rules, logic and functions.

 View can be any output representation of information, such as a chart or a

diagram.

 Controller interprets the inputs from the user, such as mouse and keyboard

actions, manipulates the model, and updates the view.

A detailed component diagram of EE internal components is shown in Figure 7.

24

Figure 7 Component Diagram for EE

The concrete role of each component according to MVC is explained below:

Model

The model part mainly includes files and database tables, which are mainly manipu-

lated by different handlers.

 DB Tables: database tables, which contain all the EE definition information,

executable paths and some runtime information. EE Definition Handler and

EE Execution Handler share the same database tables.

 Executables: they are executable files, which can be run through the com-

mand line.

 EE models: the files contain all the information of input and output parame-

ters.

 Files/Folders: the files or folders are created in the runtime.

 Output files: they are the generated by the executables.

View

The user only interacts with EE Definition Handler, which includes a GUI view part.

The GUI can display EE definition information by drawing a flow of a model and

executors on the canvas. It can also show a runtime status when conducting an exper-

iment.

25

Controller

The controller can be separated into two parts, one belongs to EE Definition Handler

and the other belongs to EE Execution Handler.

The controller part inside EE Definition Handler:

 GUI Handler: it takes the user’s actions and updates the GUI.

 DB Handler: it connects to the unique EE database from EE Definition

Handler side.

 Definition Coordinator: it is a coordinator, which is in charge of internal

communication with the EE Execution Handler. It uses the GUI Handler

and DB Handler to define an experiment.

The controller part inside EE Execution Handler:

 Execution Handler: it controls the execution chain and executes different

executables.

 DB Handler: it connects to the unique EE database from EE Execution Han-

dler side.

 File Handler: it deals with file or folder modification in the runtime.

 Update Handler: it is in charge of updating results back to the EE Definition

Handler or DF.

 Executable Coordinator: it is a coordinator of this controller part. It com-

municates with EE Definition Handler or DF, and guarantees a request can

be performed properly.

5.2.3. EE Process View

After a general description of the three core components, the overall activity diagram

is shown in Figure 8. It illustrates the action flows in the system as well as the inter-

actions among the three components.

Figure 8 Activity Diagram of Main Action Flows

The activity diagram groups actions by the components. A block represents an action

which is provided by one component. An arrow between two blocks points a flow

direction. The arrows cross two different components indicate the interactions be-

tween two components.

Activities in DF
In DF, the actions in green have already been implemented. Only three actions are

introduced in order to apply an experiment. It requires some preparations before add-

26

ing an EE model. For instance, signing into the DF system, creating or retrieving a

project, adding compositions and parameters, adding transformations, connecting DF

parameters with transformations. After these preparation steps, the user can add an

EE model, map parameters to DF inputs/outputs and set input parameter values so as

to run the relevant experiment in EE Execution Handler. The progress status can be

updated during the execution. After completing the entire execution, the final results

can be updated in DF.

Activities in EE Definition Handler
In EE Definition Handler, the user can create an experiment and define it by perform-

ing the following steps, shown in Table 9.

Table 9 Three Steps to Define an Experiment

Step Description

Step 1 Add an executor.

Step 2 Select an executor, add a model as an input to the selected executor.

Step 3 Select an executor, add another executor as a successor to the selected ex-

ecutor.

The order of Step 2 and Step 3 can be reversed. Step 3 can be repeated many times

until the experiment definition is completed. The user can also retrieve an existing

experiment and modify it by starting from any step in Table 9 until the experiment

definition is completed.

After completing an experiment definition, the user can run the experiment directly

through the EE Definition Handler as well as download a relevant EE model. Run-

ning an experiment and creating an EE model are two actions provided by EE Execu-

tion Handler.

Activities in EE Execution Handler
In EE Execution Handler, a running server is a precondition for creating an EE model

and running an experiment. An activity diagram for running an experiment is illus-

trated in Figure 9. In the activity diagram, Update the execution progress status ac-

tion is provided by EE Definition Handler or DF. Update the final result action is

provided by DF.

The system is waiting for a request from DF or EE Definition Handler. The request

must contain an experiment ID to clarify which experiment needs to be conducted.

After getting the request, the system starts to perform the required experiment by the

following steps in Table 10.

Table 10 Six Steps to Run an Experiment

Step Description

Step 1 Generate a unique run ID from the database and parse the experiment ID

from the request.

Step 2 Check whether this request includes input parameter values. If it contains

such information, continue with Step 3, otherwise, go straight to Step 4.

Step 3 Parse the parameter values and create a parameter-value file for each mod-

el before starting an execution.

Step 4 Get the next executor’s information. For the first execution, the next exec-

utor refers to the first executor. If the next executor exists, continue with

Step 5, otherwise go straight to Step 6.

Step 5 Create a runtime folder for this execution, set runtime input arguments and

perform this execution. Update the progress status after this execution has

completed. Go back to Step 4.

Step 6 Update the final results.

27

Figure 9 Activity Diagram for Running an Experiment

5.2.4. EE Physical View

After the detailed description of core components and interaction flows, this section

discusses how to deploy the entire system physically.

In order to deploy the system, the EE part requires a web server, a database and an

execution environment, while the DF part needs a web server and a database. The

technologies applied for developing web servers and databases are the same. Depend-

ing on users’ different needs, there are two ways to deploy the system. One is to de-

ploy EE and DF together in one platform, shown in Figure 10. The other is to sepa-

rate DF from EE, deploy it on another platform, shown in Figure 11.

The benefit of one platform is that the user can install the server package directly to

his/her local device. There is no need for an internet connection to run the system.

One benefit of two platforms is from the developer’s perspectives. Since both tools

are still under development, the deployment of DF and EE on separate platforms can

guarantee the separation of the development environments. Besides, applying a big

powerful server on one separated platform for EE Execution Handler to deal with

many heavy experiments allows DF continuing with the rest of tasks at the same

28

time. However, this deployment requires the internet connection between DF and EE

Execution Handler.

Figure 10 Deployment Diagram for One Platform

Figure 11 Deployment Diagram for Two Platforms

5.2.5. EE Logical View

From design to implementation, the EE Logical view explains more about how the

EE components interact with each other in detail. Since the class diagram in EE Def-

inition Handler part is very simple, this section only discusses the controller part of

EE Executable Handler. A snippet of the relevant class diagram is shown in Figure

12.

29

Figure 12 The Controller Class Diagram in EE Execution Handler

An ExecutableCoordinator handles various requests from DF and EE Definition

Handler. It contains a list of ExecutionHandler, which is used to handle a single ex-

periment execution chain. An ExecutionHandler contains a list of ExecutionDetail,

which provides concrete functions about one executor's execution, such as creating

output path in the runtime, setting the inputs for one execution. Every ExecutionDe-

tail contains an abstract class Executor. As an abstract class, Executor is specialized

by four concrete classes, PPOOSL, Poosl2XML, Rotalumis, Trace. Every subclass of

Executor needs to implement two abstract functions: setInputArguments and run ac-

cording to its own ways of setting input arguments and executing. If there is a main

output file needs to be specified, the subclass also needs to override the function

getMainFilePath from the Executor.

Besides ExecutionHandler, the other handlers are also used to complete an execution.

DBHandler mainly deals with database. FileHander is used to create output folders,

copy/paste files to a certain directory and delete redundant runtime files. Up-

dateHandler is used to update results or progress status to DF or EE Definition Han-

dler. It is an abstract class and specialized by DFUpdateHandler and

EEUpdateHandler to update DF and EE Definition Handler in different ways. Timer

is needed to get the execution time for an Executor.

30

5.3 TRACE Architecture
Apart from the EE architecture, the existing TRACE code refactor also involves ar-

chitecture design.

5.3.1. TRACE Use Case Scenarios

TRACE is a visualization tool, which mainly generates two types of graphs:

 Gantt Charts (Single Gantt Chart, Gantt Chart Comparison among multiple

files)

 DS Graphs (Radar Graph, Scatter Plot Graph 2D/3D, Parallel Coordinates

Graph, Heat Graph 2D/3D)

Four user goals can be summarized:

 View a single Gantt Chart

 View a Gantt Chart comparison

 View a DS graph

 Check properties of a point/curve in a graph

The use case diagram is illustrated in Figure 13, and the use cases in green are exist-

ing use cases of visualizing a single Gantt Chart. Corresponding to the use case dia-

gram, the use case scenario tables are also followed.

Use Case 1: View a Single Gantt Chart
Primary Actor: TRACE Tool User

Context of use: the user wants to view a Gantt Chart from a single file

Scope: Eclipse IDE or TRACE standalone application

Precondition: an Eclipse project needs to be opened in the project/package Explorer

Success Guarantees: the user opens a Gantt Chart file from a project and the sys-

tem can display the Gantt Chart graph accordingly

Main Success Scenario

1: Tool User: Select a Gantt Chart file from a project in Project/Package Explorer

2: System: Display the Gantt Chart accordingly

3: System: Open the ESI Trace Property View

Extensions

2.a: Filter the claims or resources in the graph

2.b: Change the view type between Resource View and Activity View

2.c: Zoom or pan a Gantt Chart

2.d: Select colors for claims or resources

2.e: Select grouping criteria

2.f: Select dependency types

31

Figure 13 TRACE Use Case Diagram

Use Case 2: View a Gantt Chart Comparison

Primary Actor: TRACE Tool User

Context of use: the user wants to view a Gantt Chart comparison from at least two

Gantt Chart files

Scope: Eclipse IDE or TRACE standalone application

Precondition: an Eclipse project needs to be opened in the project/package Explorer

Success Guarantees: the user opens multiple Gantt Chart files with Gantt Chart

comparison option and the system displays the relevant Gantt Charts.

Main Success Scenario

1: Tool User: Select to open multiple Gantt Chart files

2: System: Display a Gantt Chart comparison graph accordingly

3: System: Open the ESI Trace Property View

Extensions

1.a: Select a folder or folders which contain multiple Gantt Chart files and open with

comparison view

2.a -2.e are the same extensions as Use Case 1.

32

Use Case 3: View a DS Graph
Primary Actor: TRACE Tool User

Context of use: the user wants to view a DS graph from at least two quantity files

Scope: Eclipse IDE or TRACE standalone application

Precondition: an Eclipse project needs to be opened in the project/package Explorer

Success Guarantees: the user opens multiple quantity file with specific graph op-

tions and the system displays the relevant DS graph.

Main Success Scenario

1: Tool User: Select to open multiple quantity files

2: System: Display the graph configuration choices

3: Tool User: Select a graph type

4: System: Confirm the graph type and notify the limitation of quantity numbers

5: Tool User: Select the quantities

6: Tool User: Confirm to Generate the required DS graph

7: System: Display the required DS graph

8: System: Open the ESI Trace Property View and update the content

Extensions

1.a: Select a folder or folders which contain multiple quantity files and open with

Design Space Visualization

7.a: Select a point in a DS graph, if the graph is of the type Rader Graph, Scatter

Graph 2D/3D, Parallel Coordinates Graph

7.b: Zoom or Pan a DS graph

Use Case 4: Check the Properties in a graph

Primary Actor: TRACE Tool User

Context of use: the user wants to check the property of a point/curve in a graph

Scope: Eclipse IDE or TRACE standalone application

Precondition: a graph needs to be opened

Success Guarantees: the user select a point/curve in a graph and the system display

all the relevant information on the ESI Trace View

Main Success Scenario

1: Tool User: Select a point/curve in a graph

2: System: Display all the relevant information of the particular point/curve on ESI

Trace View

Extensions

1a: Navigate to related Gantt Charts, if the point/curve is in a DS graph

5.3.2. TRACE Development View

TRACE visualizes Gantt Charts and DS graphs regarding different input files. There-

fore an organized pattern to handle input files, control data models, and present

proper views is recommended. Besides, usability and extensibility are two important

non-functional requirements for the TRACE tool. Taking those factors into account,

the MVC architecture pattern is selected to develop the TRACE tool. The relevant

pattern is illustrated in Figure 14.

Notice that the terminologies “Editor”, “Dialog”, “Wizard” and “Property View” are

in the domain of Eclipse IDE. More details can be found on [13].

33

Figure 14 TRACE Component Diagram

Model
Unlike the models in EE architecture, which are concrete files and tables in local

disks and database, the TRACE models are created at runtime. Two separate models

are involved:

 Envisioncy Model: it contains the data structure of the DS graphs. All types

of DS graphs use the same model as input, but display differently.

 GanttChart Model: it is an input for the Gantt Charts, which contains data

structures.

View
The view displays editors, properties views, dialogs, and wizards to the user. Accord-

ing to different representation types, it is divided into four parts:

 Editor: it organizes how graphs can be displayed in the editor area. Depend-

ing on different model types, it also contains two editor types: Envisioncy

Editor and Gantt Chart Editor.

 Dialog: when the user needs to specify some particular options in order to

proceed to the next step some popup dialogs are required to guide the user’s

choices.

 Wizard: it is similar to the dialogs, but multiple pages are involved. It dis-

plays the options for the user and helps to make choices until it reaches the

final step.

34

 Property View: it displays the properties of the selected points/curves in a

graph.

Controller
The controller parses input files, creates models, handles user’s interactions, conducts

procedures, and updates views. Regarding its particular responsibilities, it is grouped

into four parts:

 Editor Factory: the factory which initiates an editor and fills the content of

the frame.

 Handler: it handles the user actions for dialogs and wizards, and takes user’s

choices as an input to either manipulate models or update views.

 Listener: it registers all the event listeners in the graphs and the property

view. When a user interacts with graphs or the property view, it will update

the view’s representation.

 Parser: it parses files from the directory and initializes models.

5.3.3. TRACE Logical View

After the introduction to all the TRACE components, the TRACE logical view ex-

plains more about how its components are organized internally and how they interact

with each other.

Figure 15 is a snippet from the MVC architecture, and illustrates the interaction

among the editors, editor factories and models.

Every editor is a specialized Eclipse EditorPart. Considering different input file for-

mats, the GanttChartEditor takes care of Gantt Chart files and EnvisioncyEditor is

used to represent quantity files. There are two ways to produce Gantt Charts. A Sin-

gleGanttChartEditor is used for displaying a single file, while a Multiple-

GanttChartEditor is used for displaying multiple file comparison. An editor contains

a frame, which is used to display a required graph. Each editor is responsible for its

own layout and the frame initialization.

A concrete editor contains an editor factory, which is responsible for the content of

the frame. A factory refers to a unique Project, which consists of all the Gantt Chart

models and Envisioncy models. By specifying which model, the editor factory com-

pletes the content of the relevant frame.

35

Figure 15 TRACE Editor Class Diagram

37

6.Design & Implementation

The previous chapter provided a high-level look at the system and its intended archi-

tecture. In this chapter, a close look at the system is taken. Many design alternatives

are involved in both EE development and TRACE extension development. Based on

both functional and non-functional requirements, the major design issues are dis-

cussed in this chapter.

6.1 Introduction
After describing the overall architecture of both EE and TRACE parts, the concrete

design and implementation are discussed in this chapter. Since development of EE

includes two persons’ effort, technology alternative evaluation parts still involve

some joint effort of two persons. However, the implementation tasks are completely

separated. The rest of the chapter describes the main design issues involved in both

EE and TRACE parts.

6.2 EE Design and Implementation
Design and implementation of EE Definition Handler, EE Execution Handler and the

interfaces in-between are the main parts of EE development. There are many techno-

logical options during the implementation. Selection of the proper technologies and

application of these technologies to the overall architecture are essential issues.

6.2.1. Individual Scope

My individual scope for EE implementation comprises the following:

 Work under EE Definition Handler part

The main effort is on the GUI and GUI Handler parts, which handles user

interaction with GUI, such as defining an experiment from a GUI, uploading

a local model to the server, updating a runtime experiment status.

 Work under EE Execution Handler part

The main effort is on the Executable Coordinator, Execution Handler, Up-

date Handler parts and interfaces between EE Execution Handler and DF.

The major task is executing a defined experiment, which involves taking

commands from DF or EE Definition Handler, parsing the input stream,

running the execution chain, updating the progress results back to DF or EE

Definition Handler.

The components mentioned above refer to the EE component diagram in Figure 7.

6.2.2. EE Definition Handler

As a web application, there are several design or technology issues involved.

Server Language
It is important to select a server language for a web application first. After a pre-

selection among all the alternatives, two server languages, PHP and JSP, are consid-

ered. Table 11 shows the detailed comparison between PHP and JSP.

Table 11 Server Language Alternative Analysis

Criteria PHP JSP

Usage Popular. There are lots of

available solutions available

online.

Less popular.

38

Maintainability PHP5 become object oriented.

It is a new feature in PHP5, so

it is not mature enough.

JSP uses Java programming lan-

guage, which is completely ob-

ject oriented.

Development

Environment

No good development envi-

ronment for debugging.

Many good Java development

environments are avaiable, such

as Eclipse, Netbeans.

Learning Curve Easy to learn. Difficult to learn.

Performance Slower. Faster. However if a developer

is not familiar with it, the per-

formance can be slow.

Security Less Secure. The secure func-

tionalities need to be added by

developers.

More secure. JSP as java in gen-

eral is based on a secure infra-

structure.

Since this project aims for a prototype, security and performance are not the main

concerns. The feasibility of all the functional requirements is most important. Com-

pared with JSP, PHP is easy to start up and contains sufficient online support. Be-

sides, the current DF server language is PHP, so it is a better choice for this project.

Integrated Development Environment
After selecting the server language, WampServer is applied as a web development

environment. It provides a good IDE for an Apache server, PHP and a MySQL data-

base. See more details in [8].

Server Development Framework
In order to apply MVC architecture pattern better, a simple framework PHP-MVC is

applied. The old way of using PHP is to send the user from index.php to some other

PHP files. PHP-MVC organizes all the PHP files into three parts: model, view and

controller.

 Model deals with MySQL database.

 View specifies the outlook of the webpages.

 Controller contains the functionalities of interacting with the database and

updating the webpages.

One special feature of PHP-MVC is the way it invokes the functionalities. Instead of

importing a class and calling the functionality that belongs to that class, all the func-

tionalities are invoked through URLs. The URL looks like:

http://mainurl/controller/action/first_parameter

 controller refers to a PHP class.

 action refers to a function belongs to the controller class

 first_parameter refers to the first parameter of the action function

If there are more than one parameters, all the parameters can be attached to the URL

in order.

More details and a bare-bone structure of PHP-MVC are available on [9].

Graphical User Interface
In order to provide a better way of defining an experiment, a GUI is introduced. The

technology to develop a GUI is HTML5 canvas, because it is simple and provides

enough features for the prototype. Besides HTML5 canvas, some JavaScript files are

needed to interact with the canvas.

6.2.3. EE Execution Handler

Design and implementation in EE Execution Handler also involve several issues.

39

Programming Language
Java is selected as a programming language for several reasons:

 Sufficient libraries and frameworks to support communication.

 A well-structured object-oriented language, which is easy to implement.

 Most of executables are JAR files, which are implemented in Java.

Conducting Executable Alternatives
When a particular executable needs to be executed in EE Execution Handler, it can

be either executed through the system call or use the web service. Table 12 is a com-

parison table of the two alternatives.

Table 12 Conducting Executable Alternative Analysis

Criteria Web Service System Call

Deployment

(Shown in Fig-

ure 16)

Distributed. Each executable

can be deployed in any other

platform.

Centralized. All the executables

need to be deployed in the same

platform with EE Execution

Handler.

Implementation Needs a framework to support

web service.

Only needs to invoke a system

call from Java.

Network De-

pendency

The network is needed for

communication.

All the executions are in the

local environment.

Extensibility Extensions can be done inde-

pendently. Only requires to

report a valid URL to EE Exe-

cution Handler.

Extensions need to be integrated

with the existing EE Execution

Handler.

Performance The network traffic can influ-

ence the response time.

Needs to concern resource usage

overload when multiple experi-

ments are conducted at the same

time.

Figure 16 Deployment Structures for Web Service and System Call

From the above analysis, both alternatives have their strength and weakness. Due to

the time frame, the system call alternative is selected for the following reasons:

 It is good enough to invoke all the executables in this project.

 Use this EE Execution Handler locally is preferable for the user, since web

services depend on the web server and the network connection.

40

 For a demonstration, the number of experiment executions in parallel is no

more than ten. Therefore, the resource overload is not a concern at the mo-

ment.

6.2.4. Interfaces

Runtime Functional Calls
There are six runtime functional calls involved between DF, EE Execution Handler

and EE Definition, shown in Figure 6. The runtime communication among them can

be supported by many technologies. Two alternatives, web socket and web service,

are considered. The analysis from different aspects is listed in Table 13.

Table 13 Runtime Functional Call Alternative Analysis

Criteria Web Socket Web Service

Communication

Direction

Bi-directional. Both a client

and a server can start to talk

independently once the con-

nection is established.

Single-directional. A client

needs to use polling to get the

response, or the client also pro-

vides web services URL for call-

ing back.

Base

Technology

TCP HTTP

Implementation More complex. Have to im-

plement everything on top of

web socket protocol. However

there is existing frameworks

to use, such as Jetty in Java.

Simpler. Use URLs and wrap

existing functionalities.

Performance Low latency. High latency.

Network Traffic Once a connection is estab-

lished, only necessary mes-

sages are transferred.

If a client needs response from a

server, there are many redundant

messages due to the polling

mechanism.

EE Execution Handler mainly handles execution requests, conducts concrete experi-

ments and sends results back to initiators. The execution time for experiments varies

a lot. Some may only take a few seconds, on the contrast, some may take hours or

days. For the executions that require very short time, there are no big differences by

using web socket or web service. However, for the executions that require hours or

days, the web service technology using polling mechanism costs a lot of redundant

messages. It may overload the network. Since EE Execution Handler may send some

notifications back to DF or EE Definition Handler at any time during an execution, a

bi-directional communication is preferable.

As a result, web socket, which can provide bi-directional communication with less

network traffic and better performance, is selected to implement the runtime func-

tional call interfaces. The existing framework, Jetty, is applied to set up the server of

EE Execution Handler.

DF Integration Limitation
There is an issue at the DF Apache server side. The server terminates all the live ses-

sions every minute. If an execution at EE Execution Handler takes more than one

minute, the established connection is not alive any longer. As a result, DF cannot get

any response from EE Execution Handler after one minute. The web socket way of

communication can only start a connection but cannot send the response.

In order to solve it, web service technology is brought. DF provides several callback

URLs for EE Execution Handler. When executions finish, EE Execution Handler can

invoke a relevant callback URL to update the results. Therefore, the way of runtime

41

communication between DF and EE Execution Handler is a combination between

web socket and web service. DF starts a request using web socket connection and EE

Execution Handler updates the results using web service.

File Transmission
During the execution, the executables can produce many output files. Some of output

files need to be transmitted to DF. Depends on the deployment view, two ways are

applied to accomplish the file transmission.

 Local Copy Paste - if all the components are on one platform, which refers

to Figure 10, all the files are physically in the same machine. Local copy

paste is the simplest method to transmit files.

 File Transfer Protocol (FTP) - it is a standard network protocol used to

transfer computer files from one host to another host over a TCP-based net-

work, such as the Internet.[10] If DF and EE Execution Handler are de-

ployed on two platforms, which refers to in Figure 11, the FTP method is

used. The FTP server is at the EE Execution Handler side, and client is at

the DF side.

6.3 TRACE Design and Implementation
TRACE extension development does not involve many technology alternatives, since

it already limited to the Eclipse plug-in development environment. However, it still

contains some design issues during the implementation.

6.3.1. TRACE Standalone Alternatives

Due to the complexity of Eclipse, a standalone version of TRACE is requested to

extract the TRACE functionalities. At the same time, the Eclipse plug-in still needs

to be kept. Therefore, both the Eclipse plug-in and the standalone application need to

support the same functionalities. There are two alternatives for the TRACE

standalone application. One is an Eclipse product using Rich Client Platform (RCP)

technology. The other is a pure Java application. Table 14 illustrates the analysis be-

tween the two alternatives.

Table 14 TRACE Standalone Alternative Analysis

Criteria Eclipse Product (RCP) Java Application

Maintainability

The source code can support

both the Eclipse Plug-in and

the standalone version.

Two different source codes are

required to support the Eclipse

plug-in and the Java

standalone application

separately.

Library Support It can use Eclipse features to

build UI extensions.

It can use Java library to build

its own UI.

Technical

References

Some online tutorials are

available.

Have similar source code for

UI features of viewers (e.g.,

Envisioncy, Resvis)

Size of

Application

Around 40 MB. Can be smaller than 1MB.

Complexity of

Developing new

features

Main challenge is to transfer

Envisioncy code into

Eclipse plug-in feature.

Main challenge is to transfer

the current TRACE eclipse

plug-in to Java features.

Envisioncy code still needs to

be merged to the Eclipse plug-

in.

Usability Exactly the same user

experience of the Eclipse

plug-in.

User interaction may be

different, due to a different UI.

Redundant

features

It inherits lots of Eclipse

basic features.

It only keeps the necessary

features.

42

The biggest advantage for an Eclipse product is maintainability, because the same

code is used for the Eclipse plug-in and the standalone application. The RCP tech-

nology only builds a simplified Eclipse framework for the standalone application.

The weakest part of an Eclipse product is that some redundant features from Eclipse

core framework cannot be removed. Although it is much more simplified than

Eclipse, it is around 40 MB.

As opposed to an Eclipse product, the most attractive criterion of a Java application

must be its footprint. However, two copies of code need to be implemented, due to

the requirements. The workload of extending new TRACE features is doubled as

well as the effort of maintaining both copies of code.

Taking more maintainability and complexity of developing new features into ac-

count, an Eclipse product is selected to build a TRACE standalone application.

6.3.2. File Structure for Quantity Attribute Value

Quantity attributes are introduced into TRACE while merging Envisioncy functional-

ities. These attributes represent some statistical values for a single trace file or more

trace files. By loading data of quantity attributes, some DS graphs from Envisioncy

can be generated. The definitions of the quantity attributes are located in the configu-

ration file. However, the way to store the quantity values, which are related to one or

more trace files, can be organized differently.

In general, there are three alternatives to organize the quantity values.

 Alternative One: create a separate quantity file with the “.eqf” extension to

store the quantity values as well as relevant links to a configuration file and its

relevant Gantt Chart files.

 Alternative Two: attach quantity values to existing Gantt Chart files, which end

with the “.etf” extension. Distinguish quantity values by beginning with “Q”.

 Alternative Three: use a separate quantity file as Alternative One, as well as

attach quantity values to existing Gantt Chart files as Alternative Two.

 Table 15 shows the evaluation among these three alternatives.

Table 15 File Structure for Quantity Attribute Value Alternative Analysis

Criteria Alternative One Alternative Two Alternative Three

Use Case

Coverage

(It is related

to one single

Gantt Chart

only or mul-

tiple Gantt

Charts)

Can support both.

It only needs one

link to a list of

Gantt Charts.

Only can support

a single Gantt

Chart, since one

“.etf” file can

only describe

one single Gantt

Chart.

Can support both.

If it is related to a single

Gantt Chart, the quantity

value can be attached to the

related “.etf” file, or de-

clared in a “.eqf” file with a

link to the Gantt Chart file.

If it is related to multiple

Gantt Charts, it has to use a

“.eqf” file to store a list of

Gantt Charts.

Usability Select “.eqf” files

to display graph.

Select “.etf” files

to display graph.

Select “.etf” files or “.eqf”

files to display graph.

Complexity One type of file to

parse.

One type of file

to parse.

Two types of files need to

parse.

Performance It is good in gen-

eral, because a

“.eqf” file only

contains several

lines to describe

quantity values.

It depends on the

size of “.etf”.

The bigger size,

the more time it

takes to parse.

The same situation.

Parse “.eqf” file is very fast

and parse “.etf” file depends

on how large the file is.

43

Since performance is a very important non-functional requirement, the response time

is too slow when loading large “.etf” files. The alternatives which include loading

quantity value from “.etf” files are excluded. Then the Alternative One, a separate

“.eqf” file structure, is chosen to organize quantity attribute values.

45

7.Verification & Validation

To ensure that the implemented software fulfills the intended functionality and behav-

ior that was described in the previous chapters, verification and validation are ap-

plied to both EE and TRACE parts. This chapter describes various test cases for veri-

fication and a case study for validation.

7.1 Introduction
According to the requirements which are discussed in Chapter 4, this chapter pro-

vides sufficient test cases and a concrete case study to ensure EE and TRACE per-

form well and also meets customer's needs. For verification of EE and TRACE, test

cases are used to check all the functional requirements and some evaluations are per-

formed to evaluate non-functional requirements. A non-confidential case study,

which is provided by TNO-ESI, is used for EE validation. The simulation results

from this case study are applied for TRACE validation. Furthermore, the latest

TRACE tool has already released on the official website.[7] TNO-ESI approved the

latest TRACE tool before the release.

7.2 EE Verification

7.2.1. Functional Test

The functional tests in EE are conducted manually through the user interfaces of EE

and DF. The concrete test cases are shown in Table 16 and Table 17.
2
 For the same

functionality, both acceptance test cases and exception test cases are conducted. The

“Req. ID” in the test case tables refers to the IDs in the requirement tables in Section

4.1.1.

Table 16 Test Cases – EE Definition Handler

ID Functionality User Activity Req. ID Expected

Result

Test

Result

A1 Create an

experiment

Enter a name. A1 Create an

experiment

successfully.

Passed

A2 No name is entered. A1 Show no

name notifi-

cation.

Passed

B1 Retrieve an

executor

Select an executor from

the combo box.

A2 The selected

executor is

added to the

canvas.

Passed

B2 Retrieve an executor

without getting an exper-

iment first.

A2 Show no ex-

periment noti-

fication.

Passed

C1 Upload a

model

Select a zip file with

maximum 8MB, enter

main file path and model

name.

A3 Upload model

successfully.

Passed

C2 Select a non-zip file. A3 Show non-zip

file notifica-

Passed

2
 Test case ID for the same functionality begins with the same letter. For instance,

“A1” and “A2” test the same “Create an EE” functionality with different user activi-

ties.

46

tion.

C3 Select a model which

exceeds 8MB.

A3 Show exceed-

ing boundary

notification.

Passed

C4 Upload without a file

attached.

A3 Show no suf-

ficient infor-

mation notifi-

cation.

Passed

C5 Upload without entering

a main file path or a

model name.

A3 Show no suf-

ficient infor-

mation notifi-

cation.

Passed

D1 Retrieve a

model

Select a model from the

combo box.

A4 Add the se-

lected model

to the canvas

Passed

D2 Neither retrieve a model

nor upload a model, but

click “OK”.

A4 Show no

model notifi-

cation.

Passed

E1 Add a con-

nection from

a model to an

executor

Select an executor and

right click to add a mod-

el.

A5 Connect a

model to the

selected ex-

ecutor.

Passed

F1 Add a con-

nection from

an executor

to another

executor

Select an executor and

right click to connect to

the next executor.

A6 Connect an

executor to

the selected

executor as a

successor.

Passed

G1 Download

EE model

Download an EE model

for the current experi-

ment.

A7,

A14,

A15

Get a ".ee"

model.

Passed

G2 No experiment is select-

ed.

A7 Show no ex-

periment noti-

fication.

Passed

G3 No model is defined in

the current experiment.

A7 Show no

model notifi-

cation.

Passed

H1 Retrieve an

experiment

Select an experiment

from the combo box.

B1 Display its

execution

flow on can-

vas.

Passed

I1 Run an ex-

periment

with default

values

Current experiment ex-

ists and run the current

experiment.

A8,

A10,

A11,

A12,

A13, B2,

B3, B4

The experi-

ment is exe-

cuted and the

runtime status

is updated on

the UI.

Passed

I2 No experiment is select-

ed.

B2 Show no ex-

periment noti-

fication.

Passed

I3 No model is defined in

the current experiment.

A8, B2,

C1, C2

Show no

model notifi-

cation.

Passed

J1 Display pro-

gress status

or error noti-

fications

Start an experiment suc-

cessfully

C1, C2,

C3

Show the

progress sta-

tus of the

running ex-

periment.

Passed

47

Table 17 Test Cases - DF

ID Name User Activity Req. ID Expected

Result

Test

Result

K1 Upload an

EE model

Add a new transformation

Select a well-defined EE

model.

A17,

A18

The EE mod-

el is added

and its rele-

vant parame-

ters are ex-

tracted to DF.

Passed

K2 There is syntax error in-

side an EE model, in case

that an EE model is mod-

ified by the user.

A17,

A18

Show error

notification.

Passed

L1 Set input

values

Enter proper input values. A19 Trigger the

experiment

successfully.

Passed

L2 Input values are incorrect

for the model.

A19, C3,

C4

Trigger the

experiment

but show

error messag-

es.

Passed

M1 Start an

experi-

ment

Whenever something

changes in the parameter

values or mapping, it will

trigger an execution.

A8, A9,

A10,

A11,

A12,

A13,

A20, B4,

C2, C4

Trigger the

experiment

successfully

and update

the progress

status.

Passed

M2 Not all the input values

are set.

A8, A20 Experiment is

not executed.

Passed

N1 Display

output

results

Start an experiment suc-

cessfully and the execu-

tion flow is completed.

A16,

A21

Show the

final results

on the DF UI.

Passed

O1 Display

error noti-

fications

Start an experiment suc-

cessfully and error occurs

during the execution.

C3, C4 Show error

notification

on DF UI.

Passed

From above tables, there are 15 groups with 29 test cases in total. The correctness of

all the EE functional requirements are passed.

7.2.2. Non-Functional Requirements Evaluation

Non-functional requirements are also important during the EE design and implemen-

tation. The four non-functional requirements of EE have already discussed in Chapter

4. The evaluation results are described as follows:

 Loose-coupling

From DF’s perspective, it only gets the necessary information from EE. The

runtime interfaces between DF and EE Execution Handler are only three

functional calls to execute an experiment, update final results, and update

progress status. It keeps all the execution details apart from DF. Further-

more, an EE model, as a file interface between DF and EE, only contains the

information of experiment ID, experiment name, input parameter and output

parameter. The input parameter information is from the external model, like

POOSL model. The output parameter information is from the last executor

of an execution chain. All the intermediate executors’ information is not

mentioned in an EE model.

The transmission mechanism of the framework to upload an external model

to a DF can not only parse EE models but also handle Excel and Matlab

48

models. Moreover, the way to execute an EE experiment or other experi-

ments like Excel experiment are exactly the same. Introducing EE to DF

does not change any existing DF features.

From EE’s perspective, EE is independent from DF. It has its own user in-

terface which is mainly used for defining an experiment. Furthermore, the

user can also execute an experiment from EE Definition Handler.

 Generality

There is no restricts to model type while uploading a model from the EE UI.

However, in order to generate an EE model, input parameter information

needs to be extracted from the uploaded model. One executable file should

be added to EE to extract parameters from the model. In order to execute an

experiment with a set of parameter values, another executable file is also

needed to set parameter values to the model. When a new model type is in-

troduced, the developer needs to wrap two executables for extracting param-

eters and setting parameter values. One executable that can provide both

functionalities is also suitable. By introducing executable(s) that can deal

with model parameters, a new model can be used in EE. The generality of

models meets the requirements.

Referring to the class diagram of the EE Execution Handler in Figure 12,

every concrete executor extends abstract class Executor. All of the executa-

bles are executed by invoking the same run method externally. The generali-

ty of the executables also satisfies the requirement.

 Usability

The EE UI is very simple and easy to use. It is measured by the following

aspects:

o Exception Handler: many exception handlers are implemented to

handle unexpected user interactions. The relevant test cases are

shown in Table 16.

o Canvas: with a canvas to define an experiment, it provides a clear

execution flow.

o Similar user experience with DF: the way of displaying a popup di-

alog to add executors and models are the same as DF. It provides a

similar user experience for DF users.

o Update status: the progress status of a running experiment is updat-

ed on the UI. It provides an overview of an entire execution chain

in runtime for the user.

 Extensibility

Only three steps are needed when a new executable is added:

o Step 1: store the executable file at the server.

o Step 2: add executable name and full path to the EE database.

o Step 3: create a new Java class extending the abstract class Execu-

tor and implement the two abstract methods setInputArguments and

run. If a main file is generated during the execution override the

methods getMainFilePath.

During the EE implementation, the above steps were applied when "parame-

terizedpoosl.jar", "poosl2xml.jar", "rotalumis.exe", and "trace.jar" were

added.

7.3 TRACE Verification

7.3.1. Functional Test

The functional tests in TRACE are conducted manually through the user interfaces of

both Eclipse and the standalone application. The concrete test cases are shown in the

49

tables below. Every test case is related to one or more functional requirements de-

scribed in Section 4.2.1.

Table 18 Test Case - Gantt Chart Comparison

ID Functionality User Activity Req. ID Expected

Result

Test

Result

A1 Open a Gantt

Chart com-

parison graph

Select multiple ".etf"

files from the Project

Explorer and compare

with "Trace Compari-

son".

A24,

A25,

A26

Display a

Gantt Chart in

one editor and

sort all the

claims by

name.

Passed

A2 Select a folder or folders

which contain multiple

".etf" files and compare

with "Trace Compari-

son".

A24,

A25,

A26

Passed

A3 Select fewer than ".etf"

files to compare.

A24 Show no files

notification.

Passed

B1 Gantt Chart

Comparison

functionalities

Zooming A27 Perform the

selected func-

tionalities

successfully.

Passed

B2 Panning A27 Passed

B3 Filtering the attributes A27 Passed

B4 Grouping A27 Passed

B5 Coloring A27 Passed

C1 Display Gantt

Chart proper-

ties

Click a point from any

claim of a Gantt Chart.

A28 Show the

properties in a

"ESI Trace

Properties"

view.

Passed

D1 Single Gantt

Chart existing

functionalities

Opening a Gantt Chart,

zooming, panning, se-

lecting a view type, col-

oring, grouping, filtering,

showing dependencies,

exporting charts

A29 Perform the

existing func-

tionalities

successfully.

Passed

Table 19 Test Case - DS Graph

ID Functionality User Activity Req. ID Expected

Result

Test

Result

E1 Open a DS

graph selec-

tion dialog

Select multiple ".eqf" files

from the Project Explorer

and select "Design Space

Visualization".

A30 Display the

DS graph

selection dia-

log success-

fully.

Passed

E2 Select a folder or folders

which contain multiple

".eqf" files and select

"Design Space Visualiza-

tion".

A30 Passed

E3 Select fewer than ".eqf"

files.

A30 Show no files

notification.

Passed

F1 Select DS

graph type

and quanti-

ties to dis-

play.

Select a DS graph type

and the suitable number

of quantities.

A31,

A32

Perform the

selected func-

tionalities

successfully.

Passed

F2 Select a DS graph type

with unsuitable number of

quantities.

A31 Show unsuit-

able quantity

number noti-

fication.

Passed

50

G1 Display DS

properties

Display a non-heat graph

and select a point/curve

from the graph.

A33 Show the

properties in a

"ESI Trace

Properties"

view.

Passed

H1 Display a

navigation

dialog

Display a non-heat graph

and "Double Click" a

point/curve, which is re-

lated to multiple ".etf"

files.

B7 Display a

navigation

dialog suc-

cessfully.

Passed

H2 "Double click" a

point/curve's property

through "ESI Trace Prop-

erties".

B7 Passed

I1 Navigate

through a DS

point/curve

to a single

Gantt Chart

Display a non-heat graph

and "Double Click" the

point/curve, which is re-

lated to one ".etf" file.

B6 Display the

relevant sin-

gle Gantt

Chart suc-

cessfully.

Passed

I2 "Double click" a

point/curve's property

through "ESI Trace Prop-

erties".

B6 Passed

I3 Select a single Gantt

Chart from the navigation

dialog.

B6, B7 Passed

I4 No file is selected from

the navigation dialog.

B6, B7 Show no file

notification

Passed

J1 Navigate

through a DS

point/curve

to a Gantt

Chart com-

parison

Select multiple files from

navigation dialog and

display Gantt Chart com-

parison.

B6, B7 Display the

relevant Gantt

Chart com-

parison suc-

cessfully.

Passed

J2 Fewer than two files are

selected to compare.

B6, B7 Show incor-

rect file num-

ber notifica-

tion.

Passed

Table 20 Test Case - TRACE Executable File

ID Functionality User Activity Req. ID Expected Result Test

Result

K1 Execute the

TRACE ex-

ecutable file

Set the correct input

arguments and start the

execution from com-

mand line.

A34,

A35,

A36

Execute the

TRACE ".jar"

file and gener-

ate Gantt

Charts.

Passed

K2 Set the incorrect input

arguments and start the

execution

A34,

A35

Show error no-

tification

Passed

Table 21 Test Case - TRACE Standalone Application

ID Functionality User Activity Req. ID Expected

Result

Test

Result

L1 Support the

same func-

tionalities as

Conduct all the test cases

in Table 18 and Table 19.

A22 Get the same

results as

Eclipse plug-

Passed

51

Eclipse plug-

in version.

in version.

M1 Work inde-

pendently

Uninstall the Eclipse IDE

and only open the

standalone version.

A23 Work without

Eclipse IDE

successfully.

Passed

N1 Support mul-

tiple operat-

ing systems

Install the standalone

version on Windows,

Linux and Mac OS and

test it.

B5 Work proper-

ly on the test-

ed platforms.

Passed

In above four tables, there are 14 groups with 29 test cases in total. The correctness

of all the TRACE functional requirements are passed.

7.3.2. Non-Functional Requirements Evaluation

In Chapter 4, three non-functional requirements are discussed for TRACE develop-

ment. The evaluation results are described as follows:

 Usability

As a main non-functional requirement, many methods are performed to pro-

vide a better user interface.

o Introduce two icons (and) to distinguish Gantt Chart files and

quantity files.

o Organize all the files in a flexible way. The user can either put all

the files in one folder or separate them in a number of subfolders.

o Provide sufficient exception handlers to give notifications, when

the user makes some mistakes. For example, select only one file

and open a Gantt Chart comparison. All the relevant test cases are

in Table 18 and Table 19.

o Provide more than one way to realize the same feature. For exam-

ple, the user can navigate from a DS graph to a Gantt Chart by in-

teracting with the DS graph or with the "ESI Trace Properties"

view.

 Performance

Gantt Chart files and quantity files need to share one configuration file,

therefore, loading configuration file once at the first time is enough. In the

old TRACE tool, a configuration file needs to be loaded whenever open a

Gantt Chart file, even the same configuration file has already been loaded.

In the new tool, opening the first Gantt Chart file requires the same time as

the old tool. Afterwards, opening any other Gantt Chart file is on average

three times faster.

 Extensibility

New "Eclipse Extension point" features, like new buttons on the toolbar, are

completely independent to the existing framework due to the way of plug-in

tool development.

For architectural features, like a introduction of another type of graph, the

developer requires a deep understanding of the TRACE architecture. The

TRACE code is implemented according to the MVC pattern, see Figure 15.

If a new graph needs to be added, only three classes need to be added basi-

cally. One specialized EditoryFactory needs to be introduced to the control-

ler part, one specialized Editor is required to the view part and a new model

needs to be added to the model part.

7.4 EE Validation
A concrete case study is used in this section and shows how EE helps to perform a

Design-Space Exploration for a multiprocessor system. Figure 18 to Figure 20 are

screenshots from the EE tool and illustrate its user interface.

52

7.4.1. Case Study Introduction

A multiprocessor system consists of a (set of) parallelized application(s) that are

mapped onto the multiprocessor platform. Figure 17 illustrates a task graph of the

parallelized application and the battery-powered multi-processor platform. By map-

ping tasks on the different processors and performing a simulation, a user can esti-

mate how the multiprocessor performs with different mappings. More details about

this case study are in [11].

Figure 17 Mapping Tasks on a Multiprocessor Platform

7.4.2. Perform DSE with EE

Use a pre-defined POOSL model
A POOSL model is developed to specify the task graph and the multiprocessor sys-

tem. Simulation of the POOSL model generates a configuration file, a Gantt Chart

file, a quantity file, and a HTML file as outputs.

Define an experiment and download an EE model
Three concrete steps are involved:

 Upload the pre-defined POOSL model, which is added to the canvas named

“dse”.

 Define the execution steps by adding executors and connections, which are

added to the canvas with blue blocks with concrete executor names.

 Click the “DOWNLOAD EE MODEL”, an “.ee” file can be downloaded to

the local disk.

Figure 18 Define an Execution Flow with a Pre-defined POOSL Model

53

There are four executors in Figure 18 and their functionalities are:

 PPOOSL: setting parameter values for a POOSL model.

 Poosl2xml: generating an xml file from a POOSL model, since Rotalumis

only takes an xml file as an input.

 Rotalumis: performing a simulation for a POOSL model. For this particular

multiprocessor system, Rotalumis produces a set of files as inputs for

TRACE.

 TRACE: visualizing the simulation results with a Gantt Chart.

Add an EE model and execute the experiment from DF
The procedure to add an EE model and execute the experiment from DF is as fol-

lows:

 Add the downloaded “.ee” file to a transformation in DF, the transformation

is called “dse ee” in Figure 19.

 Create input/output parameters and connect them to the “dse ee” transfor-

mation. All the parameters listed under the block “dse” are input parameters.

The output of the transformation refers to an image.

 Set all the input parameter values and execution can be triggered. In this

case study, the user needs to map seven tasks to (at maximum) four nodes,

specify node types, set the maximum execution time units and declare de-

sired throughout. During the execution, the output image part displays a

hour glass and the progress status appears below the image, shown in Figure

19. After the entire execution flow completes, it updates the DF UI with a

Gantt Chart to display the task scheduling, see Figure 20.

Figure 19 Running EE Experiment from DF

Figure 20 A Completed EE Experiment Execution from DF

By changing input parameter values, the user performs the DSE for the specific the

multiprocessor system.

54

7.5 TRACE Validation
As mentioned in the EE Validation section, the simulation output of the POOSL

model includes a configuration file, a Gantt Chart file and a quantity file, which can

be visualized by TRACE. For the EE validation, only the TRACE executable file is

used to generate an image, however, the Gantt Chart and quantity files can be opened

in the TRACE tool separately. By changing the input values and conducting several

executions, a set of simulation results are generated. These simulation results for the

multiprocessor system are used to validate the TRACE tool. More details about

TRACE are described in the user manual, which is available on [12].

7.5.1. Input Files for TRACE

The Gantt Chart comparison and DS graphs require at least two simulation results. In

this example, five simulations are conducted. The relevant simulation output files are

grouped by the run ID separately, shown in Figure 21. Either the TRACE Eclipse

plug-in or the standalone application requires a root directory, thus, the "DSE" folder

is created as the root directory for these five simulation folders.

Figure 21 Simulation Output Files

For every simulation, it produces different three files:

 "config.txt": it contains the configuration information for displaying a Gantt

Chart or a DS graph.

 "trace.etf": it contains the task scheduling information about how the seven

tasks to be allocated to four nodes.

 "trace.eqf": it contains the statistical data like throughput, average loading of

nodes etc.

7.5.2. Display a Single Gantt Chart

From the "Project Explorer", any "trace.etf" file can be visualized to a Gantt Chart by

"Double Click". Figure 22 is a Gantt Chart visualization of the "trace.etf" in the fold-

er "393". It illustrates how the seven tasks are scheduled on four nodes.

55

Figure 22 A Single Gantt Chart Visualization in TRACE

By interacting with the Gantt Chart, more detailed information can be displayed. For

instance, zooming into Node4 with particular period and clicking on a claim, then the

claim's property is displayed in the "ESI Trace Properties" view, shown in Figure 23.

Figure 23 Display Properties of a Single Claim in a Gantt Chart

7.5.3. Open Gantt Chart Comparison

From the "Project Explorer", select multiple "trace.etf" files or folders which contain

multiple "trace.etf" files. For instance, select the root directory "DSE", then the com-

parison includes all the five "trace.etf" files. The relevant Gantt Chart comparison is

visualized in Figure 24.

56

Figure 24 A Gantt Chart Comparison Visualization in TRACE

Figure 24 is an overview of the Gantt Chart comparison among five files and in-

cludes plenty of information. TRACE supports many features to check details. For

example, filter the resource and only display the tasks scheduling on Node1, shown

in Figure 25.

Figure 25 Display the Comparison on Node1

7.5.4. Open DS Graph

From the "Project Explorer", select multiple "trace.eqf" files or folders which contain

multiple "trace.eqf" files. For instance, select the root directory "DSE", then the DS

graphs contain all the five "trace.eqf" files. Select a DS graph type and quantities

through a DS graph selection dialog. The selected DS graph with defined quantities

can be generated. For example, select a "Radar Graph", check all of the eight quanti-

ties then a radar graph with eight coordinates are generated, see Figure 26.

57

Figure 26 A DS Graph Selection Dialog and the Relevant DS Graph

With the same five "trace.eqf" files, TRACE can generate six types of DS graphs,

shown in Figure 27. (1. Radar Graph, 2. 3D Scatter Plot Graph, 3. 2D Scatter Plot

Graph, 4. 3D Heat Graph, 5. 2D Heat Graph, 6. Parallel Coordinates Graph)

Figure 27 Six DS Graph Types

Except for heat graphs, in which statistical data from five files are merged together,

points or curves in the other graphs can be selected. Once a point/curve is selected,

its properties can be displayed in the "ESI Trace Properties" view. Multiple points/

curves selection is also possible by using "Ctrl" key. One example is shown in Fig-

ure 28.

58

Figure 28 Display Properties of a Point/Curve in a DS Graph

Notice that the "Relevant Traces" in "ESI Trace Properties" in Figure 28 indicates

which Gantt Chart file(s) the selected quantity file is (are) referred to. In this case

study, a "trace.eqf" file contains statistical data for a "trace.etf" file and two files are

located in the same folder with the run ID. By "Double Click" on the curve in the DS

graph or "Double Click" the curve's field in the "ESI Trace Properties" view, the rel-

evant Gantt Chart file can be open in another editor.

59

8.Conclusion

This chapter presents the results that have been achieved of the project and the bene-

fits that can be gained. It also discusses the lessons learned throughout the project.

Moreover, the aspects that have not been fully addressed yet are described as future

work in this chapter.

8.1 Results

8.1.1. Exploration Experiment Results

Exploration Experiment(EE) as a new tool for TNO-ESI is developed within this

project. At the end of the project, the concept of coherent tool support for design-

space exploration was shown in a demonstration, described in Chapter 7.

The results from users' perspective can be addressed as follows:

 Define an experiment with the EE UI by specifying a flow of a model and

executors.

 Download EE models and apply them to DF.

 Execute an experiment from DF by setting input parameter values.

 Execute an experiment with default parameter value through the EE UI.

 Update the DF UI by displaying the progress status during the execution and

final output results after the execution.

 Update the EE UI by displaying the progress status during the execution.

The results from a developer's perspective are as follows:

 Apply the MVC architecture pattern to the EE tool.

 Separate EE Execution Handler from EE Definition Handler in order to have

a stable running server to handle all the executions. In this way, the execu-

tion time for each experiment is reduced.

 Introduce a generic concept " Executor". Every executable is regarded as an

executor at EE. Because of this "Executor" concept, a new executable can

be added into EE easily within three steps, described in 7.2.2.

8.1.2. TRACE Results

TRACE was an existing tool from TNO-ESI, which can visualize a single Gantt

Chart. The TRACE extension development brought many new features and applied a

better architecture.

The results from the users' perspective are addressed:

 Build a TRACE standalone version to work apart from the Eclipse IDE.

 Support for Gantt Chart comparisons.

 Generate DS Graphs for statistical data visualization.

 Build an executable JAR file to export images.

The result from the developer's perspective is refactoring the existing TRACE code

according to the MVC architecture pattern. Based on MVC, the current TRACE code

is easy to extend.

8.2 Lessons Learned
The lessons I learned throughout the project came from both technical and organiza-

tional aspects.

From technical aspect, several lessons were learned:

60

 It is my first time to try web application development, before I only knew a

little about JavaScript and HTML. Thanks to the project, I got an experience

with developing a web application with PHP and jQuery .

 At the beginning of the project, reading existing TRACE and Envisioncy

codes was a rough task. Besides reading relevant documents, I found the

"Debug" functionalities from Eclipse IDE quite helpful. It guided me to un-

derstand the code better.

 Since MVC is applied to both EE and TRACE architectures, I have got a

better understanding of the MVC architecture pattern.

 During integration with DF, some future work in DF was discovered. For

example, executing an experiment should be triggered by sending a specific

command instead of changing input parameter values. Terminating an run-

ning experiment from DF.

From organizational aspect, two lessons I think I can apply in the future work:

 If the requirements are not clear, communication with stakeholders and fig-

uring out their needs are very important. If any conclusion is reached during

the communication, confirm with them afterwards.

 If there are multiple tasks on hands, prioritize them and estimate the time.

8.3 Future Work
This report was based on the development of the first iteration

3
 of the EE. Since it is

a two person’s project, my teammate continued to develop the EE tool after the first

iteration. Some of the following future work has already taken into her individual

work. The suggestions for future work are presented:

 Improve the EE UI. The first iteration focuses on feasibility of features,

thus, a fancy UI is not a concern. However, like any other popular tool, a us-

er-friendly interface is always preferable.

 Support for automatic exploration algorithms. The user can define a se-

quence of one model and executors with the current EE. From DF, user can

set input parameter values to trigger the execution. In the future, EE should

support a loop which can conduct several iterations automatically. By then,

the user can set a range of input parameter values together from DF and EE

may go through every possible input combinations automatically. At that

moment, the comparison Gantt Charts and DS graphs can be exported to DF

as a final result.

 Integrate with other models and executables to the EE environment. Cur-

rently, EE is applied for POOSL models, “parameterizedpoosl.jar”,

“poosl2xml.jar”, “rotalumis.exe” and “trace.jar” executables. In the future,

more models will be added, like Excel models, Matlab models, and more

executables are also required when different models are added. According to

the architecture, it should not be a big issue when new models are intro-

duced theoretically, however more practical tests are required.

 Add version control to EE. The user needs to download an EE model to

his/her local disk in order to apply an experiment to DF. If the same experi-

ment has modified later on, the old EE model is not valid any more. Since

there is no version control mechanism currently, the EE system cannot dis-

tinguish whether an EE model is the latest one. If every EE model has a ver-

sion ID, the EE Execution Handler can check the version ID before execu-

tion.

 Extract quantities from a POOSL model. The output parameters in an EE

model are from the last executor currently. In the future, the quantities from

3
 The first iteration has completed at the end of August, 2014. With this iteration, EE

can define and execute a simple sequence of a model and executors with a simple UI.

61

a POOSL model can be extracted as output parameters in an EE model. As a

result, the relevant quantity values can be displayed on the DF UI directly

after executions. This future work depends on an extension of the POOSL

tooling, called observers.

 Improve the TRACE tool based on user feedback. Since the TRACE tool

has already released to the public since last April, some feedbacks have al-

ready collected.

o Once a DS graph is generated, one core from CPU is always occu-

pied until the TRACE is closed. This problem is from the OpenGL

library.

o Another common issue is from the TRACE standalone application,

the “Project Explorer” is not activated at the beginning, it requires

some user interactions to activate.

o Error notifications in TRACE are not helpful, they cannot pinpoint

the real cause of an error.

63

9.Project Management

This chapter provides some insights in various aspects related to the project man-

agement. It includes an overview of the life circle of the project, a concrete descrip-

tion of the work-breakdown structure and a risk management analysis..

9.1 Introduction
During this project, several methods were used to support a good project manage-

ment. At the beginning of the project, it was clear that the project was divided into

two parts: TRACE Extension Development and EE Development. The entire project

management was also separated into two parts:

 From January 6 to April 11 - TRACE extension development

 From April 14 to September 26 - EE development

In the early stage of the project, a milestone-timeline overview was scheduled to

manage the trend of the entire project. Since the management group only had some

initial opinions about this project, requirements and technologies were not so clear at

that moment. Therefore, an agile development method was applied throughout the

entire project. In this way, it was easy to clarify the requirements gradually. A regular

meeting was held every week. During the weekly meeting, the completed tasks could

be confirmed, tasks in the next week could be discussed and the priority of tasks

could be adjusted if necessary.

The rest of this chapter discusses the entire project planning and scheduling, work-

breakdown structure and risk management.

9.2 Project Planning and Scheduling
As mentioned before, an overview of milestone timeline was made in the early stage

of the project. Throughout the entire project, the timeline was adjusted several times

and the final version is shown in Figure 29. It shows all the milestones and their re-

lated deadlines.

Figure 29 An Overview of Milestone Timeline

64

9.3 Work-Breakdown Structure (WBS)
After knowing the milestones and their deadlines, a work-breakdown structure was

updated monthly. The entire project lasts for nine months, which was 38 weeks in

total. Besides three week holiday, there were 35 weeks left. Since the project can be

divided into two parts, the 35 weeks are also divided into two parts:

 14 weeks - TRACE Extension Development

 21 weeks - EE Development

Figure 30 and Figure 31 are the work-breakdown structures of TRACE Extension

Development and EE Development. They illustrate how the total 35 weeks spread

over the small parts. The blocks with the same color are at the same decomposition

level. In Figure 31, the activities with asterisk are joint activities with my teammate.

Figure 30 TRACE Extension Development Work-Breakdown Structure

TRACE Exten-

sion Development
(14 weeks)

Learning & Prepa-
ration

(1 week)

Design & Imple-
mentation

(9.5 weeks)

Testing & Bugs
Fixing

(2 weeks)

Documents

(1.5 weeks)

Standalone Appli-

cation

(1.5 weeks)

Existing Code

Refactoring

(3 weeks)

Comparison Func-
tionality

(2 weeks)

DS Graph Func-
tionality

(3 weeks)

Alternative Tech-
nologies Analysis

(0.5 week)

Implementation

(1 week)

Existing Code

Exploration
(1.5 weeks)

Re-design

(0.5 week)

Implementation

(1 week)

Envisioncy Code

Exploration
(1 week)

Implementation

(1.5 week)

user manual

(0.5 week)

OOTI Report

(1 week)

Design

(0.5 week)

Implementation

(1.5 weeks)

Design

(0.5 week)

Project Manage-

ment

(0.5 week)

Requirement
Analysis

(0.5 week)

65

Figure 31 EE Development Work-Breakdown Structure

9.4 Risk Management
In the early stage of the project, risk analysis and the relevant avoidance/mitigation

strategies were taken into account. Some risks did not appear, but other risks did oc-

cur during the project. The way to handle the risks in a proper way was to apply risk

management throughout the project. The most important risks are listed in Table 22.

These risks are categorized according to their likeliness (L) and impact (I) on a scale

from 1 to 5. Likeliness refers to the risk's occurrence probability; Scale 5 is the high-

est likelihood. Impact refers to the severity of the risk occurrence; Scale 5 is the

highest severity.

Table 22 Risk Analysis and Avoidance/Mitigation Strategy

ID Risk Description L I Avoidance/Mitigation Strategy

1 EE development does

not have sufficient

time.

3 5 Make sure the EE development start on time,

which is planned on April 14.

 Have informal discussions with stakeholders

before April 14 to have some initial ideas.

 Once it starts, prioritize tasks, focus on

"must-have" components first.

2 Individual scope of EE 2 3 Once the EE development starts, have dis-

EE Devel-
opment

(21 weeks)

Learning &

Preparation

 (3 weeks)

Architecture

(4 weeks)

Implemen-

tation

(7 weeks)

* Testing &

Bugs Fixing

(2 weeks)

* Project
Manage-

ment

(1 week)

* Require-

ments
Analysis

(1 week)

Investiga-

tion to DF

(1 week)

* 4+1 Ar-
chitecture

Pattern

(2.5 weeks)

* Technol-

ogy Evalua-
tion

(1 week)

Mockup

(0.5 week)

EE Defini-
tion Han-

dler

(3 weeks)

EE Execu-

tion Han-

dler

(4 weeks)

OOTI Re-

port

(3 weeks)

Event Prep-

aration

(2 weeks)

UI Design

& Imple-
mentation

(1 week)

Canvas

Implemen-
tation

(1 week)

File Upload

functionali-
ty

(1 week)

Setup Exe-

cution
Framework

(0.5 week)

Run an

Experiment
Function

(1.5 weeks)

Input

Stream
Parser

(0.5 week)

Integration

with DF

(1.5 weeks)

* TNO-ESI
Presentation

(0.5 week)

* TNO-ESI

Symposium

(0.5 week)

Final

Presentation

(1 week)

66

development is not

clear.

cussion with my teammate early on.

 Have a task-responsibility table to clarify

individual tasks.

3 Requirements cannot

be clarified at the be-

ginning.

4 3 Organize discussions with stakeholders as

soon as possible.

 Confirm the requirements with stakeholders

after every discussion.

 Show an initial prototype to clarify the re-

quirements.

4 Required tools for the

development have not

been delivered in time.

3 1 Keep an eye on the progress of the required

tools.

 If the new released version cannot be deliv-

ered in time, use the latest stable version in-

stead.

5 Miscommunication

with stakeholders can

take place.

4 2 Organize discussions with stakeholders fre-

quently.

 Take the notes during the discussion and

confirm them with stakeholders afterwards.

6 New requirements can

be added at the end of

the project.

5 3 Prioritize all the remaining tasks to check the

feasibility of the new requirements.

 If it is possible to take the new tasks, per-

form them in a good order.

 If it is not possible for me to fulfill, delegate

new requirements to my teammate.

7 Demonstration may

fail during the TNO-

ESI presentation,

symposium or the final

presentation.

1 2 Practice the same use cases several times

before demonstration.

 Check hardware facility in demonstration

rooms.

 Have a working version in a backup laptop.

 Record a successful demonstration in ad-

vance, in the worst case, play a video instead

of a live demonstration.

8 Document support for

exploration of the cur-

rent version of the tool

is not sufficient.

5 2 Discuss with tool developer directly.

 Use debug feature in Eclipse while exploring

Java code.

9 Technical knowledge

about Eclipse plug-in

development is not

sufficient.

2 2 Invest some time to learn more Eclipse plug-

in knowledge from websites or books as a

preparation.

 Ask experts or colleagues for help.

10 Technical knowledge

about web develop-

ment is not sufficient.

4 2 Invest some time to learn more web devel-

opment knowledge from websites or books

as a preparation.

 Ask experts or colleagues for help.

 Divide the tasks according to the familiarity

of technologies.

11 The theoretical archi-

tecture cannot be ap-

plied into practical

implementation.

2 4 Ask supervisors' feedback frequently for

architecture design.

 Perform sufficient experiments before final-

izing the architecture.

 Start from an initial architecture and impro-

vise it during the implementation.

12 Integration with DF

may not work.

4 5 Discuss with DF team frequently and come

up a integration plan together.

 Clarify the interfaces between DF and EE.

 Test the implemented interfaces before inte-

gration.

67

Figure 32 represents a classification of the risks that are shown in Table 22. Accord-

ing to their likeliness and impact, some risks are classified as being more critical.

Risks in red circle are most dangerous, as they score high on both likeliness and im-

pact. During the project, the most crucial risks were always paid more attention, such

as Risk 12. The less serious risks could raise their scales of likeliness and impact for

a certain period, therefore, the risk management was adapted accordingly. Through-

out the nine months, Risk 3, 6, 8 and 10 occurred for a short period separately, but all

of them were eliminated by applying the relevant mitigation strategies.

Figure 32 Risk Distribution on Likeliness and Impact

69

10. Project Retrospective
After providing more information about the project management process that was

applied in this project, this chapter takes a look back at design criteria which were

focused during the system design and implementation. Moreover, the general reflec-

tion which I realized during the project is also addressed in this chapter.

10.1 Design Criteria Revisited
A number of design criteria is selected to design the EE and TRACE tool. They are

brought up in Chapter 4, and evaluated in Chapter 7. It is a right moment to revisit

the design criteria and check whether they have been achieved properly.

Usability

As usability is a design criterion for both EE and TRACE, I put lots of effort to

achieve it. I communicated with many colleagues at TNO-ESI to get their feedback

about the user interfaces. Many exception handlers are provided to assist users when

making mistakes. For EE, a simple UI to display all the necessary information is the

main concern. With the simple UI, EE can fulfill all the functionalities. For TRACE,

I tried to provide the same user experience for the users who were familiar with the

existing features. I believe the usability criterion has been realized for both EE and

TRACE parts.

Extensibility

Extensibility is also a design criterion for both EE and TRACE, since both tools are

still under development and many new features need to be added. For EE, the generic

concept of "Executor" makes the EE framework easy to be extended. For TRACE, I

put much effort to refactor the existing codes according to the MVC architecture pat-

tern so as to fulfill the extensibility criterion. Therefore, I think the extensibility has

been achieved. However, both tools need to conduct more practical tests in the future.

Loose-coupling

Loose-coupling at EE development is the first design criterion I got at the beginning

of the project. During the entire project, I always kept it in my mind. In order to

achieve the criterion, I discussed with the DF team frequently to clarify how DF and

EE interact with each other. On one hand, we applied clean interfaces between DF

and EE to ensure they can work together properly without interfering the existing DF

features. On the other hand, EE has its own web application to define and execute an

experiment. As a result, DF and EE are independent with each other. This design

criterion has also been approved by the DF team. I think the loose-coupling is most

committed the design criteria in this project.

Generality

Generality is a design criterion for the EE development, which is a pre-condition for

EE extensibility. Every executable inside the EE framework is regarded as an "Exec-

utor" without distinguishing what function the executable provides. The EE frame-

work only concerns about which folders are input folders of an executable and which

folder is its output folder. The only specialization part varies from one executable

from another executable is the way to handle the inputs and the way to execute it.

Since I only kept the necessary specialization part for an executable, I believe the

generality design criterion has fulfilled.

70

Performance

Performance is a design criterion for TRACE from the user's perspective. TRACE

has already been used in industry, the input files for TRACE are usually very large.

The old TRACE tool usually took quite a lot of time to open them. I found the old

TRACE tool loaded configuration file every time before opening a Gantt Chart file.

After I noticed that, I modified the TRACE tool to check whether the configuration

file has already been loaded first. As a result, for the first time to open a Gantt Chart

file, it requires the same time amount, however, opening the second file is much fast-

er. I think I solved one performance issue for TRACE and this design criterion can

still be improved from other aspects in the future.

10.2 Reflection
All in all, I think this nine-month project was very successful. A case study of coher-

ent tool support for design-space exploration was demonstrated successfully. A new

version of TRACE with Gantt Chart comparison and DS graphs was released in

April. Different stakeholders were satisfied with my fruitful results. Feedbacks from

clients and colleagues about both EE and TRACE were very positive in general.

Personally, I had a wonderful time working at TNO-ESI. I gained much experience

throughout the entire project. Since what I learned from the university was very theo-

retical, this project was a very practical one, which required a real release and a con-

crete demonstration. Applying the theoretical knowledge to a practical project was a

challenge to me. From this project, I realized that I should not restrict to the book

when I face a practical case. Furthermore, I learned quite a lot new technologies,

such as PHP, HTML5 Canvas, web socket and web service. I also had a deep under-

standing of MVC architecture pattern. I believe the technical knowledge I learned

during the nine months can be very helpful to my future career.

The experience is not only technical knowledge, but also about communication skills

in a company environment. I realized the importance of communicating with col-

leagues deeply. It was really helpful to discuss my problems with colleagues. They

can give their opinions which might solve the problems. Even if they were not in the

same domain, I could think about my problems in a more structured way while ex-

plaining them. Moreover, communicating with colleagues helps to know each other's

working styles better, which is very important for later cooperation. After nine-month

internship, I believe I have already been adapted to the TNO-ESI working environ-

ment and I am happy to continue my career there after my graduation.

71

Glossary

4+1 Architecture

view model

It organizes a description of a software architecture using five

concurrent views, each of which addresses a specific set of con-

cerns.

Apache The Apache HTTP Server Project is an effort to develop and

maintain an open-source HTTP server for modern operating

systems including UNIX and Windows NT.

DF Design Framework is a web application which aims for system

architecting including architectural views, work flow support

and the link of architectural reasoning to concrete modeling

activities and artifacts.

DS Graph Design-space Graphs are a set of graphs for visualization of

statistical data in design-spaces.

DSE Design-space exploration refers to model, analyze and select

appropriate design alternatives in the early phases of product

development.

Eclipse plug-in A plug-in connects with a universe of other plug-ins to form a

running application in Eclipse.

EE Exploration Experiment is a tool, which provides an integrated

environment for the other tools to work together.

EE Definition

Handler

It is a part of the EE tool, which is a web application and used to

define concrete experiments.

EE Execution

Handler

It is a part of the EE tool, which focuses on the logical rules of

handling all the executions and manages the database and file

system.

Envisioncy It is a Java application, which is used to display DS graphs for

statistical data.

Experiment An experiment contains a sequence of a model and executors.

Gantt Chart A Gantt chart is a type of bar chart, which illustrates a task

schedule.

HTML5 HTML5 is a core technology markup language of the Internet

used for structuring and presenting content for the World Wide

Web.

IDE An integrated development environment is a software applica-

tion that provides comprehensive facilities to computer pro-

grammers for software development.

72

Java Archive JAR (Java Archive) is a package file to distribute application

software or libraries on the Java platform. It can be executed

from the command line.

Jetty The Jetty Web Server provides an HTTP server and Servlet con-

tainer capable of serving static and dynamic content either from

a standalone or embedded instantiations.

JSP JavaServer Pages (JSP) is a server-side scripting language,

based on Java.

MVC Model-View-Controller design pattern.

MySQL It is a widely used open-source relational database management

system.

OpenGL Open Graphics Library is a cross-language, multi-platform ap-

plication programming interface (API) for rendering 2D and 3D

vector graphics.

PHP PHP is a server-side scripting language designed for web devel-

opment but also used as a general-purpose programming lan-

guage.

POOSL It provides an integrated editing, debugging and validating envi-

ronment for POOSL modelling, combined with a high-speed

simulator.

Rotalumis It is the a high-speed simulator for POOSL models.

TRACE It is a tool for visualizing quantitative analysis results.

URL A uniform resource is a specific character string that constitutes

a reference to a resource. Most web browsers display the URL

of a web page above the page in an address bar.

WampServer It is a Windows web development environment, which allows

developers to create web applications with Apache2, PHP and a

MySQL database.

73

Bibliography

[1] TNO-ESI “About” webpage. Available: http://www.esi.nl/about-tno-esi/.

[2] TNO-ESI website. Available: http://www.esi.nl/solutions/.

[3] TNO-ESI DSE webpage. Available : http://dse.esi.nl/.

[4] DF webpage. Avaiable: http://df.esi.nl/.

[5] TNO-ESI POOSL webpage. Avaiable: http://poosl.esi.nl/.

[6] TU/e POOSL webpage. Available : http://www.es.ele.tue.nl/poosl/.

[7] TNO-ESI TRACE webpage. Avaiable: http://trace.esi.nl/.

[8] WampServer webpage. Avaiable: http://www.wampserver.com/en/

[9] PHP-MVC basic version github website.

Available: https://github.com/panique/php-mvc

[10] FTP wiki webpage.

Available: http://en.wikipedia.org/wiki/File_Transfer_Protocol

[11] Assignment 2 - Deign-Space Exploration. Available:

http://www.es.ele.tue.nl/~btheelen/education/5kk80_assignment2.pdf

[12] TRACE user manual webpage.

Available: http://trace.esi.nl/documentation.php

[13] EclipsePluginSite.com, “Eclipse Plugin Development” website.

Available: http://www.eclipsepluginsite.com/index.html

[14] H. Moneva, R. Hamberg and T. Punter, “A Design Framework for Model-

based Development of Complex Systems”, 32
nd

 IEEE Real-Time Systems

Symposium, 2
nd

 Analytical Virtual integration of Cyber-Physical Systems

Workshop, Vienna, 2011.

http://www.esi.nl/about-tno-esi/
http://www.esi.nl/solutions/
http://dse.esi.nl/
http://df.esi.nl/
http://poosl.esi.nl/
http://www.es.ele.tue.nl/poosl/
http://trace.esi.nl/
http://www.wampserver.com/en/
https://github.com/panique/php-mvc
http://en.wikipedia.org/wiki/File_Transfer_Protocol
http://www.es.ele.tue.nl/~btheelen/education/5kk80_assignment2.pdf
http://trace.esi.nl/documentation.php
http://www.eclipsepluginsite.com/index.html

75

About the Authors

Fangyi Shi received her MSc diploma in Software Engi-

neering from Technical University of Denmark in 2011.

Her Master thesis was titled “Translating Communicating

Sequential Processes to Formal System Design Models”,

which researched a mapping strategy from a high level

language to a system design model. She obtained her BSc

diploma in Information Security from Beijing University

of Technology in 2009. Her Bachelor thesis was about

face recognition based on artificial neural net. During her

Bachelor and Master studies, she took two internships,

and had some experience at software quality assurance

and web establishment. Her main research interests in-

clude real-time system development and software design.

	Cover Shi
	TR Shi.Fangyi
	Foreword
	Preface
	Acknowledgements
	Executive Summary
	Table of Contents
	List of Figures
	List of Tables
	1. Introduction
	1.1 Context
	1.2 Design-Space Exploration
	1.3 TRACE Extension
	1.4 Outline

	2. Domain Analysis
	2.1 Current Tools and Relevant Technology
	2.1.1. Design Framework
	2.1.2. Exploration Experiment
	2.1.3. POOSL
	2.1.4. TRACE

	2.2 Design-Space Exploration

	3. Problem Analysis
	3.1 Problem Description
	3.2 Project Goal and Scope
	3.3 Stakeholders
	3.3.1. The University
	3.3.2. The Company
	3.3.3. End Users
	3.3.4. Software Developers
	3.3.5. Project Teammate

	3.4 Opportunities and Challenges
	3.4.1. Opportunities and Challenges in EE
	3.4.2. Opportunities and Challenges in TRACE Extension

	4. System Requirements
	4.1 Exploration Experiment Requirements
	4.1.1. EE Functional Requirements
	4.1.2. EE Non-functional Requirements
	Loose-coupling
	Generality
	Usability
	Extensibility

	4.2 TRACE Requirements
	4.2.1. TRACE Functional Requirements
	4.2.2. TRACE Non-functional Requirements
	Usability
	Performance
	Extensibility

	5. System Architecture
	5.1 Introduction
	5.2 Exploration Experiment Architecture
	5.2.1. EE Use Case Scenarios
	Use Case 1: Define an Experiment
	Use Case 2: Add an EE model to a DF transmission
	Use Case 3: Run an Experiment
	Use Case 3.1 Run an Experiment internally
	Use Case 3.2 Run an Experiment from DF

	5.2.2. EE Development View
	Core Components
	EE Definition Handler
	EE Execution Handler
	Design Framework
	Interfaces among components

	EE Internal Components
	Model
	View
	Controller

	5.2.3. EE Process View
	Activities in DF
	Activities in EE Definition Handler
	Activities in EE Execution Handler

	5.2.4. EE Physical View
	5.2.5. EE Logical View

	5.3 TRACE Architecture
	5.3.1. TRACE Use Case Scenarios
	Use Case 1: View a Single Gantt Chart
	Use Case 2: View a Gantt Chart Comparison
	Use Case 3: View a DS Graph
	Use Case 4: Check the Properties in a graph

	5.3.2. TRACE Development View
	Model
	View
	Controller

	5.3.3. TRACE Logical View

	6. Design & Implementation
	6.1 Introduction
	6.2 EE Design and Implementation
	6.2.1. Individual Scope
	6.2.2. EE Definition Handler
	Server Language
	Integrated Development Environment
	Server Development Framework
	Graphical User Interface

	6.2.3. EE Execution Handler
	Programming Language
	Conducting Executable Alternatives

	6.2.4. Interfaces
	Runtime Functional Calls
	DF Integration Limitation
	File Transmission

	6.3 TRACE Design and Implementation
	6.3.1. TRACE Standalone Alternatives
	6.3.2. File Structure for Quantity Attribute Value

	7. Verification & Validation
	7.1 Introduction
	7.2 EE Verification
	7.2.1. Functional Test
	7.2.2. Non-Functional Requirements Evaluation

	7.3 TRACE Verification
	7.3.1. Functional Test
	7.3.2. Non-Functional Requirements Evaluation

	7.4 EE Validation
	7.4.1. Case Study Introduction
	7.4.2. Perform DSE with EE
	Use a pre-defined POOSL model
	Define an experiment and download an EE model
	Add an EE model and execute the experiment from DF

	7.5 TRACE Validation
	7.5.1. Input Files for TRACE
	7.5.2. Display a Single Gantt Chart
	7.5.3. Open Gantt Chart Comparison
	7.5.4. Open DS Graph

	8. Conclusion
	8.1 Results
	8.1.1. Exploration Experiment Results
	8.1.2. TRACE Results

	8.2 Lessons Learned
	8.3 Future Work

	9. Project Management
	9.1 Introduction
	9.2 Project Planning and Scheduling
	9.3 Work-Breakdown Structure (WBS)
	9.4 Risk Management

	10. Project Retrospective
	10.1 Design Criteria Revisited
	Usability
	Extensibility
	Loose-coupling
	Generality
	Performance

	10.2 Reflection

	Glossary
	Bibliography
	About the Authors

	Back cover SAI reports

