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Abstract

In this paper the problem of exact linearization of dynamic sys-
tems by application of a suitable controller is discussed. Algorithms
that are instrumental in solving this problem are implemented in
the so-called NonfCon package, based on the symbolic computation
program MAPLE. Four examples are presented to illustrate the use
of NonZCon. They show that this package is a useful tool for the
automated design of changes of coordinates and state-feedbacks that
solve the exact linearization problem. The limited capability to solve
partial differential equations is a bottleneck. Recommendations to
improve NonZCon and to make MAPLE more suitable for implemen-
tations like this one are given.

1 Introduction

The usefulness of industrial products depends on how well they comply
with their specifications. These specifications are becoming more and more
tight, due to an increased expectation level of the consumer and due to the
accumulated knowledge and experience of the producer, resulting in high
quality goods at a relatively low price. These market pull and technology
push trends in the economy are important, as the following quote illus-
trates, “Consumption—to repeat the obvious—is the sole end and object
of all economic activity” (John Maynard Keynes).

Control systems play an important role in some of these goods. Exam-
ples where control systems are used to attain goals that were not within
easy reach without them are abundant, to name a few: engine control,
(semi) active suspension control, hydraulic steering, and automatic brake
systems for motor vehicles, laser beam focusing and radial servos for com-
pact disk players, fuzzy controllers for home appliances, advanced tracking
controllers for manipulators, stabilizing controllers for inherently unstable
airplanes (fly-by-wire), etc.

To expand the current knowledge base, there is an ongoing research
effort:

1. to increase the performance of control systems for enhanced quality

by using advanced mathematical theories and more computing power,
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2. to shrink the control system design cycle for a reduced time to market,
using advanced mathematical algorithms and computer-aided-design
tools.

For linear systems an abundant number of theories, algorithms, and
design tools is available. However, to produce high quality goods at low
costs, these programs are not always sufficient, because they cannot cope
well with non-linear systems. These tools are not adequate because they
can only manipulate numbers, i.e., data entry, number crunching, and data
visualization are their main forte. Symbolic computation programs are an
alternative tool because they can manipulate both numbers and symbols,
e.g., manipulate mathematical expressions.

To use these programs effectively they must be:

¢ without a steep learning curve;

¢ able to solve most problems, pref;erably without too much user pro-
gramming;

e adaptable and expandable, to fit the user’s needs closely;

o cost effective.

When a tool does not fulfil these requirements, it is not of much value for
the practising engineer.

The question is: Do current symbolic computations programs satisfy
these requirements and do they offer a viable alternative for numeric com-
putation and paper and pencil work? We try to answer this question with
a case study, where several mathematical algorithms, that are useful in
the analysis and design of non-linear control systems, are implemented in
the pa.ckage N ON_’CON using the symbolic computation program MAPLE as
computing substrate. '

The use of symbolic computation programs for control purposes is in-
vestigated by several researchers. Some linear control problems are handled
by REDUCE, see [1, 2, 3] REDUCE has also been used for the design of some
non-linear observers via observer normal forms [4].

The use of multidimensional Laplace transform for the analysis of a
specific class of non-linear systems is advocated by Barker et al. [5] who
implemented this method in MACSYMA. Zeitz et al., [6, 7] use the program
MACNON, based on MACSYMA, to analyse observability and reachability,
and to design observers and controllers for non-linear systems. In the pa-
per [6] they discuss ten observer design methods ranging from a working
point observer to an extended Kalman filter. They also implemented some
controller design methods in MACNON. Their package is mainly used for
teaching. Results for larger scale problems are published in [8, 9]. For linear
systems some work using MACSYMA is reported in [10]. Blankenship [11, 12]
used MACSYMA to design output tracking controllers for non-linear systems
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via feedback linearization and (left) invertability with his implementation

CONDENS. He used MATHEMATICA also, and provides a control toolbox for
this platform. Some MATHEMATICA notebooks, e.g., COSY_PAK, are devel-
oped to mimic MATLAB tool boxes, primarily with the aim to get a more
powerful visualization and a possible integration of symbolic capabilities,
although those capabilities are not fully exploited now. A symbolic toolbox
for MATLAB, using the oem kernel of MAPLE, is commercially available.

To study stability properties of a restricted class of single-input single-
output non-linear systems MAPLE was used in [13]. The use of MAPLE
for several problems in non-linear control is presented in [14]. Problems
reported in this paper, e.g., with solving partial differential equations,
are partly resolved in [15]. They describe a MAPLE package, here called
NONECON (a successor of the ZERODYN package presented and used in [14,
16]), that can compute, e.g., the zero dyna.rmcs and provide solutions to
exact linearization problems

In the present paper we illustrate the use of this package by using it
for some textbook and practice-oriented problems. Contrary to [16, 17],
where attention is focused on the computation of the zero dynamics and
input—output exact linearization, here the focus is on state space exact
linearization. '

-—The main contribution of this- werk is a further-assessment of the-suit--
ability of a symbolic computation program for the analysis and design of
control systems. Other goals are to supply feedback to the developers of
these programs, and to solve a semi-industrial control problem. Compared
with [15] this paper differs mainly by presenting results obtained for some
examples in the book by Isidori [18] and for the semi-industrial problem
in the control of a spacecraft. It also assesses explicitly the areas in the
implementation of the package and the underlying symbolic computation
program that are problematic and limit its usefulness.

The paper is structured as follows. First, Section 2 presents, and makes
some remarks on, the specific problem that has to be solved in the case
study. Then, Section 3 discusses the mathematical details of the problem.
Section 4 follows with a solution of the problem, an investigation of the
mathematical tools needed, and algorithms used. The implementation of
these algorithms in MAPLE is given a short treatment in Section 5, where
the NONZCON package is described. Section 6 gives four examples, illus-
trating the use of the NONZCON package. Finally, Section 7 presents the
conclusions and discusses the objectives for future research.

2 The Exact Linearization Problem

From several problems in non-linear control, where symbolic computations
are likely to be of some profit, we discuss the state space exact linearization
problem.
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The exact linearization problem is of longstanding interest in control
theory. In essence, it is the problem of modifying a non-linear dynamical
system such that, after the modification, it behaves like a linear one, so
powerful design methods for linear systems can again be employed.

To be able to make a system behave like a linear one, some modifications
of the system are needed. Because, in our setup, the system itself is not
allowed to be changed, the only possible modifications are the judicious
manipulation of control signals, i.e., signals that act on the system and can
be influenced from the outside, and a change of coordinates.

Examples of control signals are valve settings, that can influence flow
rates or heat inputs, and electrical currents or voltages, that can influence
the torque exerted by motors. Most of these control inputs are generated
by control devices.

Generation of control signals is done by a control law, where information
of the system is used to generate the control input. For an overview of the
problem set-up, see Figure 1.

new control plant

input | linearizing | input plant 7<V)gtip’1717t
~—leomtrollaw | — LT
A

transformed
_plant information change of |information
» > -
coordinates

Figure 1: Standard control problem set-up.

This figure should be interpreted as follows. The non-linear system,
called the plant, has some input signals, that can be manipulated, and gives
the values of some output signals, e.g., measured temperature, position, or
speed. The control law processes information of the plant (or feeds it back)
to generate the control input. The controlled system can be influenced by
a new input and be observed by the plant output. The goal is to get a
linear (dynamical) relation between the new input and the transformed
information of the plant, i.e., expressed in appropriate coordinates.

In a more complete control system design, the exact linearization is of-
ten only a subordinate goal, to make it possible to use other design methods
for attaining additional goals. It is also possible to consider a more limited
goal, where only the behaviour between the new input and the output of
the plant is required to be linear. We will not consider this case, although
the conditions to reach this goal are more easily satisfied.
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3 The Mathematical Formulation

In the presentation of the mathematics, we closely follow the work of
Isidori [18]. We start with a non-linear model of a square plant, and assume
that the plant can be described adequately by a set of non-linear differen-
tial equations, affine in the input u, and without direct feed-through from
input to output

&= f(z)+g(z)u, y=h(z), 1)
where the state vector z € R™, containing all necessary information of
the plant, the input vector v € R™, and the output vector y € R™, so
the number of inputs is equal to the number of outputs, i.e., the plant is
square. This assumption is for convenience only and makes a simplified
presentation possible. The vector field f is a smooth one, g has m columns
g; of smooth vector fields, and & is a column of m scalar-valued smooth
functions h;. The assumptions that the model is affine in the input u, i.e.,
that u enters linearly in (1), and that there is no direct feed-through from
u to y, i.e., h(z) is not an explicit function of u, can often be circumvented
by an appropriate redefinition or augmentation of the state z, the input v,
or the output y, and is therefore not very restrictive. '

Not all systems can be described with differential equations of the type
‘of (1); e.g:; sometimes it-is convenient to include derivatives u(¥) of the
input u in the model equations. Then, a more general model is needed.
For an illustration how this can be done see [19], where a general controller
canonical form is introduced. .

The modifications we allow for the exact linearization are state-feedback,
i.e., a feedback based on the explicit knowledge of the value of the state
vector z(t) of the plant, and a (local) change of coordinates in the state
space. The type of control law used is restricted to static state-feedback.
In a static state-feedback the value of the input vector u at time ¢ depends
on the state z(t) and a new reference input vector v(t). We assume this
dependency to be of the form

u= a(z) + Bz @)

because it does not change the structure of (1). Here ¢; and f;; are smooth
functions. In a dynamic state-feedback the value of u(t) depends on z(t), a
new input v(t), and an auziliary state vector ((t) € R*. This dependence
is of the form

u = oe,Q)+ A0
¢ = e Q)+ 8@ O

because, again, it does not change the structure of (1). The components
a;, Bij, v; and &;; are smooth functions. See Figure 2 for an overview of
the set-up for a static state-feedback.
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———lu = a(z) + B(z)v 4 &= f(z) +g(z)u Yy

y = h(z)

Figure 2: Control structure for static state-feedback.

Although for linear systems a linear change of coordinates z = Tz in
the state space R®, with T a non-singular matrix, is usually adequate, for
non-linear systems it is more appropriate to allow for a non-linear change
of coordinates

z = ®(x). 3)

It is required that the Jacobian 8®/dz of the transformation vector @ is,
at least locally, invertible for ® to qualify as a change of coordinates.

We can now state our problem, which we will call the state space ezact
linearization problem: under which conditions is it possible to transform
the system (1) to a linear and controllable one by state-feedback (2) and

a change of coordinates (3)? The linearity property should be established
between the new input v and the transformed state z. This problem has
been solved, see, e.g., [18], and our goal is to test the conditions and to
derive explicit equations for the feedback and the change of coordinates for
specific plants.

The next section gives the conditions, and contains also some remarks
on how the state-feedback and the change of coordinates can be computed.

4 The Solution of the Problem

Here the conditions for solving the exact linearization problem are given.
To state the solution more easily, we define the so-called distributions:

Go = span{gi,...,gm}

G; = span{ad?gj:OSkSi,l <j<m}

fori =0,...,n—1. Before defining the adjoint ad, we first give definitions
for the Lie derivative, LA = g% f(z), where X is a scalar-valued function
of z, and the Lie product

dg; 0
[f, g = aif- égi,
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where f and g; are vector fields. In terms of the Lie product ad is defined
recursively as a.dfg, [f, adf"lg,] with adfg, gi-

We now state the conditions for a solution of the state space exact
linearization problem [18, Theorem 5.2.4].

Theorem 1 Suppose a system
z=f(z)+g(z)u, z€R*, ueR™
with rank g(z°) = m is given. There ezists a solution for the state space
exact linearization problem if and only if:
(1) G; has constant dimension near z° for each 0 < i <n — 1,
(2) Gp-1 has dimension n,
(3) G; is involutive for each 0 <i<n—2.

Here, involutive means that the distribution is closed under the Lie
product, i.e., the dimension of the distribution G; does not change when
a vector field, generated by the Lie product of each combination of two of
the vector fields in G;, is added to the distribution.

Remark 1 For m = 1 the situation is easier, because condition (1) im-
plies(1); and then condition (1) for i = n =2 implies (1) for 0 <i <n=3:
.Remark 2 For linear systems the conditions are equivalent with condi-

tions for the controllability of the system.

When the conditions for the exact linearization problem are fulfilled,
the state-feedback and change of coordinates that realize the linearization
are still to be determined. It can be shown that, when the three conditions
mentioned above are fulfilled, there exist solutions );(z),i = 1,...,m, for
the following partial differential equations

Lg;L%Xi(z) =0, for0<k<r;—2and 0<j<m. (4)

Also 3772, ; = n, where the set of integers {r1, ..., 7} is called the relative
degree vector. The m functions \; can be computed, based on a constructive

proof of Theorem 1.
Using the functions A;, the change of coordinates and state-feedback

that solve the state space exact linearization problem are given by
i A]_ (2)

L} M ()
z2=0(z) = :
Am(2)

L}m—l’\m(m) E
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o(z)
B(=)

—A~Y(z)b(z)
AN (z)

with the m X m nonsingular matrix 4 and the m X 1 column b given by

- Lg1 L?—li\l(z) vee Lgm L?—l Al (z)

Alz) = : : (5)
| L L (@) - Ly L IAn(2)
[ L M(z)

b(z) = : : (6)
| L7 Am(2)

Using the state-feedback (2), the transformed state z = &(z) depends
linearly on the new input v.

An analysis of these formulae shows that a symbolic computation pro-
gram should be able to comptite the Lie derivative and Lie product, perform
matrix vector multiplication, compute a matrix inverse, etc. These compu-

_tations are relatively easy. The main problem is in the computation of the -
functions );, where partial differential equations have to be integrated. Al-
though the solutions A; are known to exist, the actual computation can be
complicated. Our approach is to use a constructive proof of the Frobenius’
theorem. We will discuss this in the next section.

Remark 3 A completely different algorithm to solve the exact lineariza-
tion problem, avoiding the integra.tion step, also exists; see [20]. This
algorithm is not implemented in NONZCoN.

5 Computer Algebra Solution

The algorithm, described in the previous section, to compute the solution
for the exact linearization problem, is included in NON2CoN. Besides the
state space exact linearization problem, other problems, like the compu-
tation of the zero dynamics and of the input—output linearizing feedback,
both for systems with and without a well-defined relative degree, are in-
cluded in this package. The structure of the implementation is sketched in
Figure 3. :

To solve the state space exact linearization problem we use the func-
tions outputfunc, reldeg, transform, and statelin. In outputfunc the
functions \; are computed. They should give the system a full order rela-
tive degree, i.e., the sum of the vector relative degree components is equal
to the systems order Yizi7mi = n. In reldeg the vector relative degree is
computed, using f, g, and h = A. Matrix A and column b are results of
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well defined relative degree
‘sfate spaceexact ]
i linearization :
X outputfunc| ;
(“zéro dynamics * T : :
:1/0 linearization i }
; ; reldeg : !
| i I |
! i |transform| ! '
1 : ) :
| : : I
. | normform | ! | | statelin |
i | extnormform inoutlin |
\ |Zero Dynamics| | Structure |
2 Algorithm Algorithm E
,,IL,,‘——--—:?_T:“:,_,::::::7727:,_,,__:;, J—
no well defined relative degree

Figure 3: Structure of NONZCON.

the relative degree computation. Then transform computes the required
transformation z = ®(z), also used to bring the system in a standard (nor-
mal) form, and its inverse ®~1, From the computed A and b statelin
derives the state-feedback u = a(z) + B(z)v. The control law expressed
in the new coordinates z can also be computed using the inverse transfor-
mation ®~1. For more information about NONECON, especially for other
parts of the package, see [15, 21, 22].

In the following we focus on a specific problem that appeared during
the implementation of the algorithm presented in Section 4. This prob-
lem presents the major bottleneck for the symbolic solution of the exact
linearization problem.

In the previous section we remarked that the main problem was to
compute the functions );, and that the integration of partial differential
equations was a final step in this computation. In MAPLE almost no fa-
cilities are available to solve partial differential equations. Therefore the
following route was chosen.

The partial differential equations we would like to solve are from the
“completely integrable” type, so, based on Frobenius’ theorem, we know
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that a solution for the partial differential equations exists. To compute the
solutions Frobenius’ theorem itself is of no help. This problem was solved
by computing the solutions with an algorithm based on a constructive proof
of Frobenius’ theorem. The procedure is as follows.

We use the property that the solution of our type of partial differential
equation can be constructed by composing the solutions of related sets
of ordinary differential equations; see the constructive proof of Frobenius’
theorem in [18]. Because MAPLE provides some facilities to solve sets of
ordinary differential equations, with the dsolve command, the problem
seems solved. However, the dsolve command is not very powerful and is
often unable to present a solution, although this solution is known to exist.
Therefore the dsolve procedure was extended in an ad hoc way, so a larger
class of problems could be handled. In extdsolve a recursive procedure
to solve sets of differential equations was implemented, starting from the
“shortest” (assumed to be the simplest) equation, substituting the solution
in the remaining equations, and so on. No effort was spend in trying to
detect a (block) triangular dependency structure in the set of differential
equations, that would be a more rigorous option. See also [23].

Nevertheless, the computation of the functions \; is often unsuccessful,
especially for more complicated systems, so NONECON cannot finish the

_computations. This part of NONZCON should therefore be considered. as. -

experimental. It seems unlikely that another symbolic computation pro-
gram will improve this situation. A possible solution could be to use the
alternative algorithm of [20].

6 Examples

To illustrate the use of NONZCON and assess its usefulness, we consider
four examples, one for a system with m = 1, i.e., a system w1th one input
and output signal. The second example is for a system with multiple input
and output signals and this is more complicated. These two examples
are contrived ones. The first is taken from [18, Example 4.2.2], the second
from [18, Example 5.2.1]. The last two examples are for the attitude control
of a spacecraft.

Example 1. The model of the system is

.’173(1 +.’1:2) 0
T = z +{ 1425 | u.
zo(1+21) —z3

To check whether this system can be transformed into a linear and
controllable one via state-feedback and a cha.nge of coordinates, we have
to compute the functions adsg(z) and a.dfg(:z:) and test the conditions of
Theorem 1. See also Remark 1.
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Appropriate calculations show that

i 0
adsg(z) = o :, )
| —(1+21)(1 + 22,)
[ (L4 z1)(1 +22)(1 + 222) — 2123
adf:g(a:) = z3(1 + z3) .
i -—.’33(1 + 222)(1 + 2:'02) - 3101(1 + wl)

At z = 0, the matrix
‘ 0 0 1

has rank 3 and therefore condition (2) (and also (1)) of Theorem 1 is
satisfied. It is easy to check that the product [g,ad;g](z) is of the form

0
9, adsg](z) = [ * }

and therefore also condition (3) is satisfied, because the matrix

[ 9(z) adsg(z) [g,adsg)(z) ]

has rank 2 for all z.
A function A(z) that solves the equation

o .
o[ 92) adsg(@) ] =0

is given by
’ A(z) =z;.
We check this result and observe that
LAz) = 0
LyL¢X(z) = O

LgLﬁ)\(x) = (1'+ 21)(1 + 22)(1 + 2.’122) — 123
LyL3X0) = 1 S

Locally around z = 0, the system will be transformed into a linear one by
the state-feedback

—:l:%(]. + :Ez) - (82:1.‘3(1 + $2)2 - :cl(l + :D]_)(l + 3.’1:2) +v
(1 + .'81)(1 -+ :Ez)(l -+ 21:2) - 123
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and the change of coordinates

21 Iy
z = 2z | =8(z) = z3(1 + x3)
23 | zaxy + (1 =+ :L']_)(]. + :1?2):82

The edited, log of a MAPLE session shows that these results can be
reproduced by NONZCON. From the functions supplied by NoNZCON we
only need outputfunc for the computation of the };, statelin for the
linearizing state-feedback u, and normform for the change of coordinates
®(z). The conditions given for the singularity of the matrix 4 in (5) define
states for which the linearizing state-feedback is not well defined.

* finding functions for exact linearization, (outputfunc)#
the conditions for which the matrix A turns out to be singular are:

: 2 2
1+ 3 x[2] + x[1] + 3 z[1] x[2] + 2 x[2] + 2 z[1] x[2]
{{1[3] = - }s
x[1]

{x[11 = 0, x[2] = -1}, {zx[1] = 0, x[2] = -1/2}}

the function(s) lambda that fulfil the demands are: [ x[1] ]
* exact linearization of the state input equations, (statelin)#*
the exact linearizing feedback: (u)
2 2 ’ 2
(- vi1]l + x[3] + x[31 =x[2] + x[3] x[2] + 2 x[3] =x[2]

3 2 2
+ x[2] x[3] + x[1] + x[1] + 3 x[1] (2] + 3 x[1] =x[21)

/ 2 2
/ (x[3] x[1] -1 -3x[2] -x[1] -3x[1] =x[2] -2x[2] -2x[1] x[2] )
/

* transformation to the normal form, (transform)#*
2 2

x[1], x[3] + =[31x[2], =[31x[1] + x[2] + x[11x[2] + x[2] + x[1]1z[2]
It is easy to check that these results coincide with the previous ones.

Example 2. The model of the system is

To + Z% 0 1
T3 — T1T4 + 425 0 0
&= | Toxgs+z125— 22 | + | cos(zy —z5) |ur+ | 1 | us.
5 0 0
T3 0 1
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This system satisfies the conditions of Theorem 1. We have to construct
two functions A;. This is worked out in [18] and the result is

A]_ = — s, A2=9}4.

The following log of a MAPLE session, with some edits, shows that this
result (and more) can also be obtained by NONECON.

* finding functions for exact linearization, (outputfunc)*
the conditions for which the matrix A turns out to be singular are:

{{xf1] = 1/2 Pi + x[51}}
the function(s) lambda that fulfil the demands are:
[-x[1] + x[5], x[4]]

* exact linearization of the state input equations, (statelin)*
the exact linearizing feedback: (u)
-y, :
v[1]l - v[2] + x[2] 7 2
: -, vi2] - x[2]

cos(x[1] - x[51)
* transformation to the normal form, (transform)x*
x[1] - x[8], x[2], x[3] - x[1] x[4] + x[4] x[5], x[4], x[5]

The computed state-feedback and change of coordinates complete the
results given in [18].

Example 3. In this example the linearizing state-feedback is computed
for a less trivial model. The model to be considered is for a three degrees-
of-freedom satellite [24, 25, 26], orbiting in a circular orbit in a square law
gravitational field with constant orbital angular speed wg of the center-of-
mass; see Figure 4.

The following two coordinate frames are used (for i = 1,2, 3):

1. z; a body-fixed frame through the center-of-mass and aligned with
the principal axes of inertia,

2. (; an orbital frame fixed to the center-of-mass and aligned with the
orbit, with {; tangent to the orbit in the direction of movement, (3
pointing away from the center of the circular orbit and {; completing
the orthogonal dextral frame.

The angles 6; (i = 1,2,3) are pitch, yaw, and roll, respectively, and are
also called the Tait—Bryan angles. Rotation from the ( to the = frame is by




304 B. de Jager

- Figure 4: Spacecraft model with attitude angles 6;; from [26]. -

the (2, 3, 1) rotation sequence. The projections of the angular velocity with
respect to a fixed inertial frame on the body-fixed frame z are denoted by
w; while wy is defined as above. The time derivatives of the Tait-Bryan
angles are §;.
Assuming that the attitude has no influence on the orbit, the following
equations of motion can be derived [24] '
I = 3w€It — olw +u )

with I the diagonal matrix of the moments of inertia I; about the body-
fixed frame and [25]

w

I

R(6)8 + w.(8) (8)
i sin fo 0 1

R(6) = cosfycosf3 sinfz O

| —cosfzsinf; cosf; 0

wo sin 0_2 j!

&)

we(8) = wp cos B cos O3 (10)

—wgq cos by sin O3

and

—sinf; cos s
€ = | cosfsinf3 + sinf; sin @ cos O3 (11)
cos 81 cos 83 — sin f; sin s sin 03
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while for any v = [vq, v2,v3] T
U= v3 0 -1

The R, w,, and £ are related to the direction cosine matrix for the rotation
from the z to the ( coordinate frame. The moments u are due to jets
aligned with the principal axes of inertia.

Using relations (7)—(11) a state space model can be derived. Using as
state = of the model the Tait~Bryan angles 6 and the angular velocities w,
so that z = [0;,w;]” (note that the states z are different from the coordinate
frame z;), the following set of first-order differential equations is found [25]

[ AR |+ [ ]

It can be worked out [26] (in our case with the help of MAPLE although the
computation is not very complicated) to yield

(z5 cos z3 — zg sinzz)(cos z2)~ — wy 0

i Z5sinzg + g cosT3 I 0

.| (zesinzg — 5 cosz3)sinza(cosz2) ™! + 24 + 0
= (:1:51176 - 3w§§2§3)(12 - I3)Il_1 I]-_-lul
($6$4 - 3w§§3§1)(I3 - Il)Iz_l I2_1’u.2
(zam5 — wér&a)(l1 — L)1 I3 ug

This system satisfies the conditions of Theorem 1. We have to construct
three functions A; because we have three inputs also. The result is

AL =T A2 =2 Az =23

and this is easily verified, because the A;’s correspond with the three degrees
of freedom. With these outputs the vector relative degree is r = (2,2, 2).

Using these outputs the construction of a linearizing state-feedback and
change of coordinates is a straightforward but tedious calculation because
some intermediate expressions are lengthy, but the resulting state-feedback
is not all that involved. The following log of a MAPLE session, with some
edits, shows how the results are obtained by NONZCON.

* finding functions for exact linearization; (outputfunc)=*
no states are found for which the matrix A turns out to be singular

the function(s) lambda that fulfil the demands are:
[ x[13, x[2], x[3]1 ]

* exact linearization of the state input equations, (statelin)#
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the exact linearizing feedback: (u)
2

s(2] I[1] v[1] + I[1] v[3] + I[1] c[3] x[5] s[3]

2 2
+ 2 I[1] cf3] x[5] x[6] - I[1] s[3] x[6] <[3]

x[5] x[6] 1[2] + x[5] x[6] I[3]

2
3 omegal0] xil[2] xi[3] I[2]

+

2
3 omega[0] =xil2] xi[3] I[3] - I[1] x[6] x[5],

2
- (= cl2] 1I[2] c[3] v[1] - c[2] I{2] s[3] v[2]

2 3

2 -
s3] + 2 s[2] 1[2] <[3] =x[5]1 x[6]

+ s[2] I[2] <[3] =xI[5]
- - 2 2
s(2] I[2] s[3] x[6] c[31 - I[2] x[6] x[4] c[2]

+

cl[2] I[3] x[6] x[4] - c[2] x[6] x[4] I[1]

2
3 c[2] I[3] omegal0] xi[3] xili]

2

3 c[2] omegal0] xif3] xi[1] I[1]

+

2
s[3]1 I[2] x[6] s[2])/c[2],

2
- (- c[2] I[2] x[4] x[5] + c[3] I[3] x[6] s[2]

3 2 2
+ I[3] c[31 =x[5] s[2] + c[2] I[3] s[3] v[i]

2 i 2
- 3 c[2] omegal0] =xil1] xi[2] I[1] - 2 s[2] I[3] <[3] x[5]

2
- c[2] 1[3] <[3] v[2] - 2 s[3] s[2] I[3] c[3] =xI[5]1 x[6]
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2 3
+ 2 s[3] sf2] I[3] x[6] x[5] - I[3] x[6] s[2] c[3]

+ I[3] x[5] x[4] cl[2] + c[2] =x[4] x[5] I[1]

2
+ 3 c[2] I[2] omegal0] =xi[1] xi[2])/c[2]

* transformation to the normal form, (transform)*

c[3] x[5] - s[3] x[6] - omegal[0] c[2]
x[1], , x[2], s[3] x[5]
cl2]

+ c[3] x[6],

s[2] c[31 x[5] - s[2] s[3] x[6]1 - x[4] c[2]
x[3], -

cf2]

The linearizing state-feedback and change of coordinates in normalized,
though not in their most compact form are listed above, but are easier to
read as

uy = solhvy +ITvs+ Ilc3a:§33 + 2Ilc§:c5m5 - I133$263
~a5zels + z5Tels + 3whbabalz — 3wibabals — Lzexs
U = - (-—-cglzcgvl — colss3v9 + 82.{20§$§33 + 232I2cg:c5:1:5
—52123327(236% — Iyxgzacy + colszgzy — cozgzaly
—3cy Iywhéay + 3cwibabi i — sslazsy) /e
ug = - (031—33:%82 - 02I2$4$5 + I3C§:E§Sz -+ 031'3331)1 - 3C2w3;‘1§21'1
—232I303w§ — col3c3ve — 28332I3c§a:5:1:6 + 25382132675
—I3z2syc3 + Izzszaca + cazazsly + 3calawae) [ca
r 2 9
(03:1:5 — 83T¢ — w0c2)/c2
z2
83T5 + €3%6
T3
R —(5263:125 — §283%¢ — 2:402)/62 i

making use of the INTEX output capabilities of MAPLE. The output is
compressed using the aliases

c; = COS Z;, s; =sinz;

and with the expression for £. In this example there are no conditions
reported for the singularity of the matrix A so the linearizing state-feedback
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seems to be well defined in the whole state space R®. It is however easy to
see that when cos z; = 0, both the state-feedback and change of coordinates
are not defined. -

Example 4. A more involved variant of Example 3 is the following. Con-
sider in addition three rotors aligned with the principal axes of inertia of
the satellite and with moments of inertia J; about the spin axes. The in-
ertia matrix I also accounts for the rotors. Now it is not only possible to
control the satellite with moments about the principal axes, supplied by
jets, but also with the rotors. Denoting the angular coordinates of the ro-
tors with ¢;, the equations of motion for this six degrees-of-freedom model
become [24]

Io+Jp = Bwpblt —o(Iw+ Jp)+ ups
Jo+Jp = ugs,
where u;.3 is due to jet control moments and usg to the rotor control
moments. Both input columns consist of three elements.

Using as state of the model z = [8;, @i, w;, ¢;] T, the following set of first
order differential equations is found:

R=1(8)(w — we(6)) 7 0
P 0

= I J -1 ~ 5 ) _ + I 7 -1 | u.
[J J](l:s)[3w§§1§—-w(1w+J<p)] [J J}

where (1 : 3) denotes the first three columns of the matrix. This can again
be worked out with MAPLE.

This system satisfies the conditions of Theorem 1 also. The result ob-
tained with the NON2CON function outputfunc is as follows.

* finding functions for exact linearization, (outputfunc)*
no states are found for which the matrix A turms out to be singular

the function(s) lambda that fulfill the dem_ands are:
[ x[2], x[41, x[6], x[5], x[1], x[3] ]

Using these functions as output h, the construction of a linearizing
state-feedback and change of coordinates is straightforward. The results
are not presented because they are voluminous.

7 Conclusion and Discussion
The solution of the exact linearization problem can be automated by using

symbolic computation, e.g., by using the NONZCON package. This means
that it is easier now to use controllers based on the linearization approach,
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that can fully take into account the non-linearities in real systems. An
enhancement of the performance of some control systems, for a large set of
operation conditions, can therefore be expected.

At the moment, the computations cannot be performed for complicated
systems, mainly because the possibilities to solve sets of differential equa-
tions are limited. Therefore, the designers of control systems cannot yet
routinely compute a solution for the exact linearization problem, using
tools that are based on symbolic computation programs.

To remedy this, we recommend extending the capabilities of symbolic
computation programs for solving sets of differential equations. Another
possibility is to use another algorithm, that completely avoids the inte-
gration step and hopefully does not introduce other operations of high
complexity.

Future research will have to aim also at:

e improving the ca.pa.bilitiés for solving sets of non-linear (differential)
equations,

o devising new algorithms or modifying existing algorithms to be more
efficient in space and time, '
» implementing the algorithms in a more efficient way, especially with

regard to computer memory requirements,

e solving more small and larger scale problems, to further guide in the
selection of pressing lines of research.
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