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Chapter 1

Introduction

In this report the design and construction of an experimental setup with backlash is con-
sidered. Backlash, dead zone or clearance is a common feature in many mechanical systems
and can deteriorate the performance of the system. It can be caused by intended clearance
necessary for assembly and operation, but may also be the result of operational wear and
tear. Backlash has a large influence on the dynamics and control of systems such as power
transmissions, robotics and measurement systems. For instance, it can lead to rattle and
chaotic motion in gear systems, causing damage and noise. Systems with backlash form a
subclass of discontinuous mechanical systems and can be modeled as piecewise linear systems
[1].

Much theoretical research has been done on backlash. This report is inspired on the re-
port of Besselink [1], in which extensive theoretical studies on systems with backlash have
been done. However, instead of modeling such systems, this report focuses on the actual de-
sign and construction of a physical system with backlash. Using such an experimental setup,
theoretical models and results can be validated experimentally.

This report is organized as follows: in chapter 2, the model of a system with backlash will
be introduced. Furthermore, the desired behavior of the experimental setup (which is to
be designed) will be described. Numerical methods for computing periodic solutions of the
considered setup will be presented in chapter 3. Then, in chapter 4, the specific design of the
different parts of the setup will be treated. The finally chosen parameters and accompanying
dynamical behavior will be presented in chapter 5. Furthermore, in chapter 6 an alternative
design will be given, where a different way of excitation is chosen.
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Chapter 2

Modeling the experimental setup

In this chapter, a model of a single degree of freedom (SDOF) system with backlash will be
presented. Furthermore, some choices on the dimensions and performance of the experimental
setup will be made. With the previously found model [1], the dimensions of the setup will be
chosen in such a way that the desired dynamical behavior will be present.

2.1 Model of an SDOF system with backlash

The aim of this study is to develop an experimental setup, inspired by Besselink [1]. The
system as given in Besselink [1] is being considered first, see figure 2.1.

c1

k1 k2

c2

c

m

b b

F

x

Figure 2.1: Schematic representation of the setup.

This system consists of a mass m that can move freely between two stoppers, which are
positioned at a distance b from the mass. The mass is damped by a damper with damping
constant c. Each of the stoppers can be viewed as a parallel system of one spring and one
damper, with spring and damping constant k1,2 and c1,2 respectively. The mass of the stoppers
is considered to be negligible. Furthermore, it is assumed that the stoppers are at rest in their
initial positions, when contact with the mass takes place. Also, it is assumed that contact is
lost if the the contact force between stopper and mass becomes zero. In this way, modeling the
stopper dynamics is not necessary. Excitation of the system is done by prescribing a sinusoidal
force F on the mass. These considerations lead to the following equation of motion:

mẍ + C(ẋ) + K(x) = F, (2.1)
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Modeling the experimental setup 2.1 Model of an SDOF system with backlash

which can be given in a general first order form by:

ẋ = f(t,x) (2.2)

with x = [x, ẋ]T and

ẋ =
[

ẋ
1
m(−C(x)−K(x) + F )

]
(2.3)

The restoring force K(x) and damping force C(x) depend on the position and velocity of the
mass. Therefore, the region of motion of the mass is divided into three subspaces V1, V2 and
V3, as shown in figure 2.2. The mathematical description reads:

K(x) =





0 ,x ε V2;
k1(x + b) ,x ε V1;
k2(x− b) ,x ε V3;

(2.4)

C(x) =





cẋ ,x ε V2;
(c + c1)ẋ ,x ε V1;
(c + c2)ẋ ,x ε V3;

(2.5)

−b

V1 V2 V3

b x

ẋ

Figure 2.2: Subspaces of the SDOF system.

These subspaces are based on contact or no contact of the mass with the stoppers. The
corresponding mathematical subspaces conditions are given by the following equations:

V1 = {x ∈ R2 | x < −b, k1(x + b) + c1ẋ ≤ 0} (2.6)

V3 = {x ∈ R2 | x > b, k2(x− b) + c2ẋ ≥ 0} (2.7)

V2 = {x ∈ R2 | x 6∈ (V1 ∪ V3)} (2.8)

The latter corresponds to the case of no contact with the stoppers. In equation 2.6 and 2.7, it
can be seen that the damping term is present for both positive and negative velocities. This
is not realistic, since the mass is not attached to the stopper. Therefore it is not possible
for the damper (of the stopper) to exert a force on the mass at the extension phase. With
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Modeling the experimental setup 2.2 Design requirements for the experimental setup

a velocity dependent signum-function, the model would be more accurate. However, due to
low damping forces (ζ ≤ 2%) this phenomenon will be neglected. When a periodic excitation
of the form given by:

F = Asin(2πft) (2.9)

is assumed, equation (2.2) becomes:

ẋ =
[

ẋ
1
m(−C(x)−K(x) + Asin(2πft))

]
(2.10)

Equation 2.10 will be used later on to investigate the theoretical steady-state behavior of the
system with backlash.

2.2 Design requirements for the experimental setup

The theoretical model described in the previous section, forms the basis for the design of
the experimental setup. However, as long as there are no constraints on the design parame-
ters, infinitely many solutions to the design problem exist. Therefore, in this section some
limitations and desirable properties of the setup will be formulated.

2.2.1 Dimensions of the setup

Besides for experimental research on nonlinear dynamic systems, the setup is also designed
for lecture room demonstration purposes. This means that portability is a very important
requirement. Therefore, the maximal length, width and height are chosen to be about 1.0 m,
0.4 m and 0.4 m respectively. Since one operator must be able to lift and transport the setup
by himself, the maximal weight is chosen to be approximately 30 kg.

The visibility of the movement of the mass is very important for demonstrations, so the
backlash b is chosen to be 0.05 m. This implies that the mass should move 5 cm from its
center position to hit a stopper.

2.2.2 Desired dynamics

As pointed out in figure 2.1, the freely movable mass m is excited by a sinusoidal forcing F ,
with frequency f . The following equation for the peak force, as a function of frequency, holds
as long as long as the mass is in subspace V2 (no contact with the stoppers):

Fpeak(f) = 4mbπ2f2cos(2πft) + 2bπfC(x)sin(2πft) (2.11)

In (2.11), acceleration and velocity dependent force terms are present. For safety reasons, a
maximal forcing amplitude of 30 N is taken. When neglecting damping terms, this means
that for a mass of 1 kg and a backlash of b=0.05 m, the forcing is able to generate a maximal
frequency of 3.89 Hz. As will be proven later, the actual frequency range will be higher, due
to resonance effects in the system.

Due to the discontinuous nature of the system, two branches of behavior exist, based on
the following characteristics:
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Modeling the experimental setup 2.2 Design requirements for the experimental setup

• the mass does not hit the stoppers (linear behavior)

• the mass hits (and compresses) the stoppers (nonlinear behavior)

From a frequency domain point of view, some overlap in these branches can be expected,
as shown by Besselink [1] and the schematic graph in figure 2.3. This bifurcation is essen-
tial, since the main purpose of the setup is to demonstrate the existence of bifurcations and
multiple solutions in nonlinear mechanical systems. For a clear demonstration, the frequency
range with multiple solutions should be at least 3 Hz.

f [Hz]

x [m]

b

linear

nonlinear

min. 3 Hz

stable

unstable

Figure 2.3: Subspaces of the SDOF system.

To summarize, it is very important that the setup serves its demonstration purposes well.
This means that the dynamics of the setup must be very well observable by the audience; so
the stroke of the mass (2b+compression of the stoppers) and the overlapping frequency-range
must be as large as possible.

All concepts and decisions given in this chapter, will form a guideline for the exact design of
the experimental setup in the next chapters.
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Chapter 3

Numerical analysis

To obtain insight in the periodic behavior of the system presented in chapter 2, two numerical
methods will be used. These are the Multiple Shooting Method and the Frequency Sweep,
which will be explained in this chapter. First, the way of simulating the system will be
described. Second, these two methods will be explained.

3.1 Simulation

Besselink [1] has already shown how to get a solution for systems as presented in chapter 2, by
integrating equation (2.1). This can simply be done by using a standard solver, for example
Matlab’s ode45 solver. However, due to the different subspaces causing discontinuities, the
tolerances on the time steps must be low, increasing the calculation time. To reduce this
calculation time, the knowledge of analytical solutions for linear systems can be used. Within
the subspaces, the dynamic behavior is linear. The discontinuous behavior is introduced on
the boundaries of the subspaces, so this results in a piecewise linear system together. The
behavior in the subspaces can be described in the standard form:

ẋ(t) = Av(x(t)−∆xv) + Bu(t) (3.1)

Here, Av denotes the system matrix in subspace v. The input matrix B is assumed to be equal
for all subspaces, because the input u, which denotes the input force F , is a sine-function only
dependent on time, thus independent on the position or velocity of the mass. The position
x = 0 of the global coordinate system is chosen to be centered between the stoppers, so an
offset has to be introduced to describe the contact regions as standard linear equations. The
column ∆xv is constant and different for each subspace.

The effect of a perturbation is given by the Jacobian ( ∂f
∂x) of the dynamics. For linear

systems, the Jacobian is simply the (constant) system matrix A. The Jacobian also gives a
differential equation for the fundamental solution matrix Φ. Since the Jacobian is constant
and therefore independent of the initial conditions of the periodic solution of the system, this
argument can be omitted.

Φ̇(t, t0) = AΦ(t0, t0), Φ(t0, t0) = I (3.2)
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Numerical analysis 3.2 Multiple Shooting Method

This equation is linear, so it only depends on the time span t− t0. The solution of this linear
differential equation is:

Φ(t, t0) = eA(t−t0)Φ(t0, t0) = eA(t−t0) (3.3)

The fundamental solution matrices in the linear subspaces can be calculated using equation
(3.3) with the corresponding Av matrix. The effect of a subspace boundary crossing on a
perturbation is described by a saltation matrix. These so called saltation matrices are used to
connect the linear subspaces using the transition property Φ(tsi+, tsi−) (where tsi denotes the
crossing times) resulting in the fundamental solution matrix for the entire orbit. To illustrate
the use of these saltation matrices, initial condition x0 at t0 is taken in subspace V2. The
mass is in subspace V3 for ts1 < t < ts2, for t0 < t < ts1 and ts2 < t < T it is in subspace V2.
The end time of the movement is labeled T . The fundamental solution matrix for this orbit,
separated using the transition property, is in this case:

Φ(T, t0,x0) = Φ(T, ts2+)Φ(ts2+, ts2−)Φ(ts2−, ts1+)Φ(ts1+, ts1−)Φ(ts1−, t0) (3.4)

By using the definition of the saltation matrices S = Φ(tp+, tp−,x(tp−)) and the fundamental
solution matrices for linear systems from equation (3.3), the total fundamental solution matrix
is:

Φ(T, t0,x0) = eA2(T−t2)S23e
A3(ts2−ts1)S32e

A2(ts1−t0) (3.5)

Where Sij denotes the saltation matrix for entering subspace i, while leaving subspace j. The
saltation matrix for the SDOF model presented in equation (2.9) is given in Appendix A. For
a more detailed explanation of the simulation see [1].

3.2 Multiple Shooting Method

To find periodic orbits, different methods can be used. In this report, as in [1], the multiple
shooting method is used, which is a combination of the Finite Difference Method [7] and
the (single) Shooting Method [7]. This method uses the Newton-Rhapson algorithm to find a
zero of a multi-dimensional function. The Newton-Raphson algorithm is given in Appendix B.

An alternative is to use the (single) shooting method, which also uses the Newton-Raphson
algorithm. The disadvantage of this method compared to the multiple shooting algorithm
is that it uses only one shooting point. This makes it very vulnerable for obtaining conver-
gence in case of bad initial guesses, especially in case of (very) unstable periodic solutions.
The Multiple Shooting Method uses a number of points along the periodic solution, which
makes it more robust. That is why the Multiple Shooting Method is used and explained in
this report. For a derivation of the (single) shooting method or more details on the Multiple
Shooting Method see [1] and [7].

In the Multiple Shooting Method, the N shooting points are equally spaced in time with
constant time interval h = T

N . Thus tk = t0 + kh, and the N shooting points are stored in
the vector X = [x1, . . .xk, . . .xN ]T. The segment connecting point xk−1 to the next point xk

is given by:

xk = ϕh(tk−1,xk−1) (3.6)
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Numerical analysis 3.2 Multiple Shooting Method

Here, ϕh(tk−1,xk−1) denotes the solution of ẋ(t) = f(x(t), t) at time tk, starting at initial
condition xk−1 (at tk−1). In figure 3.1 it can be seen that a solution is found if all segments
are connected, so when equation (3.6) holds for all segments.

xk

xk−1

xk+1

ϕh(tk, xk)

Figure 3.1: The Multiple Shooting Method.

Therefore, a periodic solution is found when a zero of the following function is found [7]:

H(X) =




−x1 + ϕh(tN ,xN )
...

−xk + ϕh(tk−1,xk−1)
...

−xN + ϕh(tN−1,xN−1)




(3.7)

Applying the Newton Raphson algorithm to find a periodic solution, gives:

∂H
∂X

∆X = −H(X) (3.8)

Here, the partial derivative is given by [1]:

∂H
∂X

=




−I 0 . . . 0 Φh(tN , xN )
Φh(t1, x1) −I . . . 0 0

...
...

...
...

0 0 . . . Φh(tN−1, xN−1) −I


 (3.9)

In this equation, Φh(t1, x1) denotes the fundamental solution matrix at time t1 + h for a
solution with initial condition x1 at t1. When equation (3.8) is solved (so period solution(s)
are found for the system), the next iteration step can be calculated:

X(i+1) = X(i) + ∆X(i) (3.10)
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Numerical analysis 3.3 Frequency Sweep

3.3 Frequency Sweep

An alternative way of studying the (appropriate) steady-state behavior of the system is by
application of a frequency sweep. This approach is often used in experiments but can also be
applied numerically, although in general it asks a lot of CPU-time.

In practice a frequency sweep means applying a (slowly) increasing or decreasing frequency
f to a system, this can be carried out in two manners: stepped sine or by using a constant
sweep-rate. In the simulations used here, a stepped sine is used. A fixed excitation frequency
is started with. This is done until a periodic solution is reached. Then the frequency f is
increased or decreased with a small frequency step δf . The initial guess for this new system
(with input frequency fnew = fold ± δf) is the state of the former derived system (with the
slightly different input frequency) after an integer number of input periods. Note that the
simulations have to be performed with an integer number of input periods, so that the new
system can have the latest states of the former system as initial guess. In this case there is
always a continuous excitation signal. Otherwise the excitation signal would have a discon-
tinuity (when a new period is started after a non integer number of periods) and this would
lead to unnecessary introduction of transient behavior. In this case there is always a smooth
input function.

The advantage of this approach is that it is a relatively simple way to check whether there
are discontinuous bifurcations (e.g. cyclic fold bifurcations) in a system if for one excitation
signal multiple periodic solutions are found. For example when both an increasing and a
decreasing frequency sweep are applied

3.4 Floquet multipliers

The stability of periodic solutions can be investigated by looking at the Floquet multipliers
[9]. The Floquet multipliers are the eigenvalues of the fundamental solution matrix. When
the Floquet multipliers are inside the unity circle, the periodic solution is locally stable. When
they are outside the unity circle, the periodic solution is locally unstable. To illustrate this,
both options are depicted in figure 3.2.
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Numerical analysis 3.4 Floquet multipliers

Figure 3.2: Floquet multipliers in the complex plane [7].
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Chapter 4

Design of the experimental setup

The schematic system as presented in figure 2.1, can be divided into two parts: the actua-
tor (F ) and the mechanical system (m, c, k). Each of these subsystems has specific design
requirements, which will be discussed next. After presenting these requirements, the exact
design will be explained and visualized. All design choices are based upon the decision to
keep as much system parameters variable as possible. That is, it is possible to easily adjust
the mass m, spring stiffness ki and backlash b at any time.

4.1 Means of actuation

A fundamental choice has to be made between two excitation principles:

1. excitation of the mass

2. excitation of the fixed world

Figure 2.1 is an example of the first principle: the forcing F acts upon mass m. Excitation
of the fixed world could for instance be realized by a slider-crank mechanism. In this way a
position will be imposed upon the fixed world. However, in order to stay as close as possible
to the theories developed in [1], the mass is excited directly with a prescribed forcing. This
choice also implies that a translational system will be developed, while a rotational system
is a possibility too. For the translational system, the forcing actuator must fulfill some
requirements:

• prescribed force independent of surroundings

• generate sinusoidal force signals up to 30 N, for frequencies ranging from 0-30 Hz

• difference between actual force output and desired output 0.2N or less than 10% of
desired output

• capable of attaining high velocities and accelerations, while having a relatively low
displacement (which is the case at high frequencies)

• low purchase and maintenance costs

13



Design of the experimental setup 4.1 Means of actuation

The only commercially available actuator which meets all these requirements, is the linear
motor figure 4.1. This linear motor merely consists of several permanent magnets, contained
in a magnet channel, and a coil, which develops a magnetic field when a current is applied.
Due to these magnetic fields, the coil and magnet channel move relative to each other.

Figure 4.1: Linear motor.

It is important to realize that the coil and magnet channel need some guidance, in order not
to contact each other. To prevent the system from being subject to unknown forces, such a
guidance should have the least possible dry friction. Furthermore, it should be noted that
the moving part of the linear motor will be part of the total translating mass assembly m. In
order to perform reproducible experiments, the initial conditions of an experiment should not
change. Therefore, a spring with constant k is added to the mass. In this way it is guaranteed
that the mass returns to one, unique position when at rest. The new scheme of the setup is
depicted in figure 4.2.

c1

k1 k2

c2

c

m

b b

F

x

k

Figure 4.2: Schematic representation of the setup, including restoring spring.
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Design of the experimental setup 4.2 Design of mechanical parts

4.2 Design of mechanical parts

The mass of a stopper, mstopper, should be as low as possible. In this way, it is possible to
hold the assumption from section 2.1, in which it is stated that the stopper is at rest when it
is hit by the mass. Also, when mstopper is low, there is more freedom in choosing spring and
damping constants k1,2 and c1,2, while the previously formulated assumption still holds. This
is of great importance for tuning the overlapping frequency range.

Besides the aforementioned specific part decisions, some design decisions apply to the to-
tal experimental setup. A very important one is that, apart from the excitation, there are
no electrical systems which regulate the motion of any subsystem. This means that e.g. all
springs and dampers are mechanical, without any form of electrical control. The springs and
dampers are assumed to have non varying spring and damping constants, within the range of
operation. The values of the spring and damping constants should be realistic in the operating
range of the setup, in order to be able to obtain these components easily. From for instance
[2], for an amplitude larger than 5 cm, kmin ≥ 600 N/m. The damper constant should be at
least cmin ≥ 5 Ns/m [3]. Dampers with lower damping constants (while also having a large
stroke) are not very common and therefore hard to obtain.

4.3 Position measurement principles

Several measurement principles are available for doing measurements from which the position
of the mass can be deduced, each with its own advantages and disadvantages. An accelerom-
eter is a device that measures the acceleration of the mass. This signal can be integrated
twice to obtain the position of the mass. A drawback is that accelerometers only measure
precisely for frequencies higher than 5 Hz and they suffer drift.

Linear Variable Differential Transformer (LVDT) sensors measure positions directly, based
on changes in the magnetic field of the sensor. The disadvantages of LVDT’s are a limited
stroke and that they add mass and friction to the moving parts of the system, on which the
LVDT is partially mounted.

Because of these drawbacks, an encoder has been chosen for measuring the position of the
mass. This device is very accurate (resolution up to 50 nm, analog resolution 20 µm). Mea-
surements are being done continuously. Furthermore the encoder is capable of measuring in
the desired operating range of the setup. That is, it can measure accurately in the desired
frequency range (0-30 Hz) and the accompanying distance (the maximum measurable distance
70 m). The only drawback is that dust can disturb measurements. However, this drawback is
small compared to the advantages. Besides the encoder, a Hall sensor is needed to control the
current supply to the linear motor. A Hall sensor measures the magnetic field, from which
the position dependent current input to the coil can be determined.
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4.4 All parts of the experimental setup

The total design consists of the following parts:

• drive (4.4.1)

• force transducer (4.4.2)

• mass (4.4.3)

• springs (4.4.4)

• 2 stoppers (4.4.5)

• bearings (4.4.6)

• guidance bar (4.4.7)

• fixed world (4.4.8)

• damping (4.4.9)

In the next subsections each of these parts is explained in detail. When existing products
are used, the serial number and most important details will be mentioned. Other details can
be found in appendix D. In some subsections there will be referred to appendix C where the
technical drawing can be found.

4.4.1 Drive

In the schematic layout in chapter 2, it can be seen that the mass is excited by a prescribed
sinusoidal forcing F . The theory about this type of forcing is already mentioned in chapter
4, where a linear motor seemed to be means of actuation. Normally a linear motor is used to
prescribe a displacement, but it is also possible, and in this case it will be used, to prescribe
a force. The Anorad LEM-S-1 is the best solution, because with a magnet channel length of
300 mm the desired stroke (2 · amplitude) can be realized, the motor can deliver a continuous
force of 26 N (peak force 83 N) and has an operating frequency which can be than 30 Hz.
More details about this motor can be found in appendix E or in [5]. In figure 4.3 the magnet
channel of a linear motor is presented.

Figure 4.3: The magnet channel of the linear motor (left) and magnet channel holder (right).

16



Design of the experimental setup 4.4 All parts of the experimental setup

Normally the coil of the linear motor is the moving part and the magnet channel is mounted
to the fixed world. However, because of the wiring of the coil, the coil is mounted to the fixed
world and the magnet channel moves instead. Now all the cables are fixed, otherwise the
moving cables can influence the dynamical behavior. The mass must be mounted onto the
magnet channel. Therefore, a magnet channel holder is designed, see figure 4.3. The mass
and the magnet channel are fixed with bolts. The sum of the weights of the magnet channel,
magnet channel holder, mass, tension springs and the bolts will be the total weight of the
moving mass. The minimal total weight of the moving mass is 3.5 kg. A more elaborate
discussion about the mass will be given in subsection 4.4.3.

4.4.2 Force transducer

In order to exert a force on the mass with the highest possible precision, this force needs to
be measured and controlled continuously.

Force measurements are carried out with a piezoelectric crystal sensor (quartz plate), see
figure 4.4. A Kistler 9011A has been chosen (because it is already available in the DCT-lab),
which has a force measurement range up to 15000 N. More details about this sensor can be
found in [4].
No power supply is needed and the deformation to generate a signal is very small. An
advantage of this method is a high frequency response of the measuring system, without
introducing geometrical changes to the force measuring path. This is an important advantage
compared to strain gauges. The piezoelectric crystal sensor is mounted by a pre-load bolt
which allows the measurement of forces in both tension and compression, see the schematic
representation in figure 4.4. Closed loop measurements of the reaction force developed by the
coil, make it possible to control and monitor the force delivered to the mass by the linear
motor. Note that the coil of the linear motor is not mounted to the fixed world, but to the
force transducer instead.

Figure 4.4: Design of the piezo sensor (left) and mounting of the sensor (right).

In figure 4.5, the assembly of the force transducer and the linear motor is presented.
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Figure 4.5: Design of the force measurement setup connected to the linear motor (3D and
side view).

4.4.3 Mass

In chapter 2, it is mentioned that the prescribed force can not be very large. With a sinu-
soidal force amplitude of 10 N, where the derivation will be given in chapter 5, the result is a
(simulated) maximal symmetrical amplitude of 23 mm. By taking twice this amplitude, 140
mm for the air bearing construction and a large margin into account, the length of the mass
is 300 mm. So it will never leave the bearings at its maximal stroke.

In figure 4.6 the design of the mass is depicted and in appendix C the technical drawing
of the mass is given. A triangular shape of the mass is chosen, because then the mass can
be easily guided by air bearings, see subsection 4.4.6. The lengths of the sides of the triangle
are set to 100 mm each, because the air bearing on each side must be in the middle and has
a diameter of 50 mm.

When a high mass is vibrating at high frequencies (∼30Hz), it can become dangerous to
work with due to high inertia forces. Therefore, for safety reasons, the mass is kept as low as
possible. Because the mass has to be stiff and lightweight, the material chosen is aluminum.
Taking into account all the demands and aspects of the system, the total weight (mass +
magnet channel + magnet channel holder + bolts+ springs) equals 3.5 kg. When looking at
the triangular mass with a total length of 300 mm and sides of 100 mm, it is clear that this
will be much heavier than 3.5 kg. Therefore the weight of the mass needs to be reduced. This
is done by making a lacing construction, so material will be removed to lower the weight. The
only demand for this lacing construction is that there must be a hole in the mass where the
guidance bar can be put through (see subsection 4.4.7).

The last design aspect of the mass are the drilled holes with threat in the three corners
of the triangular cross-section, which are chamfered to reduce weight. The holes on the bot-
tom are for attaching the linear motor. In the holes on the other two chamfered corners other
bolts can be put to increase the weight in additional experiments. In figure 4.6, it must be
mentioned that the lacing construction is not included in the design, because the exact form
will be determined by the manufacturer, who has the skills to make a good design. Ulti-
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mately, due to the lacing construction, the triangular mass will have a weight of 1 kg without
the additional bolts. Together with 1.7 kg for the magnet channel which is attached to the
triangular mass, 0.3 kg for the magnet channel holder and 0.5 kg for the four tension springs,
the total minimal moving mass is 3.5 kg.

Figure 4.6: Design of the triangular mass.

In figure (4.7), the total moving mass is shown. As mentioned before, it consists of four
extension springs, the magnet channel and its holder and the triangular mass. When the
triangular mass hits the stoppers, the mass of the moving part is increased by the mass of
the stoppers.

Figure 4.7: The moving part in the complete setup.
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4.4.4 Springs

Two types of springs are involved in the design, i.e. compression and extension springs. The
spring in the stopper is a compression spring and will be mentioned together with the design
of the two stoppers in subsection 4.4.5. The mass is connected to the fixed world by two
pre-stressed extension springs on each side. Each spring is pre-stressed with the maximal
amplitude of the mass, which is 23 mm according to subsection 4.4.3. The extension spring
is depicted in figure 4.8. The aim of these springs is to give the mass an initial position
in the middle and they will contribute to the dynamical behavior. For these springs some
calculations are made. The maximum extension of one spring is the same as twice (due to
pre-tensioning) the amplitude of the mass. The spring constant is not constant if the spring
is too short compared to the maximum extension. The extension springs are chosen from [2],
having serial number T32240, a total length of 290 mm, a nominal length of 175 mm and an
estimated mass of 0.102 kg. The nominal length is now at least twice the maximal amplitude
of 23 mm of the moving mass. Within this nominal length the force-extension behavior is
linear according to [2]. Details on the stiffness and eigenfrequency will be given in chapter 5.

Figure 4.8: The extension spring.

4.4.5 Stoppers

In figure 4.9 the design of the stopper is depicted. The stopper consists of a compression spring
which is connected to the fixed world and is also visualized in figure (4.9). The compression
spring is supplied by [2] with serial number D14110 and has a length of 195 mm. A guidance
is designed, so the mass will push against a stiff construction instead of a hanging spring. The
base of the stopper is therefore a roll bearing which slides on a guidance bar (see subsection
4.4.7). Chosen is a roll bearing from SKF, serial number LBBR 8. It is very small with
respect to the mass. Therefore, a round metal plate is fixed on it, with the technical drawing
given in appendix D. This round metal plate has a large diameter, so it collides with a large
area of the moving mass. The stopper plate is connected to a spring, which is attached to
a nut (left part in figure 4.9), which can be screwed onto the guidance bar. The mass of
both stoppers is part of the total mass of the moving mass in the contact mode. The stopper
should be kept as low as possible as mentioned earlier. Therefore the round plate is made
of aluminum. To reduce the weight, holes have been made in the stopper plate, so the total
estimated moving mass is 0.140 kg (the total weight of the stopper plate and spring is 0.390
kg, but due to limited compression of the spring, 0.140 kg is a safe estimate). The guidance
bar in figure (4.9) is not a part of the stopper, but it gives a better presentation of a part
from the final design.
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Figure 4.9: Design of the stopper (left) and the compression spring (right).

4.4.6 Air bearings

The magnet channel, with the mass mounted on it, can move along the coil. To avoid friction,
there must be a gap between the magnet channel and the coil. Therefore, the mass must be
supported. This is done using air bearings. Figure 4.10 shows the air bearing which will be
used in the construction. The general advantage of air bearings is that they have very low
friction. With an air bearing on each side of the triangular mass, all degrees of freedom, except
for the direction of the linear motor’s length axis, are fixed. Air bearings from Fabreeka are
used, similar to the ones used in the experimental setup of Niels Mallon at the TU/e. The
minimal air pressure is 2 bar and can be increased to 7 bar. The maximal bearing load is 339
kg.

Figure 4.10: Design of the bearing (left) and bearing holder (right).

The air bearings have to be attached to the fixed world. Therefore triangular shaped frames
are designed. This is a schematic design, because there must be made a trade-off between
visibility and stiffness. In figure 4.10 the construction is given (including the air bearings).
In each bearing holder a set of three air bearings with a diameter of 50 mm each is used.
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When the air bearings are mounted on these frames, a gap of 10 µm is left between the mass
and the bearing. In this gap air pressure can rise. When placing only one set of air bearings
in the middle of the mass, the mass will tilt, using two sets of air bearings will avoid that.
The position of the air bearing holders is 100 mm from the ends of the mass. Because then
the mass will never leave a bearing at its maximum stroke. To adjust height, blocks can be
placed under the air bearing holders, as can be seen in figure 4.11, where the assembly of
the air bearings and holder is presented. The dimensions of the bearing holder are given in
appendix C.

Figure 4.11: Assembly of the air bearings.

4.4.7 Guidance bar

The guidance bar is used to guide the stoppers. The design of the guidance bar is given in
figure 4.12 and the technical drawing can be found in appendix C. The length of the guidance
bar is determined by the length of the mass, the backlash between the stopper and the mass
and the length of the extension springs on each side. The total length is 1270 mm, this is also
approximately the total length of the setup. A threaded bar makes it possible to adjust the
backlash, i.e. the distance between the stopper plate and the mass, by moving the nut of the
stopper. There are two stoppers and therefore the above mentioned details are symmetrical.
The bar is at both threaded ends connected to the fixed world by nuts. In this way the
guidance bar is pre-tensioned and it will not vibrate due to its length, gravity or disturbing
forces that are acting on it.
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Figure 4.12: Design of the symmetric part of the guidance bar

4.4.8 Fixed world

Some of the earlier mentioned parts must be connected to the fixed world. Due to the design
and the position of these parts, the choice has been made to give the fixed world the shape
of a large letter U as can be seen in figure 4.13. A trade-off between a low mass and a high
stiffness is made. An aluminum bottom plate with aluminum sides at both ends are used to
keep the weight as low as possible. An aluminum plate at the back is fixed to the bottom
plate and both sides to make the construction more stiff. The technical drawing can be found
in appendix C. The total length of the experimental setup is about 1260 mm. The aluminum
sides are connected to the bottom plate with bolts as can be seen in figure 4.13. The height of
these sides, which is also the total height of the setup, is 250 mm. The dimensions are in such
a manner that it is portable, a demand in the design process. The thickness of the aluminum
bottom plate, is chosen to be 10 mm, for a high stiffness while still being relatively light-
weight. The thickness of the sides is chosen to be 20 mm, for the same reason as mentioned
for the bottom plate. The total experimental setup will have a weight of about 30 kg.

Figure 4.13: Design of the fixed world.

4.4.9 Damping

The last remark on the experimental setup is the removal of the dampers. In the schematic
representation from the system in section 4.1, dampers are included. During the design process
it was tried to include these dampers in the final setup. However, there are no commercially
available dampers with the demanded stroke and damping constant. On the contrary, there
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will always be little damping present in the setup, for example material damping, friction in
the air bearings and stopper bearings and damping in the non elastic collision of the mass
with the stoppers. These damping values are not known yet.

4.5 Complete experimental setup

In figure 4.14 the total assembly is presented. A transparant plastic guard is mounted on the
vertical sides of the fixed world. This guard covers the entire setup and protects both the
operator as well as the setup. The technical drawing of this safety cover is given in appendix
C.

Figure 4.14: Design of the complete experimental setup.
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Chapter 5

Simulation results

In chapter 2, the mathematical model for the system studied in this report has been given. To
find periodic solutions for this model, chapter 3 dealt with the numerical part and presented
two methods to solve the equations: the Multiple Shooting Method and the stepped Frequency
Sweep approach. In this chapter, this theory will be used to obtain solutions for the system,
with the parameters corresponding to the choices made in the previous chapter.

5.1 Parameters

With the design choices made in the previous chapter, the following parameters are found for
the numerical model:

Table 5.1: Systems parameters
Parameter Value [unit]

A 10 [N]
m 3.5 [kg]
b 0.01 [m]
k 2.72 ∗ 103 [N/m]
c 3.892 [Ns/m]

mstopper1 0.14 [kg]
k1 2.01 ∗ 104 [N/m]
c1 7.6364 [Ns/m]

mstopper2 0.14 [kg]
k2 2.01 ∗ 104 [N/m]
c2 7.6364 [Ns/m]

In table 5.1 it can be seen that stopper 1 and 2 have the same parameters, so the two stoppers
are identical. The peak force applied, in other words the amplitude of the sine excitation
applied to the system, is 10 N. The mass m is the total mass of the moving part, as explained
in chapter 4. This includes the triangular mass, the magnet channel, the connecting parts
and a part of the total mass of the springs (30%1) of 4 ∗ 0.102kg. The masses of the stoppers
mstopperi, are the sum of the masses of the moving parts of the stoppers, which are the plate,
the roll bearing and a part of the spring (which is about 30 % of the mass of the spring
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(0.38 kg) 1). The stiffness applied to the mass k can be found by summing the stiffnesses of
the four identical springs attached to the mass. The damping constants c and ci are derived
by introducing a small amount of (modal) damping namely 2% (ζ = 0.02). With this given
dimensionless damping ratio ζ, the damping constants c and ci are derived by [8]:

c = 2ζmωn (5.1)

Equation (5.1) is only suitable for linear systems. The real damping of the system is not known
yet, but obviously there is always some damping in a mechanical system, as mentioned before
in subsection 4.4.9. This is not the only reason for introducing this little damping, it also
improves and speeds up the numerical convergence process to find periodic solutions. The
mass m is derived by selecting the lowest mass possible, which is 3.5 kg. This is the standard
mass when no mass is added to the triangular part.

5.1.1 Results Multiple Shooting Method

With the parameters given in table 5.1, the Multiple Shooting Method from chapter 3 is
used to study the system. The result is given in figure 5.1. The blue lines are the periodic
solutions found by applying the shooting method. The green lines are estimated periodic
solutions based on an earlier study [6]. Here a solid line is a stable periodic solution, while
a dashed line is an unstable periodic solution. These periodic solutions are not found in the
simulations, due to problems with the convergence of the numerical process to a periodic
solution, the tolerances concerning the convergence can not be met.

In this figure the input frequency is given on the horizontal axis and the vertical axis rep-
resents the maximum absolute excitation from the original position x = 0. For the input
frequency range between about 5 and 9 Hz two stable periodic solutions are possible. This
implies that there is nonlinear behavior in the system. To get some insight in the stability of
these solutions found, the (two) Floquet multipliers are derived. These are plotted in figure
5.2. The values of these Floquet multipliers are all below 1, so the periodic solutions found
are stable.

5.1.2 Results Frequency Sweep

The same system as in the previous section is studied, but this time the stepped Frequency
Sweep method from chapter 3 is used to investigate the system. The frequency steps δf used,
are 0.01 Hz between the frequencies 0.2 and 6 Hz, from 6 to 20 Hz a step size of 0.1 Hz is
taken. The result is given in figure 5.3. Here the same nonlinear behavior is found as in the
Multiple Shooting Method, depicted in figure 5.1. These two results show about the same
behavior as the system studied in [6]. In the results found here, there is no contact with the
stoppers for amplitudes smaller than b (0.01 m). In case the stoppers would have been absent,
the response curve would show a linear harmonic resonance peak at the eigenfrequency equal

to 4.4 Hz (ωn =
√

k
m = 27.9 [rad/s]). In this case, for amplitudes higher than b m, there is

contact with the stoppers.

1Note: 30% of the mass of the total springs is taken, probably this is a high estimate, because the mass
only moves maximally 0.023 m, while the length of the springs is over 0.1 m, so 30% is a large margin (it is
taken so large to be sure that the mass of the springs is not taken to low)
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Figure 5.1: Response diagram found with the Multiple Shooting Method.
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Figure 5.2: Floquet multipliers.

Summarizing, the simulations show that the experimental setup does exhibit nonlinear be-
havior (to be specific: piecewise linear behavior). The frequency range in which two stable
solutions exist, is more than 4 Hz (from 5 to 9 Hz). In this range, the two branches of periodic
solutions show a big differences in amplitude (a minimum of 5 mm vs. 23 mm at maximum).
The damping constants taken in the simulation are based on the assumption of 2 % damp-
ing. In reality, it is likely that this percentage is lower, causing higher amplitudes than 23

27



Simulation results 5.1 Parameters

0 2 4 6 8 10 12 14 16 18 20
0

0.005

0.01

0.015

0.02

0.025

frequency [Hz]

a
m

p
li
t
u
d
e

[m
]

Increasing frequency

Decreasing frequency

Figure 5.3: Response diagram found with the Frequency Sweep.

mm. The demand of 50 mm backlash on both sides from chapter 2 has appeared to be not
feasible, because excessive forces and strokes would occur. This means that the visibility of
the movement is not as high as demanded, but due to the stopper compression and audible
effects, it is expected that the nonlinear behavior can be observed still very well. All this
means that in reality a bifurcation with at least 4 Hz overlap certainly will be observed. The
magnitude of the amplitude in practise will depend on the amount of dissipation, which is
still unknown. Therefore the experimental outcome is not perfectly predictable. The mass of
the total setup will be approximately 30 kg, so the demand of the maximal mass not higher
than 30 kg (as presented in chapter 2) is met. Due to the pretensioned springs attached to the
mass, the length of the setup is 1260 mm. This means that the original design requirement
(maximal length is 1000 mm) is exceeded with 260 mm. This length could be decreased by
choosing other springs, while have the same stiffness. However, for experimental flexibility,
the dimensions are chosen very high. In this way, many (linear) stiffnesses and amplitudes
can be experimented with. Different springs can be designed and be made by hand, but in
this report only the commercially available springs are studied. The formula for the stiffness
of a spring is [10]:

k = 1000
Gd4

8D3n
; (5.2)

Where G denotes the shear modulus, d the diameter of the wire, D the diameter of the spring
and n the number of windings of the spring.

Both numerical approaches found about the same periodic solutions. But they do differ
very much in calculation time. The Multiple Shooting Method uses about a quarter of an
hour, while the Frequency Sweep uses about three hours of CPU-time2.

2In this study an Intel(R) Pentium(R) M 1400MHz processor is used
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Chapter 6

Fixed world excitation

During the design of the experimental setup, an alternative type of excitation (prescribed
displacement) has been considered. The reason for this was the uncertainty of controlled
force excitation of the linear motor in the final design. Although this seems possible after
all, this still needs to be worked out into detail. The alternative, the fixed world excitation,
is discussed in this chapter. Many of the previously designed parts can also be used in this
alternative. This includes the (expensive) linear motor. To understand the principle of the
fixed world excitation, the idea is presented in figure 6.1.

c1

k1 k2

c2

c

m

b b

k

xprescribed xmass

magnet channel

coil

Figure 6.1: Fixed world excitation

6.1 Explanation of the fixed world excitation

The concept of the final design, as presented in the previous chapter, is used. The alternative
idea is that the fixed world is connected to the coil and can be moved by the linear motor,
which is mounted on a table for instance. The mass is guided on the fixed world and does not
move if the coil is not moving. It is not easy to use air bearings for the guidance of the mass
this time. Now a single guidance rail, which is connected to the fixed world, is used above
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the mass. A moving block on this rail is connected to the mass. There is no danger that the
mass is going to set, because there is used one rail only. The benefit of this guidance rail is
lower the price compared to the air bearings. The original guidance bar can still be used to
guide the stoppers. The weight of the fixed world is quite high. This can lead to a high force
amplitude in case of excitation at high frequencies. Therefore the fixed world should have the
lowest possible mass, keeping in mind that it must remain stiff. Summarizing: most parts
from the mass excitation design can be used for the fixed world excitation as well:

• Drive

• Mass

• Stopper

• Guidance bar

• Springs

So it is possible to change the design if necessary, without high additional costs.
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Chapter 7

Conclusions and Recommendations

7.1 Conclusions

In this report, the design and construction of an experimental setup of an SDOF system with
backlash has been discussed. Such an experimental setup can serve to get more insight in
the dynamic behavior of commonly used real life systems with backlash, like gear systems.
Moreover, it can be used to verify theoretical models with. The designed experimental setup
mainly consists of a resiliently mounted mass, that can move between two stopper springs,
which are mounted on both sides of the mass. Between the mass and each stopper, backlash
is present. Furthermore, in the proposed design, the mass is periodically excited by a sinu-
soidal force, generated by a feedback controlled linear motor. The controller is to be designed.

The design meets various design constraints, like e.g. a low, sinusoidal excitation force (max
10 N), a bifurcation range of 4 Hz and adjustable parameters (b, ki,m). The design process
has been carried out by means of numerical simulation, with various sets of parameters. Spe-
cial attention has been payed to safety and demonstration purposes of the setup. That is, the
magnitudes of the forces that occur in the setup do not pose a direct safety hazard.

Also, the dimensions and weight of the experimental setup are such that it can perfectly
well serve as a demonstration model; both in the sense of portability of the complete setup
itself, as well as the observability of the dynamics of the setup. Furthermore, an alternative
way of excitation has been proposed. In this proposal, the fixed world is excited instead of
the mass. Even though these two ways of excitation are very different, the most expensive
parts of these setups are the same. In this way costs can be kept as low as possible. For a
list of the construction costs, see appendix E. Due to a lack of time and financial resources,
the experimental setup has not been built yet.

7.2 Recommendations

For future work, the following recommendations are given:

• Build the experimental setup. The design of the air bearing holder should be improved,
however. The current design is not as stiff as possible, but it does indicate the size of
such an air bearing holder.
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Conclusions and Recommendations 7.2 Recommendations

• Design the feedback controller for the periodic force excitation.

• Do preliminary dedicated collision experiments between mass and stopper to estimate
damping levels.

The latter two of the aforementioned recommendations, can be carried out only when the
physical (sub)systems of the experimental setup are available.

• Experiment with the experimental setup, in order to validate the theory.

• Experiment with different sets of springs, variable mass and backlash parameters. Spe-
cial attention has been paid in the design to make this possible.
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Appendix A

Saltation matrix

The saltation matrices Sij (describing the change in a perturbation when crossing the bound-
ary between subspaces Vi and Vj) is found by using definition:

S = I +
(fp+ − fp−)nT

nT fp−
(A.1)

Here, n is the normal which is defined as n(x) = ∇h(x). Where the property h(x(tp)) = 0 is
used. Where tp is the crossing time. Furthermore the fp+ and fp− are calculated as follows:

fp+ = f(tp+, x(tp+)) (A.2)

fp− = f(tp−, x(tp−)) (A.3)

This results in the following saltation matrices:

S12 =
[

1 0
− c1

m 1

]
(A.4)

S21 = I (A.5)

S23 = I (A.6)

S32 =
[

1 0
− c2

m 1

]
(A.7)

The saltation matrices show that the fundamental solution matrix only jumps when contact
with a stopper is engaged. This is due to the damping force in the stoppers, which gives a
discontinuity in the total force on the mass. Since contact with the stoppers is lost when the
contact force is zero, leaving a stopper does not result in a jump in the fundamental solution
matrix [1].
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Appendix B

Newton-Raphson algorithm

Figure B.1: The Newton-Raphson algorithm

As is stated in [7], the Newton-Raphson method finds a zero point x∗ of a function f(x). In
figure B.1 a nonlinear scalar function f(x) with a zero point at x∗ is shown. To find this
zero point, an initial guess x(0) is needed and iteratively a zero can be found. The Newton-
Raphson algorithm uses the local tangent f ′(x) of the function f(x). Let x(i) be the result of
the previous iterate of the Newton-Raphson process. The next iterate x(i + 1) is then found
by extrapolation of the local tangent f ′(x(i)) towards the x-axis (see Figure B.1):

x(i+1) = x(i) − f(x(i))
f ′(x(i))

(B.1)

The Newton-Raphson algorithm does not converge for all functions or might converge to
another zero of the function. The initial guess should be close enough to obtain convergence
for an arbitrary function f(x). It might also be that the iterative process converges to another
zero of the function. The equation (B.1) is iteratively used until some convergence criterion is
met or is stopped when the method diverges. Most convergence criteria let the algorithm stop
when the value of f(x(i)) lies within some tolerance from zero. The scheme is usually halted
when the scheme is not converging monotonically, f(x(i+1)) > f(x(i)), or when a maximum
number of iterations is exceeded. The NewtonRaphson algorithm can also be applied to find
a zero of a multi-dimensional function f(x). One then has to solve in each iteration step the
following set of linear equations:

Df(x(i))∆x = −f(x(i)) (B.2)
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Newton-Raphson algorithm

to obtain the update ∆x = x(i+1)−x(i). The NewtonRaphson algorithm is a gradient method
because it uses the gradient Df (being the Jacobian matrix). The calculation of Df might be
numerically expensive, which is a drawback of the NewtonRaphson method and of gradient
methods in general. The merit of gradient methods is a relatively good convergence rate.
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Appendix C

Technical drawings

All drawings and sizes are given in this appendix.

Figure C.1: A Schematic design of the air bearing holder where the dimensions are only a
global indication of the final design.
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Technical drawings

Figure C.2: Technical drawing of the bottom plate.
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Technical drawings

Figure C.3: Technical drawing of the guidance bar.
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Technical drawings

Figure C.4: Technical drawing of the mass.
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Technical drawings

Figure C.5: Technical drawing of the protection cover.
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Technical drawings

Figure C.6: Technical drawing of the side plate.
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Technical drawings

Figure C.7: Technical drawing of the back plate.

Figure C.8: Technical drawing of the stopper plate.
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Appendix D

Parts List

All existing parts with their known details are given in this appendix.

D.1 Piezo crystal sensor

Manufacturer: Kistler
Serial number: 9011A

Additional information:
This crystal sensor is available in the DCT-lab at the TU/e.
More information can be found in [4].

D.2 Air bearing

Manufacturer: Fabreeka
Serial number: Not available
Vertical damping (adjustable): maximum of 9 percent
Minimal air pressure: 2 bar
Maximal air pressure: 7 bar
Maximal weight load: 339 kg

Additional information:
These air bearings are also used as on the experimental setup of Niels Mallon in the DCT-lab
at TU/e. All details are copied from the air bearing characteristics of that experimental
setup. The dimensions are not known precisely, because the construction drawings could not
be found.
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Parts List D.3 Roll bearing

D.3 Roll bearing

Manufacturer: SKF
Serial number: LBBR 8
Inside diameter Fw: 8 mm
Outside diameter D: 15 mm
Length C: 24 mm
Mass: 0.007 kg
Load (dynamical - static): 490 N - 355 N

Additional information:
The outside diameter tolerance of the linear ball bearings is such that no additional axial
fixation is required when the bearings are fitted into a bore with a tolerance J7 or J6. This
implies +10 µm or -8 µm tolerance with respect to the outside diameter of 15 mm.

D.4 Compression spring

Manufacturer: Tevema
Serial number: D14110
Thickness d: 6.3 mm
Diameter D: 40 mm
Number of compressable windings Nw: 12.5
Total length L0: 195 mm
Spring constant C: 20100 N/m
Nominal length Sn: 95 mm
Price category: FB

D.5 Extension spring

Manufacturer: Tevema
Serial number: T32240
Thickness: 1.8 mm
Diameter: 10.2 mm
Total length: 290 mm
Spring constant: 680 N/m
Nominal length: 75 mm
Price category: J
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Parts List D.6 Linear motor

D.6 Linear motor

Manufacturer: Anorad
Serial number: LEM-S-1

Additional information:
One unit needed, magnet channel length 300 mm. See appendix F for detailed information.
With the linear motor, the manufacturer supplies a Hall sensor and an overheating prevention
sensor.

D.7 Encoder

Manufacturer: Renishaw
Serial number: RGH22
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Appendix E

Construction costs of the
experimental setup

In the following, an overview of the building costs of the setup is given. For clarity, these
costs are treated for each distinct part separately. Some of the prices are estimated1 in the
best possible way, since e.g. manufacturing costs are not known exactly in advance.

Linear motor, Anorad LEM-S-1

• Coil e 405
• Magnet channel e 525
• Thermistor (to prevent overheating) e 95
• Amplifier e 15001

Measurement instruments

• Encoder strip Renishaw RGH22 e 67
• Encoder head Renishaw RGH22 e 350
• Hall sensor Anorad e 170

Mass guidance

• Air bearing, 6 pieces e 900
• Pressure supply e 1001

• Air bearing tubing e 301

• Lightened, polished triangular body e 30001

1Estimated price.
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Construction costs of the experimental setup

Springs

• Extension spring Tevema T32240, only per 5 pieces e 29
• Compression spring Tevema D14110, only per 5 pieces e 29

Miscellaneous

• Ball bearing SKF LBBR8 (stopper) 2 pieces e 1001

• Various aluminum parts e 1001

• Protection cover e 501

• Total costs e 75001
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Details about linear motor Anorad LEM-S-1

Appendix F

Details about linear motor Anorad
LEM-S-1
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Details about linear motor Anorad LEM-S-1

Copied from [5].
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