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Summary 

A constitutive model has been investigated that intends to describe time-dependent 
non-Newtonian behaviour of human blood. It consists of an upper convected Maxwell model 
with parameters that are time-dependent by a sepaïaie strùctuïâl h e t i c s  equation. 

studied. Calculated shear stresses in simple shear flow agree well with available experimental 
data, in both steady and unsteady shearing. 

In steady simple shear, the model produces a first normal stress difference smaller than 
the measurement accuracy of normal stress measurements on human blood that are reported in 
literature. The second normal stress difference is zero. 

A five mode version of the model improves the fit of the steady viscosity curve 

Its behaviour in steady and unsteady simple shear and simple elongation flows was 

significantly, and also fits the measured complex viscosity of human blood. However, it has 
t w ~  modes with singbilarities in the elongational viscosity. This may produce infinite 
elongational viscosities in for example flows with recirculation areas, which is physical 
incorrect. Measurements of the complex viscosity of blood in a broader frequency range are 
necessary to improve the multi mode fit. 

stenosed artery at a Reynolds number of 100 and a Weissenberg number of 0.80, using the 
single mode model, with a Finite Element Method (a space-time, mixed Finite Element 
Method based on operator splitting and a Time-Discontinuous/Galerkin Least Squares method). 
Results are tentative, but they show that the numerical method used can succesfully be applied 
for this type of probIem. The computer program that is now available has a large potential for 
future studies. 

In addition, the start up of steady flow of blood was calculated in a planar model of a 
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1 Introduction 

This report concerns the modeling of the time-dependent non-Newtonian behaviour of 
blood. A non-Newtonian constitutive model was investigated in several simple shear and 
simple elongation flows and in a planar flow with a modei stenosis. 

of the blood flow through the human carotid artery bifurcation. This bifurcation is the central 
problem in the project "Atherosclerosis", a cooperation between the Eindhoven University of 
Technology and the University of Limburg. Atherosclerosis is a disease that narrows blood 
vessels by formation of atherosclerotic plaques at the wall, particularly in arteries with bends 
and bifurcations. These plaques ultimately occlude the vessel, or fragments peeled of the wall 
can block a downstream artery. In both eases, clinical consequences are obvious. A 
mathematical model of the flow of blood contributes to the development of a method to 
diagnose the atherosclerosis in an early stage of the disease, 

Calculation of the flow in the carotid artery bifurcation involves a number of problems 
that have to be solved: unsteadiness of the flow, three-dimensionality of the flow, etasticity of 
the artery wall, and non-Newtonian behaviour of the blood. 

shear rates below 100 s-1 it is experimentally observed that blood behaves as a non-Newtonian 
fluid (e.g., Thurston [1979], McMillan et al [1987]). 

In steady simple shear flows a decrease of the viscosity with increasing shear rate 
reflects the time-independent behaviour of blood (McMillan et al [1987]). This shear thinning 
effect can be described with time-independent constitutive models, so called generalized 
Newtonian models. These models relate present stresses with present shear rates only. 

also time-dependent effects (e.g., McMillan et al [1987]). To describe these effects more 
complex constitutive models that take into account the history of deformation have to be used. 

Many studies, both numerically and experimentally, report about the flow in the human 
carotid artery bifurcation (Ku and Giddens [1987], Van de Vosse [1987], Rindt [1989], 
Reuderink [1991]), making different simplifying assumptions. In general, it is assumed that 
blood behaves as a Newtonian fluid. 

Our Interest in applying this type of constitutive models for blood is raised by the sti?dy 

Simple shear flows are used to characterize fluid behaviour. In simple shear flows at 

In unsteady simple shear flows, blood shows not only shear thinning behaviour, but 

The Newtonian assumption is justified by two arguments. First, in steady shear flows 
the shear viscosity gets a constant value at shear rates above about 100 s-1, while in large 
arteries in the human body maximal shear rates above 500 s-1 are typical. Thus the Newtonian 
assumption seems to be realistic in those cases. 

1.1 
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However, many (Newtonian) studies (e.g., Ku and Giddens [1987], Rindt [1989]) have 
shown that in bends and bifurcations flow areas occur with flow recirculation and low shear 
rates. Thus the non-Newtonian, shear thinning behaviour of blood might be of importance in 
these situations too. To investigate this effect, Baaijens et al [1992] used two 
time-independent, generaiizeci Newtonian constitutive models for blood to calcdate 
numerically the flow through a two dimemional model of the buman carotid artery bihrcatioo. 
It was found that in these cases the general flow structure was not affected by the generalized 
Newtonian models used. Locally some differences with the Newtonian results were found. The 
results of others (e.g, Perktold [1989], Perktold et al [1989]) confirm these results. Again this 
confirms the Newtonian assumption as reasonable. 

However, strong objections exist against the use of generalized Newtonian models in 
flows that have not only shearing deformation (see Chapt. 2). Also, when generalized 
Newtonian models are used in flows where acceleration and slowing down of fluid takes place, 
effects that are related with time-dependent behaviour of blood (viscoelasticity, thixotropy) are 
ignored. In particular in flow recirculation areas these effect might control the flow phenomena 
dominantly. Therefore care should be taken when making conclusions on the ground of these 
calculations alone. 

The relevance of the time-dependent behaviour of blood has not yet been investigated 
well. The most important report on this is the experimental study of Mann and Tarbell [1989] 
who measured the wall shear stresses in a ninety-degree curved tube during oscillatory flow. 
They used three non-Newtonian fluids (bovine blood, a Separan solution and a Xanthan gum 
solution) and one Newtonian fluid (an aqueous Glycerine) as rheological analog fluids for 
blood. The non-Newtonian fluids all had the same shear thinning viscosity. However, 
significant differences were found between the wall shear stresses measured in the four cases. 
Also, measurements with bovine blood showed significant differences with those on the 
Newtonian solution. This implies that one should be careful with interpreting measurements of 
fluids that have the same steady shear viscosity curve. 

The second reason for using a Newtonian model is the fact that no adequate 
constitutive models and/or mathematical tools were available to calculate the non-Newtonian 
flow of blood. Much more complex constitutive models have to be used in order to describe 
time-dependent non-Newtonian effects, but because of numerical difficulties no realistic flow 
calculations could be made in the past. Fortunately, recently important progress has been made 
in this research field that enables more realistic viscoelastic flow calculations (e.g., Hulsen 
[1989,1991], Baaijens [1992]). Further, measurements in two or three dimensional viscoelastic 
flows of the stress or the velocity field are very difficult, and in case of blood without an 
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appropriate rheological analog fluid even impossible. 
In the recent past, several authors have proposed constitutive models that intend to 

describe the time-dependent behaviour of blood. One of those models is the Rosenblatt model. 
We chose this model for several reasons that will be discussed in Chapt. 3. As a prepatory 
study, we studied its behaviûrir ia siiììple shear (Chzpt. 4) aud elmgation €!ows (Chqk 5)- The 
calculated shear Stresses in simple shear Bow, during 
constant shearing perods of time each followed by a non-shearing time period, agree well with 
experimental data in case of shear rates of 8, 23 and 30 s-1. 

Besides shear stresses, also normal stress differences are of importance when studying 
viscoelastic behaviour. Only a few measurements of normal stress differences are reported in 
the literature. Copley and King [1975] reported such measurements in steady shear for shear 
rates from 0.081 to 5 s-1, and could not measure any normal stress difference. Their 
measurement accuracy was maximal 90 mPa. Our model calculations yield a first normal stress 
difference that is smaller than this measurement accuracy and a second normal stress 
difference that is zero. Hence, our calculations do not contradict with experimental data within 
the measurement error. 

A five mode version of the model improved the fit of the steady viscosity curve 
significantly. It also fitted the measured complex viscosity of human blood well. This five 
mode fit has a mode with a singularity in the elongational viscosity, which gives rise to 
unrealistic, infinite stresses in elongational deformation. This might occur in flow recirculation 
areas. Measurements of the complex viscosity in a broader range of frequencies may result in a 
better fit of the multi mode model. 

Also the flow of blood in a planar model of a stenosed artery using the Rosenblatt 
model was calculates. These calculations have a tentative character. The results show that the 
numerical method used can succesfully be applied for this type of problem. The computer 
program now available has a large potential for future studies. 

to reveal the relevance of the non-Newtonian behaviour of blood on the three dimensional 
time-dependent flow phenomena in the human carotid artery bifurcation. 

loading grogram that consisted of ivio 

More detailed comparative studies, both numerically and experimentally, are necessary 





2 Review of literature 

2.1 Introduction 

shear rate ('shear thinning'). Further, numerous researches have found that MeoÛ also exkìbits 
time-dependent behaviour, such as viscoeiasticity and thixotropy. This complicated material 
behaviour is caused by the microstructure of blood. The review of literature first concerns the 
rheology of blood (Sections 2.1, 2.2). These section are meant as an introduction, for more 
detailed information it is referred to for example Car0 et al [1978]. Second, the physiological 
flow situation is described (Section 2.3), and then literature concerning constitutive models for 
blood is discussed shortly (Section 2.4). For a more detailed review of literature it is refered to 
Baaijens [1991]. 

Blood exhibits non-Newtonian behaviour. First of all its steady viscosity decreases with 

. 

2.2 me;!oggr o f b ! d  
Blood is a suspension of blood cells and liquid particles (the chyomicrons) in the 

plasma. It has a specific mass of 1.050 103 kg/m3. If all particles are removed from the blood 
and it is anticoagulated, the plasma rests. It appears from experiments (Caro et a1 [1978]) that 
plasma is a Newtonian fluid; at 37°C it has a viscosity q,lasm = 1.2 
chyomicrons are 0.2 - 0.5 pm long and have such a small concentration that they do not 
influence the macroscopic rheological properties of blood. 

Further, the blood cells can be subdivided in red and white blood cells and blood 
platelets. The concentration of white blood cells (leukocytes) and platelets is so low relative to 
the red blood cells (erythrocytes), see Table 2.1, that they are considered to be not important 
for the rheological behaviour of blood. 

Ns/m2. The 

Table 2.1 Cells in blood (Car0 et al r19781). 

Ce& in blood 

UtlSUCSSCd Volume 
Number per shape and conantranon (YO) 

mm' dimensions (wn) in blood 

io4 Biconcave d i  4s 
8 X  1-3 

L I 1  x id 1 
1.5-7.5x1031 D J X  10' spilMQI 

o-2x 10' 
14.5 x lo3 

o-ax 10'1 
25O-SOO x lo3 Rounded or 

1 
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The red blood cells (RBC) determine the rheology of blood. The volume concentration, 
also called hematocrit (HTC), is 45 %. Red blood cells contain hemoglobine, a fluid that is 
responsible for the oxygen transport, When the cell is not deformed, it has a concave shape 
(Fig. 2.1), and a specific mass of 1.08 103 kg/ms-(slightly larger then for the whole blood). 
The ceil consists of a thin membrane containing a flüid. The cel! haw DG n~c!eus. The viscosity 
ofthe intedor nilid is about 6 10-3 Ndrnz, about 5 times the pllésma viscssity. 

Cornpsinon of the red ceil 

Figure 2.1 The red blood cell @om Car0 et al [1978]). 

The RBC has two important characteristics that influence the flow of blood. First, the 
cell is strongly deformable (it has a Young's modulus of order los Nm-2 (Bemadin [1986])), 
with high shear stresses it is stretched. The deformation of the red cells becomes significant for 
shear rates greater then 1 s-l, it reaches a maximal value for y u 100 s-l (Bemadin [1986]). 

aggregate. This is called rouleaux formation. At very low shear rates ( y  e< 1 s-l, Bemadin 
[1986]) rouleaux can form a three dimensional network. With increasing shear rate the network 
is broken down, and the rouleaux are dispersed into individual cells. In this regime a stmctural 
kinetic process of competing structure break down and build up exists. For y > 10 s'l no 
rouleaux exist in steady shear. Fig. 2.2 illustrates both effects. Depending on the shear stress, 
aggregates of undeformed cells are formed or dispersed cells are deformed. 

be explained as follows. At very low shear rates ( f <e 1 s-l) aggregation of rouleaux to a 
three dimensional network causes relatively high shear stresses. With increasing shear rates, 
first the network is deformed and broken down; at shear rates 0.1 e e 1 s-l the bending and 
orientation of the rouleaux result in a further decrease of the viscosity. At higher shear rates ( y  
> 1 s-l) the rouleaux are broken down, while for-y > 10 s'l no rouleaux exist and with 
increasing shear rate the viscosity decreases as a result of the orientation and deformation of 

Secondly, at low shear rates ( y  e 10 s-l, see for example Fig. 1.2) the red blood cells 

In steady simple shear flow, blood shows shear thinning behaviour (Fig. 1.3). This can 
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Figure 2.2 Two states in which the RBC can exist depending on shear stress: (a) 
undeformed, aggregated (z = O Nlmz), (b) deformed, unaggregated (t = 
300 Nlm2) cfrom Caro et al [1978]). 

Figure 2.3 The shear viscosity CIS a function of shear rate for whole human blood 
(HTC = 45 %) @-om McMillan et al [1987]). 

the individual red blood cells. For high shear rates (p > 100 s-l) the viscosity becomes 
Newtonian. The separate influences of the deformation and aggregation on the shear viscosity 
of blood are illustrated in Fig. 2.4. Aggregation increases the viscosity at low shear rates, 
deformation decreases the viscosity at high shear rates. 

or Casson relation: 
The shear rate dependence of the viscosity of blood is often described by a power-law 

(2.1) 
n- 1 power-1 aw : q = C p  
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with q the viscosity, C the power-law constant, n the power-law index, y the shear rate, t,, the 
yield stress, qc the Casson viscosity. The Casson model contains a yield stress, this is 
discüssed in the îìext seetior;. Tjjpicat parameter vzlires for human blood are (Baaijens [1991]): 
C = 0.028, n = 0.63, ty = 4.8 IQ 'Nm , qc = 2.8 IO-' N s H ~ - ~ .  -? - -2 

l i  I 1 I I 

b t  I HA: Hardened 11IAlb. 

Figure 2.4 The relative shear viscosity (qlqo; qo = viscosity of the plasma = 1.2 
mPas) of whole human blood (HTC = 45 %) as a function of shear rate; 
the contribution of deformability and aggregation is indicated. (NP = 
normal red cells in plasma, NA = normal red cells in isotonic saline 
containing 11 % albumin toprevent aggregation of the red cells; HA = 
hardened discoid red cells in the same saline) mom Chien [1970]). 

Yield stress 
According to Car0 et al [1978] blood has a yield stress of 1.5 - 5 mN/m2. However, as 

discussed for example by Walburn and Schneck [1976], the yield stress was measured only 
under static loading conditions. It is doubtful whether the yield stress is at all manifest in a 
(physiological) dynamic situation. 

Linear viscoelasticity 
Standard measurements of linear viscoelastic behaviour are measurements of the 
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dynamic complex viscosity and its elastic and viscous components (Fig. 2.5). The complex 
viscosity is defined in a small amplitude oscillatory flow by 

The non zero eiastic Component q" in Fig. 2.5 proves that b:ssd shows virscûe~astic behaviour. 
The relation between the complex viscosity of blood and its microstructure is elucidated by the 
study of Huang et al [1975]. They found that at low oscillation frequency in blood (40% HTC) 

! I ' I  

.O7 . I  1 'O 700 
f,( Hz.) 

Figure 2.5 The elastic and viscous components of the complex viscosity of whole 
human blood (HTC = 43 %) as a finction of frequency @-om Thurston 
[1979]). 

large rouleaux that deform elastically exist for yo e 1 s-1. This leads to a substantial elastic 
component of the complex viscosity. They also found that with increasing frequency above 0.1 
Hz the rouleaux size decreases as well as the value of q", probably because of the cyclic 
deformation. At frequencies of 1 Hz or larger hardly no rouleaux exist in the suspension. Then 
only the deformation and orientation of the individual red blood cells contribute to the elastic 
component q"'. This is confirmed by Fig. 2.6 in which the complex viscosity in a RBC 
suspension in plasma is compared with a RBC in Albumin-Ringer. In this latter solution no 
aggregation can take place; it has a constant q" that is about 5 times smaller compared with 
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the suspension in plasma. The difference becomes smaller when the frequency increases, a 
result of the disaggregation process. 

2: RBC i n  ringer 

i (~Ns/;'I~ 

Figure 2.6 

a 
I I 

to' I O* I IO 

f (Hz) - 
1: RBC i n  ?Iama 
2: ,?8C in ringer 
HTC=45% 

1 
1* , 
to ' I d  I O' 

. .  
f(?t) - 

îñe components of the complex viscosity as a function of frequency in 
plasma and in a Ringer solution (in which the red cells cannot 
aggregate); a) q', b) q" (jiom Chien [i979]). 

Thixotropy 

time-dependent behaviour caused by the kinetic structure processes of aggregation and 
disaggregation. It is experimentally observed after, for example, a repetition of shear rate steps. 

When the Mood is sheared from rest to a steady shear rate value, a shear stress 
overshoot peak is observed (Fig. 2.7). If the same shear rate step is repeated after a short 
period without shearing, a shear stress peak smaller than the first peak is observed. The longer 
the period between the two shear rate steps, the lesser the difference between the two 

A third aspect of non-Newtonian behaviour of blood is thixotropy. Thixotropy is the 
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overshoot peaks (McMillan et al [1987]). This can be explained by the structural break down 
that has taken place during the first step. During the period between the two rate steps the 
structure is build up again. McMillan et al [1987] reported several such experiments with rate 
steps from O to 8,13,23, and 30 s-1. 

Figure 2.7 Shear stress measurement during a simple shear experiment with 5 
periods of 1 s with constant shearing at p = 8 s-1, divided by non 
shearing periods of i s (McMillan et al [1987]) 

Normal stress differences 

always referred to Copley and King [I9751 who reported that normal stress differences above 
their measurement accuracy limit of 90 mN/m2 could not be measured. 

Reports of measurements of normal stress differences of blood are difficult to find. It is 

Behaviour of blood in elongation flows 

extremely difficult. This explains why no report about this was found in literature. 
In case of low viscosity fluids as blood, stress measurements in elongation flows are 

2.3 Characteristics of the physiological flow situation 

the carotid artery bifurcation, see Fig. 2.8. This geometry, as determined by Bharadvaj [1982] 
from 100 angiogram, is a simplification of the real three dimensional geometry. However, 
because of the stage of the research on this subject and the available numerical algorithms, the 
two dimensional model is considered as a starting point. The physiological flow is a pulse 
cycle. During this cycle the Reynolds number varies between 200 and 800 as is shown in Fig. 

In this study the physiological flow geometry of interest is a two dimensional model of 
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2.9 (Rindt [1989]). The time averaged mean value of this Reynolds number is 300. Rindt 
assumed blood to behave as a Newtonian fluid with the Reynolds number Re defined as 

(2.4) 
03 Re = Ü p d/q 

ti) With q /;o = 3.4 10-6 m2/s and D = 0.008 m (the corr?mon carotid artery diameter) this gives 
an average fluid velocity in the communis of 0.13 m/s. In non-Newtonian flow, this definition 
can be modified to (after Liepsch and Moravec [1983]): 

intemai carotid artery 

t ,  <y 
common carotid anery 

exremai amtià\\ ?@. 

artery , 

Figure 2.8 The two dimensional model of the carotid artery bifircatwn as 
determined by Bharadvaj (Bharadvaj [1982]). 

In viscoelastic flow, the Weisenberg number We is of importance too. It is a measure 
for the relative importance of viscous and elastic forces. Usually it is defined as 
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with h a characteristic relaxation time of the fluid. The data of McMillan et al [1987] (Section 
2.2) suggest a characteristic relaxation time of blood as h = 0.1 s. With this, the Weissenberg 
number has a value of about 1 in the physiological flow situation. 

I I 

I vsme ' diasroie I 

c 

I 

Figure 2.9 The Reynolds number during one physiological pulse cycle according to 
Rindt (jì-om Rindt [1989]). 

2.4 Constitutive models for blood 
Generalized Newtonian models 

In this study we will not use any generalized Newtonian model. These are very popular 
for describing the shear thinning effect of blood (e.g., Perktold [1989], Perktold et al [1989], 
Steffan et al [1989], Cho and Kensey [f991]. Some of these studies are discussed by Baaijens 
[1991]. They show consistently that, in order to get a more accurate flow simulation, in many 
cases the shear thinning character of blood should not be neglected. For several reasons 
however care should be taken interpreting the results of calculations with generalized 
Newtonian models. 

The power-law model does not satisfy the limit situations as y becomes zero or infinite, q 
becomes then zero or infinite. This does not agree with the experimental observations. 
Additionally, the value of the power n in the power-law model determines the dimension of 
the parameter C. This is physically unsatisfying. 

In the Casson m eI the yield-stress is determined from measurements for small values 
of the shear rate. In that range the measurement accuracy is too small to ensure the yield-stress 
really exists. 

. First, the generalized Newtonian models are attended with some principal objections. 

The generalisation of 1D relations to 2D relations by using the second invariant of the 
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rate of deformation tensor P (i, =(S(P,p))* is only exact in case of shear flows. This means that 
the derivatives must satisfy 

This reduces the class of possible flow problems considerably. Especially in reversed flow 
areas it is not ensured whether this assumption is valid. 

Secondly, and more important, generalized Newtonian models are constitutive 
equations for visco-inelastic media. This implies that visco-elastic phenomena (Section 2.2) are 
ignored. However, even in steady flow convective slowing down and acceleration of the fluid 
occurs. The flow phenomena related with this are characterised by the Weissenberg number. In 
case of the physiological flow considered in Section 2.3 We=l was found. This implies that 
viscoelastic effects may not be ignored a priori. Moreover, in Müller [1976] it is argued that 
rheological simple fluids without memory have to be lineair. Thus it can be expected that the 
non-lineair viscous media are having a small memory. This is in contradiction with the 
assumption that the medium is visco-inelastic. For this reason a generalized Newtonian 
constitutive equation may physically not be correct. 

Extensive lists of generalized Newtonian models applied for blood are given for 
example by Baaijens [1991] and Cho and Kensey [1991]. 

Time-dependent viscoelastic constitutive models. 

basic mathematical equations of these models are listed in Table 2.2. 
The essential similarity of all these models is their feature of having shear rate dependent 
parameters. In the general formulation of the Bird-Carreau equation in Table 2.2 this model 
differs essentially from the others by being an integral model. It can be shown that in case 
N2=0 the Bird-Carreau model has an equivalent differential form too. 

consists of a Maxwell type equation with time-dependent model parameters that depend on the 
structure by a separate structural kinetics equation. 

The Rosenblatt and Reher-Vogel models are very similar, they only differ by the 
explicit formulation of the structural kinetics equation (the Reher-Vogel model as in Table 2.2 
can easily be adjusted to the three dimensional situation by substitution o f?  for z ,P for i,, and 

Several time-dependent constitutive models for blood are reported in literature. The 

The Charara, Rosenblatt and Reher-Vogel models all have a constitutive equation that 

for '>. 
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Table 2.2 Basic mathematical exmessions of viscoelastic constitutive models proposed for 
blood 

~ 

CHARARA [1985] (1 D) 

ROSENBLA'IT [1986] 
"Maxwell": 

v 
&t(P) %t' + &st' = 2vst(P)P 

"Structure kinetics": 
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There are only a few calculations with the models from Table 2.2 (see references in 
~ 

this table). All are restricted to one dimensional, simple shear flow, and mainly concern cases ~ 

with shear rates s 1 s-1. For the Reher-Vogel model no calculations were found at all. 

2.5 Non-Newtonian rheoiogicai analog €hi& for blood 
There are severa! reasons io sise a blood rheologiczl analog fluid instead ~f b h ~ d  itseiE 

blood is unstable, tending to separate into a cell phase and a plasma phase, it is opaque to light 
(problematic in case of LDA measurements and flow visualization studies), it may carry 
disease, and it is difficult to obtain in large volumes. 

rheological analog fluids for blood, will be discussed. 

with the references and a brief description of their composition given (for more information: 
see re€eremes). Raaijem [1991] contains a discussion about the experimental results with these 
fluids. The following conclusions can be made: 

In this section different fluids, which in literature are used as non-Newtonian 

Table 2.3 lists the non-Newtonian blood rheological analog fluids used in literature 

- Separan: 
too elastic to mimic blood accurately (see Mann and Tarbell [1989]); recently 
Liepsch [1991] stated that the addition of 7 - 10 % by weight DMSO 
(DiMethylSulphateOxide) particles reduces the elastic behaviour to adjust it to 
real blood. 

- Milling Yellow: 

- Polystyrene microspheres: 
a birefringent dye that is not commercially available anymore. 

an extremely expensive fluid when commercially obtained, and opaque for light, 
which makes it difficult to use in LDA experiments. 

according to Mann and Tarbel [1989] not accurate (too elastic). 
- Xanthan Gum and Xanthan Gum gel: 

Recently, Cho and Kensey [ 19911 suggested transparant slurries studied by 

It is clear that no convincing rheological analog fluid exists. In some cases (Vanadium 
Mannheimer [1990] might be adequate for blood too. 

pentoxide sol, ghost cells, Separan with DMSO, "transparant slurries") there is too little 
experimental data available to judge the adequacy of the fluid. 
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Table 2.3 Non-Newtonian blood rheological analop fluids 

N M E  COMPOSITION REFERENCES 

Separan 

Milling 
Yellow 
Poly- 
styrene 
micro- 
spheres 
X211tha3 
Gum 
Xanthan 
Gum gel 
Ghost 
cells 
Biconcave 
discs 
AP30 

AP45 

Vanadium- 
pentoxide 
sol 

0.85 % ~ 3 0 : 0 . 0 4 %  AF45 = 3 :I 
+ 4% isopropanol + 8.ûi % MgCi2, 
in distilled H20 
commercial dye in distilled H20 
("alp hanol echt gel b 'I ,Hoe& t) 
12 % by weight l p m  polystyrene 
particles in distilled H20 
+ i0  mMo1 CaCl2 + 5 % Dextran 

500 ppm in distilled €320 

50 % by volume in glycerol 

washed red blood cells in 
distilled H2O 
16 % BASF particles + 
2% Dextran in distilled H20 
0.05 % AP30 + 4% isopropanol 
+ 0.01 % MgCljn distilled H20 
0.04 % AP45 + 4% isopropanol 
+ 0.01 % MgCl2in distilled H20 
V2O5 sol in distilled H20 

Idepsch ji99iI 

Schmitz [ 19831 
Liepsch [ 19871 
Fukada et al [1989] 

Thurston [1989] 

Thurston [ 19891 

Liepsch et al [1991] 

Liepsch et al [1991] 

Liepsch et al I19911 

Liepsch et al [1991] 

Liepsch [1987] 

- Ghost cells: 
there is too little experimental information about this fluid to be able to judge 
its appropriateness; its preparation is very complicated. 

constituents of Separan fluid, Sepaïan is a better rheological analog fluid than 
those two separately. 

- AP30 and AP45: 
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- Vanadium pentoxide sol: 
a birefringent solution that, when made in the right concentration, mimics the 
steady shear viscosity of blood (Liepsch 119871). Other measurements are not 
known. The fluid is difficult to work with, because it becomes unstable in 
contact with metai or any slightest pollution. 

Recently, Cho and Kensey [1991] suggested transparant slurries studied by 
Mannheimer [1990] might be adequate for blood too. 

It is clear that no convincing rheological analog fluid exists. In some cases (Vanadium 
pentoxide sol, ghost cells, Separan with DMSO, '-'transparant slurries") there is too little 
experimental data available to judge the adequacy of the fluid. Many authors conclude that the 
microstructure of blood must be rnirniced when developing a rheological analog fluid for 
blood. 



3 Theory 

3.6 Introduction 
In this chapter the mathematical formulation of the Rosenblatt model is presented. No 

elaboration on the derivation of the model equations is given here. For that it is refeïïeb to 
Rosenblatt [1988). 

The Rosenblatt model was chosen for the calculations because it is based on a 
statistical mechanics theory that relates macroscopic stresses with the micromechanics of the 
blood. This provides a, more or less meaningful, physical understanding. However, care must 
be taken with the microstructural interpretations of the model. Eventually, comparison with 
macroscopic experiments justify whether the model is appropriate. Initial confidence was 
present based on first calculations of Rosenblatt [1988] during start up and cessation of simple 
shear flow at shear rates of 0.05 and 1 s-1. Then model predictions agreed moderately well 
with e~perirnentntzl dztz. 

equations from being appropriate for blood. At this stage attention is restricted to the 
Rosenblatt model. 

The models listed in the previous chapter in Table 2.2 do not exclude other constitutive 

As a finishing remark it is noted that the model was named "Rosenblatt model", 
because it was first published by Rosenblatt et al 119861 especially for blood. The resulting 
kinetic equation is a special case of the structural model of Liu,Soong and Williams 119841. 

3.2 The Rosenblatî model 
The Rosenblatt model consists of the following equations (Rosenblatt [1988]): 

dP/dt = k(l-P)-alA P, 

3.1 
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c =wN&/2<qe>, 
i! y =  (2339 

Q with: : upper convected time derivative; f: extra-stress tensor; ?st : structure dependent 
st I') part of the extra stress tensor T; Tpl': reflects îhe contribirtioii cjf plasma vkww forces; 

ji0ell' : reflects the eontribütioa f r ~ r n i  viscous drag between individua!  CV!^ of the rouleaux aod 
plasma; total stress tensor: ? = T - p l  (p = pressure); P : rate of deformation tensor; y : shear 
rate; P : structure parameter, defined as the fraction of cell sides that are aggregated; kt,qSt : 

structure dependent functions; a,k : model parameters; qe: length of a rouleaux at equilibrium; 
c qe > = average rouleaux length at equilibrium; No : total number of (red blood) cell sides per 
unit volume; w : thickness of a red blood cell; S2 : spring constant in an elastic dumbbell 
(Hooke's law); rp is the limiting steady shear viscosity at high shear rates (no structure). 

The above model relates macroscopic stresses with micromechanical forces. As 
discussed i-n_ Chapter 2, the rheology of blood is determined by the red blood cells. Rosenblatt 
[ 19881 considers the rouleaux as primarily responsible for the time-dependent behaviour of 
blood. The theory is based on a statistical mechanics approach. Rouleaux are considered as 
Hookean elastic rods whose ensemble configuration distribution is Gaussian at equilibrium 
(absence of flow) and that are in affine motion (i.e., the motion at microscopic scale is 
equivalent with the macroscopic motion). These rouleaux are increasingly created with 
decreasing shear rate, while they are increasingly destructed with increasing shear rate. 
Orientation of particles in flow is not incorporated in this model. 

Rosenblatt gave microstructural interpretations to the model parameters. The parameter 
a contains information primarily about cell surface chemistry. The parameter Q, the spring 
constant in Hooke's law, can theoretically be calculated from k,q0,q03,No7w, and qe (Rosenblatt 
[1988], p.57). It is (Rosenblatt [1988], p. 58: ) "either a measure of red cell mechanical 
properties or cell membrane adhesion chemistry or both, depending on which mechanism 
(cell-cell displacement or cell extension) is responsible for rouleau extension". Rosenblatt 
verified the theory by independent measurements of S2, and found reasonable agreement with 
experiments. 

3.1 simplifies to the well known upper convected Maxwell model. Eq. 3.2 reflects the 
competitive kinetic process of stnicture build-up and break down that takes place when blood 
is being deformed, 

function tp in configuration space, denoted as 

The two basic model equations are Eqs. 3.1 and 3.2. When kt and qst are constant, Eq. 

In this statistical mechanics theory the central concept is the aggregrate distribution 
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with 4 the end-to-end vector of the rouleau, ? the position of the q-length rouleaux, and t the 
time. t) Represents the distribution of aggregated red blood cell sides in configuration space as 
function of q, r and t: + +  

&,?,t)dq3 = fraction of rouleaux at time t with end-to-end vector 
starting on position ? and the other end lying between 
q and 4 + d{ (3.10). -4 

Eq. 3.1 is derived assuming deformation of the blood satisfies the Small Strain 
Approximation (''SSA'') (necessary to justify Hooke's law that is used to describe the elastic 
forces in a deforming rouleau) and assuming affine motion. 

The structure Enetics equation Eq. 3.2 is derived from addition polymerization 
kinetics. The first term in Eq. 3.2, k(1-P), represents the statisfical contribution to the structure 
kinetics. This term is derived assuming that the deformation rate is so low that only long 
rouleaux exist ("LRA": Long Rouleaux Approximation). If we write k(1-P) = k - kP, k 
represents the formation of q-length aggregates by combination of shorter rouleaux, and -kP 
represents the loss of q-length rouleaux by combination with any other length rouleaux. 

The second term in Eq. 3.2, -alplP, represents the hydrodynamic contribution to the 
structure kinetics process. It reflects the loss of q-length rouleaux by shearing forces. 

For calcuIating stresses in shear flows, Rosenblatt [19SS] fitted the model to data 
measured in the limiting low shear rate range ( y  c 10 s-1). 

The addition of this retardation term 2qmD yields a constitutive equation that does not 
satisfy the postulates of Simple Fluid theory, because step strains, i.e., infinite strain rates, are 
not possible without infinite stresses. This deficiency is accepted, because in some respects the 
model will appear to be very realistic (see Chapt. 4). 

3.7 then follows q$ = (qo - q ) P (and q!$ = cqe>wNoS2/6k ( cqe9  N cq&)). 

measured shear stresses of blood after shear rate steps form O to y = 0.05 and 1 s-1, during 
thixotropic loops (a to a maximum of 2 s-I linearly with time increasing shear rate and 
decreasing back to O s-1 again), Rosenblatt [1988] found as numeric values: qo = 0.12 Pa s, 
q = 0.004 Fa s, a = 1.2, k = 0.25 s-1. 

At this stage of this research, primarily the macroscopic predictions of the model are 

At very low steady shear rates (P = 1) the shear viscosity q equals qo. From Eqs. 3.3 - 

Essentially, the model contains four model parameters: qo, q-, a, and k. From fits on 

03 

03 
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investigated. Although the Rosenblatt model is based on the assumption of low deformations 
and deformation rates, in this study the model will be used in other situations too. Then, its 
micromechanic background cannot be hold anymore. Other mechanisms such as deformation, 
orientation, and collision of the red blood cells are responsible for the viscoelastic behaviour of 
blood too. The parameter P cannot be interpreted anymore as "the fraction of red e i is  îhai is 
aggregated", but it must be seen as a mathernatical parameier. 

3.3 Generalisation to multi mode 
The Rosenblatt model can be generalized to a N mode version in the following trivial way. 

dP /dt = k(l-P)-a Ijl P ,  (3.10) 
i i i i  i 

N 
f = CTSti' + V p ì  + L i l ' >  

i 
(3.11) 

kt. = p/k (3.13) 
i i i  

%ti = VOipi (3.14) 

These equations have not been derived from micromechanic considerations. It is 
proposed as a mathematical generalisation of the-single mode model. However, this 
formulation implies some assumptions. For example, the structure kinetics equations (3.10) are 
considered to be independent (there is no relation between different P Is). Hence, different 

structural processes are not allowed to interfere. Here, we do not speculate what kind of 
processes these are. Without physical evidence, it is assumed that all processes can be 
described by the same structure kinetics equation that was originally set up to describe the 
aggregation of red blood cells at low deformation rates. Therefore the parameters P. cannot be 

i 

1 

regarded as %e fraction of cells that is aggregated", but must be considered as a mathematical 
parameter. 



4 Calculations in simple shear flow 

4.1 Introductiorr 
Simple shear flow belongs to the class of viscometric flows. Viscometric flows enable 

to characterize materiai behaviour of fluids. En simpie shear flow, shear stress measurements 
are reiativeiy easy to perfom. These experiments are very usehl :o identify parameters in 
constitutive models. 

In case of the Rosenblatt constitutive model it is shown in this chapter that all model 
parameters can be obtained from fits on shear stress measurements in simple shear flow 
(Sections 4.2 - 4.4). Both calculated shear and normal stresses in unsteady simple shear flow 
(in start up, cessation of, and small amplitude sinusoïdally flow) are compared with 
experimental data of blood found in literature. Finally, the multi mode version of the model is 
discussed (Section 4.5). 

in start up of steady shear flow for shear rates of magnitude 10 - 30 s-1 (no experimental data 
were available for higher shear rates). The first normal stress difference was less than the 
measurement accuracy (90 mPa) of Copley and King [1975], who could not measure any 
normal stress difference significantly different from the measurement error (see Section 2.2). 
Hence, the model calculations at least do not contradict the available experimental data with 
respect to the normal stress differences. 

The main C O E C ~ U S ~ Q ~  is that the Rosenblatt model can describe well the shear stresses 

4.2 Parameter identification for the Rosenblatt model 
In simple shear flow, the equations for the structure dependent part of the Rosenblatt 

model as defined in Chapt. 3, read: 

4.1 
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A = P k  

dP/dt = k - (k i alj#P (4.7) 

Zxy7st l  + (4.8). 

All other stress components ( T ~ , ~ , T ~ , - T ~ ~ , T ~ )  are zero. These equations contain four 
independent model parameters: k,a,qO,and qco. In simple shear flow, only measurements of t;ry 

have been reported (see also Chapt. I). Ail fitting in this chapter is based on Eq. 4.8. 

Steady simple shear 

-Shear viscosity 

steady simple shear, the shear viscosity q is given by 

03 The parameters a/k,qo,and q can be obtained by fitting the steady sheor viscosity. In 

(4.9). 

This equation contains the four unknown model parameters. For fitting equation (4.9) 
we have used the steady shear viscosity of human blood measured by McMillan et al [1987]. 
From these data, we obain qo = 0.12 Pa s and qW = 0.0037 Pa s. 

The parameter 2 was determined using a non-linear least squares method based on a 
k 

Newton-Raphson method (Press et al [1987], Chapt. 14). The result was 2 = 9.1 s. 
k 

Rosenblatt [1988] fitted this model by visual comparisons of model predictions with 
experimental shear stress data. He obtained parameters qo and qco as described above (0.12 Pa 
and 0.004 Pa s respectively) from a steady shear viscosity fit on experimental data of Huang et 
al [1973]. To find values for a and k, he first estimated reasonable ranges of a and k from a 
comparison of stress growth data with model predictions (after a shear rate step from O to 0.05 
and to 1 s-1). The best fit parameters were then determined from visual comparisons of model 
predictions with experimental data in two shear rate hysteresis experiments (a shear rate 
loading program with shear iate increasing linearly in time from O to a maximum and then 
symmetrkafly decreasing to O again). Two cases were considered: one with a maximum shear 
rate of 0.12 s-1 and one with a maximum of 1 s-1, yielding parameter values a = 1.2 and k = 
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0.25 S-1, thus 2 = 4.8 S. 
k 

The difference between the values of the two parameter sets and their predicted stresses 
is rather large. Fig. 4.1 shows the steady shear viscosity for both parameter sets together with 
experimental data of McMillan et al. [1987]. The two parameter sets yield significant different 
steady shear viscosity curves. It appears that ath the higher shear rates the parameter set of 
Rosenblatt et al E19871 is more accurate compared with ours. Because of their larger 
magnitude, measured steady shear viscosities at shear rates below 1 s-1 dominated our steady 
shear viscosity fit from which we determined 2. Apparently, the one mode model is not 

k 
adequate, more modes are necessary (see Section 4.4). 

ROSENBLAïT 

c 
i i i i 

i 
SHEAR RATE (ID) 

Figure 4.1 Steady shear viscosity for blood: a) measured by McMillan et al [1987] 
(+)y b) model curve for the Rosenblatt model with fitted parameters of 
Rosenblatt [1988] (-)y and e) "best'lfit in a least square sense (-.). 

- Normal stresses 
The Rosenblatt model also predicts the normal stres txx in steady shear flow. In 

literature, no succesfùll normal stress measurements distinguishable from measurement errors 
are reported for blood (Copley and King [1975]). Their (large) measurement error was 90 mPa. 

In steady simple shear, the model predicts: 

(4.10). 
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Figure 4.2 Normal stress txx CIS Q function of steady shear rate for the set with a = 
1.2 and k = 0.25 S-1. 

For the limit 

maximum value: 

>> 1 (at high shear rates) G~ reaches a constant value that is also the 
k 

If we demand the normal stresses to have a certain maximum value Max, using g = V the 

condition 
k 

a 2 2qO/(V Max) (4.13) 

follows. In case of a maximum for zxx of 90 mPa (the measurement error), with the values 2 = 

4.8 s and 9.1 s the constraints a P 0.55 and a 2 0.29 are found respectively. In case of 2 = 9.1 

the values of a and k have not been determined separately. In the following, only the 
parameter set a = 1.2 and k = 0.25 s-1 is used. The reason for this is the fact that the available 
experimental data in unsteady simple shear flows that we are interested in is measured in the 
shear rate interval 8 - 30 s-1 (Section 4.3), in which the set a = 1.2 and k = 0.25 s-1 gives the 
best agreement between steady shear viscosity data measured on human blood and model 
predictions. The set satisfies also a 2 0.29. 

k 

k 
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4.3 Response after shear rate steps in simple shear 
- Shear stresses 

Having determined the model parameters for the Rosenblatt model as described in the 
previous section, stress response in several start up of steady simple shear flow experiments 
was caicufated. The results are compared with expeiherital data of blood reported by 
McWllan et ai P987j. 

Three different simple shear experiments are considered whereby during two separate 
periods of time a constant shear rate is applied. The constant shear rates are 8, 13, and 30 s-1 
respectively. Stress measurements during such an experiment cover several phenomena: stress 
growth (after a shear rate step from rest to a steady value), stress relaxation (after a shear rate 
step from a steady value to zero), and influence of shear history (the difference between the 
response after the second step compared with the first). 

Euler difference scheme was used to avoid possible numerical difficulties caused by the 
stiffness of the differential equations. The parameter set a = 1.2, k = 0.25 5-1 was used, with 
1000 time points (accuracy of the solution was checked by doubling this number), and a ramp 
of 0.075 s during each shear rate step, to mimic the experimental conditions of McMillan et al 
[1987]. 

The model parameters as determined by Rosenblatt et al [1987] give very good results 
in all three cases. This is illustrated in Fig. 4.3 in case of a single shear rate step from O to 8 
S-1. 

The stress responses were numerically calculated from Eqs. 4.1 - 4.8. A backward 

From Fig. 4.3 a) - c) it is concluded that the Rosenblatt model with a = 1.2 and k = 
0.25 s-1 describes shear stresses well during stress growth, stress relaxation, and steady 
shearing in these three cases. Just like the measured data, the model calculations show the 
typical stress overshoot. The largest differences between calculations and measurements are 
found in this stress overshoot peak. Duration in time of the calculated peak agrees well with 
measurements, but the maximum heigth of the calculated peak is reached approximately 0.2 s 
in time later compared with experiments. 

The maximum overshoot peak heigth in the calculations displayed in Figs. 4.3 a) and b) 
is also approximately 10 % heigher compared with measured data. In case of Fig. 4.3 c) (shear 
rate step to y = 30 s-1) the maximum overshoot peak heigth agrees well with the measured 
data (differemx < 1%). In this latter case, the stress relaxation after cessation of shearing is 
described less accurate than in Figs. 4.3 a) and b). 
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b) y =  13 S-1 

C) + = 30 S-1 
Figure 4.3 Shear stress responses during simple shearing whereby during two 

periods of time, separated by a non shearing perwd, a constant shear 
rate is applied. The curves are calculated using a = 1.2 and k = 0.25 
s-1. At each rate step a ramp of 0.075 s was used. Measured dat@ (+) 
are from McMillan et al [1987]. 
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b) = 13 S-1 

c) = 30 S-1 

Figure 4.4 Response of normal stress z, during three simple shearing experiments 
(same as Figure 4.3) whereby during two periods of time, separated by a 
non-Newtonian shear period, a constant shear rate is applied. Curves 
are calculated using a = 1.2 and k = 0.25 s-1. At each rate step a ramp 
of 0.075 s was used. 
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- Normal stresses 
The parameter set used yields a normal stress t, that is smaller than the measurement 

accuracy of the experiments of Copley and King [1975]. Steady state values for sx were 
already shown in Fig. 4.2. After a shear rate step also the normal stresses z, has an overshoot 
peak. 

4.4 Complex viscosity 

structure dependent Eq. 3.1 then changes into the ordinary linear Maxwell model. This can be 
understood as follows. The complex viscosity is defined in small amplitude sinusoïdally shear 
flow under the condition that the stress t depends linearly on y. In general the Rosenblatt 
model is a non-linear model: applying a small strain oscillatory simple shear flow y = 
yOexp(i0t) does not yield a linear response in t. This follows immediately from substitution of 
the expression for y in Eq. 3.1. 

The non-linearity is caused by the time-dependency of the parameters q and h in Eq. 
3.1. These are calculated from the structure kinetics equation (Eq.3.2). The model is linear if 
and only if the parameters q and h (and consequently P) are constant in time. This is the case 
during oscillating shear when P = 1. The model then changes into the linear Maxwell model. If 
the structure kinetics equation is written as 

The Rosenblatt model can also describe complex viscosity measurements. In fact, the 

dP/dt = k - P(k + alii) (4.14) 

the condition P = 1 is obviously met if and only if 

(4.15). 

Condition 4.15 implies that the Rosenblatt model violates one of the principle of simple 
fluid theory, that states that no matter how high the oscillation frequency is, as long as the 
strain amplitude is small enough, the stress response will be linear. Eq. 4.15 can be written as 
alyd << k. This means that the strain amplitude below which the response is linear depends 
on the (angular) frequency (see also Larson [1988], p. 179). 

Multi modes are necessary to fit the Rosenblatt model on measurements of the complex 
viscosity b l a d  reported by Thurston [1979]. In case of a multi mode linear Maxwell model 
the viscous (q') and elastic (q") components of complex viscosity are described by (e.g. Tanner 

í19851) 
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q' = l q  /(i+&h2) . 
Oi Oi 

i 

(4.1617 

In case of the Rosenblatt model, the component q' is given by 

(4.17). 

(4.18). 

We found 5 modes to be sufficient for fitting experimental data. First, the time 
constants h were chosen, which results in a linear set of equations. With this set the zero 

shear viscosities qi were fitted with an ordinary ieast squares routine (minimlzing both 
11 q'-qteXp Ij2 and 11 q"-q'leXp 112). When o + O rad/s also + O s-1, thus q" + O Pa s and q' + 1 q 

= q0-qm. The condition 2 q = 70-q was added to the system of equations. Fig. 4.5 shows 

Oi 

Oi 
i 
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the result. 

i 1 

Figure 4.5 5-Mode linear Maxwell model fitted on measurements of the complex 
viscosily of blood (Thurston [1979]): (+) measured q', (o) measured q", 
(-) fitted q', ( e  -) fitted q'! 
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Although the fit of the complex viscosity agrees well with the measured data of both q' 
and q", outside the (small) measurement interval the fit has oscillations that are expected to be 
unrealistic. Unfortunately the measurements cover only the small frequency range between 
0.10 and 10 Hz. The fit was made in order to get curves as smooth as possible. A very large 
time constant (A = 508 sj was necessary to fit the mode1 as best as possible oa the 

experimental data. However, from a physical point of view, 500 s is a very large relaxation 
time for a low viscosity fluid like blood. Extrapolation of the fit outside the frequency interval 
of the measured data is not allowed. To obtain a much more reliable fit, experimental data of 
the complex viscosity in a larger frequency interval (for example: a logarithmic range from 
0.001 to 1000 Hz) and more modes are necessary. 

01 

The parameters q and h obtained in this way are listed in Table 4.1 in the next 
Oi Oi 

section. 

4.5 Multi mode Rosenblatt model 

MULTI MODE ROSENBLATT 
1 O0 

102 i 

Data McMillan et al 

P987l 

t 

Figure 4.4 Steady shear viscosity of blood: (+) measured (Thurston [1979]), (-) 
5-mode Rosenblatt model with parameters as in Table 4.1, (- *) single 
mode fit with a = 1.2 and k = 0.25 s-1 
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The complex viscosity fit in Fig. 4.5 enables to identify the parameters ki from the 
parameters h for a multi-mode Rosenblatt model, because ki = 1/A . The remaining 

parameters q can be obtained by fitting the model equation for the steady shear viscosity on 
experimental data. 

oi Oi 

The steady shear viscosity 11 is now given by 

11= 2 rl. + ll<x) 
. 1  
1 

with q for a single mode given by 
i 

(4.19) 

(4.20). 

Eq. 4-19 is non-linear in qF therefore we used the non-linear least squares method in Press et 
al [1987] (Chapt. 14). Fig. 4.6 presents the result together with the single mode fit of 
Rosenblatt [1988] (a = 1.2, k = 0.25 s-1). Comparing this with the single mode case in Fig. 4.1 
the multi mode model evidently improves the fit significantly. 

Table 4.1 

*) 5 Mode Rosenblatt model parameters for blood 

a 
‘ûi i 

i h 
Oi 

1 500 0.0905 0.0224 
2 10 0.0154 0.4886 
3 1 0.0048 5.4159 
4 o. 1 0.0021 1.2218 
5 0.001 0.0034 400.55 

*) Fitted on experimental data for q* of Thurston [1979]. 

The contribution to the steady shear viscosity of each mode separately is drawn in Fig. 
4.7 together with the summed result and experimental data of McMillan et al [1987] (actually 
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q-qa is plotted). 

calculated (using Eq. 4.11). Results are given in Table 4.2. 
For each mode, the epd value of the normal stress z, in steady simple shear can be 

Tabie 4.2 
Limit values of normal siiesses t,, 
at hieh shear rates in steadv 
simde shear modes of the 5-mode 
Rosenbl att model 

MULTI MODE ROSENBLA?T 

0.7193 
0.0129 
0.0003 
0.0282 
4.26 10-5 

102 10-1 1 O0 10' 102 103 105 

SHEAR RATE (1B) 

Figure 4.7 Steady shear viscosity ( q-qa) of blood: (+) measured (Thurston [1979]), 
(-) separate modes of the 5-mode Rosenblatt model with parameters as 
in Table 4.1. 

Because z,,l > 90 mPa, it is clear that the first mode, has an unrealistically high 
normal stress. The other z,,i are smaller than 90 mPa. The sum of all z,,i is 0.76, which is 
much to large (m factor 10). We return to the multi mode model in Chapter 5. 
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4.6 Conclusions 
In comparison with experimental data for blood reported by McMillan et al [1987], the 

model parameter set with a = 1.2 and k = 0.25 s-1 yields accurate shear stresses in steady, 
start up and cessation of simple shearing with i) = 8, 13 and 30 s-1. 

stress meastirements G€ Dl00í.3 ;ep~rted by Copley and King. 

vi can be obtained from fits on measurements of the complex viscosity and the steady shear 
viscosity. However, more experiments in a broader frequency range are necessary to improve 
the fit over a broader frequency range. Measurements of the complex viscosity of blood should 
be available in a much broader frequency interval (for example 6 decades). 

Compared with the single mode model, the fit of the steady shear viscosity is improved 

The 5 mode model predicts a too high normal stress sX in steady simple shear flow at 

it predicts also normal stresses rm srna1i:ler than the measrirement aeziìracy of noma1 

In case of the multi mode version of the Rosenblatt model, the model parameters ki and 

significantly by the 5-mode version. 

high shear rates. This is caused by the first mode with h = 500 s, which is a very large 
relaxation time for blood from a physical point of view. 

deformation rates with p s 1 s-1 ("Long Rouleaux Approximation", Chapt. 3), the model 
describes also unsteady shear flows well with shear rates of magnitude 8 - 30 s-1. This implies 
that care should be taken with microstructural interpretations of the Rosenblatt model, at least 
when p 2 1 s-1. 

The Rosenblatt model violates one of the principles of simple fluid theory, because its 
response changes into linear viscoelastic response depending on the shear rate, instead of on 
shear strain only. 

Remarkably, although the Rosenblatt model was originally derived assuming small 





5 Calculations in simple elongational flow 

5.1 h ~ d U & i Q I I  

In literature, no experimental data with regard to elongational flow of blood are 
reported. Measurements of elongational viscosity are extremely difficult in case of low 
viscosity fiuicis such as blood. it is expected that blood is at most o d y  slight:y seilsitive for 

elongational deformation. Nevertheless it is important to study the behaviour of the 
constitutive model in such flows. The constitutive model might cause unrealistic phenomena in 
flow simulations of blood when it predicts strong effects in elongational deformation. 

First, steady simple elongation is considered (Section 4.2), then start up of simple 
elongation is discussed (Section 4.3). Conclusions are made in Section 4.4. 

The dataset with a = 1.2 and k = 0.25 s-1 is used. Results show that if the elongation 
rate step is larger than 1 s-1 the RosenbIatt model predicts relatively high elongational 
viscosities in stzrt up cf s i n p k  elongation. No calcu!ations with the 5 mode rn~del  were made, 
because the first mode showed a singularity in the elongational viscosity. 

5.2 Steady simple elongation 
The Rosenblatt model equations in steady simple elongation are: 

Hence the elongational viscosity is glJen by 

f i  = (z, - tyy)/E 
= 2G/(k + ( d 3  - 2)IE-1) + G/(k + (1 + d3)]$ 

(5.7 a) 
(5.7 b) 

Eq. 5.%, with q0 = 0.12 Pa, a = 1.2 and k = 0.25 s-1 (see Chapt. 4), is plotted in Fig. 
5.1 together with the shear viscosity as function of deformation rate (= elongation rate or shear 

5.1 
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rate). A third variable is also plotted: the Trouton ratio that equals the elongational viscosity 
divided by the shear viscosity. For a Newtonian fluid this ratio is equal to 3. In Fig. 5.1 this 
ratio first equals 3 at deformation rates below 0.1 s-1, and then it increases to a maximum 
value of about 10 at a deformation rate of 5 s-1. At higher deformation rates, the Trouton ratio 
decreases esntinüsüsly. The miriimum value Cisplayed is 0.2 at a deformation rate of I000 s-1. 

Hence in steady simple e!cngatioria! flow the ekmgôtionai, ~iscosity is I?QI very large compared 
with the shear viscosity in steady simple shearing. 

Figure 5.1 

103 1 0 2  10-1 1 O0 101 1 o2 103 
104 ' """" ' """" ' """" ' ' ' " . ' "  ' " " ""  ' " '  

DEFORMATION RATE (Us) 

Steady elongational viscosity (-), steady shear viscosity (- - -), 
Trouton ratio (-*) in case of the Rosenblatt model with a = 1.2 and k = 
0.25 s-1. 

Notice from Eq. 5.33 that the elongational viscosity can have a singularity. This is the 
case when ( d 3  - 2) c O (then for E = -k / (d3  - 2) the first term in Eq. 5.7b goes to infinity). 
This can be avoided by enforcing as constraint on a ( d 3  - 2) > O, thus a > 2h/3 (= 1.15) 
when fitting the steady shear viscosity. In case of the single mode model both parameter sets, 
obtained from simple shear experiments (Section.4.2), satis@ this constraint. In the multi mode 
case this is not the case for all modes (see Table 4.2). 

The parameters ai for the multi mode version are obtained by fitting the steady shear 
viscosity (Section 4.5). When fitting the steady shear viscosity, with the s-mode model 
satis@ing constraints ai > 2N3, this did not give an acceptable result. These constraints were 
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enforced by substitution of ai = (bi + 2)h/3 and using the non-negative Least Squares method 
described in Lawson and Hanson [1974]. The fit was worse than the single mode fit, and, 
compared with the measured steady shear viscosity, much too large to be acceptable. 

This can be explained as follows. The large deviation is caused by the first mode with 
A1 = 500 s, that mainiy determines the fit (see Section 4.5). The contribution of each mode to 

tiie steady shear viseosiiy is given ~y .;70il(isltt(Sia2>lki.l?). For small shear rates this 
expression equals qi, for large shear rates it goes to qoi/(Ijl(fi+2)/(kid3)), a continuous 
descending straigth line on a log-log plot of the viscosity versus shear rate. The transition 
between the two limits takes place at the "transition shear rate" Idtr = kid3/(fi+2) = 
\/3/(A&?i+2)). In case of = 500 s this term equals d3/(500(fi+2)). If fi  = O (ai = 2N3) 
then lfltr = 0.001. Any bi > O (q > 2N3) gives a smaller value for IAtr, making the fit worse. In 
this respect too, A l  = 500 s is a bad choice. Apparently, to obtain a good fit of the multi mode 
model, constraints must be enforced on the time constants h too. More important is the need 
for measaarements of the complex viscosity of blood in a broader frequency interval (0.001 c f 
c 1000 Hz), as it was concluded already in Chap. 4. 

5.3 Start up of simple elongational flow 

during start up of simple elongational flow (i.e., an elongational rate step from zero to a steady 
value). This is not expected to be the case for human blood, because of its relatively small 
elongational viscosities. 

The elongational viscosity is still defined by relation (5.7 a). All stress tensor 
components follow from Eqs. 5.8 - 5.15: 

Some constitutive models predict a very large maximum in the elongational viscosity 

(5.10) 
(5.11) 
(5.12) 
(5.13) 

dP/dt = k - (k+alfl)P 
= (2 0-0) 3 = 

(5.14) 
(5.15). 
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This system of equations has been solved using a backwards differential Euler scheme. 
In Fig. 5.2, 6 calculations are presented for elongational rate steps from zero to 0.1, 0.25, 0.50, 
1,2, 5 s-1. All calculations have been performed using a ramp of 0.075 s as in Chapt.3 in case 
of start up of simple shear, and using 1000 time discretisation points (only in case of the rate 
step to 0.1 s-i 2008 points were used). Accuracy of the soiutium was checked by doubling the 
number of time discretisation points, wlììch did no: infl~ence the solution. 

ROSENBLAïT START-UP OF JXONGATION 

Figure 5.2 

102 
104 

1 0 2  IO-' 1 o0 10' 

TIME (S) 

Calculations with the Rosenblatt model in case of start-up of simple 
elongational jlow. Six difierent elongational rate steps have been used 
(0.1, 0.25 , 0.50, I, 2, 5 s-1) with a ramp of 0.075 s. 

From Fig. 5.2 it appears that in start up of simple elongational flow the elongational 
viscosity has a maximum. This maximum is reached at a lower time when the elongation rate 
step increases at the same total elongation &=Et. The curves with elongational rate steps 0.25, 
0.50, 1, 2 and 5 s-1 show that the maximum increases when the elongational rate steps are 
increased. Only the case with a rate step to 0.1 s-1 has a larger value than the 0.25 and 0.50 
s-1 cases. The influence of this maximum on 2D flow is not clear. Note that Fig. 5.1 follows 
from a vertical cut of Fig. 5.2 at large times. 

5.4 Conclusions 
Using the Rosenblatt model with a = 1.2 and k = 0.25 s-1 the Trouton ratio lies 

In start up of simple elongation for rate steps from zero to elongation rates z 1 s-1 

between 0.2 and 10 at deformation rates in the range 10-3 and 103. 
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relatively high elongational viscosities are found. 

satisfied. 

constraint a > 2N3. 

To avoid singularities in the elongational viscosity the constraint a > 2h/3 must be 

The parameter set a = 1.2 and k = 0.25 s-1 for the single mode case satisfies the 

Not all modes of the 5 mode fit in @hapt. 3 satisfy the constraint a > 2N3. As long as 
Al = 500 s this constraint cannot be satisfied. However, with the small frequency interval of 
the measured complex viscosity of blood, A l  = 500 s gave the best fit of the complex viscosity 
(see Section 4.4). A smaller value of Al (O(101)) is necessary to obtain a fit that satisfies the 
constraints for q. 





6 Calculations in planar flow 

6.1 Introduction 
In Chapt. 4 and 5 we studied the behaviour of the Rosenblatt model in elementary one 

dimensional flow: simple shear and simple elongation Bow. When pcssib!e, mode! predictiom 

determined from fits on shear stresses measured in simple shear flow. Good agreement was 
found between model predictions and experiments, which gives confidence in the model. 

After that preparatory study this chapter continues with the calculation of two 
dimensional planar flow of blood. It is the first step towards the calculation of viscoelastic 
flow of blood in physiological situations. 

The calcdation of two dimensional flow using the Rosenblatt model to describe the 
time-dependent behaviour of the blood is a complex issue. In general, viscoelastic flow 
computations are far from standard and many different numerical approaches are currently 
experimented with. 

In this chapter a mixed Finite Element Method (with operator splitting and a 
Time-discontinuous/ Galerkin-least-Squares method) is used to solve the equation of motions 
combined with the Rosenblatt model as the constitutive equation. The basics of the method 
have been published by Baaijens [1992a] for Stokes flow with the Phan Thien Tanner and 
Giesekus models. Modifications for the Rosenblatt model and the addition of the convective 
term are subject of the study in this report. 

The method described below is used for several reasons. First, it had proved to be 
succesful for the viscoelastic Phan Thien Tanner and Giesekus models (at a Weissenberg 
number of = 1.6). Secondly, it can easily handle multi modes. And thirdly, it is an intrinsically 
unsteady technique. Hence, in principle, simulation of realistic pulsatile flow is possible. 

in Section 6.3 the results are discussed for calculations of planar flow in an artery with a 
model stenosis with 25% area reduction. It will appear that the numerical method used can 
succesfully be applied for the problem considered. The program has a large potential for use in 
future studies. Finally some conclusions and recommendations are made in Section 6.4. It is 
emphasized, that the calculations presented here have a tentative character. More profound 
studies are necessary before strong conclusions can be made. In particular, extension should be 
made towards axisymmetric problems with pulsatile flow. 

WP'P 0 ,ompue?, with experiments! data of hman bloid. AI1 model parameters were 

First, the mathematical and numerical problem is defined in Section 6.2. Accordingly, 

6.1 
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6.2 Problem definition 
6.2.1 Strong form 

The isothermal and incompressible flow of fluids is described by the conservation of 
momentum and conservation of mass, combined with a constitutive equation for the Cauchy 
stress tensor. Comidei a domain of interest 9 in R2 with smooth Socndary r, and the time 
intewal I = ]O,'?'[. To simp!i€y the. riotôtisn, we write r instead Q€ Tst for the structural 
dependent part of the extra stress tensor (cf. Chapt. 3). 

following problem (cf. Baaijens [1992a]): 

I 

The incompressible, unsteady planar flow of a Rosenblatt fluid is defined by the 

Problem PRE Given ZQ: I'" H IR2, find the plane extra stress field z(x,t): 52 x I H IR2x2, 
velocity field Ù6,t): 52 x I H IR2, the pressure field p6,t):  52 x I H IR, for 
all 6, t )E 52 x I ,  such that 

with 

v.; = o 

with for the Rosenblatt model: 

3 + ù.dq  -L.% - %.LT + 3 = 2 p  
k i  

= @-r)=, while the following b0unhC.rr-y conditions are spec4 

q2J) = îP(?,t) onF,x4  
-pI + 21.19 + q6,t) = o on T z x  I 

i 

i=l,N (6.1) 

i=l,N (6.3) 
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Operator splitting 

technique. Befiaie the material derivative operator 6: 
An essential feature in the Finite Element Method used is the operator splitting 

then the part of the constitutive equation that deals with the stresses (left hand side of Eq. 
(6.3)) can be splitted in two parts: 

L = &+LR (6.1 I) 

with 

k. with 

than the operator Lt is defined formally as 

= 6 in case of the Rosenblatt model. Consider a quantity B (scalar, vector, tensor), 

LtB = + z-'ctB = E = B = 1 im B$,t+aAt)-BG,t) 
a a+ O 

(6.13) 

with 
The equation 

denoting the position at time t of the particle that is located at position 2 at time t+aAt. 

DB m=O (6.14) 

describes the convective transport of B only. It describes the transport of property B by flow, 
and is associated with material elements moving with the flow. During each time step, the 
material rates in the different model equations are dealt with separately from the remaining 
parts of the equations. 

er splitting the time interval I into Nt time steps, 
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with 

+ 
t i = l i m  

E+ O' 

From Eq. (6.13) we approximate the material rate during In by 

CYB = 

(6.15) 

(O. I O) 

(6.1 7) 

6.2.2 Mixed weak form 
lf -&,t& ;@,fn> and Pi(p7t,) are !mown, then for each time interval I, the mixed weak 
formulation of problem PVE is given by 

+ 

Problem MPRE Given r&tJ Ù<p,tJ and Pi@?t$, find (q,Û,p) E S x U x Q at t=t,+l, such 
that for all (svlf,q) E S x V x Q 

( s v C : ~  + CRq - 2 ( 9 ) D , J  = O 

-(.t,p& - (p,217oop + 

(q,#-Ù) = o 

+ (d-lf,p) = o 
1 

n CtPi - (/ki+~ry)Pi + ki = O V integration points 

with the spaces U,V,Q,and S defined as follows: the velocis, space U 

+ +  U = { u] U E [H1(S2)I2, Ù = Ùoon ru } 

the velocity trial space V 

+ +  v = V I  v E pï1(s2)/2,2 = 2) 011 ru 1 

i=l,ïV (6.18) 

(6.1 9) 

(6.20) 

(6.21) 

(6.22) 

(6.23) 
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the pressure (trial) space Q 

(6.24) 

the stress (trial) space 

s = {SI s E [L2(S2)]2"2} (6.25). 

The initial condition for Pi is: 

Pi = 1 on t=O on 52 (6.26) 

In Appendix A the different definitions for the inproduct ( , ) are given. The remaining 
problem is to determine G@,tp), and i(;,tJ and P@,tJ for each mode. 

6.2.3 
Finite Element Method 
In this section a Space-Time/Galerkin Least Squares Finite Element Method (cf. Baaijens 
[1992a]) is used in which not only space but also time is discretized in a finite element 
manner. For the time-discretization the space-time domain 52 x I is divided into Nt space-time 
slabs: 

Discretization of the transport problem with a Space-Time/Galerkin Least Squares 

The time-discretization is chosen such that it is piecewise continuous but discontinuous 
across the space-time slabs, allowing each time slab to be analysed subsequently. The 
Space-Time/Galerkin Least Squares Finite Element Method with the time-discontinuous 
approximation applied to the transport problem (6.14) results in problem PTR (B: scalar, 
vector or tensor): 

Problem PTR Given Ù$,t), t E 1, fknd B, E D such that for all Bp E D and /I > O 
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The inproduct [ , ] is defined by (in case of a tensor field): 

[&BI= / B : B  dQ 
Qn 

(6.29). 

A;; appropriate definition for the space O h s ~  IO be made: in case of B = I' the stress (tens~r 
field): 

in case of B = ?the velocity (vector field): 

D = { VI + +  v E [H1(Q)12 x In} (6.31). 

The mixed problem MPRE and the transport problem PTR are coupled. They are 
solved in a decoupled way with an iterative procedure. The nonlinear problem MPRE is solved 
with a Newton-Raphson iteration scheme (e.g., Baaijens [1992a]). At the beginning of each 
iteration first for z, 3, and P the transport problem is solved, using the last previously 
computed approximation of the velocity field. This yields an estimate for zp, Gp, and Pp that is 
required to solve problem MPRE. 

unsteady. The solution procedure is started at t=O s from rest, and the boundary Conditions for 
the velocity are applied instantaneously at t=O s. The steady solution is obtained from the limit 
solution at large times. Although this seems to be a cumbersome way for calculating steady 
flow, the calculation is more realistic in a physical sense. For in physical experiments steady 
flow is also obtained as the limit situation after the start up of flow. Likewise, when solving 
the steady Navier-Stokes equations, the non-linear problem has to be solved iteratively for a 
stepwise incremented Reynolds number. 

It is important to note that the numerical technique described above is intrinsically 

6.2.4 Discretization 
The domain C2 is divided in Nel elements: 

e =I 
(6.32). 
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The k-th order interpolation polynomial on a triangular, respectively quadrilateral element d d  e is 
denoted with Pk(Qe) and Qk(Qe) respectively. In this study the element (q,u',p) - PlQlQO and 
T 4 Ql (the suffix d denates a discoratinaious interpolation) is used, which gives as finite 
element approximations of U,V,S,Q,S,, Vtr: 

(6.35) 

(6.38) 

Thus a piece-wise linear interpolation is used to approximate the extra stress tensor, 
that is discontinuous across element boundaries. In the transport problem a continuous bi-linear 
interpolation is used. In case of the stress field 5 this approximation is first projected on a 
discontinuous P1 field on each element by a least squares projection. This field is used in 
problem MPRE. 

d 

6.3 Calculation of planar flow through a stenosed artery 
Using the numerical method described above the planar flow of blood through an artery 

with a stenosis in case of the Rosenblatt model was calculated with the single mode veersion 
with a = 1.2 and k = 0.25 s-1. Although axisymmetry would be more realistic, planar flow was 
considered because the computer program was only suited for that. 

shape. This type of model stenosis has been subject of many experimental and numerical 
Newtonian studies, e.g., Ahmed and Giddens [1983a],[1983b], Nakamura et al [1988]. Hence it 
provides a comparison for our results. However, here it is strongly emphasized that 
reservations must be made because these studies mentioned are axisymmetric instead of planar. 

Furthermore, "sharp edged" or "contour edged" (cosine) stenoses produce different flow 

Fig. 6.1 shows the geometry with the finite element mesh. The stenosis has a cosine 
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phenomena, as was experimentally found by for example Cassanova and Giddens [1978] in a 
Newtonian study. Moreover, experience with viscoelastic flow computations has learned that, 

4 

1 
H = 0.004 M 

3 

2 L = 0.200 M 
Y 

Flgure 6.1 Lower half of the geometry of a two dimensional artery with a cosine 
shaped stenosis with height DI8 and length 120. Finite element 
distribution: 8 by 40 elements, 329 mesh points, 2632 degrees of 
freedom. The y-axis is multiplied with a scale factor 10. Numbers 
indicate boundary numbers. Boundary conditions are (with velocity 2 = 
(4~)) :  along entrance boundary ïl: u = óÜ(y-D)y, v = O with D: 
diameter of the artery and U = average velocity, wall ï 2 :  Ù = d, exit 
boundary r3: v = O, and symmetry axis r4: u = O. 

as expected, sharp edges can produce numerical problems that are avoided by using a cosine 
shaped stenosis. Note that the stenosis has a relative large length. Other studies, e.g., Ahmed 
and Giddens [1983a], used a stenosis with length 2D. A stretched cosine with length 12D was 
chosen as a starting point for viscoelastic calculations. 

The calculations have two major goals. The first aim is to investigate whether a 
solution could be obtained anyway for the flow problem considered using the described 
numerical method combined with the Rosenblatt model. The second reason was to analyse the 
inffuence of the constitutive model (Rosenblatt vs. Newtonian) in steady flow. Unfortunately, 
at the time this report had to be finished, no results of a Newtonian calculation were yet 

ailed COEXXI~Z&QZIS wit1 be made ia the near future. Some comparisons are made 
in this report with results from literature. 

óÜ(y-D)y, v = O, with D: heigth of the channel (artery) and Ü = average velocity (fully 
Boundary conditions were (with velocity = (u,v)): along entrance boundary rl: u = 
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developed Newtonian flow), wall r2: = d (no slip), exit boundary ï3: v = O, and symmetry 
axis î q :  u = O. After some experimenting, entrance and exit sections were chosen sufficiently 
large such that fully developed flow conditions were reached (as is proved a posteriori by the 
solution). The Reynolds number was calculated from (Liepsch and Moravec [1983]): 

Re = iiEp (6.39) 
rl 

with Ü the mean fluid velocity and f i  a characteristic viscosity. This viscosity f i  is calculated 

from f i  = <?)/Y with 7 a characteristic shear rate: 7 = 

pulsatile physiological flow in the human carotid artery bifurcation the mean value of the 
Reynolds number in case of Newtonian flow equals 300 (see Section 2.4). 

number that represents the ratio of elastic and viscous forces. It is defined by: 

- -  23t; According to Rindt [1989], during 

In viscoelastic flow, a second dimensionless number is of importance: the Weissenberg 

(6.40) 

with Af a characteristic fluid time. In case of the Rosenblatt model, a characteristic fluid time 
Af can be defined by 

- 
Af = P/k = l/(k+aE) 

Hence: 

We = rr/<k+aD-) U 

(6.4 1). 

(6.42) 

(in the limit Ü + 03, We -I l/a). Note that Re and We cannot be chosen independently. Many 
authors report that above a certain critical Weissenberg number the numerical solutions do not 
converge. With the method used here, it is not yet known if such a limit exists. 

With Re = 100 a solution was obtained without any problem. From the above formulas 
for Re and We with D = 0.008 m, p = 1050 kg/ms2, it follows that Ü = 0.051 (m/s), and thus 
We = 0.80 (4 = 0.13). This agrees with the estimation h = 0.1, We = 1 in Section 2.4. 
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The element distribution is plotted in Fig. 6.1 (with vertical axis multiplied with a scale 
factor 10). The mesh is chosen such that the element size in the transverse direction was 
minimal along the wall, and also minimal in longitudinal direction near the stenosis, where 
velocity gradients are expected to be maximal. 

Computations were peifolmed GE a Silicon Grôphics Personal Iris Workstatioc. Time 
discretisation was chmen with the fcibwing timë steps: 4 steps nf 0.001 s, 3 of 0.002 s, 4 of 
0.01 s, 3 of 0.02 s, 4 of 0.1 s, 3 of 0.2 s, 12 of 0.25 s, and 8 steps of 1 s. In total 41 time points 
were used, with tend = 12 s. The total number of iterations used was 140. The choice for tend 
was made such that the solution was stationairy in time. This was verified by comparing the 
stresses at t = l l  s and t=12 s, which differed less than 1 %. 

One complete calculation took about 14 hours. This large computation time is mainly 
caused by the fact that the program is written in terms of MATMB routines ( M A T W  
{1990]). Experience has shown that the speed of this kind of programs can be improved with a 
factor 20 when routines are written in, for example, the language C. We did not calculate the 
problem for a refined mesh because this would increase computing time enormously. 

6.3.1 Steady flow 

Rosenblatt constitutive model is compared with the result for the Newtonian model. 
First, we discuss the results in steady flow. The fully developed velocity profile for the 

NLLYDEvEíomFLow 
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Figure 6.2 Velocity profiles for fi l ly developed pow of a Newtonian fluid (- -1, and 
of LI Rosenblatt fluid (-). 
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Velocities in planar flow through an artery with a mild stenosis with 25 
% area reduction calculated with the Rosenblatt model (all velocities in 
contour plots in units mfs). 
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Results are shown in Fig. 6.2, with the Rosenblatt profile obtained from results of the 
numerical calculation in the exit section (no analytical solution can be found for a fully 
developed velocity profile in case of the Rosenblatt model). The influence of the shear 
thinning behaviour of the Rosenblatt model is clear: a flatter velocity profile with a lower 
maximum value at the symmetry axis. 

made using an equally spaced interpolation mesh that had the same number of elements in x 
and y direction as the original mesh. Notice that the ratio of the lenght of the plots in x and y 
direction are not the same as the real case (where L/H = 50 (see Fig. 6.1)). All units in the 
contour plots are SI units, thus Pa for stresses and m/s for velocities. 

all plots in Fig. 6.3 have two areas that show strong local changes in velocities. 

Fig. 6.4 shows the resuits for the veiocities u and v. AII mesh plots in this section were 

As expected, due to the inflow boundary condition and geometry variation (stenosis), 
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Figure 6.4 Axial velocities at several positions ajler an axial symmetric stenosis 
with 25 % and 75 % area reduction in steady Newtonian jìow at Re = 
500 (2 = Z/DJ Z = distance from center of stenosis) D = diameter 
unstenosed artery) @om Ahmed and Giddens [1983a]). 

First, in the entrance section development of the Newtonian profile to the fully 
developed velocity profile of the Rosenblatt model results in a decreasing maximum value of u 
on the symmetry axis, an oscillation (from zero to negative, then to positive and back to zero) 
in the velocity w. After this entrance effect all velocities attain a steady value. 

The velocity u is increased by the narrowing of the artery with 25%. The velocity v is zero in 
Secondly, at the symmetry axis near the stenosis the velocities have elevated values. 
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Extra stresses in planar flow through an artery with a mild stenosis with 
25 % area reduction calculated with the Rosenblatt model (all stresses 
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the area with fully developed flow before and after the stenosis. A positive velocity v is found 
at the rising part of the stenosis, and negative at the back of the stenosis. 

after the stenosis. Emphasizing that reservations must be made when comparing results in 
planar €low with those in axisymmetry, this is a similar result 2s the experimental resu!ts of 
ík ì i ed  and &kkis  [198?a] who foiind EO flow recirculôtiori and a iaminar, stabie flow field 

From the fact that the velocity u is always positive, no flow recirculation area is present 

behind the stenosis for a Reynolds number below 1000 in case of the Newtonian flow through 
an artery with an axisymmetric cosine stenosis with 25 % area reduction. On the contrary, in 
case of a model stenosis with 75 % area reduction a flow recirculation was found indeed 
already at Re=500 (Fig. 6.4). This can be an interesting problem for future study. 

The calculated extra stresses txu, 3y, and sy are plotted in Fig. 6.6. As with the 
velocities, strongest effects are found near the entrance boundary (that are trivial) and near the 
stenosis. It is important to realise that in case of the Rosenblatt model the stress 
longer a simple function of d' solely, as it is in case of the Newtonian model. This can be seen 

in steady flow where the Rosenblatt model gives as equations for txu, %y, and % respectively: 

is no 

5 

(6.45) 

with q = qOkz/(k+ap), h = qo/(k+ay), and p = ((;5x)2+ du $((-$+(;5x))2+(T) av a v 2 3  ) . 

6.3.2 Start up of steady flow 
The steady solution as dicussed in the previous section was the final result of the 

numerical solution procedure at t=12 s. In this section the transient behaviour of blood during 
start up of flow between t=O s and t=12 s is analysed. Results were saved at t= 0.001, 0.004, 
0.01, 0.04, 0.1, 0.4, 1, 2, 3, 4, 6, 8 and I2 s. In all mesh plots presented in this section, the 
time axis has no real scale, but simply indicates the subsequent results that have been saved. 
The lack of desired plot routines is due to the experimental stage of the computer program 
used. The time scale used here is almost logarithmic, in particular for t c  Is. 

In the following the results for u,t,,~y,and sy will be discussed successively. Figure 
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6.7 shows the velocity profiles of u along a vertical line through the top of the stenosis. As in 
all plots presented below, the dot indicates the position of the wall and the arrow the positive 
direction of the time axis. 

Figure 6.7 Velocity u in x direction along vertical line through flow at the top of the 
stenosis, as function of time. The dot indicates the location of the wall, 
and the arrow the direction of the positive time axis. 

Fig. 6.8 shows the development in time of the velocity u along a vertical line through 
the flow on top of the stenosis. Note that here at t=2 s the steady solution for u is reached. 
Maximum value is 0.092 m/s. 

The development of extra stresses in time are presented along the symmetry axis, along 
the wall. Fig. 6.8a shows the stresses t, along the wall. Clearly, after t=6 s, the steady 
solution is reached. Note the similarity with stress growth after a shear rate step in simple 
shear flow (Chapt. 4): a stress overshoot immediately after start up of flow. Maximum value is 
0.6370 Pa. 

The growth in time of stresses z, along the center axis are plotted in Fig. 6.8b. Along 
this line the stresses start to grow at t = 0.4 s, instead at t=0.001 s as it is the case along the 
wall. Maximal value is 0.2705 Pa. 
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Figure 6.8 Growth in time of stresses txx along a) the wall, b) the symmetry axis. 

In a similar way, the growth of stresses tyy is plotted in Fig. 6.9 a) and b). In a) the 
maximal value is 0.012 Pa, and in b) 0.55 Pa. Clearly, along the wall immediately the stresses 

grow, and have an overshoot at the position of the stenosis. As with in Fig. 8, the 

a) b) 

Figure 6.9 Growth in time of stresses tyy along a) the wall, b) the symmetry axis. 
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development of stresses tyy is slower along the symmetry axis (it starts at t=0.4 s) than along 
the wall (at t=0.001 s). Also, along the wall a stress overshoot is found at t c 0.1 s, while this 
is not the case along the symmetry axis. At the wall, the stresses tyy reach a steady value 
already at t=0.4 s. 

between t=O and t=0.4 s; at larger times the solution attains a steady value. The maximum 
value is 0.19 Pa. At the symmetry axis the stresses t;ry are zero. 

Stresses tx- are plotted along the wall in Fig. 6.10. Here zxu shows an overshoot 

Figure 6.10 Growth in time of stresses zxy along the wall. 

a b 
Figure 6.11 Change in time of the structure parameter P in the Rosenblatt model a) 

at the wall, and b) at the symmetry axis. 
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In Fig. 6.11 the change in time during start up of flow of the structure parameter P in 
the Rosenblatt model has been plotted, both along the wall and at the symmetry axis. Clearly, 
as with the stress components discussed above, at the wall the steady solution is reached much 
faster than at the symmetry axis. Here, at the wall it is reached already at t=0.04 s, while at the 
symmetry axis the steady value is reached ai i=3's. This can be explained by the fact that the 
sinieture parameter P decreases with increasing she2r r2te, that is maximal zt the wall. 

6.4 Conclusions 
The fully developed velocity profile of the Rosenblatt model differs from the 

Newtonian profile as the shear thinning generalized Newtonian models do: a flatter velocity 
profile with a lower maximum velocity. 

The numerical method described in this chapter has been succesfully applied for the 
solution of steady planar flow through a stenosed artery. 

predicts a much faster response of the extra stresses zxy, zyy, z, and the structure parameter P 
parameter is found along the wall (steady situation within 0.4 s) than at the symmetry axis 
(within 3 s). This can be explained by the shear rate dependence of the stresses and the 
parameter P. At the wall, the velocity gradients (and thus shear rates) are much larger than at 
the symmetry axis. 

- comparison of the results of the Rosenblatt model in start up of flow with Newtonian 
calculations; -influence of Reynolds number: a higher Reynolds number (300) is more 
representative as a mean value for physiological flow; - influence of stenosis geometry: height, 
length and/or shape of stenosis can be varied;- extension to axisymmetry and pulsatile flow: 
this gives a more realistic modeling of physiological artery flow, and also, in pulsatile flow the 
time-dependent character of the Rosenblatt model is expected to be of more influence. In 
particular, the influence of the Rosenblatt model on the existence and size of the flow 
recirculation area is of interest, because in that flow situation the viscoelastic character of the 
model is expected to be relevant. 

To obtain a more detailed knowledge of the flow field, the pressure and the wall shear 
stress distribution should be investigated t o a  

For a better founded analysis of the problem considered, a calculation with a refined 
mesh is necessary. However, the software written in MATLAB gives rise to very long 
computation times. Also, in case of pulsatile flow with time-dependent boundary conditions, 

From the results during start up of flow, it is concluded that the Rosenblatt model 

The first steps in future studies with these- type of calculations that should be made are: 
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computation times are expected to increase tremendously. Therefore, it is recommended to 
rewrite the program in a language like Fortran or C. 

This has several advantages: it is faster (Fortran), accessible for a larger group of users, and 
has more piot routines avaiiabie. 

It is recommended for future use of this program to adjust it to the SEPRAN package. 





7 Conclusions and recommendations 

Calculated shear stresses in simple shear flow, during a loading grogram that consists 
of two constant shearing time zones each followed by a non-shearing time zone, agree well 
with experimental data in case of shear rates of 8, 23 and 30 s-1. 

the measurement accuracy of Copley and King [1975] and a second normal stress difference 
that is zero. This at least does not contradict experimental data. 

A five mode version of the model improved the fit of the steady viscosity curve 
significantly. ft also fitted the measured complex viscosity of human blood well (in the limit of 
linear viscoelastic behaviour the model changes into a linear Maxwell model). However the 
five mode version has two modes with singularities in the elongational viscosity. This might 
cause unrealistic, infinite high stresses in flows with recirculation areas. 

More measured data of blood are Eecessary to verify niodel côlculôtions, especially in 
flows other than simple shear. To improve the multi mode fit, the complex viscosity of blood 
should be measured over a broader frequency range. Also experimental data in elongational 
flow is needed to find a fit of the model parameters that is reliable in a broad range of flow 
types. However, measurements in simple elongation are extremely difficult to perform. 
Therefore flows with mixed shear and elongational deformation should be used. 

In two respects the Rosenblatt model violates simple fluid theory. First, the retardation 
term 2qmP causes that strain steps cannot be described with the Rosenblatt model, because it 
would lead to infinite stresses. Secondly, the transition between linear and non-linear response 
of the model in an oscillating simple shear flow depends on the shear rate instead of on shear 
strain only. This disagrees with simple fluid theory too. 

The calculations of the flow of blood in a planar model of a stenosed artery using the 
Rosenblatt model show that the numerical method used (a Finite Element Method with 
operator splitting and a Time-discontinuous/Galerkin Least Squares method) can succesfully be 
applied for this problem. 

axisymmetric problems. In particular, the behaviour of the Rosenblatt model in flow situations 
with flow recirculation areas should be investigated. In axisymmetric flows with flow 
recirculation, comparisons with Newtonian results are of high importance. Extension to 
pulsatile and three dimensional problems will complete the picture. 

program now available in Fortran or some other language instead of MATLAB [1984]. 

in steady shear flow the modei gives a first normai stress difference that is smaller than 

The numerical method is intrinsically unsteady. The program should be extended to 

To reduce computation time substantially, it is necessary to rewrite the computer 

7.1 



7.2 

More detailed comparative studies, both numer,:ally and experimentally, are necessary 
to reveal the relevance of the non-Newtonian behaviour of blood on the three dimensional 
time-dependent flow phenomena in the human carotid artery bifurcation. In particular, research 
must first be focused at the experimental validation of numerical simulations, which needs for 
practical reasons a good rheologicai anaiog fiuid for human biood. The Separan mixture with 
DMSO particles mentioned by Liepsek [199ib] and transparant slurries described by 
Mannheimer et al [1989] appear to be the best candidates for future studies. 
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Appendix A Definition of inproducts 

Inproducts are defined by: 

(a,b) = f a b  as2 
GI 

if a,b are scalars, 

if 2,Ff are vectors, and: 

(AB)= fA:BdQ 
s2 

if 43 are tensors. 

A. 1 




