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Abstract

In this report an efficient yet rigorous method is presented for the analysis of electrically
thick rectangular microstrip antennas and wire antennas with a dielectric cover. The
method of moments is used in combination with the exact spectral domain Green’s func-
tion in order to find the unknown currents on the antenna. The microstrip antenna is
fed by a coaxial cable. A proper model of the feeding coaxial structure is used. In addi-
tion, a special attachment mode has been applied to ensure continuity of current at the
patch-coax transition. The effieciency of the method of moments is improved by using
the so called source term extraction technique, where a great part of the infinite integrals
involved with the method of moment formulation is calculated analytically. Furthermore,
computation time can be saved by selecting a set of basis functions that describes the
current distribution on the patch and probe in an accurate way using only a few terms
of this set. Thick microstrip antennas have broadband characteristics. However, a proper
match to 50 § is often difficult. This matching problem can be avoided by using a slightly
different excitation structure. The patch is now electromagnetically coupled to the feeding
probe. A bandwidth of more than 40 percent (VSW R < 2) can easily be obtained for this
type of microstrip antenna. The price that has to be paid is a degradation of the radiation
characteristics.
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Chapter 1

Introduction

Over the past decade, microstrip antennas and -array’s have become quite popular ow-
ing to features such as light weight, conformalibility and potentially low production costs.
There are many applications for microstrip antennas ranging from mobile communications
to phased array radar systems. Due to the planar structure of microstrip antennas, it is
possible to integrate the active devices together with the feeding network and radiating
elements. This can also reduce production costs significantly, especially for large volume
production. For some of these applications a bandwidth of only a few percent is required.
However, in most practical applications a larger bandwidth is required. For mobile satel-
lite communication a bandwidth of at least 6.5 percent is needed whereas for certain radar
systems bandwidth requirements of more then 40 percent can be expected.

In figure 1.1 the side view is shown of a single microstrip antenna. The antenna con-
sists of a groundplane covered with a dielectric substrate. The patch is located in or on
the dielectric and is fed by a coaxial cable. Other excitation principles are also possible -
a microstrip line, for example.

One way to improve the bandwidth of a microstrip element is by using a thicker substrate.
Another way to improve the bandwidth of a microstrip antenna is by using capacitive ele-
ments above the patch (stacked structure) or parallel to the patch (gap-coupled structure).
In this report we have chosen for the first option, that is, bandwidth improvement by using
an electrically thick dielectric substrate. In order to be able to analyse electrically thick
microstrip antennas fed by a coaxial cable, a rigorous model has to be used. The thickness
of the antenna and the presence of the feeding probe (often neglected in simple models)
have to be incorporated in the analysis. Therefore we shall use the method of moments for
the analysis of thick microstrip antennas. This approach uses the exact spectral domain
Green’s function, which implies that all effects are included. In [1,7,8] this method has
been applied to electrically thin microstrip antennas, where the presence of the feeding
probe can be neglected.

Usually one is interested not only in the performance of a single isolated microstrip an-

tenna, but in array’s of microstrip antennas. So it is very important that the computation
time involved with a rigorous analysis of one single thick microstrip antenna is minimized.

1



2 Introduction

substrate patch

infinite groundplane
T coax cable

Figure 1.1: Microstrip antenna fed by a coaxial cable (side view)

We have therefore chosen for a set of basis functions that describes the current distribution
on the patch and probe in an accurate way, using only a few basis functions of this set.
Furthermore a special attachment mode is used at the patch-probe transition to ensure
continuity of current. In addition to this, special analytical and numerical techniques have
to be used to reduce the computation time needed to evaluate the infinite integrals involved
with the method of moments formulation [4).

The organisation of this report is as follows. First a proper model of the feeding coax-
ial structure is discussed. Therefore a wire antenna embedded in a dielectric substrate
above a infinite groundplane is investigated. In fact, this chapter serves as an introduction
to chapter 3, where a rigorous method for the analysis of electrically thick microstrip an-
tennas is presented. Some applications of this model with broadband characteristics shall
be discussed. And finally, in chapter 4 the far field pattern of thick microstrip antennas is
investigated.




Chapter 2

Analysis of a wire antenna
embedded in a substrate above a
groundplane using a spectral domain
moment method

2.1 Introduction

We will consider the wire antenna here because it serves as an introduction for the rigor-
ous analyses of probe-fed thick microstrip antennas. A lot of research has already been
performed on wire antennas in free space using different types of models. We have checked
the correctness of our method with these models.

2.2 Model description

We will assume that the current distribution is located at the outer surface of the perfectly
conducting wire. We will also assume that this surface current has no component in the ¢
direction, 1.e.

jo = L("QEz (2'1)

27a

In figure 2.1 the geometry of the structure is shown. The wire antenna has a diameter 2a
and is located in a substrate with a permittivity e, above a perfectly conducting infinite
groundplane. The antenna is fed by a coaxial cable with inner diameter 2a and outer
diameter 2b.

The wire antenna is excited by the fields in the coaxial aperture. At frequencies for which
kb < 0.1, the fields in the coaxial aperture can be modelled by the fields corresponding to

3
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Figure 2.1: Wire antenna embedded in a substrate (side view)
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the groundmode, i.e. the TEM-mode. The fields in the aperture then take the form (z=0):

- , v
E(r) =~ ngEM(f') =——8& a<r<b

rin(z) (2.2)
Hy(r) = Hyrem(r) = gr;é}, a<r<b

Where V is the voltage between the inner and outer conductor of the coaxial cable and I is
the total current at the base (z=0) of the wire antenna. Note that the base current I has
to be calculated. Ones I is known the input impedance of the antenna can be determined
with the simple formula:

Vv

Zn = 120)

(23)

In our model the electric field in the coaxial aperture is used as a source. This source can
also be modelled by a magnetic current distribution in the aperture of the coax:

M=M¢€¢=éxé}_= 4

" rin(d) 2 (24)

In literature this source model is often called the "Magnetic frill excitation model”.

2.3 Green’s function of a zZ-directed dipole

In {1] the Green’s function of an %- and §-directed dipole embedded in a substrate above
an infinite groundplane was calculated in the spectral domain. In this section the spectral
domain Green’s function of a z-directed dipole is determined. In figure 2.2 the geometry
of the layered structure is shown.

The dipole is located at the point (zo, yo, 20). We shall now trie to find the fields at (x,y,z)
due to the vertical dipole. With a time-dependence e’*, Maxwell’s equations take the
form:

Vx€= -jwpo?:(.

VxH=jweE+T
w is the radial frequency, € the permittivity and po the permeability of the medium under
consideration. J is the current density in the medium. The electric and magnetic fields
can be expressed in terms of the vector potential A and scalar potential ¢:

H= iV x A
Ho (2.6)
E=—-jwA-V¢
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substrate r4

infinite groundplane

Figure 2.2: Vertical electric dipole in a substrate above a groundplane

The divergence of the vector potential A can be specified with the Lorentz gauge:
V.A = —jwepod (2.7)

This results in the following expression for the electric and magnitic fields:

I R .
= 2224 + v(V.A)
Fo (2.8)

In the above expression the wavenumber k¥ = w,/cfip is used. Substituting the above
expression in Maxwell’s equations (2.5), results in the Helmholtz equation for the vector
potential A:

VA+KBA= —pd (2.9)
The vector potential can be expressed in terms of the dyadic Green’s function:
AR = [ [ [667)-F(ro) dvy (2.10)

In order to solve the boundary value problem, we have to apply the boundary conditions of
the fields at the z=0 and z=d plane. Fields in the substrate (=region 1) are indicated with
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an index 1 and fields in free space (region 2) are indicated by an index 2. The boundary
conditions can then be written in the form:

z=0plane: & x& =10
z=dplane: & x & =¢, x & (2.11)
& x Hy =& x Ha

It is not possible to find a closed form expression for the vector potential in the space
(x,y,2) domain. In the spectral domain however, a solution for the above boundary value
problem can be easily obtained. We shall therefore transform all quantities to the spectral
domain. For a general function F(x,y) the Fourier transform and it’s corresponding inverse
Fourier transform are defined as:

Flk, k) = ] ] F(z,y)e**eMV dzdy o)
1 . . .
Fle,y) = = / ] Fkz, ky)e % ="e~%s dk.dk,

If we choose A;; = Ay, = Az; = Ay, = 0, we finally find the vector potential in medium
1 due to a 2 -directed dipole:

—mshz [sin kizo +j~&n— coskizg] 0<2<2
kl Tm
AL = Chay = proeitmeitvwo | (2.13)
coskizp [ . Nm
| - kll 2 [smklzﬂ-JHcosklz] nn<z<d
With
Nm = ky cos k1d + jkae, sin ki d
T'm = ke, cos kyd + jky sink;d
k= e k2 —~ k2 - kﬁ (Im(k) < 0)
ky=ki— K-k (Im(k2) < 0)

The spectral coordinates (&, k,) can also be written in terms of polar coordinates:
kz = koffcosa k, = keffsina

The above expression can also be written in the form:

ksT:n [e,. 2Si l(d 20) jkl €08 kl(d - ZU)] 0<z< 2
1
Glzz —_ Foejk:.foejk”yo .
kST:.n [GrkI sin kl(d z) jk] Ccos kl(d - z)] 20 <z<d
. 1
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(2.14)

If we want to find an expression for the electric and magnetic fields due to a z -directed
dipole we have to be careful in determining the z-component of the electric field. Let

Ghzz = Gapoei*=ogitom (2.15)
Then according to equation (2.8) and (2.10), the z- component of the electric field in the
substrate due to a z -directed dipole can be written as:

— .w . -

Ep = _.Jﬁ‘.‘-‘l (K*G3 + 8,2Gs) *e=oeitom (2.16)
The difficulty in determining E;, is now that 8,G3 has a discontinuity for z = zp. This
implies that the second derivative 8,°G3 contains a & function. Thus:

6,2G3 = —6(2 - Zo) - k12G3 (2.17)
Combining the preceeding equations resulits in:

— .w - .
= R (¥ - ka)Gs - 8(z = 20)) Hemoee

=Q,, efk=To ikyto

Elz
(2.18)

The other components of the electric field and the three components of the magnetic field
in the spectral domain can be obtained without any difficulties:

Bie = 2P0 (< jk.8,Gy) eitrmeiton
— szejksfoejkyw
. 2.19
By, = 2280 (1 8 Ga) eikeTo gikume (2.19)
ly - k2 (—j yYz 3) [~ €
= Qyzejk‘zo e.ikyyo
Hg: = -jkyGaejk’xoejk"w
— thzejksxo ejkryo
Hy, = jk,Gael*smeikvm (2.20)
o thzejk.tfoejkyyo
le = thz =90

For a general z -directed current distribution in the substrate the electric and magnetic
fields in the substrate can be expressed in terms of the Fourier transform of this current
distribution:

= 1 o0 pO0 = - ikem —i
Eev=[ [ L Ok, ky, 70, 2). o ks, Ry, 20)Endzoe— e~ 0V, dk,
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With:
0 0 Q-
é(‘k:ﬂs kw 20, Z) = 0 0 Qyz (2°21)
0 0 sz
and
—- 1 00 oo = - —ikez —ik
Fale,y,2) = — [ @ulke, by 20,2).Julke, by 20)Exdzoe ™50V dk d,
ir —00 ¥ ~00 729
With:
¢ 0 Qi
éh(kxy kyi 20, Z) = 00 Q’W’- (222)
0 00

J:(kz, ky, z0)€, is the Fourier transform of the % -directed current density J,{zo,yo, 20)€:.
Note that the zero elements in (2.21) and (2.22) are not equal to zero for a general current

distribution in the substrate. In chapter 3 the other elements of these two matrices will
also be defined.

2.4 Calculation of the current distribution on the
wire antenna

2.4.1 Moment method formulation

On the outer surface of the wire antenna (r=a) the total tangentiel electric field has to
be zero. The total electric field can be divided in two parts, i.e. a component due to the
currents on the wire (€yir.) and a component due to the magnetic current in the coaxial

aperture (f 1ra1)- The boundary condition on the outer surface of the wire now takes the
form:

i x (Ewire + Eprin) =0 for r=a (2.23)

The next step in the method of moments formulation is the expansion of the unknown
current on the wire in basis functions:

Gy = ETi@) = 3 Indimld) (2:24)

nsl
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E:':,,.-,.., can then be written as:

wsre('-") = “—'("72 + VV. )Awtre(-')
(k"‘ +VV.) ] / G(7, 7). () dSo

® 2.25
= _F (K +VV) j/ G(¥,70). 2 InJn(76) dSo (2.25)
unre n=1
= Ingnwire(':')
n=1
Substituting the above expression in (2.23) gives:
i X (Z Ingnwire + é}ﬂ'u) = 6 fOT r=a (2.26)
n=1

Introduce a residue according to:

R =1 X (E Iﬂgnwire + gfn'u)é‘-ﬁ for r=a (2.27)

n=1

Fysically the above equation has to be satisfied at all points on the outer surface of wire.
We shall relax this condition a little bit. The residue is weighted to zero with weighting
functions J,m:

(B Fom)sm= [ [ BFom dSm=0 for m=12. (2.28)

Where S,, is the region on the wire for which weighting function Tom i8 unequal zero. This
then results in a set of linear equations:

A i j Enuire-Tom S + | j Erirdim dS =0 for m=1,2.. (2.29)

n=1

This set of equations can be written in the well known form:

S LZ® 4+V:=0 for m=1,2..

n=1

or
(2= + [V*] = [0] (2.30)
with
Zy, =4r’ jj Enire (2,9, 2 ).Tem(z) dSm
V:  =4x? ./-/Sm Errit(z,y, 2).Tom(z) dSm (2.31)
= —4x? / f . Homwire(Z, 3, 0).M riti(z,y,0) dzdy
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In order to rewrite an element of the excitation vector [V?] in terms of the magnetic current
distribution in the coaxial aperture M #ili , the reaction concept is used [2]. In the above
formulation we have used the same type of basis functions for expansion as well as for
testing. This choice is known as a Galerkin moment method solution, which ensures a
fast convergence [3]. Once the elements of [Z*] and [V*] are known, the unknown mode
coefficients [Ij can be determined by solving matrix equation (2.30). The time needed to
solve this matrix equation can usually be neglected compared with the time needed to
calculate the elements of [Z**] and [V*].

2.4.2 Basis functions on the wire antenna

In section 2.2 it is stated that it is assumed that the current on the wire antenna has no
¢-component and depends only on the z-coordinate along the wire. In order to describe
the current on the outer surface of the wire, we will expand this current in piece-wise linear
basis functions, better known as rooftop basis functions.

1

j;n(.’t, Y, 2) = 5;6(7' - a)gn(z)é‘z (2'32)
with
(-2 n=1 0<:<h
gﬂ(z) = %(Z - zn—l) n>2 z,a<z25Zz,

%(zn+1 - z) n>2 z, <2< Zn41

In figure 2.3 the z-dependent part of the basis functions is shown. The total number of
basis functions on the wire is NV,.

Note that the condition J,(z = zp) = 0 is satisfied through the choice of the last basis
function (n = N,). All calculations are performed in the spectral domain. Therefore we
have to know the Fourier transform of (2.32). Applying (2.12) then yields:

Ton(kzy by, 2) = Jo(koPa)ga(2)E (2.33)

with k2 + k2 = kZB% Jy is the Bessel function of the first kind with order zero. Some
authors assume for the sake of symplicity that the current distribution along the wire
antenna is concentrated on the axis of the wire. Setting a=0 in the above expression gives
the Fourier transform for this situation.
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gn(z)

0 h/2 zn-1 zZn zn+1 zF

Figure 2.3: Rooftop basis functions along the wire antenna

2.5 Efficient evaluation of the matrix [Z%]

2.5.1 Introduction

An element of the matrix [Z**] can be calculated by using expression (2.31). Because of
the fact that the Green’s function is known in closed form in the spectral domain (k, ky, 2)
we shall rewrite this expression in terms of spectral domain quantities.

Z::n = 47'-2]].9 g’lwire(may;z)-\im(x,y,Z) dSm

0 [ [ g L L ] @bk 2) o s
e eme ik dk, | Fom(z,y,2) dSm

= f°° /00//é(kx’kﬁ"z‘]’z)"i;n(kzgky,ZQ)dZo
=00 J=o0 JZ JIp

U jj;m(:t y,z)e‘j""e“jk"”dmdy] dzdk.dk,

= j°° /°° f [ / Qlkz, ky, 20, 2) Ln(kz,k,,,ZO)dzO] T2 (kg Ry, 2)dzdkodk,

i

(2.34)

Relation (2.21) has been used in the above derivation. The above expression can be
simplified by introducing a change to polar coordinates , i.e. k; = kyfcosa and k, =
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ko sin a. Because both Q as well as J,, are independent, an element of the matrix [Z?*]
is given by:

Zin = [ [ QB120,2). (B 0)da0) T (B, 2)03 BB (2:35)

The two z integrations in (2.35) can be calculated analytically in the case of rooftop basis
functions. This issue is discussed in the next section. After eliminating the z integrations,
an element of the matrix [Z**] can be expressed in terms of one infinite beta integral. The
fact that only one integral remains in the final expression for Z7%, is due to the radial
symmetry of the problem. Because test- en expansion functions are the same, the matrix

[Z**] is symmetric. So only the elements of the lower triangle of [Z**] have to be evaluated.

2.5.2 Analytical evaluation of the z-integrals

In this section the analytical results of the two z-integrations in expression (2.35) are
presented. Calculation of these integrals by hand requires much paper and a lot of patience.
Therefore we have used the computer algebra software package Maple in order to find an
analytical solution for the two z-integrations. Consider an element Z7 . We can distinguish
three situations

¢ n =m: selfterm.
® n =m — 1 : subdomain m and subdomain n overlap each other.
e n <m — 2 : subdomain m and subdomain n do not overlap each other.

Each of the three situations will be examined in more detail.

gm(z)

/

zm-1i zm zm+1

2 =20 [ [ G820, (B, 20Mz0) (B, VK328

m—1 Zm=—1

= 27r/0 J(r(koﬂa)kzﬂf m+1 [/ é (B, 20, 2).gm(20)d20]gm (2)dzdB  (2.36)

ZIm-1

=27 fu J(koBa)k2BIZ (B)dB
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with

= = ,: gm(2) [ / ) _ 9m(20)Qus(r0 < )
+ ~/zzm gm(ZO)sz(ZO > Z)dzo + ./zz""n gm(zo)sz(Zo > Z)dZO] dz
+_/;:"+1 gm(2) [fm gm (20)Q::(20 < 2)dz

+ [ om(20)Quslzo < Mzo+ [ gm(z0)Qur(z0 > 2)dzo| dz

W Zm

+J :20 / gm(z)gﬂl('zm—l <z< Zm)dz
'6,- 0 YIm~1

Jwig  frmtt

e k2 / In(2)gm(2m < 2 £ 2m41)dz

Zm

+

The last two terms in the above expression are due to the §(z — z) term in @, (see (2.18)).
According to (2.18) Q,.(z¢ < z) and @Q..(2 > z) can be written as:

—juwpokld B2 cos k2o
K2k, Tm

@G(20 < 2) = [eckasinky(d ~ 2) — jky cos ky(d — 2)]

—jwpokdP? cos ky z
k2kyTm

sz(ZO > 2) - [C,-kg sin ki(d - Zo) _— ]kl COs kl(d -_ 20)]

Substitute the above relations in (2.36) and use gn(z) according to (2.32). After performing
the two z integrations analytically the final expression for I2%, takes the form for m > 1:

(e
. B —c,) b2 WETm
[e-k2 (cos ky 2y sinky(d — zn—1) — 4 coskyzp—y sin ki (d — 2m)
+2¢0s ky zm—1 sin k1 (d — zpqq) + 4 €08 ky 2 sin ky (d — 2,)
—4c08 ky 2pn sin Ky (d = Zmy1) + €08 k1 Zm in k1 (d = Zmi1)) (2.37)
—jk1 (cos ki 2m—1 cos ky(d — zp—1) — 4co8 k1 zpm—y1 cOs ki (d — 2,)

+2c0s ky 2p—1 €08 ky(d — Zp41) + 4 cos ky 2y, cos ky(d — 2)

—4cos k12, cos ky(d — 2p41) + co8 kyzmyr cos ky(d — zm1)) |}

With €, = 1 for m > 2 and €, = } for m = 1. In the m=1 case (half rooftop basis
function) z,, and z,,_; should be set to zero.
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i.n=m-—1

am-1(z) gm(z)

L /

Zzm-2 zm-1 zZm zm+1
Z= | =or jo JE(koPa)k2BIZ _ (8)dB (2.38)
with
s = [ (e [ tmea(2)Qu e < 21
ZIm=—-1 Zm—2
+ Im—-1(20)Q::(20 < 2)dz0 + f " Im-1(20)Q (20 > z)dzo] dz
Zm—~1 z
Zm+1 Zm—1
+ m ™m-— FT < d
/z.,, 9m(2) [/z-m_, Im-1(20)Q:2(20 < 2)dzo
+[ gm—l(zo)sz(z()(Z)dZo] dz

o -
+J #20 _/ Im(2)gm-1(2m-1 € 2 € 2,n)dz
Efkﬂ Zm—1

The last term in the above expression is due to the 8(z — z) term in Q., (see (2.18)).
Performing the z integrations analytically yields:

y =jw,llo{ _ h€,- *?ﬁ_z _ 4ﬁ2
mm-l € 12k3(32 —¢,) hkZ) R2ESTm

lerk2 (cos ky zm_p sinky(d ~ 2m—_1) — 2cos kyzpm-2 8in k1 (d — 2p)

+ cos k1 2m—2 8in k1 (d — Zy41) + Scos kyzm—y sin ky(d — 2m )

—2c08 ky2pn_1 sin by (d — zm-1) — 2¢08 k121 sin k1 (d — 2pp41)

—2cos kyzy sin ki{d — 2 ) + cos kyzim sin ki (d — Zm41)) (2.39)
—jky (cos kyzm_zcos ky(d — zm—1) — 208 k1 2m—g cos ki (d — 2)

+ cos k1 2Zm_z cos k1 (d — zpm41) + 5 cos ky 2m—q cos ky (d — zm)

—2cos k121 cos ki(d — zm_1) — 2008 ky Zm_1 €08 k1(d — 2m41)

~2c08 k1z;m cos k1(d — zp,) + cos kyzm cos ki (d — 2m41) )] }
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Km—-1=1, i.e. m=2, z,_3 and z,,_; should be set to zero.

iiil. n<m~2

gn(z) am(z)

/ /

zn-1 Zn zn+1 zm-1 zZm Zm+1

Zis, = [ J(keBa)k3BI, ()8 (2.40)

with

I::n = " Qm(Z) [/ " gn(zD)sz(Zo < z)dzo
Tm—1 Zn—1
*ntl
+j gn(zo)sz(Zo < z)dzo] dz
Zm+1 Zn
+ m n zz < d
_Ln gm(2) [fzn_ly (20)Q::(20 < z)dzo

Znt1
+ [ g(20)Quslz0 < 2] dz
Performing the z integrations analytically one obtains:

I = _JUJ,U(] 4ﬂ2
ma e RKTm

[ €k (2sin ky(d — zn) — sin ky(d — zm—1) — sin by (d — zmy1)) (2.41)

[2cos ky 2, ~ cos kyzp-1 — cO8 Ky 2n41]

—jkl (2 Ccos kl (d - z,,.) — COS8 k] (d - zm_l) — CO8 kl(d - Zm+1))]

If n =1, z, and 2,_, should be set to zero.

2.5.3 Improved computational efficiency: source term extrac-
tion

The evaluation of the infinite 8 integrals is from a numerical point of view very time
consuming. Especially if subdomain m touches or overlaps subdomain n. Therefore we
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shall use the technique of [4] to improve the computational efficiency. Using this so called
source term extraction lechnique the asymptotic form of the 8 integrand is subtracted
from the original integrand, resulting in a fast converging integral. The infinite integration
over the asymptotic form of the integrand can be calculated analytically. Other numerical
problems associated with the evaluation of the infinite integral (for example poles due
to surface waves) have already been discussed in [1], {4]. The reader is referred to these
previous reports for more details.

If Iff,..(B) is the asymptotic form of IZ* (8) then the source term extracting technique in

formula form reads:

Lo =27 fow J3(koBa)k2BIZ(B)dB
=27 /Q Jo(koPa)kaBIr,(B)dB
+2r [ Te(koBaVkAB( 2(8) — Iima(8) )48
+2r [* Ba(koBa) KI5 (848

(2.42)

The third term in the above expression can be evaluated in closed form. This term shall
be called ZF

Hmn'

L =27 [ i (koBO)IBI5 (BB (243)

For the cases i., ii. and iii. of the previous section an analytical solution will be derived
for this infinite 8 integral.

i..n=m

For large beta values one may write:

kl -1 —J koﬂ
k2 & —~jkoff
cosk;d = %e""ﬁ“ (2.44)

sink;d =~ Jiekoﬁd

Tm =~ koBle +1) (—%e%ﬁ‘)
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Substitute these asymptotic forms in IZ% (8) of (2.37). This then gives:

(__1 12 he,
_hzksﬂz(m_4h)__3ﬂ2kg m>2Azpa <d
106,. + 14 hfr _
h“k‘ﬁ’ (koﬂ(éf +1) 4h) “3pe ™ 2Azmyr =d
14 he,
: h’k"ﬂ’ (_ﬂ )_’3_52_]‘;3' m=2Azmnp <d
&
12¢, +16 he, _ B
””“'ﬂz (koﬂ(er +1) 4h) “ 35 TN e =d
6 he, _
"2’“313’ (kTﬂ ) T 6B°K} m=1Azmn <d
1 4e, + 8 he, B
L (koﬁ(er+1) _2h) T 683 m=1Azn4 =d

Insert the above expression for I,..(8) in (2.43). Apparently two types of integrals have
to be calculated, i.e.

o J2 a
Lo [ Hka)
v g
The first integral cannot be calculated analytically, but it can be reduced to a finite integral:

B (2.47)

kova J2 —
= —loglkova—'y—] Mdz
2 (i z

(2.46)

with ¥ = 0.577215.... is Euler’s constant. The second integral can be evaluated in closed
form [5, p. 634]:

oo Je
I:Z = f Jo(kgﬂa)dﬂ

— Joz(kova) - 4’:) +2 2q v[J’(kova)+Jg(kova)] (248)

v

—2koaJo(kova)Jy(kova)
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Hhn=m-=1

For large beta values IZ; . _,(5) of (2.39) takes the form:

] 1 he,
Timm—1(B) = ]ifo {_hzksﬂ"’ [2h - ]:ﬁ] - lgﬁezkg} (249)

In order to calculate Z%,,,._, we have to use I; and I; of case 1. .

i, n < m—2

Now source term extraction is only used if subdomain m touches subdomain n, thus when
n=m-2. For large beta values I} (8) of (2.41) reads:

_ ek
I8 =1 &hkf (2.50)
0 otherwise

In this case we have to use I of (2.48) in order to find a analytical solution for Z77.

2.6 Efficient evaluation of the excitation vector [V?]

2.6.1 Introduction

In this section the evaluation of the elements of [V*] will be discussed. Numerical problems
involved with the evaluation of the resulting infinite integrals will not be discussed here.
An element of [V*] can be calculated using expression {2.31):

Vﬂzl = —4“'2'//’_;" ﬁmwire(za y50)'/ﬁfﬂ'"(13 y,O) dzdy (251)

To facilitate the evaluation of the above expression, we shall rewrite it in terms of spectral
domain quantities. First divide the magnetic field due to the currents on the wire at the
coaxial aperture (z=0) in two components: Houwire = Hmz€z + Hmy€y- Applying a change
to polar coordinates and using (2.4) gives:
47V
V=g [ [ (Muycosd = Hugsing)drd 2.52
=5 S (Humy €08 ¢ — Humz sin @) drdé (2.52)

with £ = rcos¢ and y = rsing. Both components of the magnetic field at the point
(x,y,0) are according to (2.22) given by:

1 oo oo . .
Huelz,9,00= 5 [~ [~ /zo Qhes(z = 0)om (20)dz0e™ ==~V dk dk,

2.53)
1 poo L (
Ho(2,9:0) = 1 [ f_z jm Ohys(z = 0)Jom (20)dz0e™ o= =9k dk,
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Substituting (2.53) in (2.52) one obtains:
2 V oo 00
Vo = In(%) j_ - ./; - _/;ﬂ [QuyIs1 — Qroelga) Jimdzodk o dky (2.54)
with

— —iksz —ikyy
Iy = j/fﬂ_"cos de e "V dddr
b pix .
ub 2n . ,
= / ] cos (¢' + a)eFkoBroond’ g ot gy
a Y0
b x . ' r . '
= / { cos ¢’ cos ae™ikoPrcced d¢'—/ sin ¢’ sin ae™ kP coé d¢'} dr (2.55)
[ 0 0
b R .
= 2cosa / / cos ¢leTkoBreosd’ g4t Jy
a JO b
= =21 cosa/ Ji(kofr)dr

273 cosa

- T [Jo(kob) — Jo(kofa)]

and

Ipp = j f sin ge—i*TeIv¥ d g
rtH

_ 21rJ sina o(koB8) — Jo(koBa)]
kB
In the above derivations use has been made of relations (3.915) and (5.56) of [5]. Because
of the radial symmetry of the problem one would expect that the two-dimensional infinite
integral of (2.54) can be transformed to a one dimensional integral. This becomes clear if
we take a closer look at Q.. and @4y, of (2.22):

(2.56)

Qhez = —M[Erkg sin ky(d — z0) — jkycosky(d — 20)] z2=0,29 >0
kB oo (25)
Qhy: = J::W—[e,kg sinky;(d - z0) — jkicoski(d—2z)] 2=0,20>0

Use these expressions, (2.55) and (2.56) in order to eliminate one of the two infinite integrals
in V;;. We then finally obtain:

Vi =

m

[ e Vathas) — (ko)

(2.58)
] o [e,k2 sin ky (d — z0) — jk1 cos ky (d — z0)]dzed
0
The finite z-integral can be evaluated analytically for the case of rooftop subdomain basis
functions. So only one infinite integral remains that has to be calculated numerically.
Before a method for the efficient numerical evaluation of this infinite integral is presented,
we shall take a closer look to the analytical solution of the z-integral.
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2.6.2 Analytical evaluation of the z-integrals

Consider subdomain m according to (2.32). The z integral in V;* can now be divided in
two parts:

. 41r2k2V

with

12(8)

1l

./zzm gm(ZD)[C,-k2 Sin k](d — 2'0) _— jkl cos k]_ (d - Zo)]dzo
+ _/jm".1 gm(Zo)[Erkz sin k; (d ~ zp) — jk1 cos ky(d — zo)]dzo

= kZh{c,k2[2sm ky(d = zp) — sinky (d — 2pn_1) — sinky (d = 2p41))

~jk1[2cos ky(d — z,,) — cos k1 (d — 2pn—1) — cos ky(d — 2m+41)]}

2.6.3 Improved computational efficiency: source term extrac-
tion

The technique to reduce the computation time of the elements of the excitation vector

[V*] is similar to the one discussed in section 2.5.3 for [Z**). Thus the asymptotic form

of the J integrand is extracted for § > v from the original integrand resulting in a fast

converging integral. The infinite integration over this extracted asymptotic form can be
done analytically or can be approximated by a closed form expression. Thus:

Vo = (Vo = Vi) + Viim, (2.60)

with

Vim = =y | i MolkoB) o) ol o) 8108

k—l%I #im 18 the asymptotic form of E%I:::

12 -1
CA L A

B .. _ 2 _ s
kTm "™ ) k3T "=

0 m >3
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In order to find a closed form expression for Vjj,, we have to know the following two types
of infinite integrals:

I = f°° [Jo(koBb) — Jo(koBa)] Jo(kofa) a8
1 = A ﬁ a
(2.61)

_ [ [Jo(koBb) — Jo(koﬂa)]Jo(koﬂG)
L= o

Both types of infinite integrals cannot be evaluated analytically, but it is possible to rewrite
them in terms of a finite fast converging integral. The first integral I; can be divided in
two parts:

e [kl 4y = Sl

5 ap

(2.62)
= ha+ I

Iy has already been discussed in the previous paragraph and is given by equation (2.47).
The other part of the integral I;, is more difficult to determine. However, if we substitute

for the Bessel functions their asymptotic form, a closed form expression for I;, can be
found. Let

o) [ Z (st - Ty 4 S22 D)

Using only the first term of this approximation, I, takes the form:

o /w TollaBOafe)
_ 2 cos (koﬂb-— 1) cos (koBa — -)
g2
_ sin kov b+ a) . (2.63)
- \/_hZ(b +0) | 20D cihan(o+ a))]

(- °°,fo"°(';(i )) ol -a))

ci(z) and si(z) are the cosine resp. sine integral defined by:

Lo +]
ci(z) = — j m:tdt
« gin t

si{z) = — —dt

x
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A more accurate result can be obtained if more terms of the asymptotic expansion for Jy
are used. The last step is now to calculate the second type of integral, i.e. I;. Again this
integral will be divided in two parts:

o [ e i),

(2.64)
= I2a + I2b

I; is given by (2.48). The other part I, can be expressed in terms of hypergeometric
functions and a finite fast converging integral. The final expression for Iz, becomes:

B = G koF =51 (5)) - PG5 (5))
(2.65)

v Jo(koBb)Jo(kofa) — 1
_jo 0 o dp

F(a, 8;7; z) is a hypergeometric function defined on page 1039 of reference [5].

2.7 Some results

The theory described in the previous sections has been implemented in a FORTRAN
computer program. With this program it is possible to determine the unknown current
distribution on the wire. Once this current distribution is known the input impedance
(see (2.3)) and the radiation characteristics (see chapter 4) can be determined. In this
section an example of a wire antenna embedded in a substrate above a groundplane is
discussed. The antenna dimensions (see figure 2.1) are given below. This antenna has also
been analyzed in [6].

e 2= 12mm

e d=12.5mm

e =21 tané = 0.0005
¢ a = 0.625mm
o b=2.05mm

e Number of basis functions on wire: N, =5

From literature of wire antennas in free space it is known that about 20 basis functions
per wavelength have to be used in order to obtain acceptable results. Therefore we used
3 basis functions on the wire in this case. Using more basis functions didn’t change the
results significantly. On the following pages the current distribution, the input impedance
and radiation characteristics of the wire antenna are shown. The agreement between our
results and results from literature is very good.
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Wire antenna
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Figure 2.4: Real part of current distribution, f=3.5 GHz

Im{dpz(2))
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Figure 2.5: Imaginary part of current distribution, f=3.5 GHz
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Figure 2.6: Real and imaginary part of input impedance

Figure 2.7: Input impedance presented in a Smith chart
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Chapter 3

Rigorous analysis of thick
(broadband) microstrip antennas

using a spectral domain moment
method

3.1 Introduction

In [1],{4],{7],[8] 2 model was presented for the analysis of thin substrate microstrip antennas
using a so called spectral domain moment method. This model fails if we want to analyse
thick microstrip antennas, because the effects of the feeding coaxial probe are not included
in the model. Here a more sophisticated and rigorous model of the feeding coaxial structure
is presented. Furthermore, a special attachment mode is used to describe the current
distribution at the coax-patch transition. A great disadvantage of such a rigorous model
is the fact that the computing time becomes very large. However, using the efficiency
improvement method described in chapter 2 and in [4] it is possible to obtain accurate
results with a minimum of computation time. It should be noted that the method presented
here can also be used for the analyses of thin microstrip antennas. Due to the rigorous
modelling of the feed and due to the incorporation of an attachment mode in the analyses,
the results obtained with this new method for thin microstrip antennas are better than
those obtained with the old model of [1],{4],[7],[8].

3.2 Model description

The general structure that we want to analyse is shown in figure 3.1. The patch is located
in the z = 2z’ plane and can have a dielectric cover. The feeding coaxial probe, located
at (x,,y,), may be connected to the patch, but this is not necessary, thus zp < 2'. The
substrate with a complex permittivity ¢, and thickness d is located above a perfectly
conducting infinite groundplane. We will only consider rectangular microstrip antennas.
Extension of this model to other patch shapes is straightforward. The fields of the TEM-
mode in the coaxial aperture will be used as a source.

27
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b
}
Yst °
Wy Xs X
1
Wx
Top View
substrate patch z
| d
— 7’
— 0

infinite groundplane

Side View

Figure 3.1: Probe-fed rectangular microstrip antenna
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3.3 Moment method formulation for thick microstrip
antennas

The moment method formulation is in this case similar to the formulation for the case of a
wire antenna (see chapter 2). The only complication is the fact that apart from -directed
currents we now have X- and y-directed currents as well.

3.3.1 Green’s function

In [1] the Green’s function of a horizontal X- or j-directed electric dipole embedded in a
substrate above an infinite groundplane are given. In chapter 2 of this report the Green’s
function for a Z-directed electric dipole was calculated. Combining these two results, the
electric field in the substrate in the point (x,y,z} due to a general current distribution in
the substrate is given by:

~ 1 - ks
gl(m,y’Z) ) -4?_‘/00./00'5‘ k-‘-') kﬂsz ks € kaydk dk
= o7 [ [ [k by 20,2). ke, by, 20)dzoe e MoV dksdk,
zq
With:
QI-T Q:l:y sz
Qe kpz0,2) =1 Qux Quy Qyo (3.1)

sz sz Qu
Q::(8, a, 2, 2) = E’fﬁ-’:—;‘f [7(B%cos’a ~ e, )NeTm — B*cos’ak?(e, ~ 1) sin ky z
Qzy(8, 2, 20, 2) = Q= “—’2%%;%.’%‘"3 [iNeTm — k}(e, — 1) sin k; 2p) sin 2cx
Q:oBi0,20 < 2,2) = —Q., = wmbsacehin [k, cosky(d — 2) + jky sinky(d — z)]
Qv (8, ¢, 20, 2) = ehatinhs [i(g%in’a — ¢;)NeT'm — A%in’ak?(, — 1) sin k2]
Qy:(B a,20 < 2,2) = —Q = —&g;,:m.—%’ﬂ‘—zﬂ [e-kg cos ky(d — z) + jky sinky(d — z)]
sz(/& a, 2o, z) = f—%&(z - zg)

oo 42 cOs kIZO [C,-kz sin kl (d - 2‘) - ]kl cos kl (d - Z)] 20 S Z

e ki Tm

cos ky z €,k sin ki (d — z9) — jk1cosky(d — z0)] 20> 2
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and
Ne = k; cosk(d — z9) + jka sin ky (d — z)
Tm = kg€, cos kyd + jky sinkyd
Te = ky cos kyd + jkz sin kyd
k= e k3 — kX — k3 (Im(k) < 0)
k3 = ks —k2—k (Im(k;) < 0)
k; = koffcosa ky = kofisina

The corresponding magnetic field at (x,y,0) is given by:

. 1 oo o . . .
Fa(z,4,0) = —= j (ks k,,0)e~T*==e=T v dk, dk,

With:

th.r th'y Qh::z
Qnlke, by, 20,0) = Qryz Qry Qhys (3.2)
Qhu: thy thz

7k28%(e, — 1) sin 2asin k120

Ul 0, 20,0) = v Bdm
Quey(By0y20,0) = — 4 LhoP e — Dsin arsinkizg
Tkiﬂsina TeT'm
Qha:z(ﬁyagzo,o) = —?‘——[Crkgsinkl(d—20)—jk1603k1(d—20)]

ki T'm
Qhy=(8, 0, 20,0) = Ne _ 7k2B%(e- — 1)cos?asin k1 zo
Quyy (8,2, 2,0) =
Qry:(B,a,20,0) =
Qh:(B,0,2,0) = 0
Qre(Bra,2,0) = 0
Qnzz(B,,20,0) = 0

T TeT
_fkﬁﬂ""(er -1) sin 2a'sin kyzo
2TeTm
[,k sin ky (d — zp) — jky cos ky(d — 20)]

jkoB cosa
kl Tm

Note that we are only interested in the tangential magnetic field at the coaxial aperture
(z=0 plane). Therefore only the case z=0 is considered. The zeros of the functions Te and
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Tm correspond to solutions of the characteristic equation for TE respectivily TM surface
waves in a dielectric layer on an infinite groundplane. These zeros correspond to poles in
the Green’s functions. The numerical problems due to these poles will not be discussed in
this report. More details can be found in [1, chapter 3].

3.3.2 Matrix equation

A linear matrix equation can be derived by applying the method of moments on the
boundary conditions on all the metallic structures . Again we shall use a Galerkin type of
solution, i.e. test- and expansion functions are identical. Following the strategy of section
2.4.1, a matrix equation can be derived with the general form:

[2][71] + [V] =[0] (3.3)

The vector [I} contains the unknown mode coefficients of the basis functions. The only
difference with section 2.4.1 is the fact that we now not only have z-directed basis functions
on the probe, but also X- and y-directed basis functions on the patch. The matrix [Z], the
excitation vector [V] and the vector [I] can therefore be written in the form:

(2% [2*] [2*7)

2= | [2/9 [2/%] [277] (3.4)
[z*) (2] [27)

(V]
Vi=1 v
4
(]
H=| (/]
[’
with

ZoP = 4x2/ffgf(x,y,z).j:(z,y, z)dzdydz

Ve = 41r2/j/f:‘;w,c,(m,y,z).j;(m,y,z)dzdydz

In the above expressions a represents the attachment mode, f the modi on the coaxial feed
and p the modi on the patch. Let’s assume that there is 1 attachment mode, Nz basis
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functions on the feeding probe, Nx %x-directed and Ny y-directed basis functions on the
patch. Then [Z°°] is a 1x] matrix, [Z/%] a Nz x 1 matrix, [2?%] a (Nx+Ny) x 1 matrix,
[Z?f] a (Nx+Ny) x Nz matrix, [Z//] a Nz x Nz matrix and [Z??] a (Nx+Ny) x (Nx+Ny)
matrix. Note that due to reciprocity the matrix [Z] is symmetric. In section 3.7 and 3.8
it is discussed how the elements of the 9 submatrices of [Z] and of the excitation vector
[V] can be determined in an accurate yet efficient way. Once [Z] and [V] are known, the
unknown mode coefficients, [I], can be calculated by solving the matrix equation (3.3).
The time needed to solve this equation can usually be neglected compared to the time
needed to determine {Z] and [V]. Therefore we have focussed our attention on the efficient
calculation of the elements of {Z] and [V].

If the currents on patch and probe are known, the input impedance and radiation pattern
can be determined. Let I(z=0) be the total current at the base of the feeding probe. Then
the input impedance is given by ( see also section 2.2):

i = ———— (3.5)

V is the voltage between inner and outer conductor of the coaxial cable. The calculation
of the radiation pattern is described in chapter 4 of this report.

3.4 Attachment mode at the patch-coax transition

One of the shortcomings of the thin substrate model of [1],[4],[7],[8] is the fact that the cur-
rent distribution at the transition between the feeding probe and the patch is not included.
This implies that current continuity is not satisfied in this region. To ensure continu-
ity of current along this probe-patch transition a special attachment mode is introduced.
Several attachment modes from literature have been considered. The attachment mode
introduced in [10] is very rigorous but is very inefficient to use, because it’s an infinite
summation of cavity modes. The attachment mode used by [9] is computationally efficient
but not rigorous, because the dependence of the patch current on the radial distance from
the patch-probe transition is described with piece-wise linear and piece-wise constant func-
tions. The attachment mode introduced in this report has an exact } dependence yet is
computationally very efficient. In figure 3.2 two possible candidates are shown. The outer
radius b, of the attachment mode has to be chosen properly. Tests in literature [11] show
that excellent results can be obtained if 0.1X < b, < 0.2) where ) is the wavelength in the
medium of interest.

In formule form these two attachment modes are given by:

-

ch.:j“]';‘l'j‘ﬁ
Jp = T3+ Tt
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vie side view

2ba

patch part probe part

Figure 3.2: Attachmode mode at the patch-probe transition

J-;“P and j;‘; are the patch parts of the two modes:

_2:1;2 2 Osr<a
. r 1
Tiv (‘m 5;‘) a<r<b
0 r>b,
B2 — 2
- 2 Ef a S r < bﬂ
Je 2rr (b2 — a?)
0 elsewhere

With z = r cos ¢ and y = rsin ¢. The feed part is in both cases a half rooftop function:

2 1 \ 2 h
& — & — 2 — 2 _g2Y 20, — ’_.’!( '
Jr e,zwaﬁ(\/(m )2+ (y — ¥s) a)h(z z +2) 7-2<z<z2

We have chosen these two types of possible attachment modes for two reasons. First of all
because they ensure continuity of current at the patch-coax transition and second because
the Fourier transforms of these two modes is known in closed form. So they can be used
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in combination with the spectral domain moment method. Using definition (2.12) for the
Fourier transformation, the transforms of the two modes become:

j;u(km ky,2) = jfp(kxs ky,z) + j}‘(k,, ky, z)

b b ’ (3.7)
Sy ks, kyy 2) = Jpp(kay by, 2) + T (ks Ky 2)
With

L e (=20 (kaBbe) | jdolkoBa)

Jip = [€zcosa+ &, sin afe’t==1 g7hv¥ { WTE + ko

fgp = [&;cosa+ €, sin a]ej"”‘ej"(""‘ﬁ Wﬂb |
2(1J1 ka a 2 aJ1 ko a

Jo(koBa)[B2 — a®) + - }
{ o(koBa)[b; — a”] kof . ko3
j}' = EzJo(koﬂa)ejk"‘ejk””'%(z -z + 5) F-2<<y

In the calculation of .f{‘p and fgp we have used the property that for a function with a radial

dependence of the form F(r) = F(r)é, = F(r)[é; cos ¢ + &, sin @], the Fourier transform is
given by:

—

Fke,k,) = [2«1' ]0 " rdy(koBr)F(r)dr| [, cos a + &, sinal (3.8)

In the remaining part of this report only the first type of attachment mode is used. The
derivations for the second type are very similar to that of the first one.

3.5 Basis functions on the patch and coaxial probe

Besides the attachment mode the unknown currents on the patch and probe of the mi-
crostrip antenna have to be modelled correctly. On the patch entire domain sinusoidal
basis functions will be used. The unknown current on the probe is expanded in piece-wise
linear (rooftop) basis functions. We have chosen for entire domain basis functions on the
patch because only a few of these modes are needed in order to obtain accurate results. If
subdomain rooftop basis functions were used on the patch, the number of basis functions
would be much larger (often more then 100 [9}). So with subdomain basis functions on the
patch it would almost be impossible to analyse finite arrays of microstrip antennas. On the
patch the eigenmodes derived with the cavity model [12] are used as a set of basisfunctions.
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The basis functions and their Fourier transforms on patch and probe (see section 2.4.2)

are given by:

patch
-op -ip 1 k
Tia(%,y) = Tha(,9) = W = sin W( T+ _)
cos—(y+—) 2| < = |y|
l!'
- - 1 Ir
Jrfy(‘ziy) = &Tliy(ziy) = eﬂW cos W( + _)
[ W
sin Wy(y + ?) 2| < Ez" |y}
k=12,.andl=0,1,2,..
TP (koy ky) = JEo(ker by) = EF,(k, ks, W) Fo(l, ky, W,)

T2, (key by) = T (ke k) = & Fu(l, ke, Wo) Fy(k, iy, W)

with
kW,

(2:”):"” ‘E":u;)z k odd

_ )= \R WV ¢

Fulk, ko, W) = —§2kx W, sin £

2
(knY2 = (R W.)? k even

—25Wyk, cos flz—vl ! odd

Fl kW)= (07— (&) 0

an e Ty —2W, k, sin 572 |
im =W
feed
Th(z,y,2) = —6\/ (2 —2:) + (y — ¥.) — agn(2)E,

Jm(k,,ky,z) = Jo(koy/k2 + k2a)ga(2)€. = Jo(koBa)gn(z)E.

with
%(——z) n=1 0525%
9(2) =1 z—2am1) n22 z,1<2<2,
2
h

(#a41~2) n22 2,<2< zpp1

(3.10)
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Note that z, = il_il—)ﬁ (see figure 2.3). The first basis function on the probe is a half rooftop
function. The mode coefficient of the first basis function is used to determine the input
impedance. From convergence tests in literature it is known that using only the (k,1)=(n,0)
%-directed and (1,k)=(0,n) y-directed entire domain basisfunctions on the patch, accurate
results can be obtained. From tests that we have performed we concluded that the results
obtained with the model presented in this report don’t change significantly by using more
basis functions. However, if one uses the model of [1,7,8] without a proper model of the
feeding probe, one has to be carefull in choosing an appropriate set of basis functions. In
the remaining part of this report the modes with an uniform distribution in the direction
perpendicular to the current will be used as a set of basis functions on the patch. Including
the other modes is straightforward. The technique to accelerate the method of moments,
the so called "source term extraction technique”, can also be used for these other modes.

3.6 Source model

The electric field of the TEM mode in the feeding coaxial cable is used as a source exciting
the microstrip antenna. This model was also used in chapter 2 for the analyses of wire
antennas in a substrate. The magnetic current distribution in the coaxial aperture (z=0
plane) as a function of the applied voltage between inner and outer conductor of the coax
is according to (2.4) given by:

G (3.11)

Once the modecoefficient of the first basis function on the probe is known the input
impedance can be determined by using relation (3.5).

3.7 Efficient calculation of the matrix [Z]

The general form of the matrix [Z] is given by equation (3.4). Because of the symmetry
of this matrix, only 6 of the 9 submatrices have to be calculated. In this section we
shall discuss how the elements of these 6 submatrices can be calculated in an accurate yet
computationally efficient way. The numerical problems associated with the evaluation of
the resulting infinite integrals will not be discussed in this report. For more details on this
topic one is referred to [1],[4]. The asymptotic extraction technique, also called the source
term extraction technique, introduced in [4] will be applied here. Using this technique, an
element of the mairix [Z] takes the general form after transforming all quantities to the
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spectral (k;,k,) domain (see (3.4)):

Zpn = 41r2fj/5 (z,y,z2). jm(z,y,z)dmdydz
= j j j / (8, @, 20, 2). Ju(B, @, 20)|d 20" (B, @, z)dzk2Bdadp
= j_ ] fo fdBda (3.12)

= (Zmn - ZHmn) + ZHmn

With k; = kg cosa, ky = kg sina and fgsymp i the asymptotic form of the F integrand of
Zypy, for large § values. In the above formula f,,m, is extracted from the original integrand
for all B values. In some cases however, we shall extract fosym, from the original integrand
for # > v. The infinite 8 integral of the extracted term Zy,,, can be divided in frequency
independent parts. So these elements have to evaluated only once. In the following part of
this section the integrand f and it’s asymptotic form fa,ymp Will be determined for each of
the matrix elements of [Z]. In order to do this the two z-integrations in (3.12) have to be
evaluated analytically. Once f and f,,;m, are known, the extracted terms Zgm, can also
be calculated analytically for most situations.

3.7.1 ([Z%]: attachment mode —— attachment mode

The first type of attachment mode of section 3.4 is now used as an expansion- and as a
test function. Because there is only one attachment mode, the submatrix [Z°?] contains
only one element. The attachment mode can be divided in two parts, i.e. a patch part and
a probe-feed part. Therefore Z** can be divided in four parts:

Z* = ZR+ I+ IR+ I
=72 422 4+ 238

(3.13)

In the above expression p indicates the patch part and f the feed (probe) part of the
attachment mode. Agaln the reciprocity concept can be used to show that 277 = Z§3.
From section 3.4 it is clear that the attachment mode has a radial dependence. Z°® can
be written in the form:

AL :41‘.2'//./5“(1',%2)-ja($,y,2)d$dydz
= /:o /_i_[z]zo@(ﬂ,a,zo, z).j“(ﬂ, a, 20)|dz0J**(8, a, z)dz ki fdadf

Fortunately the z integrations and the « integration can be performed in closed form. The
remaining infinite # integral has to be evaluated numerically. We shall now examine the
three terms of (3.13) in more detail.

(3.14)
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M aa
1. ZEE

The patch part of the attachment mode is z independent. This means that the two z
integration can be removed. According to (3.14), (3.7) and (3.1) Z;2 is given by:

Zen 2/0 j_ﬂ_@(ﬁaa, z',Z').j;’(ﬁ,a)]J-':,'“(ﬁ, a)kifdadp
- /D /_ ] [szJ,?;J;ﬁ + Quy oI + Qudi it + QWJ:VJ;":] k2Bdadp (3.15)
=70 427 47

PTpPT PTPY PYPY

With
, . —2jJy(kofBbs)  jJo(kofa)
o _ Jkzza dkyys
Jpy = cOs cre? T b5 T 3
. - —2jJ1(koBbs) | jJo(kofBa)
a __ Jhezy dkyvs
qu = sln ae e b k2B + &8

The a integrations of these three double integrals can be calculated in closed form resulting
in:

aa _ gas _ - [ wHosink 2 [ 6 g3
zZe =2z, —-;r b ek TeTm i(gh* — & )NeT'm
_gﬂzkf(e, —1)sin klz'] Gﬁakgﬂdﬂ (3.16)
a6 __ r7aa _r oo wp()ﬂz sink 2’ -
szpy = Zpypz T 2Jo 2k TeTm iNeTm

—k}(e, — 1)sin ky 2| G2 k2BdB
With

1 [2J1(koﬂba)
T ke | bekofB

Gpa - Jo(koﬂa)]

Combining the above expressions to an expression for Z3» and rewriting it, finally results
in:

aa 2rjwpg foo —Bkysin ky2’
ze = i
& Jo Tm (3.17)
[ka€, cos ky(d — 2') + jky sin ky (d — 2)) G3,dB
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. raa
1L Ly

One z integration can be eliminated because the patch part of the attachment mode is z
independent. Z3} is therefore a three dimensional integral given by:

“f _/ L'—h/z@ B, &, 20, 7). f“(ﬂ,a zo)]dzg.]-':“(ﬂ, a)kifdadB

=f° f— [jzf-uzQ‘*J"J”dzoJr f Qudil; dzo] k2pdadp (3.18)

Using the expressions (3.1) and (3.7) the z- and a integration can be performed analytically.
The final expression for Z}7 is then given by:

ot /oo ’.::ﬂoﬁ lerks cos ky(d — 2") + jk sin ky (d — 2')]
T 3.19)
hsm k2 coskiz’  cosky(z'— %) 2 (
[ ot g - = Jo(koBa)Gyak2BdB
lll f_f

In this case three integrations, i.e. one a integration and two z integrations, have to be
(and can be) done in closed form. Using expression (3.7) for the Fourier transform of the
feed part of the attachment mode, results in the following four dimensional integral:

TS g T VU 320

A {zo -2+ }dzodng(koﬂa)koﬁdadﬂ

Because the integrand is a independent the a integral can be calculated very easily. The
derivation of the remaining two z integrations is essentially similar to the calculation of
the z integrations in the case of rooftop basis functions on a wire, described in chapter 2.
Therefore we shall only give here the final expression for Z§}.

z35=2n [~ 133(8)Ja(koBa)k3Bd (3:21)
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With

aa(ﬂ)= _ ij‘Oh - 4jwﬂoﬁ2
1" 6k2(0? —¢,) &h*k3Tm
{ek hoosky(d = #)cos k(s = 8) _ 2sinky(d = ) cos k(s — §)
rAZ2 § T -

ky ki

sinky(d —z' + 2)cos k(' — &) = hcos ky(d — 22)

+ K T

+ h?cosky(d — 2’)sinky2’  sinky(d — 2') cos ky 2’

4 K}
ik, hsin ky(d — 22 cos k(2 — %) _2cosky(d— 22;:03 ki(z' — %)
1 1

coski(d — z' + ) coski(2' — &)  hsinky(d — 22)

+ 2 T 2k
hisink,(d — z')sink 1z’ cosky(d — z')cosk, 2’

- 4 + k2

In order to be able to use the source term extraction technique given by (3.12), the asymp-
totic behaviour of the 8 integrand of an Z** element has to be determined. For large

values we may write:

ky 22 —jkof

cos kyd == %e""ﬁd

sin kyd =~ -—%e""'@d

(1 wse-) 1oy

cosky(d—z")~{ 2
| = (3.22)

=Py

f

sinky(d — z") = {

{ 0 Z=d
Tm = kB, + 1):216"‘“"d
Te 2 —jkofeobd

Ne = —jkoBerofd-+)
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Substitute these asymptotic expressions in (3.15) , (3.19) and (3.21). Combining these
asymptotic forms according to (3.13) results in the following form for the extracted part:

i = ‘/uw /—1 j; /zg @a.ﬂ?"oz(ﬂ! Q, Zo, z)_f“(ﬂ, @, 20)ldz0J**(8, o, z)dzkgfdadp

( jwpor /°° £4J12(kﬁﬁbc) 8J1(koS3ba)Jo(koBa)

0 HRE  cbhRpT
4J5(kofa)  kohJ3(koBa)  8J3(koB '
Al - -g)e s

jwpor f»( 8J2(koBba) _ 16J:(koBbs)Jo(koBa)

v \(& +1)b2k3 52 (er + 1)b.hk3 52
8J3(koa) kohJ3(koBa)  (des + 12)J3(koﬁa)) 45
k (e + 1)hkof 38 (e + 1)RKEA?

Note that the asymptotic form for the case that 2’ < d (patch embedded in substrate)
and for the case z’=d (patch on top of substrate) are different. In [4] the same effect has
been observed for the case of sinusoidal basis functions on the patch. In (3.23) the lower
f integration boundary is v instead of 0. The reason for this is that some parts of the
asymptotic form of the 3 integrand diverge for 8 — 0. The above integral contains four
types of infinite integrals. These four types can be evaluated analytically or approximated

with a closed form expression. The first type of integral can be evaluated very easily for
v=0 [5, 6.575]:

I (I
L= L 2 g (3.24)

The second integral cannot be calculated analytically. For large 3 values however, the
Bessel functions can be replaced by their asymptotic form. We shall use only the first term
of the asymptotic form here.

I, = fmJl(bx)Jo(ax)

f 2 cos(b.r — &) cos(az — %) de
Y St _sinolath) |
2 |cosv(a+ sinv(a +
= T avba ((“ 9 [2v’(a +b)?2  2v(a+ b) ( @+ b))]

o [sinv(a —b) cosv(a—b)

+e=d) [2v2(a—b)2+ 2o(a—b) T sz(v(a_ )D

(3.25)

With

ci(z) = ~ /x _COStdt
si(z) = — ﬂl--?-d
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In order to obtain a more accurate result for I; more terms of the asymptotic forms of the
two Bessel functions have to be used. Closed form expressions using more terms can also
be found. The third and fourth type of integral have already been examined in section
2.5.3.

3.7.2 [Z/%): feed modi +— attachment mode

This matrix has Nz x 1 elements. Because the attachment mode contains a patch and a
probe (feed) part, each element of the submatrix [Z/%] is divided in two parts:

zl* = zy = /0°° /_:/‘L@(ﬂs% Zo, z).f{,,(ﬂ,a,zo)]dzof‘ﬂ(ﬂ,a, 2)dzk3Bdadf
= _/w /_”/ @(ﬁ,a zo,z')-jzn(ﬁ,a,Zo)]dzo.ﬁ“(ﬂ,a)kgﬂdadﬂ
+/ [_rf] (B, @, 20,2).J; (ﬂ,a:20)]dzuj}°(ﬂ,a,z)dzkgﬂdadﬁ
= Z'{GP + Z'{“f

(3.26)

Again the a- and z integrations can be performed analytically. Now let’s examine the first
term in more detail.

Z'{ap = jooo /::. L@(ﬂs a, Zo,z)--]?ﬂ(ﬂ,a, zﬁ)]dzoj:a(ﬁ, a)kgﬂdadﬁ

[ (3.27)
= [7 [ 1Quuttu + Quuit igldzoky et

Using (3.1), (3.7) and (3.10) and performing the a- and z integrations analytically, one
arrives at the following expression for Z;/°7:

ziw =2 [ JOPOB 1 b cosky(d — ) + jky sinku(d — )] Gro

kgﬁ,-
hzkz [ ~ cos(ky -)] das n=1 (3.28)
Jo(koBa)kip
2 [2cos k12, — cos k1znyy — cOSk124—1]dB n>2
1

The second term in (3.26), corresponding to the interaction between the feed part of the
attachment mode and the n-th basis function on the feeding probe, can be obtained using
the same strategy that was used in section 2.5.2. So again the a- and z integrations can
be calculated analytically, resulting in:

Z1ef = 9x L {3 (B)J2(koBa)k2BdB (3.29)
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Withforn < Nz -1

a, ---2 2 2 " k d_ ! 2sink d—z’+ﬁ
I;!f(ﬂ)z ‘—Jw#—wg‘*{ﬁrkz [hcoskl(d—z’)-}- s lk( z)_ !(kl 2)]

C,hzkam )

i ky(d—2 + 2

+3k1 hsink,(d—z')_.zcos"’;:(d 2)+2cos l((i 2z +?)]}
1 1

Ay

[2cos ky2, — cos kyzpq1 — CO8k12p3] 2<n < Nz-1

and for n=Nz (overlap between feed mode n and the attachment mode):

oty _d9mo, by 2f°
Iy (B) = € { 12k3(8% —€,)  h%{Tm

lerkz (—2 cos ky 2’ sin ky(d ~ 2") — ki hsin k2’ sink,y (d — 2)

+2cos ky(2' — h)sinky(d — 2’ + %) —4cosky (2’ — %) sin ky(d — 2’ + g)
—kyhcosk,(z' — k) cosky(d — 2') + 2k h cos ky (2 — g) cos ky(d - z')
—2cos ky(z' — h) sinky(d — 2') + 6 cos k1 (2 ~ g) sink(d — z'))

—jky (=2 cos kyz' cos ky(d ~ 2') — kyhsin kyz' cos ky(d — ')

+2cos ky(z' — k) cosky(d — 2’ + g) —4cosk (2 — g) cosky(d—z'+ g)
+kihcosky(2' — R)sink,(d ~ 2') — 2kih cos ky (2" — %) sinky(d — z)
—2cos ky(2' ~ h) cos ky(d — z') + 6 cos ky (2" — -g-) cos ky(d — z'))] }

If n=1, i.e. Nz=1 then 2’ — k and 2’ — 52‘- should be set to zero in the above expression for
1;(8).

Similar to the case of Z%%, we want to use the source term extraction technique to improve
the computational efficiency. Using the asymptotic forms of (3.22) an asymptotic form of
the 3 integrand of an element of [Z/%] can be found. We now observe that the asymptotic
form of the B integrand is unequal zero only if feed mode n attaches or overlaps the
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attachment mode. We then finally get:
2= [T [ [ [ Rupproc(Br 20,2).-T(B, 0, 20)| 207 (8, @, 2)dzk} Bdxdp
v —xJrJzy

(o —2J3(ke
j., hzok(sﬂzﬂ—a)dﬂ n=Nz-1

/oo Crh-] koﬂa) +2Jl(k0ﬂbn)J0(k0ﬂa)

- -——2j“:”°" < +6£(akz°fga) B Ni(ﬂkzga) dg n=Nz Ad<Z
joo _&chJ3(koPa) + 4¢,J1(kofba)Jo(koBa)
A 128 bah k3 (e, +1)
e +8)J5(koBa) _ 243 (koBe)
k h282k3(e, + 1) hBk§

)dﬂ n=Nz Ad=2

The three types of infinite integrals in Z{, can be evaluated in closed form or approximated
by a closed form expression. These integrals have already been discussed in the previous
section.

3.7.3 [Z7]: patch modi «+— attachment mode

Again divide an element of the submatrix [ZP?] in two parts:

ze =2 = [ [ [ 008,020,278, 0, 20)ldz0T3?(B, c)k3Bdadf
= [7 [ 5,0,#,2).J5(8,0) (8, a)kipdeds
+/000_/‘_1L@(B,a,zu,z").j:‘,'(ﬂ,a,zo)]dz(,.ﬁ:"(ﬂ, a)kiBdadB
= 757 + 72!

(3.31)

The sinusoidal basis functions on the rectangular patch do not have a radial symmetry,
which implies that the « integration cannot be calculated analytically. The z integration in
Zp*f however, can be performed analytically. So a two dimensional integral over @ and 8
remains that has to be evaluated numerically. Because of the symmetry in the a integrand
of Z7° and Z?*/ the integration range can be reduced to 0 — %. We will only consider x-
directed patch basis functions in this section. The derivation for y-directed basis functions
is analogous. Making use of the a symmetry we finally obtain for a %-directed sinusoidal

128 BBk (3.30)
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patch basis function:

Z’;?:P — '[]oo _jwpgklﬁsinklz’ (—23J1(koﬂba) + JJg(kgﬁa))

e.T'm b k232 ko3
(kz€, cos ky(d — 2') + jky sin ky(d — 2')) I2(B)dB
zres = [T Bl L coski(d— 2')+ jky sinky(d = (332
nz o hkyeTm \r2¢r 1 ) jkisin ky(d - 2'))
R sin k2’ + msk’:‘z' L E: - 5)) Jo(koBa)15(8)d

With I2(8) given by:

45 /j cos a sin(kofz, cos a) cos(koBy, sin a)J;2(B,a)da n odd
1(8) = (3.33)

X
4 f * cosa cos(kofz, cos a) cos(kofy, sin a)J;2(B,a)da n even
0

Now let’s take a closer look at the asymptotic form of the 3 integrand of a Z72 element in
order to be able to use the source term extraction technique. Using (3.22) we find that:

Zf;ﬂz' = -[voo ,/_: v/Zo @“PP"O‘-"(ﬁy Q, 2o, Z').j;(ﬁ, o, ZO)]dzoj‘r:.i(ﬂ: a)kgﬂdadﬂ

= juwpo [ dBI®
JWFO_/; ﬁ n(ﬁ) ) (3.34)
_ih(keBby) | jo(koa) _jedolkoBa)) | & F <4
koba koh 23 2 _d
& +1 -

Unfortunately we haven’t been able to find an analytical solution for the infinite 3 integral

in (3.34).

3.74 [Z!]: feed modi «—— feed mode

In chapter 2 of this report an efficient way to calculate the elements of the matrix [Z//]
has already been discussed.
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3.7.5 [Z¥]: patch modi +— feed mode

For an arbitrarily basis function J?, on the patch and j:{' on the feeding probe, an element
of the submatrix [Z?/] is given by:

zh =2l = [ [ [ Q8,180 20)ldz0Ti2(8,0)k3BdadB  (3.35)

The patch is rectangular which implies that the basis functions on the patch have no radial
symmetry. Therefore the a-integral in the above expression cannot be eliminated, but can
be reduced to the range 0 — F due to the symmetry in the integrand. Fortunately the
z-integral can be performed a,nalytlca.lly An element of [Z?’] can be expressed in terms of
a two dimensional integral which has to be evaluated numerically. After eliminating the

z-integration we finally obtain for a X-directed patch basis function:

pr %ﬂokﬂﬂz

wen = | e T (kz€r cos ky(d — 2') + ki sinky(d — 27))
1%r

1 — cos(k; - )] dp n=1 (3.36)
Jo(koBa)I7(B)

[2cos kyz, — coskyzu—1 —cosk1Zapa]df n2>2

I2(B) is defined in (3.33). For y- dlrected patch basis functions a similar expression can
be derived. The extracted term ZJ. _ is equal to zero for all basis functions on the feed
except if subdomain n touches the patch. So for %-directed patch basis functions 2., is
given by:

| 0 Zn4l < Z’
pf _J wpe [ o iy
ZHmm - he kO ; JO(kOﬂa)Im(ﬁ)dﬂ Zntl = 2 <d (3'37)
" -
e -:Ii)ko | Jo(koBa)[7(B)dB zmi1 =2 =d

An analytical solution for the above infinite integral hasn’t been found yet.

3.7.6 [Z7]: patch modi «—— patch mode

An efficient method for the evaluation of the (Nz + Ny)? elements of the submatrix [Z77]
has already been presented in [4].
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3.8 Efficient calculation of the excitation vector [V]

The excitation vector [V] can be divided in three subvectors according to (3.4). the evalu-
ation of each of the elements of these three submatrices will be discussed here. As in the
case of the matrix [Z], we will use the extraction technique to improve the efficiency of the
method of moments. An element of [V] is given by (see section 2.6):

= —4x? { Ajri
Vm n fLrille(m!ya0)°Mf""(x’y’ 0) dzdy

472V

(3.38)
=0 J [, (Hony 008 6 ~ Moz sin ) drdg

with z = rcos ¢ and y = rsin ¢. M ritt 18 given by (3.11). We shall now take a closer look
at the elements of each of the three submatrices of [V].

3.8.1 [V?]: attachment mode

{V?] contains only one element because there is only one attachment mode. Divide this
element in two parts, one related to the patch part of the attachment mode and one related
to the probe part of the attachment mode.

Ve =y 4 yor (3.39)

The derivation of V*/ is analogous to the derivation of an element of [V'/] which has already
been discussed in section 2.6. The result is:

R A )
VY =Ty s Uetho®) = JalkoBa)] o(kaia) 12 (6)48 (3.40)
with
M) = k_f-ﬁ {cs,..fs:g[é?k—1 cosky(d — 2') —sinky(d — 2’ + g) + sin ki (d — 2)]
i

—jk;[_gkl sink;(d — 2') — cos ky(d — 2’ + %) + cos ka{d — z')]}



48 Thick microstrip antennas

According to (3.38) the second part, i.e. V7, is given by:
41r2V
ap _ HeP ap
Ver = //jr" Y cos ¢ — H; 31n¢)drd¢

- -/ /fnu./ j { QhyzJy, +Qth,,,,) cos ¢

- (Q;.,.-, %, + QueyJ,) sin ¢} e~I*<e v dk, dk, drdg

= % [_: -/_: e—jkszce“ikw- {(th,,‘]:z + Qth:y) Iy (3.41)
— (QhosTge + Quey I3, ) Toa} dkzdky
2jkoV 25.Jx (kofBba)

_ W-[G L*[Jo(koﬁb)_Jo(koﬁa)]{_ R a +on§:;i'ﬂa)}

(thxcosza + Qhyy COs asin @ — Qpzr cOsasina — th,sinza) dadf

In the above derivation relation (2.55), (2.56) and (3.7) are used. Note that z = 0 and

zo = z'. From (3.1) it is clear that the a integration in the above expression can be

evaluated analytically. Doing this and rewriting (3.41) then gives:

72 il } . -
4; koV j [Jo(koBb) — Jo(koBa )]{ 2’?;,:(;5? b)""JJol(cok;iﬂ )} (3.42)

% (kge,. cos ky(d — 2') + jki sin ky(d — 2)) d

The term V;? used for the extraction technique

Va = [Va _ vlrhu] + Vha

Ve =

is equal to zero in most of the practical situations. Only for the case that the probe part

of the attachment mode touches the groundplane (z=0) V}? is not equal zero and is given
by:

0
Vy = —4r?klV
in(2)
A closed form expression for the above infinite integral is given in section 2.6.3 by expression
(2.64).

<z
(3.43)

13
2
B
P

=z’

o 2
j,: hkgﬂzJO(koﬁa) (Jo(koBb) — Jo(koBa)]dB

3.8.2 [V/]: feed modi

The determination of these elements has already been discussed in section 2.6 of this report.
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3.8.3 [V?]: patch modi

The strategy used in the previous sections can also be applied here. For the m-th %-directed
patch basis function the final expression for V2 is given by:

V2 = FTRL [ (ko) - Jo(koB)] | (@ne cosr — Qussin) T

—4j sin(koBz, df m odd (3.44)
cos(kaBy, sin a) 7 sin(koBz, cos a)dadf m o
4 cos(kgfz,cosa)dadf  m even

With
cosa

Tm

Qhryz O3 — Qo sine = [kze, cos ky(d — 2’} + ki sin k;(d — 2')]

In the case of y-directed patch basis functions a similar expression can be derived. Because
the patch never touches the groundplane, the extraction technique doesn’t have to be used
here. The B-integrand converges very fast to zero (~ e~°).

3.9 Some applications

The model discussed in the previous sections of this chapter has been implemented in a
FORTRAN computer program called EUMAT (Eindhoven University Microstrip antenna
Analysis for Thick substrates). With this program it is possible to calculate the input
impedance and the radiation characteristics of thick microstrip antennas. The theory for
the calculation of the radiation characteristics (far field patterns) is discussed in chap-
ter 4. We have compared our calculations with experiments performed in literature. In
most cases a very good agreement has been found, both for thick and thin substrates.
Three applications of the software package will be presented here, namely two conven-
tional (electrically) thick microstrip antennas and one electromagnetically coupled thick
microstrip antenna. The first antenna is a rectangular microstrip antenna which has been
investigated experimentally by Chang [13]. The antenna dimensions are:

¢ patch location z' = 3.176mm

¢ substrate thickness d = 3.175mm

e permittivity ¢, = 2.33

¢ patch dimensions W, = 1lmm W, = 17Tmm
¢ inner radius coax a = 0.635mm

e outer radius coax b = 2.1mm
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e excitation point X, =4dmm, ¥, =10

In figure 3.3 and 3.4 the calculated and measured [13] input impedance results are shown.
The calculated E-plane and H-plane radiation patterns are given in figure 3.5 and 3.6.
The second antenna is also a conventional rectangular microstrip antenna on a (electrically)
thick substrate. The antenna dimensions are:

e patch location z' = 21.6mm

subgtrate thickness d = 21.6mm

permittivity ¢, = 2.05 tan é = 0.0005

patch dimensions W, = W, = 67.9mm

inner radius coax a = 1.5mm

outer radius coax b = 5mm

e excitation point X, = 21.95mm, Y, =0

In figure 3.7 and 3.8 the calculated and measured values of the real and imaginary part of
the input impedance are shown. The agreement between measurements and calculations is
very good. In figure 3.9 and 3.10 the calculated E-plane and H-plane radiation patterns of
the antenna are given for f=1.2 GHz. A great disadvantage of thick substrate microstrip
antennas is the fact that it is difficult to match these antennas to 50(2. Because of the
inductive shift in the input impedance of this thick substrate microstrip antenna, the
use of a compensating network is necessary. The use of such a network would increase
the complexity (and production costs) of the total antenna. A possible solution for this
problem can be the second antenna that we have investigated. In this case the patch is
electromagnetically coupled to the coaxial probe, i.e. zp < 2'. The dimensions of this
antenna are:

e patch location z' = 21.8mm

o substrate thickness d = 21.8mm

e probe height zp = 21.55mm

e permittivity ¢, = 2.05 tané = 0.0005
¢ patch dimensions W, = W, = 38mm
¢ inner radius coax a = 1.5mm

¢ outer radius coax b = hmm

¢ excitation point X, = 16mm, Y, =0




Thick microstrip antennas 51

In figure 3.11 and 3.12 the calculated input impedance and VSWR ratio are shown for this
antenna. The bandwidth of the antenna is better than 40 % (VSWR < 2). The calculated
E- and H-plane radiation patterns of this antenna are given in figure 3.13 and 3.14 for =2
GHz. The far field characteristics of this antenna are not so good as the radiation patterns

of the previous two antennas. Due to the (long) probe, the patterns are asymmetrical and
the cross-polarisation level is higher.
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Co- and Cross Polarisation.
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Figure 3.11: Input impedance of EMC coupled microstrip antenna
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Figure 3.12: VSWR ratio of EMC coupled microstrip antenna
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Chapter 4

Radiation pattern of thick
microstrip antennas

4.1 Far field pattern

After applying the method of moments we have an approximation for the currents on the
patch and on the feeding coaxial probe. The easiest way to determine the far field pattern
is to use Huygens’ principle. This means that the sources in the dielectric substrate are
replaced by an equivalent electric and magnetic current distribution on the upper surface
of the substrate, denoted S (see figure 4.1) . This can be simplified if we assume that the
infinite plane S is a perfect electric conductor. In this case only the equivalent magnetic
current remains and is given by:

In=Exii=Exé, (4.1)

We can eliminate the presence of the perfectly conducting infinite plane S by applying
image theory, i.e. replace Tom by 27.. and remove the perfectly conducting plane. A
relation between the tranversal electric fields in the dielectric layer and the vector potential
at the point ¥ = (z,y, z) in free space is given by [2]:

-2 e @

Note that 7y = (2o, y0,20) represents a source point and V; is the volume enclosing the
source currents. In the far field region where |7] 3> || the electic field is given by:
- jhkoe™ Jkor

£(F) =

€, is an unit vector in the 7 direction. Far fields are usually expressed in terms of spherical
coordinates (r,8, ¢) instead of cartesian coordinates (z,y,z). The coordinate system is
defined in figure 4.2.

The dot-product €,.7y can be written in the form:

& [ [ 27 (z0, g0, ) "odaodyo (4.3)

r

€,.To = i B yfo + 2% = z¢sinf cos ¢ + ypsind sin ¢ + zpcos f (4.4)
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Figure 4.1: Equivalent magnetic current source
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Figure 4.2: Coordinate system
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Combining equation (4.3) with this last expression results in:

s oo e —3k0
é'(".') — -iog__rejkodconaé-r
Tr

j[g2j‘m(xo,yo,d)ejko(zguinﬂcoo¢+msinﬁuintﬁ)dzodyo

x
(4.5)

Now let k, = ko sinf cos ¢ and k, = ko sin 8sin ¢. The integral over S in (4.5) can then be
written in terms of the spectral domain electric field:

f /; jm(-'to,yo, d)eiko(kswo'i"‘wo)dmodyo
= f °° f_ " [E(20, 0, d) x & JeMotbsmuthum) g gy, (4.6)

= E(ke, ky,d) x &,

Using this important result, the far field can be expressed in a closed form expression:

- thae—ikor -
E) =Tt g Bk, by, d) x &)
. -—-jkor .
= lkL;rT—eJ"“d‘“a [€s(Ey cos 8 cos ¢ — E cos 8 sin ¢) (4.7)
+&(B,sin ¢ + E, cos §)]

With k; = kosinfcos g, k, = kosinfsing and E = E.&, + E,Z,. The electric field in
the spectral domain can be written in terms of the current distribution on the patch and
feeding probe in the spectral domain. At the plane zy = d the spectral domain electric
field is according to (3.1) given by:

E(ke kyd) = Qks, by, 2, d)Tarcn(kz, ky, 2')

. : (48)
+ [ Qlks, by, 20, )T peca(ke, by, 20)d20

Note that we have neglected the magnetic current source in the coaxial aperture in the
above expression. Because an approximation of j;,,,d, and j},,d is known in terms of
expansion functions, the far field pattern can be calculated very easily with (4.7). Note
that the z-integration in (4.8) can be calculated analytically. The corresponding magnetic
field in the far field region can also be determined by using the relation:

H= /e x€ (4.9)
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4.2 Circular polarization

The far field pattern derived in the previous section is essentially a linear polarized field,
because we only considered one feedpoint for the microstrip antenna. Using two feeding
probes with a 90 degree phase difference, a circular polarized far field pattern can be
obtained at broadsight (# = ¢ = 0). For other angles the polarization of the far field will
be elliptical. The electric far field can now be divided in two components, i.e. a Right
Hand Circularly polarized wave (RHC) and a Left Hand Circularly polarized wave (LHC):

5 = FEyép + E¢€¢

(4.10)
= ELéL + Egér
With
€, --L(é' + j€4)
L_\/:-Z ¢ T J€
en = (@ — i)
R_\/i 9 — J€4
and
1
Ep= —2(Ee — JEy)

Ep is the LHC component and Eg the RHC component of the wave. If one of these two
components is zero, the far field is perfectly circularly polarized. A quantity that can

be used to describe the polarization mismatch is the axial ratio (AR). The axial ratio is
defined by:

|EL| + |ER|

AR =
|EL| — |EnRl

(4.11)

The axial ratio is used here to describe the polarization mismatch , because this quantity
i8 easy to measure.




Chapter 5

Conclusion

Electrically thick microstrip antennas, fed by a coaxial cable, can be analyzed using a spec-
tral domain moment method with a proper model for the feeding coaxial structure and by
incorporating the current continuity at the patch-coax transition. A special attachment
mode is used at this transition to describe the current distribution in an accurate way. The
efficiency of the method of moments can be significantly improved by using the source term
extraction technique, where a great part of the infinite integrals involved with the method
of moment formulation is calculated analytically. Computing time can also be saved by
selecting a set of basis functions that describes the current distribution on the patch and
probe in an accurate way, using only a few terms of this set.

Electrically thick microstrip antennas have broadband characteristics. However, a proper
match to 50 © is often difficult to achieve due to an inductive shift in the input impedance.
Another microstrip structure is proposed in order to avoid this matching problem. The
patch is now electromagnetically coupled to the coaxial probe. With this antenna a band-
width of more than 40 percent can easily be obtained. The radiation pattern of this antenna
is somewhat asymmetrical and the cross polarisation level is deteriorated. Therefore more
research has to be performed on this type of microstrip antenna.
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