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ABSTRACT

Linear matrix equations were studied by Sylvester, Stéphanos, Datuashvili
and Roth, In this paper, solvability conditions given by these authors arve
generalized in various directions: to nonsquare'equations, nonpolynomial
type equations, in particular equations given by an integral, and finally

to equations over an arbitrary commutative ring with unit element.
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1. Introduction

The object of this paper is to give necessary and sufficient conditions

for the matrix equation

k
(1.1) ) A.XB, =¢C
. i1
i=l
to have a solution X. Distinction is made between universal and indivi-

~dual solvability. Equation (1.1) is called universally solvable if it

has a solution for every C. Universal solvability thus is a condition

on the matrices Ai and Bi’ Equation (1.1) is called (individually) solv-

able if it has a solution for the particular C given,

Equations of the form (1.1) were considered in liieratufe (see e.g. L4,
Ch VIIIl, [8, Ch VIII], [6]). In principle,it is possible to rewrite
(1.1) using tensor products and to give solvability conditions in terms
of the coefficient matrices thus obtained (see [6], [8]). Our objective,
however, is to find conditions expressed more directly in terms of the
matrices Ai and Bi' It seems unlikely that such a condition can be found
-far;;;hgf ggne;al~case of equation (1.1). But for“special cases, a num-
ber of (more or less known) results can be given. Sometimes these condi-

.tions are formulated in terms of the spectrum (i.e. the set of eigenvalues)

of the map =
k
L :X+w ] AXB,.
. i1
1=1

For this to be possible it is necessary that £ map a certain matrix space

nxm . . : .
(say, R y the space of real n X m matrices) into itself. In this par=~
1



ticular case, computation of the spectrum o(£) of L is equivalent to deter-
mination of universal solvability conditions for (1.1). In fact, (1.1)

is universally solvable iff 0 ¢ o(£). Conversely, A € o(£) iff the
equation |

EX) - 3 =¢

is universally solvable.When in the rest of this introduction referring
to the literature, we will not explicitly distinguish between universal

solvability conditions and spectrum computations.

Let us briefly describe some of the most important results on the solvabi-,
lity of equations of the type (1.1). In 1884, Sylvester showed that the
equation

(1.2) AX-XB=C

is universally solvable iff o(A) n o(B) = @ (see [8, Theorem 46.2]). This

equation will henceforth be referred to as Sylvester's equation., The re-

sult was extended in 1900 by C. Stéphanos (see [8, Theorem 43.81) to
equations of the form (1.1), where Ai = pi(A)’ Bi = qi(B). Here A and B
are matrices and P; and q; are polynomials. Stéphanos expresses his con-

dition in terms of the polynomial
(1.3)  p(z,8) := ] p;(2)q;(s)

associated to equation (1.1). Specifica11§, he shows that (1.1) is uni-
versally solvable iff p(A,u) # 0 for X € o(A),pec(B). This result is

easily seen to be an extension of Sylvester's result.

A further generalization was obtained by G.S. Datuashvili in 1966 (see

£31). Datuashvili allows Ai to be arbitrary and maintains the condition
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that B. be of the form B, = q.(B):
i i i

(1.4) THEOREM. (Datuashvili). Let A; ¢ R" =, B ¢ R°'® and let q,(s)

be a polynomiallfor i5= 1,<+.,k. The equation

k
(1.5) izl A, X qi(B) =C

is universally solvable iff the associated polynomial matrix

k
(1.6) A(s) = ] A;q;(s)
i=1

is nonsingular for s ¢ o(B).

Again, it is easily seen that the result generalizes Stéphanos'result.
Datuashvili's proof can briefly be described as follows: First he assumes
without loss of generality that B is upper triangular. Writing the map
X z Aini(B) as a tensor product map he notices that the coefficient
mattrix will be upper block triangular, so that its invertibility properties

can be inferred from the entries on the block diagonal.

In section 2 we give an alternative proof, which does not use tensor
products but is based on the substitution of matrices into polynomial
matrices (see [4, Ch IV, §3]). The proof given has the advantage that it
yields an explicit formula for the solution. Furthermore, it can be gen?
eralized in various ways. In Theorem 2.4, Datuashvili's result is general-
ized to the case where Ai is allowed to be nonsquare. Furthermore, in
Theorem 2.13 the requirement that Bi be of the form Bi = qi(B) will be

relaxed. A condition is given which is valid if it is only known that



the Bi's commute, This is a true generalization since matrices Bl,..;,Bk
can commute without being polynomial in a fixed matrix B (see [2, Section
IV]). Also, the method can be used to give universal solvability conditions

for a continuous version of (1.5), viz.
b

(1.7 f A(L)X £(t,B)dt = C ,
a

see section 3,where this result is obtained as a special case of a more

general type of equation.

Finally, in section 5, the results are extended to equations over an ar-
bitrary commutative ring ®. Of course, in this general situation, it is
not possible to give a condition in terms of eigenvalues. But the con—
ditions given in Theorem 1.4 and its genmeralizations can be formulated

in an eigenvalue-free" way. E.g. introducing the polynomials
a(s) := det A(s), b(s) := det(sl - B)

we can formulate the condition of Theorem 1.4.as: a(s) and b(s) have the
' ; . - bezoutian property, i.e. there exist polynomials u(s) and v(s) such that
‘ u(s)a(s) + v(s)b(s) = 1. It turns out that formulated this way,Theorem
1.4 extends to general‘commutative rings. It should be remarked that
the more obvious condition:"a{s) and b(s) are coprime" turns out to be

too weak in general rings.

«F

In the particular case that R = €[], where g = (gl,...,gv) {or, more

generally, & = K[£], where K is any algebraically closed field), a and

[P TIPS S A

b are polynomials a(§,s) and b(g,s) in £ and s. It follows from Hilbert's
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Nullstellensatz (see [1, V 3.31) that a(g,s) and b(Z,s) have the bezoutian
property 1ff they have no common zero. The absence of common zeroes thus
will be a necessary and sufficient condition for the universal solvability

of (1.5). This can be formulated as follows:

(1.8) THEOREM. Let A, € (CLED)™™, B e (€[)™™ and let q, e €[¢,s].

Then the equation

xai(a) X(E)qi(E,B) = C(§)

»

has a solution X(£) ¢ (€LEDN™™ for every C ¢ (CLEN™™ iff the polyno-

mial matrix

AE,s) = LA, (E)q;(E,s)

is nonsingular for every £ € ¢’ and every eigenvalue s of B(£).

In section 3 the individual solvability of (1.1) is investigated. For
Sylvester's equation (1.2) a well-known condition was given by W. Roth
in 1952 (see [11]).

Specifically:

(1.9) THEOREM (Roth). Given A ¢ Rnxn’ Be RP*P and C ¢ Rnxm, equation

(1.2) has a solution if and only if the matrices

are simiiar .
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An obvious question is how to generalize this result to equations of the
form considered e.g. in Theorem 1.4 and its generalizations. A general-
ization in terms of similarity seems unlikely to be possible. However,
according to(l4, VI §4 and 5]5, two matrices M and N are similar iff sI-M
and sI-N are Rls]-equivalent, i.e. there exist R [s]-invertible matrices
P(s) and Q(s) such that P(s)(sI - M) = (si - N)Q(s). Consequently, the
matrices (1.10) are similar iff

sI-A ~C sI~-A 0

0 sI-B ’ 0 sI-B

are R [s]-equivalent. In this formulation,Roth's theorem can be extended

as follows

(1.11) THEOREM. Let,Ai,B, q; and A(s) be given as in Theorem 1.4. The

following statements are equivalent:

i) (1.5) has a solution,

ii) The equation

(1.12) A(s)U(s) + V(s)(sI - B) = C

has a solution (U(s),V(s)) € (R Es])nxm x (R [Sj)nxma

iii) The matrices

A(s) ~C A(s) 0

0 s1-B 0 sI-B

are R[s]-equivalent.



“107-
The R [s]-equivalence of two polynomial matrices can be checked by

computing their ianvariant factors (see [4, VI, §3 Cor 11).

Theorem 1.11 will be proved in section 4. In addition, some generalizations
will be given. Finally, in section 5 the result will be generalized to

equations over a commutative ring (based on a result by W. Gustafson [5]).
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2. Universal solvability conditions

We start with a proof of Datuashvili's theorem 1.4:

PROOF. "if". The matrix A(s) is invertiblé as a rational matrix and we

have the following relation
A(s)D(s) = a(s)I

where a(s) := det A(s) and D(s) is the adjoint matrix. It is given that

a(y) # 0 for u € g(B). Hence, a(B) is invertible. Define

c, := ca)) !

E(s) := D(s)C1 .

Then
k
A(s)E(s) = Z A, E(s)qi(s) = Cla(s) .
Ci=1

We substitute s = B from the right into this equation and denote by E(B)
the result of substituting B from the right into E(s) (see [4,IV, §3]).
The following equality results:

k
121 A, E (B)qi(B) = C, a{B) = C ,

which shows that X := E(B) is a solution of (1.3).

"only ifV It is easily seen that if (1.5) has a real solution for every
real C, then it has a complex solution for every complex C. Suppose that
for some u ¢ 0(B) the matrix A(y) is pot invertible. Let p and q be non-

zero vectors such that q'A(u) = 0, Bp = up. We claim that (1,5) has no
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solution for C := gqp', In fact, for any matrix X we have
q' ] A;Xq;(B)p = q'A(Xp = 0,

whereas q'Cp = q'qp’p # O. 0

The following corollary is the result as it was actually stated by Datu~

ashvili:

(2.1) COROLLARY. The spectrum of the map

£:xr]AX®E : RVT >R

a(f) :=u c(a(w)) .

uec(B)

This result is derived from Theorem 1.4 in the way suggested in the
introduction, i.e. via the fact that A € o(£) iff £ - AL is not sur-

jective.

The proof given above yields an explicit solutiomn of equation (1.5). In
the particular case of Sylvester's equation, we have A(s) = sI - A (apart
from an irrelevant minus sign). Hence, the solution of (1.2) (under the

assumption g(A) n o(B) = @) is given by

(2.2) X = (DC)(B) a ) (B)

where (DC) (B) is the result of right substitution of B into the polynomial
matrix D(s)C. (Note that B and aﬂl(B) commute), and D(s) is the adjoint

matrix of A (Compare [6, section 11], where the solution of Sylvester's
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equation is expressed in the adjoint matrix under the assumption that A
is simple). Using the algorithm of Souriau-Frame-Faddeev(see [4, IV, §5]
or [10, Ch 1, section 2] ), equation (2,2) can be reduced to the following

algorithm.

(2.3) COROLLARY. Consider Sylvester's equation (1.2}, assume that

g{A) n o(B) = @ and define matrices Lk, Mk’ Yk for k = 0,...,n and

numbers bk for k = §,...,n~1 by

L 1= M :=I’Y :cc’

0
b, = =(k+ 1) trQLa)

Meeg = MA BT
Ler = LBl

Yk+l i= YkB + MkC

for k= 0,..., n—-1, Then X := YﬁL;l is the solution of (1.2).

The following is a generalization of Theorem 1.4 to the case where Ai's

are not square.

(2.4) THEOREM. Let A, ¢ R, B ¢ ROP, q; € R[s]. The equation

k
(2.5) 121 A, X q;(B) =¢C

is universally solvable if and only if

k
(2.6) A(s) := ] A; q;(s)
i=1

has full row rank for every s € 0(B).




PROOF. The necessity is proved the same way as in Theorem 1.4, For the
sufficiency we can also use the same proof, provided we can find a poly-

nomial matrix D{s) and a scalar polynomial a(s) such that
(2.7) A(s) D(s) = a(s)I ,

and a(B) is invertible. For this one can use the Smith canonical form for
polynomial matrices (see [7, Theorem II,9]). In fact, we can write A = JUAV
where U and V are R[s]~invertible and A==[AY,0], Ai 1= diag(wi,...,wn),

v, przi <oV . Let A be the diagonal matrix for which A A, =¥ I. Then we

may choose D = V-l

AU"], where A := [A},OJ',;and a(s) = wn(s). Since a(s)
is the G.C.D. of the n x n minors of A(s), we have that a(p) # 0 for

u e o(B). 0

An alternative construction for D and a, not depending on the Smith

canonical form, will follow from the proof of Theorem 213 below.

In the following we replace the assumption Bi = qi(B) by the weaker con-

dition BiBj = BjBi' First we need some preliminary concepts and results.

(2.8) DEFINITION. Let Bise..,By be commutative m x m matrices. A vector

A = (AI,...,Ak) € &k is a (joint)eigentuple of BI""’Bk if there

exists a common corresponding eigenvector, i.e. if there exists v # 0

such that

Biv=)\iv (ig 1,-10,1{-)'

The proof of the following lemma shows in particular the existence of

joint eigentuples.
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(2.9) LEMMA. Let Bi""’Bk be commutative matrices and let w(sl,...,sk)=¢(§)

be a polynomial. Then &(Bl,...,Bk) is nonsingular iff (1) # O for any

joint eigentuple of Bl"“’Bk' -
. ‘. mXm m

PROOF. First we observe that, if B ¢ R and w ¢ R, w # 0, then there

exists a polynomial p(s) such that p(B)w is an eigenvector of B. In fact,

if q(s) is a nonzero polynomial of minimal degree such that q(B)w = O,

then it is easily seen that deg q 2 1, so that we can find A and p(s) such

K

that q(s) (s = A)p(s). Then v := p(B)w # O (since deg p < deg q) and

(B - A)v = q(B)w = 0.

Now assume that Y(A) = O for some eigentuple A of B ""’Bk' Then Biv =

1
A;v for some v # 0. Hence w(BI,...,Bk)v = $(A)v = 0, so that w(Bl,...,Bk)
is singular.

Conversely, assume that w(Bl,...,Bk)wb = ( for some Yo # 0. By the above
observation, there exists a polynomial pl(s) such that w, o= pl(Bl}wb

is an eigenvector of Bi' Applying the observation repeatedly, we obtain

a sequence of vectors W, and numbers A satisfying
v =Py (Bwi  # 0,
Biwi = Aiw. .

1

Finally we find v = vy and, by the commutativity of the Bi's, it is

easily seen that Biv =NV for i = 1,...,k. Hence ) := (xl,...,xk) is

an eigentuple. In addition
(]J(Bl,...,Bk)V = Pk(Bk)oooPl(Bl)!p(Bl,oQ',Bk)w = 0 »

But, w(B},...,Bk)v = Y(A)v, and, consequently ¢(}) =0 . O
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(2.10) REMARK. In terms of the spectrum, we have

(2.11) G(w(Bl,...,Bk)) = {$(A)| A is an eigentuple of Bl""’Bk} .
This property is usually taken as a definition of the joint spectrum

(see [12, §1]). Specifically,

G(BI'°"’Bk) = {) ¢ mk}V¢ € mfsl,...,sk] Y(A) € °($(Bl"“?3k>)}

Equivalently one can say that ) e c(Bi,...,Bk) iff for any polynomial Y(s)
we have that ?(ﬁ) = 0 implies that W(Bl,...,Bk) is singular.

Let us show that'}A € c(BI,...,Bk) iff A is a joint eigentuple.

If A is anoint eigentuple; Say(BiV = kiv , then w(BI,...,Bk)v = y(A)v,

so that Y(A) = 0 implies that w(BI,...,Bk) is singular.

Conversely, assume that there does not exist v such that Biv = Aiv for

i=1,...,k. Then

=4
I

AL

] see

e~ M

It follows from the Lemma below that cémplex numbers al,...,ak exist
k ;

2 ai(Bi - AiI) is nonsingular. Consequently, if we define
i=1

such that

w(sl,...,sk) =S .t - (alkl + ... F aklk) s

then Y(A) = 0 and w(BI,...,Bk) is nonsingular.
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LEMMA. Let ByseoesBy be commutative m X m matrices and let rank[Bé,...,Bé]=nz.

Then there exists o such that B(a):= 2 Bial is nomsingular.
0
PROOF, If B(a) is singular for all a, then B(s) is singular over the field

of rational functions R(s) . Hence, there exists a rational vector p(s) #0

such that B(s) p(s) = 0. We may assume that p(s) is polynomial. Let

*

v

p(s) = X pjsJ, where P, # 0, and assume that p(s) is of minimal degree.
j=0

Then the equation B(s) p(s) = 0 reads

(2.12) ( B

We notice that

B(s) (B.p(s)) = B, B(s) p(s) = 0,

and that deg(ka(s)) < deg p(s) because of kav = (0, By the minimality

condition on p(s), it follows that ka(s) = 0, i.e., B =0 for i =0,...,v.

kPi

Considering the second last equation, = (J, we see that

BiPyoy ¥ BtPy i

Bk~1pv = 0. Since B(s)(Bk_Ip(s)) = (0 we repeat the previous reasoning and

conclude Bk—lpi = 0. Thus continuing,we obtain
By =0 (2 =0,...,k),

contradicting the assumption of the Lemma. W]



Using Lemma 2.9, we are ablé to prove the following generalization of

Theorem 2.4.

(2.13) THEOREM. Let A, « rY", B, e RP*P and suppose that B;B; = BB,

(i,j = 1,...,k). Then the equation

k
(2.14) izl AXB, =C

is universally solvable iff A()) has full row rank for every joint eigen-

tuple of Bl”"’Bk' Here

k
A(s) = A(sl,...,sk) 1= .z ﬁisi .
i=1

For the proof we need a multidimensional interpolation result:

(2.15) LEMMA. Let z, € &k (i =0,...,%) be distinct points. Then there exists

9(s) € @[sl,...,sk] such that m(go) = 1, w(gi) =0 (i=1,...,k) .

PROOF. Let z; = (zi,l"°"zi,k)‘ By Lagrange's interpolation theorem there
exists for j = 1,...,k a polynomial Lj € C[s], such that Lj(zij) = 1 if

i = 0 and zero otherwise.

Now the . function

k
e(s) = I L.(s;)
j=1 J 3
satisfies the requirements. 0

PROOF . of Theorem 2.13 : "if". If A =_(xl,..,,xk) is a joint eigentuple

of Bl""’Bk’ then necessarily, Ai

O IEN O

finitely many eigentuples, say A" 7,...,A

€ c(Bi). Hence there are at most

. Choose polynomials
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9; € m[S[’.f"sk] such that ¢i(5(3)) = 515 (i,j = 1,...,2). This is pos=
sible because of the previous Lemma. Define

4

F(s) := | F; 0.(3) ,

i=1
where Fi is an m X n matrix such that A(Z&_(l))Fi = I, Such an Fi exists
because of the assumption of the Theorem. Then A(s)Fis an n * n polynomial
matrix invertible on the joint eigentuples of BiseessBy. Let G(s) and a(s)
be such that AFG = al and a(ﬁ(l)) #0 for i =1,...,4. Because of Lemma
2.9, 'a(Bl,...,Bk) is invertible. Setting FG =: D, we can complete the
"if" ~part of the proof exactly as in the proof of Theorem 1.4.
"only if": This proof is completely similar to the corresponding proof of

Theorem 1.4,



3. Generalizations and applications

Consider a p x p matrix B and an n x n-matrix -valued function A(s) analytic
on (a neighbourhood of) g(B). The right substitution of B into A(s) is

defined by

(.1) A(B) 1= IA(s);(sz -8 ! as
T

where T is a contour surrounding o(B) and contained in the domain of
analyticity of A(s), and &s stands for ds/(2wi). It is easily seen that
in the case where A(s) isapolynomial, this definition coincides with the

one used in section 2, If X is a constant m x p matrix and A(s) an n x m-

matrix-valued map we define the n x p-matrix-valued function AX by

(3.2) (AX)(s) := A(s)X .

The equation in X that we consider in this section, is
(3.3) (aX) (B) = C,

where C is a given n x p matrix. This equation is readily seen to reduce
to (1.5) when A(s) is defined by (1.6). The following result generalizes

Theorem 2.4:

(3.4) THEOREM. Equation (3.3) is universally solvable if and only if A(s)

has full row rank on ¢(B). In this case there exists a matrix function

D(s), analytic on o(B), such that A(s) D(s) = I. A solution of (3.3) is

(3.5) X= (DC)(B) .
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PROOF., "Only if": Suppose that for some K we have nonzero vectors v, w

such that v'A(W) = 0, Bw = uw. Then

v (AX) B)w = J‘ v'A(s)X(sI - B)-lw s =
T

v

"a JV'WXW asuo s
r

since the integrand is analytic in the domain enclosed by T. Hence, (3.3)
does not have a solution when v'Cw # O. o
"If": Exactly as in the proof of Theorem 2.13, one can use interpolatiom

to construct a matrix-valued function D(s) analytic on 0(B) and such that

A(s) D(s) = 1. We show that (3.5) is a solution of (3.3):

(AX) (B) = [ A(s) (DC) (B) (sI - B) 'as =

T

-] ’
- j J A(s) D(z) C(zL - B)™! (sI - B)™! dzds .

r T
s z

We choose for I, a contour surrounding o(B) but contained in the domain

enclosed by I‘S. Using the well~known formula

(zL -B) I ~B) =z - 8) NI -B) ! - (21 -B)Dy

we can write (AX)(B) = J, + J,, where

i 2’

3, := j A(s) J D(2)C(z - s) ‘etz(sI - B) ! & = 0

T r
8 z

because z & (z -~ s)'.I is analytic in the domain enclosed by Fz. Furthermore,
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2 s

= [ A(z)D(z) C(zI -B) L az=¢ .

r
z

In the proof of Theorem 2.4, D(s)} and a(s) were chosen such that AD = al.
If one allows D to be an arbitrary analytic function instead of a poly-

nomial, like we do here, we may replace D by D/a. In the particular case
where m = n, the number of equations is equal to the number of unknowns.

In this case, (3.5) is the unique solution of (3.3) (under the conditionms

of the theorem).wﬂlso, as in Corollary 2.1

[RS8
i i b\

L :Xw (AX)(B) : RV® L g0

has the spectrum

o(L) = Uuec(B)G(A(n)) .

We mention two special cases of equation (3.3):

(3.6) EXAMPLE. Assume that AO’Ai”" is a sequence of n x m matrices such

-

that z HAiH at < ©, where ¢ > 0, Let B be any p x p matrix with spectral

0
radius less than o. Then

i
A.s

A(s) := 5

o3 8

J, = - f f A(s) D(z)C(z - s) 'ds(zI - B) 'az
T '



is analytic for |s| <a and (AX)(B) is defined for every m x p matrix X.

It is not difficult to verify that

AXBY ',

A0 @) = ] A,

o8

so that the equation reads

(3.7) EXAMPLE. Let
T ¢
ACs) i= j L(t)e ~-dt .

0

Then A(s) is an entire funtion and

T
(AX) (B) = [ L(t)Xe“tht .
0

Consider the special case L(t) = etA. Then

T
A(s) = J e(A?SI)tdt
5 .

and A(u) is nonsingular iff

v T
J e Wta 4 g
0

for A € 0(A), i.e. iff A - u # 27ik/T for any nonzero integer k. Hence

the equation
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T :
J etAX e“tB dt = C
0

is universally solvable iff for nonzero k € Z we have 27mik/T £ o(A) - o(B).

(Compare [9, §14.20).

This example can be generalized in a straightforward way to the equation

J L{v) X £(v,B)du = C

v .
where (V,F,u) is a compact topological measure space and £ : V x € - € is
a continuous function such that s » £(v,s) 1s analytic on o(B) for every

v € V., Here, of course,

A(g) = fL(v),f(v,s)du . A O
v

Let P(s) be an n x n-matrix—valued function analytic in a certain domain

Q in €. Then P(s) defines a mapping
P:Xe P(X)

for X-& € with spectrum contained in Q. We are interested in the
question of when P is locally invertible(with C1 inverse) at a given
matrix B. For this we apply the implicit~function theorem. That is, we
investigate whether the linearization of P at B is invertible. We have

for small Y:

P(B + Y) ~ P(B) = j P(s) {(sI - B - Y) ' - (sI - B) '}as

-1k -1,
= J P(s){(sI~- B) Y(sI -B ~ YY) 'ds.
T
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It follows that the linearization of P(X) at B equals

£(Y) := j P(s)(sI - B)"! v(sI - B)”! s =
. ,

- J A(s) Y(sI - B)™! ds = (AY) (B) ,
r

where
A(s) := (P(s) - P(B))(sI - B) "
is analytic on @, and hence on o(B) . o

Here we uge that

f I-8)"'¥er-8las =0,
T
as one can easily verifyby letting T be a circle with radius tending to .

We remark that we can write

A(s) = Q(s,B)

where

(®B(s) -~ P(2))/(s ~-2) (s ¢#2)
Q(s,2z) :=

P'(s) (s =2) .
According to Theorem 3.4, it follows that £ is invertible iff A(u) is

invertible for u ¢ o(B).

In the particular case that P(s) = p(s) is a scalar analytic function, the
condition can be further simplified. In this case, according to the spec-
tral-mapping theorem, A(p) is nonsingular iff Q(A,u) # 0 for X ¢ o(B).
Hence we find:

If P is defined by
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P:Xx=pX,

then P is locally invertible at B iff

D) p() #p() (e a(B), A#w

i) p'(M) # 0 (A € o(B)).

Notice that these conditions are exactly the conditions for the function
p(s) to be locally invertible on o(B), i.e., for the existence of a function
q(s) analytic on a neighbourhood of p(¢(B)) such that q(p(s)) = s. Hence

the inverse of P is given by:
Q: X q(X) .

We conclude that we have the following:

If P : X»p(X) has a Cl inverse at a certain matrix B, then there is an

inverse 2 of the form @ : X b q(X).

Notice that not every function analytic in a neighbourhood of a certain

matrix has the representation q(X) (e.g. P(X) = XT).
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4. Individual solvability conditions

PROOF of Theorem I,11.

i) = ii): Let X be a solution of (1.5). Then
C - A(s)X - L A;X(q; (B) - q;(s)I) = | A;XV.(s)(sI - B) ,

where Vi(s) :=—wi(s,3) and

q;(2) - q;(s)

¥; (s8,2) = =00 - B

Hence U(s) := X,V(s) := z AiXVi(s) form a solution of (1.12).

ii) = i): Right substitution of B into (1.12) yields

L AUB) q,() =C.

Hence X = U(B) is a solution of (1.5).

ii) e iii): In [11] it is shown that the polynomial equation
A(s) U(s) + V(s) B(s) = C(s)

has a solution iff

A(s) C(s)
. 0 B(s)

are R[s}equivalent. Application of this to B(s) := sl - B, C(s) :=C

A(s) 0
0 B(s)

yields the result.

We mention two generalizations of Theorem 1.11.
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{(4.1) THEOREM. Let Ai,Bi be as in Theorem 2.13 and let C ¢ BRVP | The

——

following statements are equivalent :

i) Equation (2.14) has a solution X.

ii) The polynomial equation
SII.“ B1
A(s) U(g) + V(g) . | =C

skI - B

k

has a solutionU(s) ¢ (RIs1)™™, V(s) ¢ (R[sD" " : Here, 5=(s,...,5,)

iii) The matrices

[ A®) c 1 (A o )
SiI - B] i slI - B1
0 ,: Lo :
\ SkI - Bk ‘ ‘ skI - Bk J

are R[s]- equivalent.
PROOF. i) & ii):similar to the previous proof. ii) e iii): Here one
uses Gustafson's extension of Roth's theorem to general commutative
rings (see [5]). In this generalization Gustafson, states that the

matrix equation
AU + VB = C

over a commutative ring ® has a solution iff the matrices

are R-equivalent. (See also section 3). |
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(4.2) THEOREM. Let A(s), B be given as in Theorem 3.4, and let C e RPP,

Then the following statements are equivalent:

i) Equation (3.3) has a solutiom,

i1i) The equation

A(s) U(s) + V(s)(s1l - B) = C

has a solution U(s), V(s) amalytic on Q.

iii) The matrices

A(s) C A(s) 0.

o sI - 3B 0 sI - B

are equivalent with respect to the ring of functions analytic on Q.

The proof of i) & ii) is based on contour-integral manipulations as in

section 3. The proof of ii) « iii) depends again on Gustafson's result.

It is of interest to see whether the results of section 2 can be recovered

from the previous results. The following lemma is instrumental.

(4.3)LEMMA. Let A(s) and B(s) be polynomial matfices.Then the following

statements are equivalent:

i) The equation

(4.4) A(s) U(s) + V(s) B(s) = C(s)

has a solution (U(s),V(s)) for every polynomial matrix C(s) (of

suitable dimensions),.

ii) The equation

(4.5) A(s) U(s) + V(s) B(s) = C

has a solution for every constant matrix C.
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iii) For any sq € m,A(so)has full row rank or B(sp)has full column rank.

PROOF. i) = ii) is trivial.

ii) = iii) Suppose that for some s, € C there exist nonzero vectors v, w

0
such that v'A(sﬂ) = 0,~B(SO)W = 0, Multiplying (4.4) from the left with
v' and from the right with w, we find v'Cw = O,which is not true for
every C.

iii) = i) Using Smith canonical decompositions for A and B one can "dia-

gonalize" equation (4.4),i.e. we may assume that A(s) and B(s) are diagonal.

The (i,j)th equation reads
ai(s) uij(s) + bj(s) Vij(s) = cij(s) .

These equation have solutions, since iii) implies that ai(s) and bj(s)
are coprime. 0
Combining Lemma 4.3 , where B(s) := sI - B, with Theorem 1.1! we find

a new proof of Theorem 2.4.
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5. Matrix equations over rings

In this section & denotes a commutative ring with unit element. We con-
sider equation (1.1} again, but now we assume that the matrices Ai, B,
and C have entries in ® and we try to find a solution X with entries in &.

For individual solvability the result is straightforward.

(5.1) THEOREM. The equivalences as stated in Theorem 1.1! remain valid

if R is everywhere replaced by &.

PROOF. The proof of i) @ ii) carries over to the ring case. For the
proof of the equivalence ii) e iii) we use Gustafson's generalization

_ of Roth's theorem (see [5, Theorem 1], compare the prvof of Theorem 4.1). []

Our next objective is the extension of Theorem 2.4 to the ring case. We

say that polynomials ao(s),...,az(s)fe ® [s] have the bezoutian prpperty (or

are bezoutian) if polynomials qa(s),...,qz(s) € fls] exist such that

} ai(s) qi(s) =1, i.e., if 8)s+s+58, Span the unit ideal in R[s].

(5.2) LEMMA. Let a; € @Ls] for i-= 0,...,% and let ae(s)rgbe monic

(i.e. with leading coefficient 1). Then 8pse+esd, are bezoutian iff

y 2re bezoutian in ﬁu[s] for every maximal ideal u of &,

ao,u’ cno’ag‘

k]

Here L= ai(mod ) denotes the residue class of a; modulo u and
3

ﬁu := ®/u is the quotient ring of & with respect to U .

PROOF. We want to apply [1, Ch II, §3.3. Prop 11] : If M and N are @®-mo-

dules and N is finitely generated, then an &-homomorphism A : M + N.is

surjective iff for each maximal ideal u of /, the map Au : Mu - Nu derived
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from A by taking quotients, is surjective.

Here Mu = M/uM, Nu := N/uN. One might be tempted to apply this result to

M= @sH*!, N=@ls] and
2
(5:3) A (uo(s),...,uz(s)) ﬁ-g ui(s)ai(s) : M+ N,

Unfortunately,this N is not finitely generated as an ®-module.. Therefore,

we choose instead
(5.4) M := RLzlm] x (RLzln-1D%, N := &[z|m+n]

where n := deg aj, m :i= ?:T deg a, and ®Lz|k] denotes the &-module of
polynomials of degree sk. Obviously, N is finitely generated. Also it is
easily seen that A (defined by (5.3)) maps M into N. We show that A : M->N
is éurjective iff 8ys++es8, are bezoutian. To this extent we prove that if

v € R[z|m+n] can be represented as

L

(5.5 v = Yy + izl u.a,

then such a representation can be chosen in such a way that deg u, < n—l;
(i=1,..0,k). In fact, if one of the.ui's contains a term with a factor
sn, we replace this factor with ag - b, where b := ag - s" e Q®Lz|n~-11].
Then we obtain a term with a factor ays which we combine with Uygs and

a term with a factor b, which is of lower degree than the original factor
™, Repetition of this procedure eventually leads to a representation

of the form (5.5) with deg u <n~l fori=1,...,k.

Now, if 3gs..3, are bezoutian, every v ¢ &[z], in particular every



element of R[z|m+n], has a representation of the form (5.5), where by
the foregoing reasoning, we may assume that deg u, < n-1, But if
v € ®[z|m+n], it follows that -
| )
deg u, = deg ujya; - n < max{deg v, deg % uiai} ~-n<m.
Hence (uc,ul,...,uz) € M. Consequently, A is surjective. The converse
is obvious.

Similarly, a seeesdy | aTE & -bezoutian iff

2

O,u

%
: ves > . oa, M >N
Ay b Gag poreeaty ) izo i PV S THR L T TR

is surjective. Now we can apply [1, Ch II §3.3. Prop 11] . g

(5.6) REMARK, If & = K[xl,...,xv], where K is an algebraically closed
field, it follows from Hilbert's Nullstellensatz that Lemma 5.2 remains
valid even if none of the polynomials is monic. For general rings, how—-
ever, this condition cannot be omitted. For instance, if & = €[[x,y]1],
the ring of formal power series in two variables, the polynomials

aG(S) = ] + xs, al(s) = | + ys are easily seen not to be bezoutian, but
a

a = ] wherep is the (unique) maxinial ideal,generated by x and y.

0,1 21,u

The monicity condition can be relaxed as follows: The leading coefficients

of the polynomials a

g? <22, generate ®. The proof is obviodus. 0

Now we are in the position to formulate the desired gemeralizatiom.of

Theorem 2.4.
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(5.7) THEOREM. Let A, € fY® B e« /PP, q;(s) € RLs] for i = 1,...,k.
The equation

k
Loaxe @ =c
i=1

has a solution X € /2P for every C € /P if and only if ao(s),al(s),

...,az(s) have the bezoutian property. Here

ao(s) s= det{sl ~ B)
and al(s),...,az(s) are the n X n-minors of
A(s) ==ZAiqi(S) .
PROOF. Consider the map
& *p xp
L :Xw ) A;Xq; (B) : &P > gVP
i=1
We have to show that £ is surjective iff 8gseeerdy are bezoutian. This
equivalence was shown for & = € in Theorem 2.4 and it is easily seen

that this proof extends immediately to the case where & is any algebraic~-

ally closed field. We proceed in two steps.

First assume that ® is an (arbitrary) field. Let K be an algebraically
closed field containing ®. The surjectivity of a map as well as the
bezoutian property of a set of polynomials is invariant under field ex-
tensions.(Recall that in a field the bezoutian property is equivalent

to coprimeness.) Hence the gengral—field case is reduced to the algebraic~
ally-closed~field case.

Now let & be arbitrary. Again we apply [1,Ch II, §3.3 Prop. 11] : £ is
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surjective iff

L :XHHEA

. @ L g%
u (B)‘d: an“

9 Py

is surjective for every maximal ideal u of &.

. X
1,u M
Because & is a field,£ is surjective iff a, ,...,a are bezoutian.

W u O,u 2,1
Here

ag’u(s) = det:(:slu - Bu)

is the residue modulo u of ao(s), and similarly for the a, u(s). Hence

b
a, ’u('s),...,az,u(s) are bezoutian iff ao(s),...,aifs) are bezoutian over

®[s], according to Lemma 5.2. O

In the particular case where m = n, i.e., in the case of Theorem !.4, the

result can be simplified and formulated differently.

(5.8) CORALLARY. Let A; ¢ &, B « &P and 4 (3) € Rs1, i = 1,...,k.

Then the following statementsvare equivalent:

i) The equationZAiX q; (B) = C is universally solvable,.

ii) a(s) 1= det A(s) and b(s) := det(sIl - B) are bezoutian. Here

A(s):= 2 Ai q; (s).

iii) a(B) is R-invertible. Here a(s} is defined as in ii).

The proof of ii) e iii) can again be given via maximal ideals.
Alternatively:

ii) = iii) follows after the substitution s = B into u(s)a(s) +v(s)b(s) = 1,
because of the Cayley~Hamilton theorem.

iii) = i) can be proved as in the proof of Theorem 1.4 (see the beginning

of section 2). '
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Also Theorem 2.3 can be generalized to the ring case:

(5.9) THEOREM. Let A, € & B, « @, B;B; = B,B; for 1,j = ...,k

The equation

k
L AXB, =cC
i=1

has a solution X € ﬁgxp for every C ¢ prp if and only if aI(g),...,az(§),

bl(g),...,br(g) have the bezoutian property. Here al(g),...,az(g)

are the n x n minors of
A(s) :=ZAisi R
(where s = (s],...,sk)), and bi(g),...,br(g) are the p x p minors of

s}I - Bl'

skI - Bk

The proof of this theorem is similar to the proof of Theorem (5.7),

except that Lemma 5.2 is replaced by

(5.10) LEMMA.'§5g~al{g),.“;,ah(g) € R(s] = ﬁ[sl,...,sk] and assume that

for i = 1,...,k there is a polynomial p; amongst the aj's such that Py

is only dependent on s; (and not on the other indeterminates) and is monic

with respect to this variable. Then al(g),...,ah(g) are bezoutian iff

a; u(g),...,ah u(_s_) are bezoutian in ®[s] for each maximal ideal 1 of K.
s s —
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