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ABSTRACT 

Linear matrix equations were studied by Sylvester, Stephanos, Datuashvili 

and Roth. In this paper, solvability tz::Onditions given by. these authors are 

generalized in various directions: to nonsquare equations, nonpolynomial 

type equations, in particular equations given by an integr~l, and finally 

to equations over an arbitrary commutative ring with unit element. 
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1. Introduction 

The object of this paper is to give necessary and sufficient conditions 

for the matrix equation 

k 
(1. 1) L 

i=I 
A.XB. = C 

1. 1. 

to have a solution X. Distinction is made between universal and indivi-

dual solvability. Equation (1.1) is called universally solvable if it 

has a solution for every C. Universat solvability thus is a condition 

on the matrices A. and B •• Equation (1.1) is called (individually) solv-
1. 1. 

able if it has a solution for the particular C given. 

Equations of the form (1.1) were considered in literature (see e.g. [4, 

Ch VIIIJ, [8, Ch VIIIJ, (63). In principle, it is possible to rewrite 

(1.1) using tensor products and to give solvability conditions in terms 

of the coefficient matrice"s thus obtained (see [6J, [8]). Our objective, 

however, is to find conditions expressed more directly in terms of the 

matrices A. and B .• It seems unlikely that such a condition can be found 
1. 1. 

-for_ the general -case of equation (1. 1). But for-'special cases, anum .... 

ber of (more or less known) results can be given. Sometimes these condi-

tionsareformulated in terms of the spectrum (i.e. the set of eigenvalues) 

of the map 

k 
X » L 

i=I 
A.XB •• 

1. 1. 

For this to be possible it is necessary that £ map a certain matrix space 

nXm 
(say, m ,the space of real n x m matrices) into itself. In this par-
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ticular case, computation of the spectrum act) of t is equivalent to deter-

mination of universal solvability conditions for (1.1). In fact, (1.1) 

is universally solvable iff 0 i act). Conversely, A € aCt) iff the 

equation 

lex) - AX • C 

is universally,solvable.When in the rest of this introduction referring 

to the literature, we will not explicitly distinguish between universal 

solvability conditions 'and spectrum computations. 

Let us briefly describe some of the most important results on the solvabi-, 

lity of equations of the type (l.t). In 1884, Sylvester showed that the 

equation 

(1.2) M-n=c 

is universally solvable iff a(A) n a(B) - ~ (see [8, Theorem 46.2J). This 

equation will henceforth be referred to as Sylvester's equation. The re-

suIt was extended in 1900 by C. Stephanos (see [8, Theorem 43.8]) to 

equations of the form (1.1), where A. - p.(A), B. = q.(B). Here A and B 
~ ~ ~ ~ 

are matrices and p. and q. are polynomials. Stephanos expresses his con-
1 ~ 

dition in terms of the polynomial 

(1.3) p(z,s) := L p.(z)q.(s) 
~ 1 

associated to equation (1.1). Specifically, he shows that (1.1) is uni-

versally solvable iff p(A,~) I 0 for A € a(A),~€a(B). This result is 

easily seen to be an extension of Sylvester's result. 

A further generalization was obtained by G.S. Datuashvili in 1966 (see 

[3]). Datuashvili allows A. to be arbitrary and maintains the condition 
1 
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that B. be of the form B. = g.(B): 
111 

(1.4) THEOREM. (Datuashvili). Let A; € JRmxm , B € JRPXP and letq.(s) 
-- 1- 1 

be a polynomial for" i:= 1, .••• ,k •. The. equation 

k 
(l.5) L A. X g.(B) = C 

i-I 1 1 

is universally solvable iff the associated polynomial matrix 

(I.6) 
k 

A(s):- t 
i=l 

A.g. (s) 
1 1 

is nonsingular for s € o(B). 

Again, it is easily seen that the result generalizes Stephanosfresult. 

Datuashvili's proof can briefly be described as follows: First he assumes 

without loss of generality that B is upper triangular. Writing the map 

X t+ \' A.Xq.(B) as a tensor product map he notices that the coefficient 
L. 1 1 

ma:t'idx will be upper block triangular, so that its invertibility properties 

can be inferred from the entries on the block diagonal. 

In section 2 we give an alternative proof, which does not use tensor 

products but is based on the substitution of matrices into polynomial 

matrices (see [4, Ch IV, §3]). The proof given has the advantage that it 

yields an explicit formula for the solution. Furthermore, it can be gen-

erdized_in various ways. In Theorem 2.4, Datuashvili' s result is general-

ized to the case where A. is allowed to be nonsguare. Furthermore, in 
1 

Theorem 2.13 the requirement that B. be of the form B. = g.(B) will be 
1 1 1 

relaxed. A condition is given which is valid if it is only known that 

,. 
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the Bi's commute. This is a true generalization since matrices B1, ••• ,Bk 

can commute without being polynomial in a fixed matrix B (see [2, Section 

IV]). Also, the method can be used to give universal solvability conditions 

for a continuous version of (1.5), viz. 

(1.7) 

b 

J A(t)X f(t,B)dt = C , 

a 

see section 3,where this result is obtained as a special case of a more 

general type of equation. 

Finally, in section 5, the results are extended to equations over an ar-

bitrary commutative ring ~. Of course, in this general situation, it is 

not possible to give a condition in terms of eigenvalues. But the con-

ditions given in Theorem 1.4 and its generalizations can be formulated 

in an."eigenvalue-free" way. E.g. introducing the pqlynomials 

a(s) := det A(s), b(s) :- det(sI - B) 

we can formulate the condition of Theorem 1.4,as: a(s) and b(s) have the 

be;QJ'l:tian property, i.e. there exist polynomials u(s) and v(s) such that 

u(s)a(s) + v(s)b(s) = 1. It turns out that formulated this waY,Theorem 

1.4 extends to general commutative rings. It should be remarked that 

the more obvious condition:"a(s) and b(s) are coprime" turns out to be 

too weak in general rings. 

In the particular case that ~ = ~[~], where ~ - (~I""'~ ) (or, more 
- v 

generally, ~ - K[~], where K is any algebraically closed field), a and 

b are polynomials a(i,s) and b(i,s) in ~ and s. It follows from Hilbert's 
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Nullstellensatz (see [1, V 3.3J) that a(~~s) and b(~,s) have the bezoutian 

property iff they have no common zero. The absence of common zeroes thus 

will be a necessary and sufficient condition for the universal solvability 

of (1.5). This can be formulated as follows: 

(1.8) THEOREM. Let A. € (¢[~])nxn, B € (¢[;])mxm and let q. € ¢[~,s]. 
- 1. 1. 

Then the equation 

has a solution XC;) € (¢[~])nxm for every C € (¢[tJ)nxm iff the polxno-

mial matrix 

A(~,s) := lA, (;)q. (~,s) -> 
1. 1. 

is nons ingul ar for every ~ € ¢v and every eigenvalue s of B(;). 

In section 3 the individual solvability of (1.1) is investigated. For 

Sylvester's equation (1.2) a well-known condition was given by W. Roth 

in 1952 (see [IIJ). 

Specifically: 

(l.9) THEOREM· (Roth). Given A € lRnxn , B € lRPxp and C € lRnxm , equation 

(1.2) has a solution if and only if the matrices 

(1.10) 

are simhar • 
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An obvious question is how to generalize this result to equations of the 

form considered e.g. in Theorem 1.4 and its generalizations. A general-

ization in terms of similarity seems unlikely to be possible. However, 

according to([4, VI §4 and 5]), two matrices M and N are similar iff SI-M 

and sI-N are ::R[s] -equivalent, i.e. there exist JR [s]-invertible matrices 

pes) and Q(s) such that P(s)(sI - M) = (sI - N)Q(s). Consequently, the 

matrices (1.10) are similar iff 

[ 
sI-A -C 

1 · [ o sI-B 

sI-A o r o sI-B 

are lR[s]-equivalent. In this formulation.Roth's theorem can be extended 

as follows 

(1.11) THEOREM. Let A.JB, q. and A(s) be given as in Theorem 1.4. The 
- 1 1- -

following statements are equivalent: 

i) (1.5) has a solution, 

ii) The equation 

( 1.12) A(s)U(s) + V(s)(sI - B) = C 

has a solution (U(s),V(s» € (JR [8J) nXm x (JR (sJ)nxm, 

iii) The matrices 

[ 
A(s) 

-c 1 [ A~S) 0 

1 0 sI-B ' sI-B 

are JR [sJ-equivalent. 
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The ]R[sJ-equivalence of two polynomial matrices can be checked by 

computing their invariant factors (see [4, VI, §3 Cor 1]). 

. . 
Theorem 1.11 will be proved in section 4. In addition, some generalizations 

will be given. Finally, in section 5 the result will be generalized to 

equations over a commutative ring (based on a result by W. Gustafson [5J). 
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2. Universal solvability conditions 

We start with a proof of Datuashvili's theorem 1.4: 

PROOF. "iflt. The matrix A(s) is invertible as a rational matrix and we 

have the following relation 

A(s)D(s) = a(s)I 

where a(s) := det A(s) and D(s) is the adjoint matrix. It is given that 

a(~) P 0 for ~ € Q(B). Hence, a(B) is invertible. Define 

Then 

-1 
C1 := C(a(B» 

E(s) := D(s)C 1 • 

k 
A(s)E(s) == 1: A. E(s)q. (s) == C1 a(s) 

. I ~ ~ 
~= 

We substitute s = B from the right into this equation and denote by E(B) 

the result of substituting B from the right into E(s) (see [4,IV, §3J). 

The following equality results: 

k 
1: A.: E (B)q.:(B) == C1 a(B) ==_C 

i=I'" ... 

which shows that X := E(B) is a solution of (1.5). 

"only if~ It is easily seen that if (1.5) has a real solution for every 

real C, then it has a complex solution for every complex C. Suppose that 

for some ~ € cr(B) the matrix A(~) is not invertible. Let p and q be non-

zero vectors such that q'A(~) == 0, Bp = ~p. We claim that (1.5) has no 



<, 
! 

solution for C := qp'. In fact, for any matrix X we have 

q' 2A.Xq.(B)p "" q'A(iJ)Xp "" 0 , 
1. 1. 

whereas q'Cp "" q' qp'p {: O. 0 

The following corollary is the result as it was actually stated by Datu-

ashvili: 

(2.1) COR~LLARY. The spectrum of the map 

~ nXm nxm t: XI+LA.Xq.(B): lR +lR 
1. ]. 

is 

a(t) := UiJ€a(B) a(A(iJ». 

This result is derived from Theorem 1.4 in the way suggested in the 

introduction, i.e. via the fact that A € a(t) iff t - AI is not sur-

jective. 

The proof given above yields an explicit solution of equation (1.5). In 

the particular case of Sylvester's equation, we have A(s) = sl - A (apart 

from an irrelevant minus sign). Hence, the solution of (1~2) (under the 

assumption a(A) n a(B) - 0) is given by 

(2.2) X - (DC)(B) a-I (B) 

where (DC) (B) is the result of right substitution of B into the polynomial 

matrix D(s)C. (Note that Band a-I (B) commute), and D(s) is the adjoint 

matrix of A (Compare [6, section I1J, where the solution of Sylvester's 

< I 
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equation is expressed in the adjoint matrix under the assumption that A 

is simple). Using the algorithm of Souriau-Frame-Faddeev(see [4, IV, §5] 

or [10, Ch 1, section 2J ),equation (2.2) can be reduced to the following 

algorithm. 

(2.3) COROLLARY. Consider Sylvester's equation (1.2), assume that 

cr(A) n cr(B) - 0 and define matrices Lk, Mk, Yk for k - O, ••• ,n ~ 

numbers bk ~ k - O, ••• ,n-I ~ 

La :- Mo 
;= ;t, Yo ;- C , 

bk := -(k+ 1)-1 tr(MkA) , 

Mk+t :- MkA + bkI , 

~+1 := LkB + bkI , 

Yk+1 := YkB + MkC 

fork"" 0, ••• , n-I. Then X :=Y"L- 1 is the solution of (1.2)~ nn 

The following is a generalization of Theorem 1.4 to the case where A.'s 
1. 

are not square. 

(2 4) THE REM nxm pxp C· J Th • • O. Let Ai E: lR ,B e lR ,qi e lR s. e equat1.on 

k 
(2.5) I A. X q.(B) = C 

i=1 1. 1. 

is uaiversally solvable if and only if 

(2.6) 
k 

A(s) :- r 
i""l 

A. q. (8) 1. 1. 

has full .row rank for· every s e cr(B). 
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PROOF. The necessity is proved the same way as in Theorem 1.4. For the 

sufficiency we can also use the same proof, provided we can find a poly-

namial matrix D(s) and a scalar polynomial a(s) such that 

(2.7) A{s) D{s) '" a(s)1 , 

and a{B) is invertible. For this one can use the Smith canonical form for 

polynomial matrices (see [7, Theorem II, 9]). In fact, we can write A = U I:. V 

where U and V are lR [s]-invertible and I:. - [l:.pO], I:.} :- diag{1/Il"" ,1/In) , 

1/11 11/12 1 ••• 1/In' Let Al be the diagonal matrix for which I:.IAI =1/InI. Then we 
-1 -) ,. 

may choose D '" V AU , where 11;- [A
1
,O]'"and a(s) = 1/In{s). Since a(s) 

is the G.C.D. of the n x n minors of A(s), we have that a{p) ~ ° for 

lJ. E: o{B). 

An alternative construction for D and a, not depending on the Smith 

canonical form, will follow from the proof of Theorem 2:13 below. 

In the following we replace the assumption B. '" q.{B) by the weaker con-
1. 1. 

dition B.B. '" B.B .• First we need some preliminary concepts and results. 
1. J J 1. . 

(2.S) DEFINITION. Let Bl""'~ be commutative m x m'matrices. A vector 

! '" (Al""'~) E: ¢k is a (joint)eigentuple of Bt, ••• ,Bk if there 

exists a common corresponding eigenvector, i.e. if there exists v ~ ° 
such that 

B.v '" A.v 
1. 1. 

(i '" 1, ••• ,k). 

The proof of the following lemma shows in particular the existence of 

joint eigentuples. 

o 
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(2.9) LEMMA. ~ Blt ••• ,~ be commutative matrices and let $(sl, ••• ,sk)=$(!) 

be a polynomial. Then $(B1, ••• ,Bk) is nonsingular iff $(~) ~ 0 for any 

joint eigentuple of B1, ••• ,Bk • 

mXm m PROOF. First we observe that, if B ~ ~ and w E lR , w ~ 0, then there 

exists a polynomial pes) such that p(B)w is an eigenvector of B. In fact, 

if q(s) is a nonzero polynomial of minimal degree such that q(B)w ... 0, 

then it is easily ~een that deg q ~ I, so that we can find X and pes) such 

that q(s) = (s - X)p(s). Then v := p(B)w ~ O_Csince deg p < deg q) and 

(B - AI)v = q(B)w = o. 

Now assume that $(~) ... 0 for some eigentuple ~ of B1, ••• ,Bk • Then Biv = 

"iv for some v ~ O. Hence $(B1, ••• ,Bk)V - $(~)v = 0, so that $(B1, ••• ,Bk) 

is singular. 

Conversely, assume that $(B1, ••• ,Bk)WO - 0 for some Wo ~ O. By the above 

observation, there exists a polynomial PI(s) such that wI :- pt(Bt)wO 

is an eigenvector of B1• Applying the observation repeatedly, we obtain 

a sequence of vectors w. and numbers ". satisfying 
1. 1 

w. = p. (B. )w. 1 ~ 0 , 
1. 1. 1. 1.-

B.w. - ".w .• 
1. 1 1. 1. 

Finally we find v = wk and, by the commutativity of the Bi's, it is 

easily seen that BiV ... Aiv for i ... 1, ••• ,k. Renee 2l::- (1.1"" 'Ak) is 

an eigentuple. In addition 

But, $(B1, ••• ,Bk)v'" $(~)v, and, consequently $(~) ... a . o 



- 2.6 -

(2.10) REMARK. In terms of the spectrum, we have 

(2. 11) 

This property is usually taken as a definition of the joint spectrum 

(see [12, §lJ). Specifically, 

Equivalently one can say that . ~ E a(B1, ••• ,Bk) iff for any polynomial ~(~) 

we have that ~(~) ... 0 implies that ~(Bl, ••• ,Bk) is singular. 

Let us show tha:t:l € O(B I , ••• ,Bk) iff ~ is a joint eigentuple. 

If A is a joint eigentuple, say Biv ... Aiv , then HB 1, ••• ,Bk)V ... ljI(~)v, 

so that ~(~) ... 0 implies that $(B1, ••• ,Bk) is singular. 

Conversely, assume that there does not exist v such that B.v ... A.v for 
1. 1. 

i - l, ••• ,k. Then 

It follows from the Lemma below that complex numbers al, ••• ,ak exist 
k 

such that L a.(B. - A.I) is nonsingular. Consequently, if we define 
i-I L 1. 1. 
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LEMMA. ~ BO,.:.,Bk be commutative m
k

x m ~trices and let rank[BO, ••• ,B.p-m. 

Then there exists a such that B(a):- r B.a1 is no.nsingular. 
o 1 

PROOF. If B(a) is singular for all a, then B(e) is singular over the field 

of rational functions lR(s) • Hence, there exists a rational vector pes) .; 0 

such that B(s) pes) - O. We may assume that pes) is polynomial. Let 

v . 
pes) - r p.sJ, where p .; 0, and assume that pes) is of minimal degree. 

j-O J v 
Then the equation B(s) pes) == 0 reads 

(2.12) 

r 
BOPO - 0 , 

BOPI + BIPO = 0 , 

We notice that 

B(S)(BkP(S» == Bk B(s) pes) == 0, 

and that deg(BkP(s» < deg pes) because of BkPv = O. By the minimality 

condition on pes), it follows that BkP(s) == 0, i.e., BkPi - 0 for i - O, ••• ,v. 

Considering the second last equation, BkPv- t + Bk-tpv - 0, we see that 

Bk-1Pv == o. Since B(s) (Bk_tp(s» == 0 we repeat the previous reasoning and 

conclude Bk-tPi == O. Thus continuing,we obtain 

(R. == 0, ••• , k) , 

contradicting the assumption of the Lemma. o 
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Using Lemma 2.9, we are able to prove the following generalization of 

Theo.rem 2.4. 

(2. 13) TlIEOREM. Let A. € lRnxm, B. € JRPxp and suppose that B. B. ... B. B. 
-1. 1. 1J JI. 

(i,j ... I, ••• ,k). Then the equation 

k 

i-I 
I A.X B. = C 

1. 1. 
(2.14) 

is universallx solvable iff A{~) has full row rank for every joint eigen­

tuple of B
1

, ••• ,B
k

• Here 

k 

i=I 
I A. s .• 

1 1. 

For the proof we need a multidimensional interpolation result: 

(2.tS) LEMMA. Let z. € Ck (i ... O, •.• ,t) be distinct points. Then there exists 
- 1 

,(!) € C[sI,···,sk] such that ~(~O) ... 1, ~(~i) = 0 (i ... t, ••• ,k) • 

PROOF. Let z .... (z. l""'z. k)' By Lagrange's interpolation theorem there 
-1 1, 1, 

exists for j ... I, ••• ,k a polynomial L. € C[s], such that L.(z .• ) ... 1 if 
J J 1J 

i ... 0 and zero otherwise. 

Now the., function 

k 
II L.(s.) 

j=l J J 

satisfies the requirements. 

PROOF,of Theorem 2.13 : lIif". If A = 9'1' ... ,Ak) is a joint eigentuple 

of B1, ••• ,Bk , then necessarily, Ai € a(Bi ). Hence there are at most 

finitely many eigentuples, say ~(1) , ••• ,~(t). Choose polynomials 

o 



. . , 

- 2.9 -

C) ~i e ~[sl,···,skJ such that ~i(~ J ) • 0ij (i,j. l, ••• ,t). This is pos-

sible because of the previous Lemma. Define 

t 

i-I 
r F. cp~(s) , 

1. 1.-

where F. is an m x n matrix such that A(A(i»F. • I. Such an F. exists 
1. - 1. 1. 

because of the assumption of the Theorem. Then A(!)Fis an n x n polynomial 

matrix invertible on the joint eigentuples of B1, ••• ,Bk • Let G(!) and a(!) 

be such that AFG = aI and a(~(i» ~ 0 for i = l, ••• ,t. Because of Lemma 

2.9, a(B1, ••• ,Bk) is invertible. Setting FG =: D, we can complete the 

"if" -part of the proof exactly as in the proof of Theorem 1.4. 

"only if": This proof is completely similar to the corresponding proof of 

Theorem 1.4 • o 
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3. Generalizations and applications 

Consider a p x p matrix B ana an n x n""'lllatrix -valued function A(s) analytic 

on (a neighbourhood of) a(B). The right substitution of B into A(s) is 

defined by 

(3.1) A(B):= f A(s) (sI - B) -1 a's 

r 

where r is a contour surrounding a(B) and contained in the domain of 

analyticity of A(s), and ~s stands for ds/(2~i). It is easily seen that 

in the case where A(s) is a polynomial, this definition coincides with the 

one used in section 2. If X is a constant m x p matrix and A(s) an n x m-

matrix-valued map we define the n x p-matrix-valued function AX by 

(3.2) (AX)(s) := A(s)X • 

The equation in X that we consider in this section, is 

(3.3) (AX) (B) == c, 

where C is a given n x p matrix. This equation is readily seen to reduce 

to (1.5) when A(s) is defined by (1.6). The following result generalizes 

Theorem 2.4: 

(3.4) THEOREM. Equation (3.3) is universally solvable if and only if A(s) 

has full row rank on a(B). In this case there exists a matrix function 

D(s), analytic on a(B), such that A(s) D(s) = 1. A solution of (3.3) is 

(3.5) X = (DC)(B) • 

- . 
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PROOF. "Only if": Suppose that for some II we have nonzero vectors v, w 

such that v'A(ll) = 0, Bw = pw. Then 

J 
-1 

v'(AX) (B)w = v'A(s)X(sI - B) w as -
r 

• 
- f v,A(s) - A(ll) Xw as = 0 , 

. s - II 
r 

since the integrand is analytic in the domain enclosed by r. Hence, (3.3) 

does not have a solution when vIew .;. o. 

"1£n: Exactly as in the proof of Theorem 2.13, one can use interpolation 

to construct a matrix-valued function D(s) analytic on a(B) and such that 

A(s) D(s) = I. We show that (3.5) is a solution of (3.3): 

(AX)(B) = f A(s) (DC) (B)(sI - B)-las = 
rs 

- f f -1 -). 
A(s) D(z) C(zI - B) (sI - B) tfz ~s • 

We choose for r a contour surrounding a(n) but contained in the domain z 

enclosed by r . Using the well-known formula s 

we can write (AX)(B) - J 1 + J2, where 

J 1 := f A(s) f D(z)C(z - s)-l«Z(sI - B)-l ~ = 0 

r r 
s z 

because z ~ (z - s)-1 is analytic in the domain enclosed by r . Furthermore, 
z 
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J
2 

... - f J . A(s) D(z)C(z - s) -las (zI - B) -l oz = 
fz fS 

,. f A(z)D(z) 

r 

-1 
C(zI - B) . OZ ... C • 

z 

In the proof of Theorem 2.4, D(s) and a(s) were chosen such that AD ... aI. 

If one allows D to be an arbitrary analytic function instead of a poly-

nomial, like we do here, we may replace D by D/a. In the particular case 

where m ,. n, the number of equations is equal to the number of unknowns. 

In this case, (3.5) is the unique solution of (3.3) (under the conditions 

of the theorem). Also, as in Corollary 2.1 

t. X ~ (AX) (B) 

has the spectrum 

a(t.) ,. Ull€a(B) a (A(ll) ) • 

We mention two special cases of equation (3.3): 

o 

(3.6) EXAMPLE. Assume that AO,A
i
, •.• is a sequence of n x mmatrices such 

co • 

that i: IIA .. II Cll. < co, where Cl > O. Let B be any p x p -matrix with spectral o l. 

radius less than Cl. Then 

A(s) 
co 
\' i := /., A.s o l. 
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is analytic for Is! < CL and (AX) (B) is defined for every m x p matrix X. 

It is not difficult to verify that 

a> • 

(AX) (B) = L A.X Bl. ' , 
o 1. 

so that the equation reads 

(3.7) EXAMPLE. Let 

T 

J 
L(t)e-stdt 

A(s) := 

o 

Then A(s) is an entire funtion and 

T 

(AX)(B) = J L(t)Xe-tBdt 

o 

tA Consider the special case L(t) = e • Then 

T 

A(s) = f e(A-sI)tdt 
o 

and A(~) is nonsingular iff 

for A ~ a(A), i.e. iff A - ~ ~ 2~ik/T for any nonzero integer k. Hence 

the equation 

o 
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is universally solvable iff for nonzero k E~ we have 2~ik/T i a(A) - o(B). 

(Compare [9, §I4.2J). 

This example can be generalized in a straightforward way to the eq~ation 

J L(v) X f(v,B)dp = C 

V 

where (V,F,p) is a compact topological measure space and f : V x (t -+- It is 

a continuous function such that s ~ f(v,s) is analytic on a(B) for every 

V E V. Here, of course, 

A(s) = J L(v} f(v,s)dp • 

V 

Let pes) be an n x n-matrix-valued function analytic in a certain domain 

n in (t. Then pes) defines a mapping 

P X l+ P(X) 

f ;> nxn . . d"' • d' h or X--", It w1th spectrum contaJ.ne J.n n. We are l.ntereste 1n t e 

question of when P is locally invertible(withC1 inverse} at a given 

matrix B. For this we apply the implicit-function theorem. That is, we 

investigate whether the linearization of P at B is invertible. We have 

for small Y: 

PCB + Y) - PCB) = J pes) {(sl - B _ y)-l 

= J P(S) (sl- B)-l Y~Sl - B - y)-l~s. 
r 

-1 
(sl - B) las 

o 



- 3.6 -

It follows that the linearization of P(X) at B equals 

ley) :- J P(s)(sI - B)-l Y(sI - B)-l ~s ,.. 

r-

where 

,.. f A(s) Y(sI - B)-l ~s ,.. (AY) (B) 

r 

-1 A(s) := (P(s) - P(B»(sI - B) 

is analytic on a, and hence on o(B) • 

Here we use that 

f (sI - B)-l Y(sI - B)-l ds = 0 , 

r 
as one can easily verify by .. letting r be a circle with radius tending to IXI. 

We remark that we can write 

A(sr = Q(s,B) 

where 

{ 

(P(s) 

Q(s,z) :-
p' (s) 

- P(z»/(s - z) '( s r z) 

(s = z) • 

According to Theorem 3.4, it follows that l is invertible iff A(~) is 

invertible for ~ € o(E). 

In the particular case that pes) ,.. pes) is a scalar analytic function, the 

condition can be further simplified. In this case, according to the spec-

tral-mapping theorem, A(~) is nonsingular iff Q(A,~) + 0 for A € o(E). 

Hence we find: 

If P is defined by 



- 3.7 -

P X - p(X) , 

~ P is locally invertible at B iff 

i) peA) f. P(ll) 

ii) pt(A) f. 0 

(A,ll € a(B), A f. ll) 

(A € a(B». 

Notice that these conditions are exactly the conditions for the function 

pes) to be locally invertible on a(B) , i.e., for the existence of a function 

q(s) analytic on a neighbourhood of p(a(B» such that q(p(s» • s. Hence 

the inverse of P is given by: 

Q. : X 10+ q (X) • 

We conclude that we have the following: 

If P : X~p(X) has a C1 inverse at a certain matrix B, then there is an 

inverse Q. of the form Q.: X~ q(X). 

Notice that not every function analytic in a neighbourhood of a certain 

matrix has the representation q(X) (e.g. P(X) = XT). 
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4. Individual solvability conditions 

PROOF of Theorem 1.11. 

i) ~ii): Let X be a solution of (1.5). Then 

C - A(s)X - ~ A.X(q.(B) - q.(s)I) - ~ A.XV.(s)(sI - B) , l. 1. 1. 1. L. 1. 1. 

where V.(s) :-~.(s,B) and 
1. 1. 

qi(Z) - qi(s) 
til. (s,z) :- .-''::'---''';;;;''-

1. Z - S 

Hence U(s) :- X,V(s) := L A.XV.{s) form a solution of (1.12). 
1. 1. 

ii) • i): Right substitution of B into (1.12) yields 

r A.U(B) q.(B) = C • 
1. 1. 

Hence X = U(B) is a solution of (1.5). 

ii) ~ iii): In [11] it is shown that the polynomial equation 

A(s) U(s) + V(s) B(s) = C(s) 

has a solution iff 

C(s) 

B(s) 1 
' [A(S) 0 1 

o B(s) 

are lR[s}equivalent. Application of this to B(s) := sI - B, C(s) := C 

yields the result. 0 

We mention two generalizations of Theorem 1.11 • 

. . 
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(4.1) THEOREM. Let A. ,B. =b.;;.e_a;;;.;s;;.....;;i;;.;;n;;..,,;;;Th=e,;;.,or,;;,.em.::.:::.....:2...: • ...:1..;;.3_<...:an...:d~1...:e __ t C € It
nxp 

• The 
- 1 1-

following statements are equivalent : 

i) Equation (2.14) has a solution X. 

iii) The matrices 

o 

o 

.!!! It[~J- equivalent. 

PROOF. i) ~ ii):similar to the previous proof. ii) ~ iii): Here one 

uses Gustafson's extension of Roth's theorem to general commutative 

rings«see [5J). In this generalization Gustafson, states that the 

matrix equation 

AU+VB=C 

over a commutative ring ~ has a solution iff the matrices 

are ~-equivalent. (See also section 5). o 
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(4.2) THEOREM. Let A(s), B be given as in Theorem 3.4, and let C e: :m.nxp • 

Then the following statements are equivalent: 

i) Equation (3.3) has a solution, 

ii) The equation 

A(s) U(8) + V(s)(sI - B) = C 

has a solution U(s), V(s) analytic on Q. 

iii) The matrices 

C 

1 [ 

A(s) 0_ - 1 
sI - B sI - B o 

are equivalent with respect to the ring of functions analytic on Q. 

The proof of i) .. ii) is based on contour-integral manipulations a:s in 

section 3. The proof of ii) .. iii) depends again on Gustafson's result. 

It is of interest to see whether the results of section 2 can be recovered 

from the previous results. The following lemma is instrumental. 

• (4.3)LEMMA. Let ACs) and B(s) be polynomial matrices.Then the following 

statements are equivalent: 

iJ The equation 

(4.4) A(s) U(8) + V(s) B(s) = C(s) 

has a solution (U(s),V(s» for every polynomial matrix C(s) (of 

suitable dimensions). 

ii) The equation 

(4.5) A(s) U(s) + V(s) B(s) - C 

has a solution for every constant matrix C. 



iii) For any So € ~,A(sO)has full row rank or B(sO)has full column rank. 

PROOF. i) - ii) is trivial. 

ii} - iii) Suppose that for s~me So € C there exist nonzero vectors v, w 

such that v'A(sO) '"' 0, B(sO)w '"' O. Multiplying (4.4) from the left with 

v' and from the right with w,we find v'Cw '"' O,which is not true for 

every C. 

iii) - i) Using Smith canonical decompositions for A and B one can "dia-

gonalizeft equation (4.4), Le. we may assume -that A(s) and B(s) are diagonal. 

Th ( . ') th . d e 1,J equat10n rea s 

a.(s) u .. (s) + b.(s) v .• (s) '"' c .. (s) • 
1 1J J 1J 1.J 

These equation have solutions, since iii) implies that ai(s) and bj(s) 

are coprime. 0 

COmbining Lemma 4.3, where B(s) :'"' 8I - B, with Theoreml.ll we find 

a new proof of Theorem 2.4. 
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5. Matrix equations over rings 

In this section ~ denotes a commutative ring with unit element. We con-

sider equation (I.I) again, but now we assume that the matrices Ai' Bi 

and C have entries in ~ and we try to find a solution X with entries in ~. 

For individual solvability the result is straightforward. 

(5.1) THEOREM. The equivalences as stated in Theorem 1.11 remain valid 

if It is everywhere replaced by ~. 

PROOF. The proof of i} * ii} carries over to the ring case. For the 

proof of the equivalence ii} - iii) we use Gustafson's generalization 

of Roth's theorem (see [5, Theorem IJ, compare the prbof of Theorem 4.1). 0 

Our next objective is the extension of Theorem 2.4 to the ring case. We 

say that polynomials a
O 

(s) ,. • q a:t (~r E ~ [sJ have the bezoutian pro1?ert¥ (or 

are bezoutian) if polynomials qO(s}, ••• ,q1{s) E ~[s] exist such that 

I ai(s) qi(s) - 1, i.e., if aO, ••• ,a1 span the unit ideal in ~[sJ. 

-
(5.2) LEMMA. Let a i E ~[sJ for i. 0,. ' •• ,1 and let aO(s) >be monic 

(i.e. with leading coefficient 1). Then aO, ••• ,a1 are bezoutian iff 

aO , ••• ,an are bezoutian in ~ [sJ for every maximal ideal ~ of ~. 
,~ ~, ~ ~ 

Here a. = a.(mod ~) denotes the residue class of a. modulo ~ _and 
-- 1.,~ 1. -- 1. 

~~ := ~/~ is the quotient ring of ~ with respect to ~ • 

PROOF. We want to apply. [1, Ch II, §3.3. Prop 11] : If M and N ~ ~~ 

dules and N is finitely generated, then an ~-homomorphism A. : M + N·is 

surjective iff for each maximal ideal p of ~, the map A : M + N derived 
- 1.1 1.1 1.1 ..;;....;;..;:;.;;;;.;....:.::. 



• 

- 5.2 -

~A by taking quotients. is surjective. 

Here M = M/WJ, N := N/j.lN. One might be tempted to apply this result to 
. j.l j.l 

M = (~[sJ)~+I, N = ~[$J and 

~ 

(5.3) A : (uO(s), ••• ,u~(s» * L u.(s)a.(s) 
'" 0 1. 1. 

M -+ N. 

Unfortunately,this N is not finitely generated as an ~-module~, Therefore, 

we choose instead 

(5.4) M := ~[zlmJ x (~[zln-IJ)~, N := ~[zlm+nJ 

where n := deg aO' m := max deg a. and ~[zlkJ denotes the ~-module of 
i~l 1. 

polynomials of degree sk. Obviously, N is finitely generated. Also it is 

easily seen that A (defined by (5.3» maps Minto N. We show that A : M-+N 

is surjective iff aO, ••• ,a~ are bezoutian. To this extent we prove that if 

v € ~[zlm+nJ can be represented as 

(5.5) u.a. 
1. 1. 

then such a representation can be chosen in such a way that deg u. s n-l, 
1. 

(i = 1, ... , k) • In fact, if one of theu.'s contains a term with a factor 
1. 

sn, we replace this factor with aO - b, where b := aO - sn € ~[zin-IJ. 

Then we obtain a term with a factor aO' which we combine with uOaO' and 

a term with a factor b, which is of lower degree than the original factor 

sn. Repetition of this procedure eventually leads to a representation 

of the form (5.5) with deg u. S n-l for i = l, •• o,k. 
1. 

Now, if aO, ••• ,a~ are bezoutian, every v € ~[zJ, in particular every 
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element of ~[zlm+n], has a representation of the form (5.5), where by 

the foregoing reasoning, we may assume that deg u. s n-t. But if 
1. 

V E: ~(z Im+n], it follows that '~' 

1 
deg Uo = deg uOaO - n S max{deg v, deg t uiai } - n Sm. 

Hence (uO,ul ' ••• ,ut ) E: M. Consequently, A is surjective. The converse 

is obvious. 

Similarly, aO , ••• ,an are ~ -bezoutian, iff 
,).1 JY,).1 

u. a. 
1.,).1 1.,j.I 

M "'" N , 
j.I j.I 

is surjective. Now we can apply [1, Ch II §3.3. Prop 11] • 

(5.6) REMARK. If ~ = K[x1, ••• ,xv]' where K is an algebraically closed 

field, it follows from Hilbert's Nullstellensatz that Lemma 5.2 remains 

valid even if none of the polynomials is monic. For general rings, how-

ever, this condition cannot be omitted. For instance, if ~ ~ C[[x,y]], 

the ring of formal power series in two variables, the polynomials 

ao(~) = 1 + xs, a l (s) = 1 + ys are easily seen not to be bezoutian, but 

aO = a 1 =.1 wherej.l is the.(unique) maximal ideal,generated by x and y •. 
,j.I ,j.I 

o 

The monicity .condition can be relaxed as follows: The leading coefficients 

of the polynomials aO, ••• ,a
1 

generate ~. The proof is obvious. o 

Now we are in the position to formulate the desired generalization.of 

Theorem 2.4. 
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(5.7) THEOREM. Let A. € ~xm, B € ~pxp, q.(s) € ~[s] for i = I, .•• ,k. 
-- 1 1 

The equation 

k 
I 

i=I 
A.Xq. (B) = C 

1 1 

has a solution X € ~xp for every C € ~nxp if and only if aO(s),at(s), 

••• ,aR, (s) have the bezoutian property. Rere 

ao(s) := det(sI - B) 

and at(s), ••• ,aR,(s) are the n x n'minors of 

A(s) := I A. q. (s) 
,11 

PROOF. Consider the map 

k 
l : X 1+ r A.X q. (B) 

i-I 1 1 

We have to show that l is surjective iff aO, ••• ,aR, are bezoutian. This 

equivalence was shown for ~ = ¢ in Theorem 2.4 and it is easily seen 

that this proof extends immediately to the case where ~ is any algebraic-

ally closed field. We proceed in two steps. 

First assume that ~ is an (arbitrary) field. Let K be an algebraically 

closed field containing ~~ The surjectivity of a map as well as the 

bezoutian property of a set of polynomials is invariant under field ex-

tensions.(Recall that in a field the bezoutian property is equivalent 

to coprimeness.)Rence the general-field case is reduced to the algebraic-

ally-closedrfield case. 

Now let ~ be arbitrary. Again we ap~ly [I,Ch II, §3.3 Prop. II] l is 
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surjective iff 

l . X 1+ ~ A X q (B,,): of'lxp -+ 6fxp 
l.!' l.! L i, l.! l.! i~l.!... l.! J.l 

is surjective for every maximal ideal l.! of ~. 

Because QJ.l is a field,!l.! is surjective iff aO,l.!, ••• ,at,J.l are bezoutian. 

Here 

aO (s) - det(sI - B ) ,l.! J.l J.l 

is the residue modulo J.l of aO(s), and similarly for the a. (s). Hence . 1,J.l 

aO,l.!(s), ••• ,at,\.I(s) are bezoutian iff aO(s}, ••• ,at(s) are bezoutian over 

~s], according to Lemma 5.2. 0 

In the particular case where m = n, i.e., in the case of Theorem 1.4, the 

result can be simplified and formulated differently. 

(5.8) CORALLARY. Let A. e: ~xm, B E: ~pxp and q.(s) E Q[s], i ." 1, •.• ,k. 
- 1 - 1 

Then the following statements ... ,a.re equivalent: 

i) The equation L AiX qi (B) = C is universally solvable. 

ii} a(s) := det A(s) and b(s) := det(sI - B) are bezoutian. Here 

A(s):= t A. q. (s). I.. 1 1 

iii) a(B) is ~-invertible. Here a(s} is defined as in ii). 

The proof of ii) * iii) can again be given via maximal ideals. 

Alternatively: 

ii) .. iii) follows after the substitution s • B into u(s)a(s)+ v(s)b(s) = 1, 

because of the Cayley-Hamilton theorem. 

iii) .. i) can be proved as in the proof of Theorem 1.4 (see the beginning 

of section 2). 
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Also Theorem 2.3 can be generalized to the ring case: 

( ) ..n. _pxp •• 
5.9 THEOREM. Let A. € M , B. € ~ , B.B. = B.B. for 1,J 

--1 1 1J J1-

The equation 

k 
L A.XB. 

1 1 
= C 

= l, ••• ,k. 

has a solution X € ~xp for every C € iifxp if and only if al(!), ••• ,a~(!), 

bt(!), ••• ,br (!) have the bezoutian pro£erty. Here a1(!), ••• ,a t (!) 

are the n x n~inors of 

A(_s) :=LA.s. , 
1 1 

.The proo~ of th!~.~heorem i~ similar to the proof of Theorem (5.7), 

except that Lemma 5.2 is replaced by 

(5.10) LE:t1MA. Le~ar(!)p,,~,~(!) Ii:: IR[!] = IR[sl, ... ,sk] and assume that 

for i - l, ••• ,k there is a polynomial p. amongst the a.'s such that p. 
1 J 1 

is only dependent on s. (and not on the other indeterminates) and is monic 
1 

with respect to this variable. Then a l (!), •• "'~ (!) are bezoutian iff 

at ,,(s), ••• ,a (s) are bezoutian in IR[s] for each maximal ideal II of IR. , ... - n,ll -
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