

On the use of software cost models

Citation for published version (APA):
Genuchten, van, M. J. I. M., & Koolen, J. A. H. M. (1991). On the use of software cost models. Information and
Management, 21, 37-44.

Document status and date:
Published: 01/01/1991

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 04. Oct. 2023

https://research.tue.nl/en/publications/460399cb-cd17-454c-90de-e85e848b1ba7

Information & Management 21 (1991) 37-44
North-Holland

37

Applications

On the use of software cost models

Michiel van Genuchten 1. Introduction

Management Information Systems and Automation, Department

of lndurtrial Engineering, Umversity of Technology Eindhouen,

5600 MB Emdhouen, Netherlands

A number of methods and tools have been
developed over the years to meet the increasing
need to control software development_ The grow-
ing stream of publications on software cost esti-
mation is dominated by those on one of the tools:
the software cost estimation model. Well-known
software cost models are COCOMO, PRICE S,
Estimacs, and function point analysis. In practice,
however, the models are used rarely. A recent
survey showed that only 14 per cent of the respon-
dents used a model to estimate software projects

[6,11]. The same survey and our own observations
indicated that the organizations that do use a
model do not always use it successfully.

Hans Koolen
Department OAP, Hollandse Stgnaal Apparaten, 7550 GD

Hengelo, Netherlands

A number of methods and tools have been developed over
the years to meet the increasing need to control software
development. Among the tools are software cost estimation
models. Well-known examples are COCOMO, PRICE S,
Estimacs, and Function point analysis. The limited and often
unsuccessful use of cost models is the motivation behind this
paper. The authors oppose the idea that a model is the solution
to the estimation problem, but are convinced that the use of a
model can contribute to the control of software development.
if it is used properly. The model should be used to generate a
second opinion. It will have value as a means of communica-
tion, as a checklist, and as it forces the user to collect data on
the development process. Certain organizational requirements
should be fulfilled to be able to use the model properly. The
proper use of the model and the organizational requirements
are the main subjects of this paper.

Keywords: Software cost estimation, Software cost models, Use
of software cost models, Software engineering control, Project
management, Organizational requirements for use.

The limited and often unsuccessful use of cost
models is the motivation behind this paper. Our
aim is to describe how models can be applied
successfully. The paper is based on experience

with the successful introduction of a model in one
large software development department and ob-
servations on the introduction of a model in a
number of others. We oppose the idea that a
model is the solution to the estimation problem,
but we are convinced that it can contribute to the
control of software development if it is used prop-
erly and if certain organizational requirements are
fulfilled.

Michiel J.I.M. VBII Genuchten is em-
ployed as a consultant by Philips In-
ternational (Lighthouse Consulting
Group). He also works as a researcher
at the department of Industrial En-
gineering at the University of Tech-
nology in Eindhoven in the Nether-
lands. He received a M.Sc. in In-
dustrial engineering. His research in-
terests include control and analysis of
software engineering, the application
of logistics concepts in software en-
gineering, and reuse of software.

Hans J.A.H.M. Koolen received a
M.Sc. in Applied Mathematics (Oper-
ations. research) from the University
of Technology in Eindhoven in The
Netherlands. His practical experience
includes seven years within Hollandse
Signaal Apparaten, that has become
part of Thomson CSF. He worked for
several years as software engineer. He
was responsible for the introduction
of the estimation model PRICE S in a
large software development depart-
ment.

) 0 1991 - Elsevier Science Publishers B.V. (North-Holland)

38 Applicutmu Information & Mmagement

2. Software cost models

2.1. Software cost estimation methods

Over the years, a number of software cost
estimation methods have been used. According to
Boehm [3], three acceptable methods can be dis-
tinguished: the expert method, the analogy
method, and the use of software cost estimation
models. The expert and analogy method are dis-
cussed briefly; the use of models will be discussed
extensively.

Expert judgement is widely applied as an esti-
mation method. It involves consulting with one or
more experts. The expert is usually an experienced
project leader who uses experience on past pro-
jects and understanding of the proposed project to
arrive at an estimate of its cost and development
time. An advantage of the expert method is that
an expert can consider specific project conditions,
such as an extremely experienced staff or changing
requirements.

Estimation by analogy involves reasoning by
analogy, using experience with one or more com-
pleted projects to relate actual cost and develop-
ment time to the cost and development time of the
new project. Differences are determined and their
impact on cost and development time is estimated.

There are obvious similarities between the ex-
pert and the analogy method. A difference how-
ever is that estimation by analogy is based on
recorded facts: results from one or more specific,
completed projects. In practice, a combination of
the expert and analogy method will often be ap-
plied.

Before we discuss the operation of a model, we
describe the development of a model, because this
gives insight into its operation and determines
some of its limitations. The development of a
model starts with data collection on a number of
completed software projects. Based on the data
and theoretical knowledge, the developers try to
develop a descriptive model. The dependent varia-

bles of the model are those to be estimated, i.e.,
the effort and development time of the completed
projects. The independent variables are a subset of
the known cost drivers, such as complexity, kind
of application, and the experience of the develop-
ment staff. The model consists of a number of
mathematical expressions that describe the rela-
tion between the cost drivers and the dependent

variables. Most of the existing models use the size
of the software product as an independent varia-
ble; this is usually expressed in the number of
lines of source code, which is a usable variable
when building a descriptive model. The relation
between this variable and the cost and develop-
ment time of a project is obvious.

The meaning of the first four independent vari-
ables is obvious. The productivity index defines
the productivity of the environment in which the

project is going to be developed. This index is

Figure I gives a simplified model that estimates
the cost and development time of a project based

determined while calibrating the model to the

on five independent variables. Development time
is sometimes referred to as schedule, implementa-

environment. Existing models use more than five

tion time or lead time.

input variables. For instance COCOMO, uses sev-
enteen input variables, including the size of the
product, which is to be expressed in thousands of
lines of source code.

2.2 Limitations of software cost models

We consider a model as one of the possible
tools that can be used to estimate software pro-
jects but think it is necessary to be aware of the
limitations of the tool in order to apply it success-
fully. Therefore three limitations of software cost
models are discussed.

The first limitation is the fact that the commer-
cially available models do not originate from the
environment in which they are to be used. Most of
the models originate in the United States and are
based on projects that were completed a number
of years ago. It is questionable whether such a
collection of projects can be representative for a
development environment in, for example, present
day Europe. Examples of differences between the
European and American situation are the different
personnel turnover rates and the number of work
hours per week. The impact of the latter on the
development time of a project is obvious. Due to
the rapid developments in software engineering,
the situation of, say, ten years ago and the current
situation differ so much that one environment
cannot act as a model for the other. An attempt to
bridge the gap between the two environments is
the calibration of the model.

A second limitation is the difficulty of evaluat-

Information & Management M. u. Genuchten, H. Koolen / Software cost models 39

INPUT (independent MODEL OUTPUT (dependent
variables) variables)

experience of the staff -_)

complexity > ------) effort

kind of application ->
--) development time

size >

productivity index ->

Fig. 1. A cost model.

ing some of the input variables. We have just

described how cost models are developed as de-
scriptive models. While an independent variable
such as lines of source code may be very useful in
describing completed projects, it may not be use-
ful in predicting costs and development time of
future projects. In the first case, the lines of code
can be counted automatically, while in the latter
case the lines of code are almost as hard to esti-
mate as the effort and development time of the
project. As Case [4] points out: such models “do a
fairly good job of telling you how long the project
will take - after you have written the code and
then counted the lines”. The same is true, to some
extent, for variables such as the complexity and

the personnel turnover. It may also be true for
function points, a variable to describe the size of a
software product as proposed by Albrecht [2], that
is mainly used in information system develop-
ment.

The third limitation of the existing models is
the fact that no studies confirm the accuracy and
usability of the models. The studies that have been
made give very disappointing results. For instance
Kemerer [7] estimated 15 completed projects using
four uncalibrated models. He found an average
overshoot of 772, 600, 100 and 85 per cent for the
models SLIM, COCOMO, function point analysis,
and Estimacs, respectively. Experiments by

Mohanty [lo] and Abdel Hamid [l] yielded similar
results.

Recently, an experiment was conducted by the
University of Technology Eindhoven for Philips
on the early applicability of two software cost
models [9]. During the experiment, experienced
project leaders were asked to make a number of
estimates for a project that had actually been

carried out. The first estimate of the effort and

development time was based on the project leaders’
knowledge and experience. Next, two estimates
were made using the packages selected, i.e. BYL
and Estimacs. The projectleaders were asked to
make a fourth, final estimate that was based on
their knowledge and experience, combined with
the insights gained from the use of the models.
Some results of the experiment are given in Table
1. It should be noted that the models are not
calibrated with respect to their environment. One
should therefore be careful of direct comparison
of the model estimates with reality. The standard
deviation of the estimates made by the project
leaders is, however, an indicator of the usability of

the models.

As stated previously, the project had actually
been completed. The real effort, and development
time were:
Effort: 8 man-months
Development time: 6 months

The standard deviation of the estimates is huge.

The difference between the model estimates and

Table 1

Some results of the experiment. The development time is given

in months. The effort is given in man-months.

Variable Mean Standard deviation

Effort
_ manual estimate 28.4 IS.3

- BYL estimate 21.1 14.0

- ESTIMACS estimate 48.5 13.9

- final estimate 21.7 12.8

Development time
_ manual estimate 11.2 3.7

- BYL estimate 8.5 2.4

- final estimate 12.1 3.4

40 Applicutions

Table 2

Information & Management

Strengths and weaknesses of software cost estimation methods (31.

Method Strength Weakness

Analogy
Expert

Models

* Based on representative experience
* Assessment of representativeness.

interactions, exceptional circumstances
* Objective, repeatable, analyzable formula
* Efficient, good for sensitivity analysis
* Objectively calibrated to experience

* Representativeness of experience
* No better than participants
* Biases, incomplete recall
* Subjective inputs
* Assessment of exceptional circumstances
* Calibrated to past, not to future

reality is also remarkable. Questions relating to
the models were also answered by the people that
developed the system. Feeding their answers into
the models yielded the following results:
Effort with BYL: 18 man-months
Development time with BYL:7.5 man-months
Effort with ESTIMACS: 54.4 man-months.

The conclusions of the experiment were based
on quantitative results and the opinions of the
project leaders concerned. An important conclu-
sion was that, based on the difference found be-
tween the estimate and reality, it has not been
possible to show that the selected models can be
used for estimating projects at an early stage of
their development. Another important conclusion
was that, although both packages could not be
evaluated as “good”, the project leaders involved
regarded the models as “useful”.

Thus, we do not state that models are useless or
inaccurate, we just assert that there are no studies
that confirm that they are useful or accurate. One
should not be discouraged by the limitations, but
one should be aware of them in order to use the
models appropriately.

3. The use of a software cost model

We now argue that one should use more than
one estimation method and that a software cost
model can act as one of the methods. We also
describe the activities that will have to be per-
formed if an estimation model is to be used.

3.1 The use of alternative estimation methods

Three methods to estimate software projects
have been described. The expert and analogy
method and the use of cost estimation models all
have their strengths and weaknesses. Some of the

limitations of software cost models have already
been mentioned. Some of the strengths and weak-
nesses of the methods, as distinguished by Boehm
are mentioned in Table 2.

With respect to the importance of accurate cost
estimates and the strengths and weaknesses of the
methods, we recommend the use of more than one
method to arrive at an estimate. The decision to
use alternative methods is, in our view, more im-
portant than the choice of the estimation method
itself; the weak points of one method can be
compensated by the strong points of another
method. This is true especially for the expert or
analogy method on the one hand and the use of
software cost estimation models on the other, be-
cause their strengths and weaknesses are comple-
mentary. There is another way to cope with the
weaknesses of the estimation methods: instead of
using alternative methods, one could make several
independent estimates using one method. Biases
are considered to be a weakness in the expert
method, so one could consult two experts inde-
pendently and later have them discuss their esti-
mates, thus decreasing the influence of possible
biases. A disadvantage of this approach is that,
despite their independence, the two estimators may
look at the proposed project from the same angle
and base their experience on the same projects.

Another alternative is to use an estimation
model as a second method to arrive at an estimate.
An advantage of this is that the use of a model
forces one to look at the proposed project from
another point of view, i.e. the point of view of the
cost drivers that the model uses as independent
variables. One is forced to evaluate the proposed
project in a predefined way. This may point to
omissions in the definition of the proposed pro-
ject. As such the model systemizes the estimation
process even before it has generated its first esti-
mate. Looking at the project from different points

Information & Management M. u. Genuchten, ff. K&en / Software cosf models 41

INPUT

experience of the staff ->

complexity >

kind of application p)

size >

effort >

development time >

MODEL OUTPUT

-----_) productivity
index

Fig. 2. Diagram of the calibration of a cost model.

of view decreases the risk of making an obvious
mistake.

In our view, software cost estimation using
alternative methods should be done according to
the following pattern:

(i) using the analogy or expert method an esti-
mate is made,
(ii) at the same time an estimate is made using a
model,
(iii) if the two estimates agree, the estimate is
accepted. If not, the reasons for the difference
must be determined, preferably in a discussion
with those responsible for the estimates. Experi-
ence in using this approach shows that differences
can usually be explained from the use of different
starting points by and presuppositions of the
estimators. The process of (re)estimation has to
converge in a small number of iterations. The
differences between the estimates and the number
of re-estimations required serve as an indication of
the risk of the project. Consensus on the final
estimation will increase thanks to discussion be-
tween estimators. Agreement must occur on the
degree of difference in the estimations that will be
tolerated, which will depend on the function of the
estimation. For the first feasibility estimation
larger differences will be tolerated but the dif-
ference should be small for a small project in a
well-known field.

3.2. Culihration and estimation

The actual use of a software cost model maybe
split into two phases: first calibration of a model;
second actual use of the model.

Before a model can actually be used, it must be
adapted to the environment of its use: it must be
calibrated. This tests the fit of a model in an
organization and enables the model to be adapted
to the characteristics of that organization. The
calibration involves describing a number of com-
pleted projects with the model. One way to do this
is to evaluate the so-called productivity index.
During the calibration, the dependent variable is a
productivity index. A diagram of the calibration
of a model is given in Figure 2.

The value of the productivity index is de-
termined for, say, five to ten projects previously
(recently) carried out by the department. Since
these projects were carried out in the same en-
vironment, the values for the productivity index
should not differ much from one to another. Once
this condition is satisfied, the value of the produc-
tivity index is determined. If the condition is not
satisfied(lfurther calibration may be necessary [5].

Another way of calibrating a model is to adapt
the weights ascribed to the variables. To calibrate
a model in this way, two conditions must be
fulfilled: first the content of the model must be
known; this condition is not fulfilled for models
such as PRICE, SLIM and Estimacs. The second
condition is that a lot of data on completed pro-
jects must be available. For example, if we wish to
calibrate the COCOMO model with approxi-
mately 75 weights attributed to 15 variables, then
a lot of data are necessary to adapt the weights in
an accountable manner. It is not likely that a
single organization is capable of obtaining such
volumes of data.

The time it takes to calibrate a model will vary

42 Applicarions Information & Managemenr

according to the availability of data on completed
projects. When calibrating a model, one should
keep in mind that its use is just one of the ways to
arrive at an estimate. The model and its calibra-
tion are not goals in themselves. This awareness
will prevent endless calibration and will make it
possible to use a model fairly quickly for its real
purpose: to estimate proposed projects.

After the calibration, estimation starts. This is
based on the information that is available on the
proposed project. If the project leader has been
selected, he is a possible candidate to evaluate the
input variables in a discussion with an experienced
model user. If the project leader is not yet known,
somebody who can judge the proposed project
must evaluate the input variables. Data on com-
pleted projects can be used to evaluate the input
variables by comparing the values for the com-
pleted and the proposed projects. In this way, the
input variables are used as a common language to
compare the proposed to the completed projects.

A model should be used experimentally for

some time. As soon as software developers and
estimators have enough confidence in the model,
more value can be attached to its estimates. Again,
it is important to recognize the fact that a model is

only one of the estimation techniques. This pre-
supposition is not only realistic, it prevents end-
less experimental use that benefits nobody.

4. Organizational requirements for the use of a

software cost model

The application of software cost estimation
models is not always successful. Based on our

experience and observations in several software
departments, we believe that this is partly because
some organizations are not aware of the require-
ments that have to be fulfilled for the successful
use of a cost estimation model. Here we describe a
number of important organizational requirements
that are derived from the use of a model.

(a) The cooperation of software developers
Models estimate the cost and development time

of projects that are to be carried out by software
developers. Their cooperation in the use of the
model is needed for two reasons. Firstly, they
should feel committed to the final estimate: they
will have to realize it. If this estimate is partly

Table 3
Distribution of the effort involved in the introduction of a
model.

Percentage of effort Year 1 Year 2 Year 3

introduction of the model 68 42 40
improvement of information supply 0 30 10
development of project database 22 25 10
other control activities 10 13 40

Total 100 100 100

based on a model, they will not feel committed to
the estimate if they had no influence on the out-
come. Secondly their knowledge is necessary to
evaluate the input variables for a proposed pro-
ject.

Software developers are sceptical about the
value of software cost models; obtaining their
cooperation is therefore not easy. Scepticism is
increased if the model is presented as the final
solution to all estimating problems or as an instru-
ment to review development teams. The only way

to convince developers of the usability of a model
is by achieving results that support the developers
in the control of their projects.

(h) The availability of manpower
The introduction of a model requires an effort

that should not be underestimated, especially if

the introduction of a model requires an improve-
ment of the information supply in the organiza-
tion; this is usually the case. Table 3 shows the
distribution of effort for a major software devel-
opment department during the introduction of a
cost model [8]. During the first two years two
people were involved its introduction, during the

third year, only one was involved.
Table 3 shows clearly that the introduction of

the model had important side effects and that the
effort shifted from the actual introduction to other
activities related to the control of software pro-
jects.

With respect to the work to be done, the em-
ployees that must introduce the model should
have the following capacities: (1) knowledge of the
software to be developed, (2) interest in the con-
trol of software development, and (3) social skills.
Knowledge of the software is necessary to make it
easy to interact with the software developers and
to evaluate the model input variables. Social skills
are necessary to interact with all the parties in-

Informarion & Managemenr

volved, such as software development, marketing,

management and, administration. Taking the re-
quirements and the manpower into consideration,
it is obvious that the introduction of a model
cannot be left to somebody who “just happens to
be available anyway” or “can do it in his spare
time”.

We recommend that a model be introduced by
two or three people. This is because there is much
work to be done and individuals that have all the
required capabilities will be a scarce resource.
Continuity in the use of the model is another
reason to spread the knowledge on the use of a
model over a number of people.

(c) The commitment of management
The use of a model costs money, takes time,

and may require adjustments in working practice.
Money will have to be spent to acquire a model
and to obtain the relevant training. The out-of-
pocket costs are relatively small compared to the
introduction costs, which comprise the effort that

has to be made on the calibration of the model.
The adjustments in working practice will con-
centrate on guidelines for estimation and obtain-
ing information.

These requirements in their turn, demand the
commitment of management to the introduction
of a model. Commitment is preceded by the recog-
nition of the problems involved in controlling
software projects. In some places, this recognition
must be preceded by a major overrun in an im-
portant software development project.

(d) Estimation guidelines
The use of a model requires some estimation

guidelines, three of which will be discussed. First,
in order to make an estimate using a model, one
should give the estimators enough time. Second,
the required information should be available to
the estimators. If this information is not available,
the estimate will be less accurate or even impossi-
ble to determine. The third guideline involves the

distinction between a technical and a commercial
estimation. Commercial arguments play their role
in software cost estimation, e.g. “If our price
exceeds 2 million, we will never get the order” or
“If they allow us to develop the first prototype,
they will depend on us for the remainder of the
project”.

We recommend that the commercial and tech-

M. u. Genuchren, H. Koolen / Software coJt models 43

nical estimation are separated. A technical estima-
tion must be based on a specification of the prod-
uct to be developed and therefore a model could
be a useful tool to arrive at the technical estimate.
If this estimate is commercially unacceptable, one
should adapt the specifications or reconsider the
presuppositions and re-estimate the project or take
a loss for business reasons. However, the input of

a model should not be manipulated in order to
arrive at a predefined commercial estimate.

(e) Adequate information supp&
It is recognized, both in theory and practice,

that data on current and past projects are neces-
sary to control future software development. Some

people think that the introduction of a model
relieves them of the obligation to collect and up-
date data. The opposite is true; the use of a model
only increases the need to collect data. The data
are needed to calibrate and use the model. To
state this clearly: the data that are needed to use a
model are also needed to control projects. The

question is not “What effort should be made to
collect the extra data?“, but “How can anyone
attempt to control projects without these data?“.
How can you control a project if, for instance, you
do not know how many hours have been spent on
it? A recent survey shows however, that 50 per
cent of the respondents did not record any project

data on current or completed projects [6,11].
Some other data have to be recorded besides

the effort and development time expended on the
project. One can think of the size (for instance in
lines of code or function points), the kind of
application and the complexity. The data can be
recorded in terms of the input variables and can

also be used to support an estimation based on the
analogy or expert method. As such, the data may
be gathered as a result of the use of a model, it is
however more widely usable.

The importance of an adequate information
supply to control software projects exceeds the
importance of the model use. If the information

system is improved as a consequence of the use of
a model, it has made an important contribution.

4. Conclusions and recommendations

This paper describes how a software cost esti-
mation model can contribute to the improvement

44 Apphcarions

of the software cost estimation process. Our first
recommendation is: estimate a proposed project
by alternative methods. The methods described in
this paper are the expert method, the analogy
method, and the use of models. If alternative
methods are used, the weak points of one method
can be compensated by the strong points of
another. If the estimates generated by alternative
methods agree, the estimate is accepted. If not, the
reasons for the difference must be determined,
followed by another series of estimates. Experi-
ence in using this approach shows that differences
can usually be explained by the effect of different
starting points and different presuppositions of
the estimators. Another advantage of this ap-
proach is that consensus on the final estimate will
increase if there are discussions between the esti-
mators. The use of a model as one of the alterna-
tives has several benefits. Firstly, the model forces

one to look at the proposed project from another
point of view, i.e. that of the cost drivers. Sec-
ondly, the model forces one to systemize the con-
trol of software development.

The application of software cost models is not
always successful in practice. We believe that one
of the reasons for this is that organizations are not
aware of the requirements that must be fulfilled in
order to use a model properly. The following are
important requirements:
_ cooperation of software developers
_ availability of manpower to introduce and use

the model
_ commitment of management
_ estimation guidelines to allow proper use of the

chosen estimation methods
_ adequate information supply.

We are aware that it is not easy to fulfil these
requirements. However, if they are fulfilled, there
are benefits in the control of software projects in

Information & Management

general. It is even beneficial if one is not using a
software cost estimation model. If the use of a
model draws attention of an organization to the
requirements, the model has already made an im-
portant contribution even before it is actually
used.

References

Dl

14

[31

[41

[51

[61

171

VI

[91

PO1

IllI

T.K. Abdel-Hamid, SE. Madnick, “On the portability of

quantitative software estimation models.” Information and

Management, 13, l-10, 1987.

A.J. Albrecht, J.E. Gaffney, “Software Function. source

lines of code, and development effort prediction: a soft-

ware science validation,” IEEE Transuctlons on So/tn,are

Engmeering, volume SE-9, no. 6. 1983.

B.W. Boehm, Software engineering economics, Prentice

Hall, Englewood Cliffs, 1981.

A.F. Case, Informatmn system deoelopment, Prentice Hall,

Englewood Cliffs, 1986.

A.M.E. Cuelenaere, M.J.I..M van Genuchten, and F.J.
Heemstra, “Calibrating a software cost estimation model:

why and how”. Information und Software Technologv,

volume 29, no. 10, December 1987.

F.J. Heemstra, R. Kusters, “Controlling software develop-

ment costs”, Proceedings of the conference on Organiza-
tion and Information Systems. pp 652-664, Bled, Yugos-

lavia, September 13-15, 1989.
C.F. Kemerer. “An empirical validation of software cost

estimation models.” Communxations of the ACM, volume

30. no. 5, May 1987.

H. Koolen, Report of the introduction of PRICE S”,
report Hollandse Signaal Apparaten, January 1988 (in

Dutch).

R. Kusters, M.J.I.M. van Genuchten, F.J. Heemstra, “Are

software cost estimation models accurate?“, Information

and Software Technology. Volume 32, no. 3, April 1990.

S.N. Mohanty, “Software cost estimation: present and

future.“, So/tware practice and experience, pp. 1033121.

1981.

W.J.A.M. Siskens, F.J. Heemstra, H. van der Stelt. “Cost

control in automation projects; a survey”, Informatie,

Volume 31. January 1989 (in Dutch).

