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Chapter I 

Introduction 

1.1 At herosclerosis 

Atherosclerosis is a major cause of death in the western world. In the last decades research has 
been done to find the cause of this disease. The main topic of this research is to understand 
when and how atherosclerotic lesions are formed. There are several hypotheses regarding this. 
One hypothesis may be that atherosclerosis correlates with low or oscillating wall shear rates, 
as well as with low or compressive principal stresses in the vessel wall. 
At the Eindhoven University of Technology a project on mechanical aspects of blood-wall 
interaction is running. Aim of the study is to investigate the correlation between the local 
wall shear stress distribution and the local wall strain distribution. Because it is impractical 
to perform experiments on human vessels, in-vitro models have to be made. Using these 
models, velocity profiles and wall displacements can be measured by means of Laser-Doppler 
experiments and video techniques. 

1.2 Method 

The project on atherosclerosis running at the Eindhoven University of Technology can be 
divided into two parts. The first part concerns complex vessel wall behaviour together with 
a Newtonian fluid and the second part concerns the mechanical behaviour of a complex fluid 
near the vessel wall. 
An attempt has been made to make a vessel model which has the same complex mechanical 
behaviour as a human vessel, see Rutten (1995) and Caimmi (1995a,b). Although the results 
were qualitatively good, they did not match those of a human vessel. 
To make a vessel model which has the right characteristics requires knowledge of the material 
used. Research has to be done to obtain that knowledge. 

1.3 Outline 

In this report the derivation of the mechanical characteristics of a two component orthotropic 
model is described. After an introduction to vessel wall behaviour a mathematical model 
is made. Then the mechanical properties of the two components of the vessel model are 
determined. 
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The next step is to determine what the mechanical properties of the model should be. Then 
a tubular model with the desired properties can be made. 
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Chapter 2 

Mechanical behaviour of 
the vessel wall 

2.1 Components 

The constituents of vascular tissue are elastin, collagen fibres and smooth muscle cells. The 
mechanical behaviour is mainly determined by these three components. 

Elastin Elastin is a biological material with an almost linear stress-strain relationship. It 
has a Young’s modulus of approximately 0.6 MPa and remains elastic up to draw ratios X of 
approximately 1.6. The material shows hardly any hysteresis. (Fung, 1993a) 

Collagen Collagen is a basic structural protein. It consists of three helically wound chains 
of amino-acids. These helices are collected together in micro-fibrils, which in their turn form 
subfibrils and fibrils. The fibres are normally arranged in a wavy form. Due to this waviness 
the stress-strain relationship shows a very low stiffness at small stretch ratios. The stiffness 
increases fast once the fibres are deformed to straight lines. (Fung, 1993a) 

Vascular smooth muscle There is littie known about the eiiect of passive vascular muscle 
on the stress-strain relationship of vessels. However Cox (1978) reported the effect of active 
vascular muscle on the stress-strain behaviour of vessels as a whole. 

2.2 Mechanica! behaviour 

Vascular tissue shows complex mechanical behaviour. There are three main characteristics: 
a non-linear stress-strain relationship, viscoelastic and orthotropic behaviour. Each of these 
three characteristics call for special attention when building a vessel model. 

2.3 Vessel models 

The mechanical behaviour of vascular tissue can be described using a phenomenological model. 
These models only fit experimental data and therefore the predictive capabilities for other 
loading situations are often poor. Fung (1993b); Chuong and Fung (1983); Han and Fung 
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(1991) showed that the reference state of an artery (axially unstretched and no transmural 
pressure present) is not stress-free. The vessel model used in Rutten (1995) also has a non 
stress-free reference state, because the fibres are wound with a prestrain on top of the isotropic 
tube. 
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In Caimmi (1995a) and Rutten (1995) a composite of fibres and rubber was used as a vessel 
model. The base of the composite is an isotropic tube of viscoelastic EPDM rubber. To make 
the tube anisotropic and giving it a nonlinear stress-strain relationship, several layers of fibres 
are applied. 

In this chapter a mathematical model for the nonlinear, anisotropic tube is derived. With 
the help of a mathematical model an estimate of several production parameters can be given. 
The production parameters are the parameters, such as the winding angle, the number of 
layers of fibres, the prestrain applied to the fibres and their volume fraction, which can be 
altered to change the mechanical properties of the tube. 

3.2 Manufacturing of the model 

The rubber is dissolved in xylene and 1% by weight dibenzoylperoxide is added to enable 
crosslinking. The solution is applied is several layers to a teflon-coated mandrel of 18 mm 
diameter by means of dip-coating. The wall thickness has to be as small as possible to reduce 
the influence of the rubber on the total mechanical behaviour of the tube. The smallest wall 
thickness that can be reached is 0.25 mm. After application of each layer, the mandrel rotates 
until all the solvent has evaporated. Then the mandrel and the rubber are put in an oven at 
a temperature of 120' for three hours. The crosslinked tube can then be removed and put on 
another mandrel to enable removing after applying two plies of lycra fibres on the isotropic 
tube. The fibres are wound at a specific angle to obtain the right mechanical properties of the 
tube and are prestrained to obtain a more pronounced nonlinear behaviour. After application 
of the fibres, the model is put in an oven again to acquire a firm bond between the fibres and 
the rubber. The final result is an orthotropic tube. 
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3.3 Mathematical model 

The base of the model is the constitutive equation for orthotropic behaviour: 

with 

Er) EP, EZ are the stifnesses of the tube in respectively radial, circumferential and longitudinal 
direction. The axisymmetric coordinate system is shown in figure 3.1. 

Figure 3.1: Axisymmetric coordinate system 

Due to nonlinearity the Young's moduli are not constant. Use of nonlinear parameters in a 
h e a r  constitxtive equation may lead te inacciirate resdts. 
Because the thickness of the wall of the tube is small, axisymmetric plane stress is applicable 
and equation (3.1) reduces to: 

Equation (3.5) describes the macroscopic behaviour of the tube. The Young's moduli of the 
tube consist of two components. To determine the relationship between the Young's moduli 
and the Young's modulus of the fibres and the EPDM rubber, laminate theory is used. 
The laminate theory presumes linear mechanical behaviour. The mechanical behaviour of the 
fibres is strongly nonlinear. Therefore an inaccuracy will occur. 
For the kth layer the stiffnessmatrix is denoted as Qk.  The 1- and 2-direction are the main 
axes of the layer, with direction 1 the direction of the fibres and direction 2 perpendicular to 
direction 1. Because the main axes of the layer differ from the main axis of the composite, the 
stiffness matrix has to be transformed. The stiffness matrix related to the circumferential and 
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longitudinal direction of the tube of the kth layer is according to Halpin (1992) and Agarwal 
and Broutman (1980): 

-k Q* = 21i1QkG (3.6) 

with Q the stiffness matrix in the 1- and 2-direction (the main axis of the layer) and -k 

1 sin2 e -2 sin 8 COS 0 
cos2 e 2 sin 8 cos û 

sin e cos e - sin 8 cos e cos2 e - sin2 e 
(3.7) 

with 8 the angle between the fibres and the circumferential direction of the tube. The total 
stiffness of the fibre layers - Q is the sum of stiffness matrices of each layer, so 

n 

- Q=XQ;  
k = l  

with n the number of layers. 
Because the mechanical behaviour of the fibre is one-dimensional, the stiffness of the fibres 
can be written in circumferential and longitudinal direction using equations (3.6) to (3.8): 

EfV = nEf(A) cos4 e 
E f z  = nEf (A) sin4 8 

(3.9) 
(3.10) 

with Ej  the stiffness of the fibres. If one layer is applied with an angle of 8,  the next one will 
be applied with an angle of -8. 
Because a finit number of fibres is applied, the Halpin-Tsai relation is used to compute the 
stiffness of the tube (Halpin, 1992): 

(3.11) 
(3.12) 

with uf the volume fraction of the fibres and E, the stiffness of the EPDM matrix. 
The Poisson ratios for the fibre and the matrix can be derived in a similar way and are: 

p j V  = 0.5 
p j Z  = 0.5 
pm = 0.5 

(3.13) 
(3.14) 
(3.15) 

Analog to equation (3.11) an equation for the Poisson ratio of the tube can be found. Halpin 
(1992) gives for ,upz and pzV: 

(3.16) 
(3.17) 

Now every unknown in the constitutive equation is determined, except the stiffness of the 
fibre E f  and the modulus of the rubber E,. Experiments are required to determine these 
material parameters. 
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Material 

4.1 Lycra fibres 

4.1 .i Introduction 

Lycra fibres are polyurethane fibres (DuPont de Nemours, Dordrecht (NL)). One fibre of 78 
dtex (1 dtex= 1 kg / 10km) is a bundle of six fibres of 13 dtex each. Lycra fibres are highly 
elastic. The draw ratio at which the fibre is ruptured is approximately 8. 
The lycra fibres are subjected to preconditioning. The preconditioning consists of stretching 
the fibre and subsequently heating it. Because of preconditioning the mechanical behaviour 
of the fibres changes. It is necessary to introduce a X-axis transformation which links the 
various states of the fibre to the original state before preconditioning. 
After the preconditioning, a tensile test is performed and the Young’s modulus can be deter- 
mined. 

4.1.2 X-axis transformation 

During the experimental characterization of the lycra fibres, there are 2 different states of the 
fibre which can be used as reference state: 

i. Untreated, undeformed. This is the state of the Gbre as is. 

2. Treated, undeformed. This is the state of the fibre after preconditioning when it is 
loosened. 

Throughout this section the second index of a parameters determines the state to  which that 
parameter is related. The index ..,O refers to the untreated state, the index -.,t refers to the 
treated state. 

Prest rain 

Originally the prestrain is applied to the untreated, undeformed state of the fibre. After 
heating and releasing the fibre it does not return to its reference state: some deformation 
remains. This state can be used as another reference state. So the prestrain related to this 
state (treated, undeformed) is: 
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with Ao,t the remaining strain in the treated, undeformed state. 

Tensile test 

The treated, undeformed state is considered the reference state for the tensile test, so all draw 
ratios during the tensile test are related to this state. The strain of the fibre can be related 
to the untreated, undeformed state with the foilowing equation: 

with At the applied draw ratio during the tensile test. 

The composite 

The fibres have a prestrain of related to the treated, undeformed state. If the composite 
made of EPDM rubber and lycra fibres is stretched, the draw ratio of the fibres related to 
the treated, undeformed state is: 

(4.3) 

with Ac the applied draw ratio. The draw ratio of the fibres related to the untreated, unde- 
formed state is: 

4.1.3 Preconditioning 

One fibre is stretched to a certain draw ratio AW,o. Then the fibre is heated to 100 OC during 
30 minutes. The reference length marked on the fibre will be longer after the heat treatment 
compared with the reference length before heating. The remaining stretch, noted as AO,t, 

can be calculated by loosening the fibre and measuring the reference length after the heat 
treatment. Xo,t is derived by dividing the length after stretching and heating by the reference 
length after heating. The relation between the prestrain and the remaining stretch in the 
treated, undeformed state is shown in table 4.1. 

Aw,o [-I 
1.2 
1.6 
2.3 
2.6 
3.0 
3.7 
4.0 
4.9 

Ao,t [-I 
1.2 
1.4 
1.8 
1.8 
1.9 
2.0 
2.1 
2.3 

Table 4.1: Applied prestrain and remaining stretch after heat treatment. 
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Figure 4.1: Experimental data of 8 lycra fibres with different prestrain as function of the 
stretch related to the untreated, undeformed state. The left most curve represents the fibre 
with the lowest prestrain. The dashed curve represents the fibre with the highest prestrain. 

4.1.4 Tensile test 

To determine the mechanical behaviour of the material, tensile tests are performed. The 
state of the fibres after preconditioning is stated as the undeformed state, so the applied 
elongation A t  of the fibre is related to the treated, undeformed state. The strain called true 
strain throughout this section, is related to the untreated, undeformed state of the fibre, so 
equation (4.2) can be applied: 

with Xf,o the draw ratio of the fibre, At the draw ratio applied during the tensile test and Ao,t 
the remaining strain in the treated, undeformed state. 
The modulus of the fibre relates the true strain with the Cauchy stress. The Cauchy stress is 
the applied force divided by the momentanuous cross-sectional area, which can be calculated 
by using the fact that the fibre can be considered incompressible, i.e. the volume of the fibre 
remains constant. The area A of the fibre can be computed by using the following equation: 

with A0 the area of the fibre in the untreated, undeformed state, which is 8.7. lo-’ m2 (see 
Caimmi (1995a)). Figure 4.1 shows the results of the tensile test. The effect of preconditioning 
on the stress-strain relationship is shown in the figure. Stretching and subsequently heating 
the fibre gives it a more pronounced nonlinear stress-strain relationship. For a large prestrain 
this means that the stiffness of the fibre increases rapidly at a draw ratio of approximately 
6.5. 
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4.1.5 Derivation of the stiffness of the fibre 

2 
3 
4 
5 
6 
7 
8 

To obtain a relationship between the Young’s modulus and the strain, a function is fitted 
to the tensile test data. If the relationship between the stress and the strain is known, the 
relationship for the stiffness of a 1-D material can be derived by applying: 

1.6 
2.3 
2.6 
3.0 
3.7 
4.0 
4.9 

n d o  
l5f = - 

dE 
(4.7) 

Fitting the stress-strain relationship 

The lycra fibre shows rubber-like behaviour, which means that the elastic deformation is 
mainly entropic. This behaviour can be described by using a neo-Hookean constitutive equa- 
tion. In figure 4.1 it is clearly shown that the stress-strain relation is exponential. The func- 
tion that will be used for fitting the testdata is a exponential function with a neo-Hookean 
strain-scale. This yields for 011: 

with Xf,o the draw ratio of the fibre related to the untreated, undeformed state. The testdata 
are fitted with a least squares method. The fitting process gives the results presented in table 
4.2. 

Xo,t [-I 
1.2 
1.4 
1.8 
1.8 
1.9 
2.0 
2.1 
2.3 

ai [MPaI 

1.1.103 
1.5.103 
1.4.103 
7.1. io3 
6.7.103 
3.7.105 
3.3.105 

6.3. lo2 
1.1. 
0.9. 
0.8. 
1.9 . 
0.6. 10 -~  

-1.3. lop2 
-1.1. 

14.38 
16.71 
17.36 
26.97 
29.04 
50.95 
51.88 

Table 4.2: Applied prestrain and remaining stretch after heat treatment and resuits after 
fitting the experimental data. 

Derivation of the Young’s modulus 

The Young’s modulus can be derived by using equation (4.7) and (4.8). Because the strain E 

equals E = Xf,o - 1, the equation for the Young’s modulus becomes: 

(4.9) 
da do ax,,o - aa 

- Ef=z=-- d+,o - ax,,, 
Application of equation (4.9) to equation (4.8) gives: 

(a2Xf,o-a3+) 1 
E f  = ale f>O (2U2Xf,O + a 3 7 4  

>o 
(4.10) 

16 



Figure 4.2: Young’s modulus derived from the fitted stress-strain relationship for 8 values of 
the prestrain. The left most curve represents the fibre with the lowest prestrain. The dashed 
curve represents the fibre with the highest prestrain. 

The results of the fitting process is shown in figure 4.2. At high values of Xf,o the Young’s 
modulus drops for fibres with a high prestrain. This could be due to the fitting process. 
Because other functions could not describe the experimental data better over the whole range 
of draw ratios, equation (4.10) gives the best results and the possible inaccuracy can not be 
avoided. Therefore equation (4.10) is only applicable for draw ratios lower than Xf,o = 8. 

4.2 EPDM rubber 

4.2.1 Iaitroductim 

EPDM rubber belongs to the family of ethylene-propylene rubber and is made by DSM, 
Geleen (NL). The EPDM rubber that is Used for experiments is Keltan 320. An extensive 
description of EPDM and the production process is given in Caimmi (1995a). 

4.2.2 Relaxation experiments 

EPDM rubber is viscoelastic. Therefore relaxation experiments are done to determine a relax- 
ation modulus. These experiments can also be used to see if the rubber is linear viscoelastic 
or nonlinear viscoelastic. 
Figure 4.3 shows the data derived from the relaxation experiments. The vertical axis shows 
the stress divided by the applied step in the strain EO. Because it is hard to see if the stress 
keeps decreasing for a wide time range, the test data can be plotted on a log-log scale, which 
is shown in figure 4.4. 
Because the relaxation modulus of the rubber does not depend on the applied step in the 
strain, the rubber can be considered linear viscoelastic. The third specimen shows a relaxation 
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DO 

Figure 4.3: The  Young's modulus as function o f  the time after relaxation experiments. 
EO = 0.25 (solid), EO = 0.2 (dashed), EO = 0.15 (dotted), EO = .O5 (dash-dotted) 

i i o  100 
time [SI 

Figure 4.4: The Young's modulus as function o f  the time after 
log-log scale. 

1 

relaxation experiments on a 
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modulus which is translated in the vertical direction. This may be the result of measurement 
inaccuracies. 

4.2.3 Viscoelastic behaviour 

EPDM rubber is linear viscoelastic. A phenomenological constitutive equation for the Young's 
modü:Us is a pûweï-!aw mode!. The Câxchy stress v" decreases !ir,ear!y with a negative pover 
of the time when a step in the strain is applied. The constitutive equation for the stress is: 

o = E(t)&rJ = [clt-"] Eo (4.11) 

with EO the strain applied stepwise to the material. The dimension of e1 is MPa sn. The 
material parameters c1 and n can be derived from a relaxation test. If a relaxation experiment 
is performed, the rubber is stretched to a certain strain stepwise and the stress is measured 
over time. Fitting the experimental data with equation (4.11) gives c1 = 1.3 MPa sn and 
n = 0.078. The low value of n shows that the rubber is nearly elastic. Only when loads with 
frequencies higher than 10 Hz are applied, the viscoelasticity will play an important role. 

Superposit ion 

If the load changes as a function of the time, the stress can be computed by using the super- 
position theory. This theory is applicable because the EPDM rubber shows linear viscoelastic 
behaviour. Using superposition, the equation for the stress becomes: 

t 

o(t) = E(t  - T)i(T)dT / (4.12) 
O 

For a tensile test, the strain rate i is constant, so equation (4.12) can be solved analytically. 
Because the strainrate is constant, equation (4.12) becomes: 

t 

o(t) = i /E( t  - 7)dT 
O 

If a new variable I/I = t - T is introduced, equation (4.13) can be rewritten as: 

t 

Solving this equation gives: 

c1 tl-n o(t) = i- 1-n 

(4.13) 

(4.14) 

(4.15) 

Dynamic behaviour 

A second way to describe viscoelastic behaviour is by means of the complex modulus. The 
complex modulus Ê can be determined by Laplace transformation of equation (4.11): 
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Together with equation (4.11) this yields for the complex modulus: 

E(s )  = C i r p  - n)sn 

E ( j w )  = clr(i - n ) w n d n S  
with I' the gamma function. In terms of frequency the complex modulus is: 

(4.17) 

(4.18) 
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Chapter 5 

Results 

5.1 Introduction 

In chapter 3 a mathematical vessel model is presented. Several experiments have been done to 
require the necessary material parameters. Now the experiments and the contitutive equations 
can be combined to estimate the production parameters that will lead to a vessel model with 
the right properties. 
There are three parameters which can be altered to obtain the right properties. These three 
parameters are the winding angle 6 ,  the volumefraction of fibres v ~ f  and the number of applied 
layers of fibres n and the applied prestrain. First the mechanical behaviour as function of the 
three parameters is given, then the influence of the production parameters on the stress-strain 
relationship is discussed. 

The moduli of the tube in circumferential and longitudinal direction are: 

EP = nuf cos4 6A + B(1- v f )  

E, = n u f  sin4 6A + B(l - v f )  

( 5 . 3 )  

which is the Young's modulus of the fibre and 

B = C l P  (5.4) 

which is the relaxation modulus of the rubber. a1 to a5 are the parameters derived from the 
fibre fitting process at a certain value of A,,o, AW,o is the applied prestrain, A,,P and A,,, are 
the draw ratios of the tube in respectively circumferential and longitudinal direction and c1 
and n the material parameters for the EPDM rubber. 
Because the relaxation modulus of the EPDM rubber is used, the equations for the moduli 
of the tube are only applicable if a step in the strain is applied. The way the stresses are 
calculated depends on the load scheme. If a step in the strain EO is applied, the stress can 
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be calculated by multiplying the modulus with EO.  If a load scheme other than a step in the 
strain is used then the superposition theory or the dynamic modulus has to be applied. 
The Poisson moduli can also be calculated and equal to: 

5.2.1 

Using equations (3.5) and (5.1) to (5.4) give for the Cauchy stress in the model: 

General st ress-st rain relat ionship 

where C depends on the load scheme. 
Using the superposition theory for tensile test with a constant strainrate i, C can be written 
as : 

. c1 tl-n C=X- 
1 - n  

(5.11) 

5.3 Influence of the parameters 

To produce a model which has the same characteristics as a real human vessel, an estimation 
of the parameters is needed. 

5.3.1 Winding angle 0 

By changing the angle at which the fibres are wound on the tube, the anisotropy of the tube 
can be altered. The range of O lies between O = O' and 6 = 90'. A winding angle 6 = 45' 
will result in a tube which has the same characteristics in <p and z-direction. In figure 5.1 
the stress-strain relationship is given for increasing values of O from 6 = 45' to 6' = 90'. If 
6 is smaller than 45O, the modulus in longitudinal direction becomes lower than the stress in 
cicumferential direction. 

5.3.2 Volumefraction u ~ f  

The higher the volumefraction of fibres, the more nonlinear the stress-strain relationship will 
be. The volumefraction varies between O and 1. If the volumefraction is chosen very small, 
the influence of the fibres on the mechanical behaviour of the tube is very small. Therefore a 
high value for I I ~  is needed to match the characteristics of a real vessel. 
In figure 5.2 the stress-strain relationship is given for a volume fraction from 0.01 to 0.1. 
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Figure 5.1: Stress-strain relationship for increasing winding angle 8 in circumferential di- 
rection (top plot) and longitudinal direction (bottom plot). vf = .l; i = 0.01 
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Figure 5.2: Stress-strain relationship for increasing volumefraction in circumferential direc- 
tion (top plot) and longitudinal direction (bottom plot). = 0.01; O = 50’ 

24 



........... ....................... : ........... ........... : ....................... 

........... ,.... ...................,....................... ....... /... 

......... 

: /' 
>- 
i 

.......... ... ........ ......... ........... 
. _.-- I 

O I I I I 1 I I 

Ac7  [-I 

-1.. I 

8 

Figure 5.3: Stress-strain relationship for increasing strainrate in circumferential direction 
(top plot) and longitudinal direction (bottom plot) with the stress in the rubber (dashed), 
the fibres (dash-dotted) and the tube (solid). uf = 0.01; û = 50' 
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5.3.3 Strainrate 

The strainrate determines the stress-strain relationship of the EPDM rubber. If the strainrate 
increases the rubber will become stiffer. This can be seen in figure 5.3. The strainrate is 
increased from 0.01 to 0.1. The stress in the rubber increase with increasing strainrate. 

5.4 Vessel model parameters 

To obtain a correct vessel model, the parameters have to be estimated. The strainrate X is 
taken 0.1, which can differ from an in-vivo situation. It is yet unknown what the strainrate 
of a vessel wall is. Because the stiffness in longitudinal direction is greater than the stiffness 
in circumferential direction, the winding angle has to be greater than 45’. 
One parameter is not included in the model: the wall thickness of the tube. It is assumed 
to be 1. The stress-strain relationship of the vessel can be scaled with the wall thickness to 
match the characteristics of a human vessel, which is found e.g. in Kas’yanov and Knet-s 
(1974). 
If û = 48’ and the volumefraction uf = 0.1 the stress-strain relationship of the vessel model 
needs to be scaled with 0.1 to match Kas’yanov and Knet-s (1974). In figure 5.4 both rela- 
tionships are plotted. It can be seen that the vessel model is not as nonlinear as a human 
vessel. 
The working area for the model is from X = 1 to X = 1.5. Within this range the obtained 
vessel model describes human vascular tissue. 
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Figure 5.4: Stress-strain relationship of the vessel model (solid) and the human vessel from 
Kas'yanov and Knet-s (1974) (dashed). vf = 0.1; 8 = 48'; i = 0.1; h = 0.1 

27 



28 



Remarks and conclusions 

6.1 Remarks 

The basic constitutive equation for the vessel wall describes orthotropic behaviour. It implies 
that the material properties in r-direction do not change across the cross sectional area of 
the tube and along its whole length. The tube made of EPDM rubber and lycra fibre is 
orthotropic, so that constitutive equation may be used. 
The introduced constitutive equation is only applicable for geometrical linear mechanical 
behaviour. The vessel model shows nonlinear behaviour, so an inaccuracy is introduced. 
When the tube is subjected to a tensile test, the angle of the fibres will change. Because the 
winding angle of the fibre determines the anisotropy of the tube, the anisotropy will change 
during the tensile test. This introduces geometrical nonlinear behaviour. 
Because the cross-sectional area of the fibres is very small, it is difficult to measure a marked 
reference length. A small error will be increased due to the X-axis transformation. 
To make a tube of EPDM rubber requires dissolving it in xylene and adding dibenzoylperoxide 
to enable crosslinking. The amount of dibenzoylperoxide and the time during which the 
tube is put in the oven, determine the rate of crosslinking. Because the amount of added 
benzoylperoxide is small the rubber is not crosslinked entirely. Small fluctuations in the 
amount of benzoylperoxide results in fluctuations in the crosslink-density. Every time a tube 
is made, relaxation experiments have to be done, because the mechanical behaviour of the 
rubber can be different, because of the poor reproducebility of the crosslinking process. 

6.2 Conclusions 

Lycra fibres and EPDM rubber can be used to make a vessel model. By preconditioning the 
fibres, they gain properties which are useful for the vessel model. The EPDM rubber shows 
little viscoelasticity, which results in viscoelastic behaviour when a load with high frequencies 
(higher than 10 Hz) is applied. 
A nonlinear vessel model shows physical and geometrical nonlinear behaviour. 
The physical nonlinear behaviour is a result of the used material and is modelled using EPDM 
rubber and lycra fibres. If the fibres are preconditioned (prestrained and heated) they show 
a more pronounced nonlinear behaviour. 
Because large strains are applied, the deformation is nonlinear. Geometrical nonlinear be- 
haviour can not be modelled with the linear constitutive equation presented in this report. 
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An estimation for the winding angle, the volume fraction fibres and the wall thickness can be 
made. The volume fraction is approximately 0.1, the winding angle is 48'. The wall thickness 
has to be 0.1 mm. Then the stress-strain relationship of the model matches the stress-strain 
relationship of a human vessel measured in Kas'yanov and Knet-s (1974) for small strains. 
Unfortunately it is impossible to make a tube with a wall thickness of 0.1 mm with the present 
production method. 
A better method has to be developed to obtain the mechanical behaviour of the fibres. 

6.3 Suggestions for further research 

A method to determine a reference state for the lycra fibres has to be developed. A possibility 
is adding a preload, which forces the fibre to stretch. Then a reference length can be marked 
and measured. Because the fibre is stretched, it remains straigth and the measurement can 
be more accurate than without adding a preload. 
The model presented in chapter 3 can not be used to compute the mechanical behaviour of the 
vessel model when a large strain is applied. Because pressure-wave propagation experiments 
(which cause inhomogenuous deformation) are done on the nonlinear vessel model, a FEM 
model would be practical. The developed FEM model could be used in FEM computations 
regarding pressure waves. 
Only if the vessel model has a wall thickness of 0.1 mm, the stress-strain relationship describes 
vascular tissue well (for small strains). At present it is impossible to remove a tube with a wall 
thickness of 0.1 mm from the mandrel without breaking it. So another production method 
has to be developed to enable making a tube which has a very low wall thickness. 
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