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Abstract

Let n € IN, C(IR,C™) denotes the space of all continuous func-
tions from JR into C™. In this paper a complete characterization of the
closed translation-invariaht operators from C(IR, C?) into C(IR, C?) is
derived. It yields an explicit description of the duals of C*(IR,C") and
C*®(R,C™). An application can be found in the field of fundamental
system theory.

Keywords: convolution operators, shift-invariance, Fourier trans-
form.

1 Introduction

For n € N let C(IR,C") denote the space of all continuous functions from
IR into C". Endowed with the seminorms

m(f)= sup |7(#)ln, (m € N, f € C(IR)) (1)
€l—m,m

C(R,C") is a Fréchet space. Here |.|, denotes the Euclidean norm in

C". We write C(IR) instead of C(IR,C). Besides we consider the space

C¥(IR,C") of all k-times continuously differentiable functions from IR into

C" and the space C*°(R,C"), :

C*(R,C") = ﬁ C*(R,C") (2)
k=0



Starting from a well known representation of the dual of C(IR), namely the
function-space ba.(IR), we introduce a one-to-one correspondence between
ba (IR) and the class of all translation-invariant operators on C(IR). Thus
a convolution structure is established in ba.(IR) and ba.(IR) turns into a
convolution ring without zero divisors. Also the Fourier transform and a
(weak) differentiablity-structure is introduced on ba.(IR). The elements of
the matrix ring M?*9(ba.(IR)) are in one-one correspondence with contin-
uous linear mappings from C(IR,C?) into C(IR,C?) which are translation
invariant.

Next we establish a similar structure for E(RR) = C*(IR), which is the
testspace for the distributions of compact support, E'(R) (cf. [3]). Then
E'(IR) is linked to the vector space ba.(IR) & P where P is the space of all
complex polynomials. This correspondence turns out to be non-isomorphic.
The vector space ba.(IR)®P is related to the class of all shift-invariant oper-
ators on £(IR) and a natural convolution structure on ba.(IR)DP is imposed.
If we denote the matrices over the dual space E'(IR) by MP*9(E'(IR)) then
MPX(E'(IR)) can be linked to the class of all translation-invariant opera-
tors from C°(IR,C") into C*(R,CP).

The final step is the characterization of all translation-invariant closed lin-
ear mappings from C(R,C") into C(R,CP?), having C°(IR,C") in their
domain.

2 The convolution ring ba.(R)

We recall that C(IR) denotes the space of all continuous functions from IR
into C endowed with the seminorms

¢m(f)= sup [f(@)|,(meN,f e C(R))

t€[-m,m
Thus C(IR) is a Fréchet space, a complete metrizable locally convex space.

Definition 2.1 A function g : R — IR is of bounded variation if there
exists a K > 0 such that for all n € N, {to,...,t,} C R

(tie1 <) A D |u(ts) — pti-)| < K
1=1
The infimum of all K satisfying this inequality is denoted by var(u). By
ba(IR) we denote the vector space of all right-continuous functions p : R —
C which are of bounded variation.



Definition 2.2 By ba.(IR) we denote the subspace of ba(IR) consisting of
all g with the property that there exists a ' > 0 such that

{ pt)=0  t<-T
u(t) = p(T) t>T

There is the following characterization of the dual of C(RR), cf. [2], theorem
6.19.

Lemma 2.3 A linear functional L on C(IR) is continuous if and only if
there ezxists ezactly one p € ba.(IR) such that

Vyeour [L(f) =< fin >= [ fdu]
(One should interpret this integral as a Riemann-Stieltjes integral)
Definition 2.4 The translation operators of, t € IR on C(IR) are defined
by

(¢'f)r) = f(t+7), TE€R, f€C(R)
Lemma 2.5 The set {¢* |t € IR} is a one parameter co-group on C(IR),
i.e.

t+ t

Virer @ 07 =00, =1
Vieo(ry @ lim o'f=f

To each p € ba.(JR) we associate the convolution operator C, from C(IR)
into C(IR) as follows

(Cuf)t)=<d'fiu>, fEC(R), t€ R
Since {o* |t € IR} is a co-group on C(R), C,.f € C(IR); indeed
[(Cuf)(t) = (Cuf)(7)| < var(p) - a(0*f — 07 f)

for @ > 0 sufficiently large. Moreover C,, is continuous, since

gm(Cuf) = sup |<a'f,p>|
t€[-m,m]
< (tesup (o)) - var(p)

= Goym(f) - var(u)

Convolution operators are characterized by the following property
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Lemma 2.6 A continuous linear operator K from C(IR) into C(IR) is a
convolution operator, i.e. K = C,, for some unique p € ba.(IR) if and only
if Kot = 6*K for dallt € IR.

Proof: Sufficiency is clear. So we prove necessity. Let K : C(IR) — C(IR)
be a continuous linear mapping with Ko! = o'K for all t € IR. Then
f = (K f)(0) is a continuous linear functional, so (K f)(0) =< f,u > for
precisely one p € ba.(IR). And for all t € R

(Kf)t) = (K(a*£))(0) =< o*f, 1 >= (Cuf)(2)
a

It is not hard to check that the mapping yu — C,, defined on ba.(IR) is linear
and injective.

Let p1,p2 € ba(RR). Then C, 0C,, is a continuous linear mapping on
C(IR), which commutes with all ¢*(t € IR), and hence there exists a unique
4 € ba.(IR) such that Cy,0C,, = C,. This leads to the following definition:

Definition 2.7 Let py,p2 € ba.(IR). Then p := py * g € ba (IR) denotes
the unique u € ba.(IR) satisfying

Cu10Chu, = Cp = Cupupy

Next we introduce the Fourier transform on ba.(RR). For p € ba.(IR), the
analytic function ¥, on C is defined by

Fuw)=<e,p> weC
where ¢, € C(IR) is defined by
eft)=e ™ te R
The function F, is called the Fourier transform of p.
Lemma 2.8 The Fourier transform F on ba.(IR) is linear and injective.

Proof: Linearity is evident from the definition. To establish injectivity we
note that

d n
F,=0& (%) F,=0

And so < p,u >= 0 for all polynomials p. This yields g = 0. 0O



Lemma 2.9 Let y € ba (IR). Then F, is of exponential type 1 and bounded
on the real azis.

Proof: For a > 0 sufficiently large,
|Fu(w)l < var(p) - pa(ew)

= var(p) - ettm@
a
For all 4 € ba.(IR), the function ¢, is an eigenfunction of C,,
(Cuew)(t) =< atew,ﬂ' >=< €y, b > ew(t)
so that
Cuey = Fu(w)ew
Lemma 2.10 For all py, pty € bac(IR): Fpiupy = Fp, - Fp, and 50 py * iz =
Ho * [y and C,HC”Q = CMC,,,.
Proof: For all w € C,
Curruz €w = Cpy Cppew = Fpuy (W) Fy (w)ew
and
Crynpy €w = Fryupp(W)ew
O

Theorem 2.11 (ba.(IR),+,*) is a commutative ring with no zero divisors
and an identity. The mapping p — Cp, p € ba(IR) is a representation
of this ring in the algebra of continuous linear mappings from C(IR) into
C(IR). The mapping u — F, is a representation of this ring in the algebra
of analytic functions of ezponential type 1.

Proof: We only prove that there are no zero divisors. Let py, 2 € ba (IR)
and pg * g2 = 0. Then for all w e C

0 = (1 % a)(ew) = (e ita(ew) = Foy (0)Fra(®)

Since F,,,F,, are analytic functions at least one of them must be zero.
Injectivity of the Fourier transform on the class ba.(IR) implies y; = 0 or
p2 = 0. Let H be the Heaviside-function, then < f, H >= f(0), f € C(RR)
and so Cy = I, the identity operator. o



3 Algebraic properties of convolution operators

As a consequence of theorem 2.11 we obtain the following corollaries:

Corollary 3.1 Let K : C(IR) — C(IR) be continuous and injective such
that Ko* = 0K, t € IR. Then there exist a € IR and A\ € IR such that
K = Ao®. Consequently, K is invertible.

Proof: Let p € ba (IR) with K = C,. Then F, is an analytic function of
exponential type 1, bounded on the real axis, with no zeroes. Therefor there
are a € IR, b € C such that

]_-“ (w) = eiaw+b

Hence C e, = €9t = eboe,. Since span{e,|w € C} is dense in C(IR),
C,= ebol. a

Corollary 3.2 For all nonzero p € ba (IR) Range(C,) is dense in C(IR).

Proof: Let pu € ba.(RR),p # 0. If v € ba (IR) and VlRange(C,,) = 0, then
C,C.f =0forall f e C(R). It follows that v * 4 =0, whence v =0. O

As we have seen the set of convolution operators {C,|p € ba.(IR)} equals
the commutant in L(C(IR)) of the set {¢*|t € IR}. Another relation between
the two sets is presented in the next theorem.

Theorem 3.3 Every convolution operator C,, on C(IR) is the strong (i.e.
pointwise) limit of a sequence in the linear span< {o'|t € R} >. Le. for
all f € C(IR) there ezists a sequence (Gy)neN in < {¢*{t € IR} > such that
Gnf = Cuf if n— o0.

Proof: Let p € ba.(IR) and suppose supp(u) C [-N, N].
For n € N define

tin=—N+ %, j=0,1,..,2Nn

Then tivin —tjn = ;1;.
Put

titin )
Ajn := p(tj410) — #(tjn) = / du(r), 3=0,1,...,2Nn -1

Jin
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and define G, € span < {of|t € R} > by

2Nn-1
Gn= 3 @ja0n
i=0

Now let f € C(IR) and m € N. Then there exists for given € > 0, n. € N
such that for n > n, c
|£(s) = f(o) < var(s)
whenever 5,0 € [-N —m, N + m] with |s — o] < L.
Let € > 0 and choose n, as indicated. Then

2Nn-1

in(@nf = Cu) = max |35 [ US4 0) - S+ 0)ducr)
j=0 “tim

te[-m,m

2Nn-1

£ tit+1,n
<X g L ol s €

& i)

o

The above theorem can be applied in establishing some results for closed
translation invariant subspaces and closed translation invariant mappings.
First a definition.

Definition 3.4 Let K with domain D(K) C C(JR) be a linear mapping
from D(K) into C(JR). Then K is said to be a closed translation invari-
ant operator in C(IR) if the graph of K is closed in C(RR) X C(IR) and if
o'(D(K)) = D(K),t € R with Ko'f = oK f, f € D(K).

Lemma 3.5 Let M be a closed translation-invariant subspace of C(IR).
Then Cy,(M) C M for all p € ba.(IR).

Proof: Since 0*M = M for all t € IR, and for all G € span{c?| t € R}
G(M) C M. Let p € ba(IR) and (Gp)neN be a sequence in span{cf| t € R}
such that G,, — C,, strongly. Then C,f = lim, o, Gof € M. o

Lemma 3.8 Let K be a closed translation-invariant operator in C(IR) with
domain D(K). Then for all p € ba (IR), C,(D(K)) C D(K) and C,Kf =
KC,f for all f € D(K).



Proof: Let p € ba,(IR) and (Gn), N be a sequence in span< {o'|t € R} >
such that for all h € C(IR), Goh — C,h. Then by definition 3.4 we have,
if f € D(K) then for all n, G, f € D(K) and KG.f = G,K f, f € D(K).
For f € D(K)

{ ?G{,.f : C:.{( f("(:fgo) both in C(IR)-sense

and so, since K is a closed operator it follows that C,f € D(K) and
KC,f=C,Kf. a

For n € N by C(IR,C") we denote the space of all continuous functions
from R into C*. So each f € C(R,C% is f = (f1,..-, fn), Where f; €
C(R), j = 1,..,n. It is natural to endow C(R,C") with the seminorms
(cf. the introduction)

gnm(f) = sup |f(t)|n,(m €N, f € C(RR))

te[-m,m

Definition 3.7 Let V be a function space in which the shift-operators o%,
t € IR are well defined. If f = (f1,..., fx) € V™ then we define

a:a.f = (atfla °°'7Utfn)
For each M in the matrix ring £LP*"(ba.(R)),
M = (MU pin

i=1,5=1
we define the linear mapping Cjps from C(R,C") into C(RR, C?) by
Cmf =0 Cu,firnr ) Cupyifi)
Jj=1 7=1

It is not hard to check that Cy is a continuous linear mapping from C(IR, C")
into C(IR, C?) which satisfies

0tCy = Cumo},
The following characterization is natural in comparison with lemma 2.6.

Theorem 3.8 Let K from C(IR,C") into C(IR,CP?) be a continuous linear
operator. Then Kol = otK for allt € IR if and only if K = Cp for some
M € £P**(ba.(IR)).



Before we give the proof we need an auxiliary result.

Lemma 3.9 Let F : C(IR,C") — C? be a continuous linear mapping. Then
there is M € LP*"(ba(R)), M = (p;;)2.; ;=1 such that

Ff = (E < fj’l"lj >’-°-7E < fja/"}’j >) = (CMf)(U)

=1 i=1

Proof: Let f,..., B, denote the standard base of CP. Then there are linear
functions Fj; on C(IR) such that

Ff = Zp: i Fi;(f;)B:

i=1j5=1

Since F is continuous, the F;; are continuous. So F;(f) = (f,pi;) for cer-
tain p;; € ba.(IR). a

Now we apply this lemma in the proof of theorem 3.8.

Proof: Let K : C(RR,C?) — C(IR,CP) satisfy the requirements. Then
F:C(R,C% — C? defined by Ff = (K f)(0) is continuous and linear. So
that (K /)(0) = (Car)O) with M = (i) 1. :

It will be clear to the reader that the matrix ring £P*"(ba.(IR)), which
is non-commutative, can be treated much similar to the ring ba.(IR). We
mention only a few results in this direction:

1. By ba.(IR,CP*") we denote all right-continuous matrix-valued func-
tions M from IR into C?*™ for which there exists a K > 0 such that
forall —co < g <t; <...< t, < 00

Y IM(t) = M(tjo1)lpxn < K
=

and
{ M(t)=0 t< =T
M()=MT) t>T

Then LP*"(ba.(IR)) and ba (IR, CP*™) can be identified.
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2. The space ba (IR, C'*") represents the dual of C(RR,C™).

3. Define the Fourier transform Fps of M € ba.(IR,CP*™) component-
wise. Then forv € C" and we C

M(e, @ v) = Fp(w)v

4. The Fouriertransform Fjs is an analytic matrix valued function which
is of exponential type 1 and bounded on the real axis. In fact there
are A > 0 and a > 0 such that

(Fu)(@)lpxn < A - e2Hm)]

4 Smoothing properties of convolution operators

For convenience we set D := £. For each k € N the space C*¥(IR) consists
of all k-times continuously differentiable functions from IR into IR. The
Fréchet-topology on C*(IR) is brought about by the seminorms

OE Zhﬁmn
=0

It is clear that for each polynomial p with degree p = d, p(D) is a continuous
linear mapping from C*(IR) into C*~¢(IR) for k > d. For convenience we
introduce the Volterra-integral operators I;()),j =0,1,..., A€ R

t—7 t -
GO = [ e fryar
where ¢t € IR anf f € C(IR). We observe that
1) = L)

and
IJ:()‘)IJz(’\) Jx+.12(}‘)

Straightforward estimations show that I;(A\) maps C*(IR) into C**i(IR).
Moreover (D —A)I;(A) = I the identity mapping. We summarize as follows.

10



Lemma 4.1 Let p be a monic polynomial with p(A) = [[j=1(A — Aj)r.
Define

S=p(D) d= zs:j, and J = ﬁIj,(/\,)

r=1 r=1

Then § maps C**4(IR) into C*(IR), J maps C*(IR) into C**¢(IR) and
SJ =1

Remark 4.2 Since JSJS = JS, P = I — JS is a projection mapping in
C*+4(IR) onto ker(S), along Range(J), and C*+4(IR) = ker(S)®Range(J).
We observe that ker(S) is finite dimensional and Range(J) is closed. a

Lemma 4.3 Let p be a polynomial of degree d. Then the linear mapping
p(D) from C(IR) into C(IR) with domain C*(IR) is closed.

Proof: Let (un)neN be a sequence in C¢(IR) such that

Un —u (n — 00) .
{ p(D)u, — v (n— ) both in C(IR)-sense

We have to prove u € C4(IR) and p(D)u = v. Let J be as indicated and
Q = Jp(D). Then Qu, — Qu and Qu, — Jv so that Qu = Jv € C*(R),
whence

u = Pu + Qu € ker(S) + C%(R) C C*(IR)
since ker(S) C C*°(IR). Moreover

p(D)yu = p(D)Qu = p(D)Jv ="

Corollary 4.4 Let p be a polynomial of degree d. Then for all f € C2(IR)
Cup(D)f = p(D)Cyf.

Proof: By lemma 3.6. ' O
Now we are going from smoothness properties of the element u € ba.(IR) to

smoothing properties of the corresponding C,. For that we introduce the
notion of weakly differentiability for the elements of ba.(IR).

11



Definition 4.5 Let £ € N. A function g € ba.(IR) is said to be k-times
weakly differentiable if
(iw)k]-',,(w) = Fu(w)

for some v € ba.(IR).

The weakly differentiability of elements of ba.(IR) arises in the following
way.

Lemma 4.8 Let v € ba(R) with < p;,v >=0, j =0,1,...,k ~ 1 where
pij(t) =t. Then
(t —7)k1
tH/oo 1) ————dv(T)
belongs to ba.(IR) and is k-times weakly differentiable. We have
Fup(w) = ()" F(w)

Proof: The condition on v ensures that v(t) = 0 for ¢ sufficiently large.
Since vy € C*"1(IR) we get vy € ba(IR). Further a straightforward com-

putation of the Fourier transform F,),, gives the desired result. ]

Corollary 4.7 Let u € ba.(IR) be k-times weakly differentiable with k-th
derivative v. Then

wo= [
and so p € ba(IR) N C*-1(IR).
Theorem 4.8 The following statements are equivalent for p € ba (IR)
1. p is k-times weakly differentiable
2. C, maps C(IR) into C*(IR) continuously
3. For each polynomial of degree k there exists p € ba.(IR) such that

' VfeC*R): Cup(D)f =C,f

Proof:
(1=2): Then for all f espan{e,lw € C} D*C,f = C,f. Let f € C(R)

12



and (fa)nen be a sequence in span{e,|w € C} such that f, — f. Then
D¥C,f, = C,f. — C,f and

{C“fn — pf (n—»oo)
chufn - Cyf (n— )

Since D* is a closed operator from C(IR) into C(IR) we have C,.f € D(D¥) =
C*(R) and D*C,f = C, f.

(2=>3): Since p(D)C,, is a continuous linear mapping from C(IR) into C(IR)
with o*p(D)C, = p(D)C,0* we have p(D)C, = C, for some p € ba.(IR).
(3=>1): Take p(\) = AF. Then there exists v € ba.(IR) such that D*C e, =
Cve, and so (iw)*(F,)(w) = F,(w). a

5 Characterizations of convolution operators on
CH(RR).

We start by introducing two characterizations of the dual of C*(IR) where

k € N is fixed. The first one is based on the Riemann’s remainder formula.

Lemma 5.1 A linear functional £ on C*(IR) is continuous if and only if for
each a € IR there ezists a polynomial p, of degree < k—1 and a p, € ba (R)
such that

L(f) = (pa(D) f)(a)+ < D*f, po >

Proof: The sufficiency part is clear. We prove only necessity. So let £ :
C*(IR) — C be linear and continuous. For each f € C¥(IR) we have

f E( Jf)( )O'"apj-}-d—aIkUGDkf

So
L) = Z(D f )(a)[l(a‘“ p;)+ (Loo I a*)(DFf)

j=0

Put p,(A) = E,-—o [,(a“'pj)" and observe that Lo o™ *I;0% is a continuous
linear functional on C(IR) so that

(Loo™Io®)(D*f) =< D*f,p0 >
for some p, € ba.(R). a

13



Remark 5.2
[Vf € CK(IR) : (pa(D)f) @)+ < D*fr 0 >=0] & [po = 0 A pt = 0]

This result shows the uniqueness of the representation of an element in

Ck(R)I
Now fix £ € C¥(IR)'. Then there exists m > 0 and C > 0 such that
I£(f)] £ Car(f)

so that
k . -~
1C(en)| € COO Jwl)e™m < €(1 + |w]F)emm«)] (3)
Jj=0
Define the function £ by
L(w) = L(e,), w € C
Then from the above it follows that for each ¢ € IR, there exist p, € P,
Ho € ba.(IR) such that
L(w) = pa(—iw)e™™ + (—iw)¥(Fp, )(w)

and so £ is analytic, of exponential type 1 and polynomially bounded on
the real axis. Now suppose £ has a finite number of zeroes, say I. Then we
obtain

£(w) = p(—iw)ei™
for p a polynomial of degree ! and ¢ € IR. Whence taking ¢ = ¢ in lemma
5.1 yields

(~iw)* Fu (w) = [p(=iw) = pe(—iw)]e™™
Since F,_ has no zeroes or countably many it follows that
p(=iw) = (~iw)* + pe(—iw)
and _
‘Fﬂ-c(w) = e

whence | < k and L(f) = (p(D)f)(c). We come to the following conclusion.

14



Lemma 5.3 Let £ € C*¥(IRY. Then the analytic function w — L(e,), w €
C has a finite number | of zeroes with | < k, counting with multiplicity, in
which case L(f) = (p(D)f)(c) for some p € P with degree(p)=1 or countably
many zeroes.

Lemma 5.4 Let K : C¥(IR) — C(IR) be continuous. Then Ko' = o'K
for all t € R if and only if there ezists L € C*(IR) such that L(f) =
(Kf)(t), te R.

Proof: To prove ‘=’ use the fact that (K f)(0) is a continuous linear func-
tional and the shift invariance of K. Conversely, to prove ‘<’ we can use
the explicit form for £ as given in lemma 5.1. a

On the basis of the above auxiliary result we get a second characterization
of the dual of C*(IR).

Theorem 5.5 Each continuous linear functional L on C*(IR) is of the form

L(f) =< p(D)f, >
Jor some p € ba.(IR) and polynomial p of degree < k.

Proof: Define K : C¥(IR) — C(IR) by (K f)(t) = L(of). Then ker(K) is
a closed translation-invariant subspace of C¥(IR). We have

e € ker(K) & L(w)=0

If ker(K) is finite dimensional we can apply lemma 5.3. If not, we can select
w1, ..., wi mutually different (1) such that w; € ker £ whence e,; € ker(K).

Put
k

p(N) = JT(A - wj)

j=1
According to remark 4.2 there exists J : C(JR) — C¥(IR) is such that
p(D)J = I. Defining the projection P := I — Jp(D) we have
ker(K) = P(ker(K)) + (I — P)(ker(K))
and KP = 0. We show that K'J is a shift-invariant operator.
'] ~Jot = o'JST - Jo'SJ
= (o'JS - JSa")J
= (¢'(I-P)~(I- P)a")J
(Pot — a'P)J

15



Herewith

K(e'J-Jo') = o'KJ-KJd'
= K(Po'-a'P)J
=0
Now KJ = C, and K = p(D)KJ = p(D)C,. o

We mention the following interesting results:

Corollary 5.6 Let K : CF(IR) - C(IR) be a translation-invariant con-
tinuous linear mapping. Then K = p(D)C, for some polynomial p and
u € ba (IR).

Corollary 5.7 Let K : C*(IR) — C*(IR) be a translation-invariant contin-
uous linear mapping. Then K = C, for some v € ba.(IR).

Proof: K = p(D)C, for some polynomial p and pu € ba.(IR) and so
with J such that p(D)J = I, we have KJ = C, : C(R) — C*(R). lLe.
p € ba®)(IR) and p(D)C, = C,. o

6 The convolution ring E'(IR)

By E(IR) we denote the space of all infinitely differentiable functions on IR
endowed with the intersection topology induced by the spaces C*(IR), i.e.

E(R) = (] C"()

n=0

So a seminorm on £(IR) is continuous if and only if it extends continuously
to a seminorm on C™(IR) for some n € N. As a natural consequence we
have

Lemma 6.1 Each continuous linear functional F on E(IR) is the restriction
to E(IR) of a continuous linear functional F on C*(IR) for some n € N
dependent on F'.

Using the characterization of continuous linear functionals on C™(IR) as
presented in theorem 5.5 we get the following result:
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Theorem 6.2 1. Let p € ba.(IR) and let p denote a polynomial. Then
the linear functional

[ <pD)f,p>, fe€E(R)
is continuous on E(IR).

2. Let F be a continuous linear functional on E(IR). Then there ezxists
p € ba.(IR) and a polynomial p such that

F(g) =< p(D)g,n >
for all g € E(IR).

For convenience we denote the supposed correspondence between £'(IR) and
ba(IR) @ P by F = [u;p]. But be aware, this correspondence is not linear
and not one-one.

Now let F' = [p; p]. Then
F(a'g) = (Cup(D)g)(t), t € R,g € E(IR)

and so [p; p| is linked with the translation invariant operator p(D)C,, which
maps E(R) into £(IR) continuously. If, conversely, K : E(R) — E(IR)
is a continuous linear mapping with o'k = Ko! for all t € IR, then with
i € ba.(IR) and p € P such that

[1; Pl(9) = (K g)(0), g € E(R)

we get
K =p(D)C,

It yields the natural convolution structure in £'(IR), without the use of
distribution theory.

Definition 6.3 Let F} = [u1;p1] and F3 = [pg;p2]. Then
Fy + Fy := [y * p2; p1po]
This is a natural definition, since for all ¢ € IR and g € E(IR)

(Fy + F3)(0%g) = (p1(D)p2(D) Cpyuur 9)(2)
=(p1r2)(D)
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With the above convolution, £'(IR) is a convolution ring with identity and
without zero divisors. In connection we recall the Paley-Wiener result:

For an analytic function 9 there exists F € E'(R) such that ¢(w) =
F(e,), w € C, if and only if there are A > 0,B > 0 and N € N such
that

[p(w)] < A1 + w|)NeBIm@ e C

The Paley-Wiener characterization is nicely in line with our results, since

[ p)(ew) = p(iw)(Fu)(w)
(cf. [1], theorem 10.2.2).

For p € ba (IR) N C*°(IR) we see from theorem 4.8, that C, is a continuous
linear mapping from C(IR) into £(IR). For completeness, note that p €
ba.(IR) N C*(IR) if and only if there exists ¢ € D(IR) such that

w)= [ o(ryin, teR

—00

If ¢ € D(IR) with [g ¢(t)dt = 1, then ¢,(t) = ne(nt) satisfies
lim [ a1t = 1(0), 1 € C(R)

Put p.(t) = [t on(r)dr. Then p, € ba(IR) N C*(R) and the sequence
(£ )neN is called an approzimate identity, since C,,, f — f for all f € C(IR).
With the aid of this concept a number of results can be proved.

Theorem 6.4 Let M be a closed subspace of C(IR) such that o*(M) C M
for allt € R. Then M N C*(IR) is dense in M.

Proof: Let (¢n)neN be an approximate identity in ba.(IR) N C*(RR). Then
Cu.(M) € M by lemma 3.5 and C,,,(M) C C*(IR) by the preceding re-
mark. Hence Cy,,(M) C [M N C®(R)]. Since Cp,f — f, MNC®(R) is
dense in M. o

Theorem 6.5 Let K be a closed translation-invariant operator from D(K) C
C(IR) into C(IR), such that C*(RR) C D(K). Then K = p(D)C,, for some
p € P and p € ba (R).
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Proof: The restriction K|ce(g) : C*°(IR) — C(IR) is continuous and trans-
lation invariant and so K|co(r) = (P(D)Cy)lcw(r). Now let (pn)neN
be an approximate identity in ba.(R) N C°(IR). Let f € D(K). Then
Cu.f€CP(R)CD(K)and Cy,f — fasn — o0. So

KC,.f=C.,.Kf—=Kf

and
KCI‘nf = p(D)Cﬂ'Cﬂn f

It follows that f € D(p(D)C,) and
p(D)Cuf =Kf
Similarly for f € D(p(D)C,) we get
feD(K) and K f = p(D)C,.f
Note that for p a polynomial of degree n
D(p(D)Cy) = {f € C(R)| C,.f € C"(IR)}

a

Next we want to characterize closed linear mappings from C(IR,C") into
C(RR,CP), with E(R, R™) in their domain.

Definition 6.6 By PxAM we define a class of linear operators from E(IR, IR™)
into C? which can be represented as a p X n-matrix operator with entries
of the form p;;u;;. An element of that class will be denoted by p x u where

p € MP**(P) and ue MP**(ba.(IR)).

Definition 6.7 By P x Cyp we define a class of linear operators from
E(R,R") into E(R,IR?) which can be represented as a matrix operator
with entries of the form p;;C,,;;. An element of that class will be denoted
by pxC, where p € MP*"(P) and p€ MP*"(ba.(IR)).

Remark 6.8 Note that we do not claim that in either one of the two classes
- of operators the elements can be written as a product of two matrices with

on one side all the polynomial elements and on the other side the elements
in bac(IR). O
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An almost repetition of the proof of lemma 3.9 yields

Lemma 6.9 Let L : E(R,C") — CP? be a continuous linear mapping. Then
L = pxp for some p € MP**(P) and pe MP**(ba.(IR)).

We apply this lemma in the following theorem.

Theorem 6.10 Let K from E(IR,C") into E(IR, C?) be a continuous linear
mapping satisfying Ko}, = oL K for allt € IR. Then there are p € MP*"(P)
and pe MP*"(ba.(IR)) such that

Kf=pxC, 4)

Proof: The linear mapping f — (Lf)(0) from E(R,C") into C? is contin-
uous. Hence

(LHO0)=pxp
for suitable p € MP*"(P) and pe MP*"(ba.(IR)). O

The following theorem is a generalization of theorem 6.5.

Theorem 6.11 Let K be a closed linear mapping from D(K) C C(R,C")
into C(IR,C?) with E(R,C") C D(K). Then

K=pxC,
for certain p € MP*"(P) and p € MP*"(ba.(IR)).

Proof: We observe that KCj, = Cup, K for all i € ba (), since K is
closed and span{oi|t € IR} is strongly dense in the set {C, |u € ba.(R)},
r = p,n. With this in mind, it is clear that the statement can be proved
with similar arguments as in the proof of theorem 6.5. a

The results in this paper can be applied in the field of system theory. Their
relevance will be shown in a future paper where we treat the problem of
finding descriptions of systems that are shift-invariant subspaces.
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